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Abstract

It is shown that the chiral and conformal anomalics of fermions in 2n dimensions
are related to a statistical mechanics system in 2n+! dimensions for which a mag-
netization—-like quantity corresponding to the chiral anomaly density has a non-

trivial infinite temperature limit.

1. Introducticn

In the past few years considerable progress has been made in the understanding

of the algebraic and topological properties of chiral and gravitational anoma-

lies /i/. Nevertheless their physical origin remained obscure, since the only
"eeason" for their existence we know 15 bhat for certain guantum field theories
there does not exist any regularization scheme which simultanecuszly respects all
symmetries present a. the classical level. Phie is a rather formal statement and

it would be desirable to understand the origzin of aznomalies in more physical terms
which are closer to one's inluition /2/. The major cbstacle for any attempt in this
direction is the fact thsl anomalies are effects due to regularization which per—
sist when the U¥-regulator is removed. In this sense ihey can be thought of as the
collective effect of an infinite number of fiecld modes, a1l contribubing on egqual
footing, irrespective of thelr momentum or other quantum numbers. Thiz is parti-
cularly obvieus in Fujikawa's treatment /2/. For the divergerce of rtne axlal veotor
current of & 2n—dimensional massless Divec fermion interacting with an external

Yang-Mills potential he obtains the formal ezpression

A <0|§KPXMM'\HO> ——_-.\A.ln (x) = lzi,epi“'(x) Vonss P (x)

The sum runs over a compleie set of besis functiouns ‘?; of the space of 2ninor
fields. In more physical terms this mesns thal all Fermionic vacuur flustuatlons
contribute with the csame weight to \J¥(x). The sum, however, iz ill-defined,

According to the general procedure it is replaced by the well-behaved, gauge

invariant expression

A, 0 = Ui

M=o

‘Arln (”\}M) (.2



where

2
\A-,m (x;M) = 2,2. °P;+(><) | -F (’B/ P, (x) (1.3)

Ml

and £ is any smooth function, which obeys

{1.4)

‘{'(0\= 1, Lim -F(h)(S) =0 Lor all N30 .

sy
For example Fujikawa's choice /3/ is

-5
f(5)= e (1.5)
1
We now assume thg W’; 5 to be eigenfunctions of the Dirac operator: ﬂcﬂ =)_-I ‘Pi .
Effectively only vacuum fluctuations with ;l;:ﬁ b4 Eontribute to the regularized
anomaly. Using the well known Seeley-De Witt expansion /4/ of the heat—kernel

xlexp (- ,B’z/l"‘il).lx>

the results of perturbation theory in all even dimensions. In particular, the

it is easily seen that (1.2} reproduces

space integral of NJN(X) is twice the index of ,EY . (We assume 2n-dimensional

space-time to have euclidean signature.)

Usually the insertion of the cutoff factor ¥'(£§j/ﬁ4l) is considered a
purely mathematical tool to render the sum (1.1) finite. The choice (1.5) how-
ever is reminiscent of the Boltzmenn factor in statistical mechanics and suggests
to interpret (1.3) as a thermal average within equilibriuwn thermodynamics, the
r8le of temperature being played by M?. In a sense which will be made precise below,
this amounts to representing the vacuum fluctuations q’. (XF) by an ideal guantum
gas of particles living in a (2n+1)}-dimensional (x",t} world. The extra dimension
is the time coordinate with respect to which the system is translational invariant
in thermel equilibrium. In this picture the emergence of the anomaly as the collec-

tive effect of all vacuum fluctuations (for M -3 & } can be illustrsated by looking

at the high-temperature limit of a certaln magnetization-like quantity /5/. Of
course, this does not mean that anomalies can be explained completely in terms

of statistieal mechanics. One still has to use guantum field theory to derive
(1.2), (1.3). But it means that there is an auxiliary system which can serve as

& ph&sical illustration of the behaviour cof the field mcdes qﬁ (%) when the re-—

gulator is removed.

