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It is shown that the chiral and conformal anomalies of fermions ir. 2n dimensions 

are related to a statistical mechanics system in 2n+1 dimensions for which a mar,-

netization-like quantity corresponding to the chiral anomaly density has a non-

trivial infinite temperature limit. 
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1. Introductio~ 

In the past few years considerable :nro,g;ress ttas been made .i.n the understandinr: 

of the algebraic and topological pr·operties of chiral and gravitational anoma-

lies /1/. NeverthE:le:3S their physir:a] oriein r<O!l'ained obSCIIre, since the only 

"reason" for their existence we kno"' is tha.t for certain quantum field theories 

there does not exist any ree;ularization scheme which simultaneously respects all 

syrrilletries present t~'- the classical .level. 'l'his is a rather formal statement and 

it would be desirable T.o understand the origin of anomalies in more ph;~rsical terms 

which are closer to one's inLuit-ion /'l./. 'l'he ma.jor obstacle f"or any attempl in this 

direction is the fact that. anorr.al ies are effects d'le to regularization .,.1hich ner-

sist when the UV-regulat.or is removed. 1n t.hi.s sense I,hey car; bEo thou~ht of as the 

collective effect of an infinite nurr.ber of fir:.ld modes, a~_l_ cor,tributinv on equal 

footing, irrespective O!~ their r~oment1m. or oT,her quantum n1w:ters. This is parti-

cularly obvious in Fu,j ikawa' s Lrealrr.<:-nt /7_/. For tbe 0: i·vergr"r_.::e of r:r,r:- g_;{if.l.l vector 

current of a 2n-dimens:ional massless Din;.c- fern,ior: in•.eractir,r: ,;ith :s.r, ez~"ern0.l 

Yang-l~ills potential he obtains lhe f'orv.,al e;.z;,u:ss~Gn 

'<~r-<ol"fl~'"t "rlo>=J. (xl=2L"l'+(xl'( "P (x) 
ln+1 l.n i I l.n+1 • 

( 1. i 1 

The sum runs over a com!Jlete set of bas:i ~ func1 ~ons tlfi of u,,., S"[)ace o: 2p~nor 

fields. In more physical ter·ms this rr.eans that 'l.ll fermio~-!_(: 'r<l.c-,~;Jrr. flu:;::;ua(ions 

contribu-te with Lhe sar.1e '..:eigh-r. to ~(x). 'J'f,e S'l!'r., however, is ill-iefined. 

AcCording to the general proced~re il is r-2pJac0.i by r;i':e '<'.ell-behaved, gauge 

invariant expression 

J,- lx) = LVVJ 
"-" ~>-n(X;M) ( 1 .21 

"""""'"' 
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where 

-.A'-" lx; H) = 2 L '1>;\><l '<, . 0 ... ht1 n;;;:) "f; ( l() ( 1. 3) 

and f is any smooth function, which obeys 

+ \ 0): 1 LiWI 
r lnl 
T (S) = 0 .Cor oll n ~ 0 ( 1.4) 

s-'>., 
For example Fujikawa's choice /3/ is 

+ (s) = 
-5 

e ( 1. 5) 

We now assume the '¥'· 's 
' 

to be eigenfunctions of the Dirac operator: ffcpi = ).i lfli 

Effectively only vacuum fluctuations with .A..~ ;S M Contribute to the regularized 

anomaly. Using the well known Seeley-De Witt expansion /4/ of the heat-kernel 

<x \exp (~ ,l'f"/M'-) I x > it is easily seen that (1.2) reproduces 

the results of perturbation theory in all even dimensions. In particular, the 

space integral of ~(x) is twice the index of )B( . (We assume 2n-dimensional 

space-time to. have euclidean signature.) 

Usually the insertion of the cutoff factor .f (.2fYMl.) is considered a 

purely mathematical tool to render the sum (1.1) finite. The choice (1.5) how-

ever is reminiscent of the Boltzmann factor in statistical mechanics and suggests 

to interpret (1.3) as a thermal average within equilibrium thermodynamics, the 

r6le of temperature being played by M2 • In a sense which will be made precise below, 

this amounts to representing the vacuum fluctuations <:f>i (Xr-) by an ideal quantum 

gas of' particles living in a (2n+1)-dimensional (x~,t) world. The extra dimension 

is the time coordinate with respect to which the system is translational invariant 

in thermal equilibrium. In this picture the emergence of the anomaly as the collec-

tive effect of all vacuum fluctuations (for M ~a> ) can be ill•;M.rsted by looking 
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at the high~temperature limit of' a certain magnetization-like quantity /5/. Of 

course, this does not mean that anomalies can be explained completely in terms 

of' statistical mechanics. One still has to use quantum field theory to derive 

(1.2), (1.3). But it means that there is an auxiliary system which can serve as 

a physical illustration of the behaviour of' the field modes Cfi ( x) when the re-

gulator is removed. 