2. The case of two dimensions: Pauli-electrons

We start the discussion with a seemingly unrelated gedanken—experiment. Assume
we have & particle, which can be in two different energetically degenerate states,
and vhich can be converted freely from one siate to the other, This degeneracy can
be lifted by an external magnetic field g. Hereby the energy shift experienced in
the two states is -—R‘@I and +Ml§l ,» respectively, where o is some real con-
stant. Stated differently, the energy shift is given by the eigenvalues of

- >
Hint = =& g-B where % are the Pauli matrices. This is the quantum mechanical
coupling of a nonrelativistic (Pauli) electron to an external magnetic field via
its magnetic moment. Let us consider the case of a time independent, constant meg-

netic field, which is choosen to lie along the 3-axis. For a single electron the

' -1
"magnetization" in the canonical ensemble at temperature 1V = P is given by

_ -l-r[l» axp(?tﬂS;B)] B
<8, = 3 = danh (« = {2.1)
Fr U exp («P2;B) ] ( T)

This expression vanishes in the infinite temperature limit. The same is alsc true
for a fixed number N of non-interamecting electrons in the canonical ensemble, If we

consider the case of Boltzmann statistics for a moment the total magnetization is
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and M as well as the susceptibility X.'—"‘" éM/bB become zerc us T gocs Lo

infinity. —
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Let us now try to modify the model so as to have a non-isro, but fisnlte velue ve T
of the magnetization and the susceptibility even for T-2 @, To thls end we sazime dere d in fhe number of gpace-dim
. ) . . . -3 2
that our szystem is allowed to exchange particles with a reservoir =0 Lhat, %oiz no
- e | W= = - =28
longer fixed, but is & function of temperature. This meags thal we replace Lhe

am

canonical ensemble by & grand canonical one. The particls rimber 15 now Zlven fo bhe ogne particlie damiltonian and Tr dencies <he “pracsc in the one Laricle state

by the derivative of the grand canonical potential

apace. Far the carticle number we ohizsin d
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T, e V)= =T e Z(T V) Ny e T T ViG] 2eosh(«5)
N !

with respeect to the chemical potential u: ( W]__[__ ) .‘:L
'
i

= N — -

k: , \ 2w (2.9
(NS = - 22

S denotes the grand partition Tunction given in terms of the canoniesl nar ition 4 T

. Voonr e T P . -
functions ¥ by M w1 i B) oo 2B Lo ! v & " ( 8 @
o0 03 N

— S A g Ly v PR T
ST V)= e ZCTIVN) LA k) T (e

.j
3
é
i
a

(I

In the case of Boltzmann sratistics for g ges of noninteraetins particlos we nave 4, o 4
the well known rosuiu ==
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and susceptibility
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Lim X AT, 8)= Tm . e2)
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Boltzmann statistics is of course inappropriate for the treatment of electrons
and the discussion above only serves to exhibit the essential points in the most
simple way. The results, however, also hold for the case of Fermi-Dirac statistics

as will be shown next. Equations (2.6}, (2.7) are to replaced by /6/

bn 2 (T, V) = Tr Ln (1 + ePPe“PH)

._\/L ) +r ‘g'ﬁ(epr “FQ)EB)

(2.13)
with the Fermi integrals w© 2
-4 ~F
S; E%;l (;2) = E:%?%i S ciP P L_n (‘4 +Z2 e )
s n+1 ,..é%&
- 2 (-1) Zz hn . {2.14)
The particle number and magretization are
<N>=T%(4-+a*”eP"Y
‘ Pr <pésB
v (2D £y (PR
(2.15)
-\ ) 1§41 (1) (4 +0(F 1]
- H -
M(T,P,B\- A1]e (1ee Pre P ] (2.16)

-7 -

_ sz)% *—r[&; _F%(QPI"Q*F’QB)]
(m—"i)"’*L 1) « &[4 00)

= %W\B {_’I%—G(%)] for =2 .

(2.17)

Although M in this case is not just given by the product of the cne-particle magne-
tization and the particle number < ¥ as in Boltzmann statisties (2.10), the
high temperature behaviour again leads to a finite limit for M and X as T —-» @@

if the number of dimensions is d=2.

A4 finite result is aobtained because the effect of the thermal fluctuations
which tend te decrease the magnetization for increasing temperature is compensated
In the next section we will argue

for by the increasing particle number density.

that this "fine tuning" is the basic mechanicsm leading to anomalies.