2. The case of' two dimensions: Pauli-electrons 

We start the discussion with a seemingly unrelated gedanken-experiment. Assume 

we have a particle, which can be in two different energetically degenerate states, 

and which can be converted freely from one state to the other. This degeneracy can 

be lifted by an external magnetic field 1. Hereby the energy shift experienced in 

the two states is -D(,IBI and +O(IBI , respectively, where 0( is some real con-

stant. Stated differently, the energy shift is given by the eigenvalues of ...,,. .., 
H. t =-I><. J..B where 6 are the Pauli matrices. This is the quantum mechanical 

"n 

coupling of' a nonrelativistic (Pauli) electron to an external magnetic field via 

its magnetic moment. Let us consider the case of a time independent, constant mag-

netic field, which is choosen to lie along the 3-axis. For a single electron the 
-1 

"magnetization" in the canonical ensemble at temperature T =:- ~ is given by 

< 63 > ~ h [ 6, ~"P ("'-@~.B)] 
h[ ~" p ("" ~ 6, B) J = +""h( o( ~ ) 

(2.1) 

This expression vanishes in the infinite temperature limit. The same is also true 

for a fixed number N of non-interacting electrons in the canonical ensemble. If we 

consider the case of Boltzmann statistics for a moment the total magnetization is 
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tv'\ ( T, B) = N <: 6, > ( 2.~) 

and M as well as the susceptibility ::t ~M/?JB become zerv as T goe:s Lo 

infinity. 

Let, us now try to modify the model so as to have a non-;~roro, ·v.:_ fi.ni 'rBl-,le 

of the magnetization and the suscept. i b il i ty even for T ---"7 00 • To u-, i .o end W<:' a._,_oucn(c 

that our system is allowed to exchange particles wirh a r·es<'Tvoir :·o t!l'r'. ~-: i.e; n0 

longer fixed, but is a function of terr.perature. This means u,al \o.'"C r·c·pJ r;(·c Lln~ 

canonical ensemble by a grand canonic'3..L 0ne. The !)a:rtir1•· r,uJ~h"·c :.· ,,v,; ;:ivH, 

by the derivative of the grand canoni.c:al potent.ial 

} (T, f,V) = -T Ln " ~~ 
with respect to the chemical potential JJ.; 

< N> = -'<} 
""r-

(T~J-<,V) 

" . . . . . . - .. O denotes the grand part1t1on f:wct~1on gtven 1n terms of tbc• canornco.J rn.r: ·: lOJ; 

functions Z by 

r-> 

C.J ( T, rcY) ~ 
00 

z--: 
t-ho 

[3 r-- N 
7:_ (T, V, N) e. 

ln the casP C1f BoJJ;?_rr,•um <_:r.nt.i.•:Lic· f".-,c ~l 1'-"c-~ :Jf nuninl,-,rf:":.;n;- nar'. r-:<-

the '..rcll knO'#ll rc~~ut t 

r~ f" 
ex f' L c__! (T, I"·!)-- e. 

lfith '~he onc--pcn·:,,.--;], ,c~r;,i' .. r)n f'llf/· 1.ion 

7(TV/I\ t:... I I I 

l . • 1 e. 

PI' "7 
t:.~ 

pH 

(T, '/, "1 
'1 
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~v IlL 
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e. 
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~ e. J 
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..£:._ "'- 6, B \2.0) 
:l.Y>1 

"''' or:t' par' i clc- ~'BJ!l"il ton~ '\!i anJ 'l'r iE•!JO~ -"':· ·;n;o, ·;1·ac·c ; n ·.he :-'~k lJ;r:. icl<:· st-ate 
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and susceptibility 

L·,.., 
T--'>"' 

X(T,r,B) = 

- 6 -

.3..m 
11' 

Boltzmann statistics is of course inawropriate for the treatment of electrons 

(2. 12) 

and the discussion above only serves to exhibit the essential points in the most 

simple way. The results, however, also hold for the case of Fermi-Dirac statistics 

as will be shown next. Equations (2.6), (2.7) are to replaced by /6/ 

Ln 3 ( T, JA, V ) = T r Ln ( 1 + e. Pr- e- ~ H ) 

.9. 
_ V [mT)"-\-- \'-1r r 

( ( Pr- "'f~.B) 
;-hl e. e. .. 

with the Fermi integrals (X) ' 
~ d.~ l"') = r~) ~ dp 

.11 -r r - Ln ( 1 He ) .. 
"" n+1 dt:l, 

'Z 
., n---;;.-

= (-1) t 
~;1 

The particle number and magnetization are 

Br- rl-l l-1 
<N'>=Tr (1 + e.-r e. 