At thiz point & remark about the Hamiltonian is in order. The full cne-particle

Hamiltonian for our model should properly be

W= 3 (F

instead of (2.8). The coupling to the vector potential.? is important for the Landau

ny
[44]

K) - «2,B

diemagnetism. However, for the average spin value which we define by {2.16) our
previous results on the high temperature behaviour are unchanged. The spectrum of

H is well known /T/. In d=2 the eigenvalues are

k= O|4'l}v-‘ '

[Tl
1

{2.19}

EB(k+d)-«Bs



and the degeneracy is such that the trace in the one particle state space is

B’E:
e
=NV S B

{2.20)

With the help of the Buler summation formula in the form

«© o ’
1
7, g (Bk) = T dy 40 + L g0 + G(P) t2.21)
k=o °

it is easy to see that in the high temperature limit the formulae (2.15), (2.17)

are reproduced,

3. Chiral anomalies in-2n dimensions

What do our two-dimensional considerations have to do with ancmelies? The connection
comes through the fact that the expression for the magnetization in the grand canoni-
cal ensemble (2.16) is the same as for the regularized two-dimensional anomaly
\Aé(x;T), see {1.3), if we chocse the cutoff function to be
5 \-1

fy=2(1+e) G.)
and let p = 0 (in the limit T-»® the quantities under consideration are indepean-—
dent of p). In the follewing we shall make this comnection explicit and extend the
discussion to systems in all even dimensions., Working in 2n dimensions we consider
an electron which can exist in 2% spin states which are energetically degenerate in
field free space. {Recall that a Z2n-dimensional Dirac spinor has 2 components., }
An external magnetic field is described by the 2n-dimensional space-part va \
uy¥» =1, J.uy 2n, of the field strength tensor, which we assume to be constant.
The generalization of the interaction term of the spin to the external field in
higher dimensions is well known to be of the form &f‘“’ Fr‘w, where &f‘“’ is re-

lated to the Dirac metrices for 2n dimensions by

g;«w = ';;."[-YwY»] .

(3.2)
Thus the single particle Hamiltonian reads
Pr p
T R ol &NF . (3.3)
p S

In the two-dimensional example magnetization was defined through the average value
of g3 , 1.e. the spin component belonging to the fictitious time direction., In

the general case this average will be formed using the analog of Xs H

N4 an ft\
3 =~ Ty (3.4)
AN 4 p=1 M
The magnetization due to a single particle is given by

Poc 3’“ Fhrv

| A Y e i
<\g1»+4> -l-r[_ Qp-c zr,F?"’J C,

Using the trace identity

(3.5)

0 for 14 <2n

/

*r[iuu4iﬁinxﬁij = Glﬂngkruhm LM j=2h {3.6)

one obtains for its high temperatur limit

<%1n+4> = ft— (%)nf';l_n ‘l‘r[fv‘ﬂ (3,&, I'—'l"")"] (4 + 0(4:)) (3.7}

Considering now a grand canonical ensemble with Fermi-Dirsc statistics, the particle

number density becomes

- H\-4
n(tpy s LAn> =2 T (14 e e P)

n %R 8, FH¥
kﬂ) "‘-r-‘:n(epra Ff‘ )

2

i

(3.8)




with the Fermi integrals f_ as in {(2,14). Its high temperature limit is indepen-—

dently of the chemical potential u and the field strength given by

n(T) = (m:\r-;:)“ £, L/l + (}(%)] . (1.9

. n . . .
This T -behaviour is just what is needed to cancel the 1/Tn fall-off of the magne—
tization due to a single particle. In fuct for the mugnetization per unit volume

we get a finite, but non—zero high temperature limit

M (-"—‘llM = %Tr[\dhzn+1 (4 + Q-_PF\ e PH )_1 _]

= (V_"‘_:E)n br [ X;\nm ';n (eP-’A e O(P gf‘” F‘M)J

aw

(=) A ey, el Grocd)

W nt

Next we show that the above model correctly describes the essential features of
the vacuum fluctuations F;(xX] contributing to the anomaly (1.3) when the regu-
lator is removed. Recall that the expression (1.3), which is essentially the trace
of the cutoff factor, can be evalueted by going to a plane wave basis

<x\p> = exp(ipx) and then imitating Dyson's expansion up to a certain order,

which depends on n /3/. In this way one finds

n

- . d p _F LAV 11

K 2um (L0 G ) e
M- (2r)

With Fujikawa's choice for f (1.5) the integral can be performed easily and one

arrives at

\A‘zn: 1 .& _1-)” -\Fr[.\g‘e.nm (grv FFV)nJ (3.12)

(’):l'r)“ n‘,

ar

-1 ) Hava Wi (3.
 Sp——) € o o v FO o FH 10

w4 n

The result, however, does not depend on this particular choice of f. Comparing

*
{3.12) to {3.10) we see thal bhe ancmaly is precisely four times( ) the high

temperature limit of the magnetization in the above mddel if one chooses ™ = ~ 1/bm:

A= % L M(T) (.14
T3 w
This is not an accident since if the culoff factor ¥ (Eff//f1l} is considered
*%
s Fermi-Dirac weight Tactor (3.1) the corresponding Hamiltonian is given by ()

H=‘j”ﬁl=’j”(l° A )14__..’]__g P (3.15)
A Lm ~ r S ald .

The mass scale m was introduced to ensure that ¥ has the correct dimension. Apart
from the Au—term appearing in the covariant derivative, the Hamiltonian {3.15)
coincides with (3.3) for ek = - 1/bm. Straightforwardly applying Fujikawa's pro-
cedure to [(1.2) one Tinds thal all terms coming from the covariant derivative
cancel and that it is the ékv F.Fv —term alone which gives rise to the znomaly.
1n the context of our model this was verified explicitly for the case 4=2 in
section 2. The coincidence of the high temperature limit of (3.1Q) with [3.13]
suggests that in a basis were the fermicnic field modes A {x") are represented
by plane waves exp{i k-x) there is a one-to-one correspondence between these field
modes and the Pauli electrons with momenbum W populating a world with 2n spatial
dimensions. In a (2n+i)-dimensional sense these particies are in thermal and diffu-
sive contact with a reservoir, so that their energy and particle number density is

a function of temeperafure. (This is analogous to the black body radiaticn in the
case of the photeon.} In Ehis thermodynamic picture the existence of the anomaly is

equivalent to a magnetization which even in the infinite temperature limit is not

¥ : —

tx One factor of 2 in {3.74) is due to the fact that ¥ and ¥ independently con-
tribute to the anomalous Jacobian for a chiral rotation. The other factor of 2
is due to the normalization (3.1}

((*%}

The gauge coupling is sel ejual to unity.
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completely destroyed by the thermal agitation. For this interpretation to be
possible it is erucial to use non-relativistic particles with a kinetic term
quadratic in pu_ Using a relativistic kinetic term linear in pu would yield. s

Wrong answer.

4., The trace snomaly

Also the trace (or conformal) anomaly of Dirac fermions can be interpreted in the
above framework. In Pujikawa's treatment /8/ the trace ancmaly appears as an ex-—

pression which is very similar to (1.2) with (1.3), viz.,

ol TE o> =k, 0= Lim A M) Y
tr Mae
where

' + B
A am = T 9% £ (55 ) e h2)
tr ; ! H
The only difference between (4.2) and {1.3) is the absence of the matrix th*1‘

Restricting the discussion to 4 dimensions (n=2}, Fujikawa obtains for (4.2)

‘*- [~
.M 1 p 4 (4.3)
\A‘tr b‘iM\ = (‘11?)4 §Js S‘F(S) + 2 Fy\..v F + G( [t} ) .

Renormalizing <:Tt ™ at vanishing background field, i.e., subtracting the diver-
gent w piece from (4.3), the renormalized anomaly is given by 4/(7.'*'1\“) F", F'uv_
It is independent of the choice of f(s). To make contact with statistical mechanics
we use the form (3.1) corresponding to Fermi-Dirac statistics. Employing (3.8}
with (3.15) we then find
B 1
\Atr(x;l"\\= :’.%Tr (’I+e_ )

=2_n({4—:,0) (4.4)

- 13 -

CObviously the unremormalized trace anomaly (4.3) is equal to the particle number
density for T = M?/2m. Its leading contribution (3.9) which corresponds to the
Mh—term in (4.3) is independent of F,, &nd hence is irrelevant for the rencrma-
lized anomaly. Thus the renormalized trace anomaly can be obtained as the tempera-

ture independent part of the particle number density.

5. Conclusion

We have shown that for a large, but finite, value of the cutoff M the field modes

. (,(P) behave like a grand cancnical ensemble of Pauli electrons. The regu-
larized chiral anomaly .}*tn (x;f4) can be obteined within this quantum statistical
mechanics system as the average of the generslized magnetization defined above. A
finite, but non-zero, infinite temperature limit is obtained because for high tempe-
ratures (i.e., for a large cutoff} the increasing particle number density exactly
compensates for the decreasing magnetization of a single particle, Similarly, the
renormalized trace anomaly is the temperature independent, but field dependent, part

of the particle number density.
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