= V l :: ) t -1-r + ~ ( e. ~I' "- "~ t, B ) 

= v ( ':~ ) 1! ~ + i ( 1) l -1 {- ~ ( ~ ) ] 

M (T, t"• B \ .1.. Tr [ 6?> 
v 

( 1 + e- Pr e ~ H r ~ J 

(2. 13) 

(2.14) 

(2.15) 

(2.16) 

= 

= 

= 
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( 1M 1 ) f -\- [ b ( f ~I' -<~ 63 B ) J 
\?..'ir r 3-t~\.e.. e. .. 

(:~)~ )_ + J-1 ( 1) 
-.:-

"" 
:2.11" 

m B [1 + <'lqd] 

B 
o<

T 
[ -1 + ('} ( ~ l] 

tor J. <i. 

( 2. 17) 

Although M in this case is not just given by the product of the one-particle magne-

tization and the particle number ( N) as in Boltzmann statistics (2.10), the 

high temperature behaviour again leads to a finite limit for M and X as T _, 00 

if the number of dimensions is d=2. 

A finite result is obtain~d because the effect of the thermal fluctuations 

which tend to decrease the magnetization for increasing temperature is compensated 

for by the increasing particle nwr,ber density. In the next section we will argue 

that this "fine tuning" is the basic mechanicsm leading to anomalies. 

At this point a remark about the hamiltonian is in order. The full one-partlcle 

Hamiltonian for our model should properly be 

\-\ = 
.., :>. 

~lp+.cA) ( 2.18) "" 6, B 

instead of (2.8). The coupling to t.he vector potential 1 is important for the Landau 

diamagnetism. However, for the average spin value which '..Te define by (2.16) our 

previous results on the high temperature behaviour are unchanged. The spectrum of 

H is well known /7/. In d~2 the eigenvalues are 

~ •. = ~ B (k+~)- ""Bs 
"'·" 

~<_ .. o,1,l, ... s. = ± 1 (2. 19) 
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and the degeneracy is such that the trace in the one particle state space is 

Tr v eB L: = ::2.'\r k,s 
(2.20) 

With the help of the Euler summation formula in the form .. "' 
~ s Jy ~(y) 

0 

L, 
~:o 

+ i \}(0) <}( pl (2.21) ~ l ~k) = + 

it is easy to see that in the high temperature limit the formulae (2.15), (2.17) 

are reproduced, 

3. Chiral anomalies in·2n dimensions 

What do our two-dimensional considerations have to do with anomalies? The connection 

comes through the fact that the expression for the magnetization in the grand canoni~ 

cal ensemble (2.16) is the same as for the regularized two-dimensional anomaly 

~2(x;T), see (1.3), if we choose the cutoff function to be 

r I. )- 1 
1" (.s) = 2 ( 1 + e. ( 3.1) 

and let~= 0 (in the limit T-::.,<0 the quantities under consideration are indepen-

dent of~). In the following we shall make this connection explicit and extend the 

discussion to systems in all even dimensions. Working in 2n dimensions we consider 

an electron which can exist in 2n spin states which are energetically degenerate in 

field free space. (Recall that a 2n-dimensional Dirac spinor has 2n components.) 

An external magnetic field is described by the 2n-dimensional space-part F~v 

u,v = 1, ••• , 2n, of the field strength tensor, which we assume to be constant. 

The generalization of the interaction term of the spin to the external field in 

higher dimensions is well known to be of the form J,..._)) F~ll' where 6,..._)) is re

lated to the Dirac matrices for 2n dimensions by 

-v<-------··~~~-~----

6,._. = 
I 

:;.. 

- 9 -

l '{1', y.J 
Thus the single particle Hamiltonian reads 

H = 

.. 
.ft._ 
'-""' 

()(. 6 F~""' 
fA" 

(3.2) 

( 3.3) 

In the two-dimensional example magnetization was defined through the average value 

of 6
3 

, i.e. the spin component belonging to the fictitious time direction. In 

the general case this average will be formed using the analog of ls 

~ J.ll\t'l 
= 

. r\+ -1 

I 

O.n 

1f r"' r-= -1 

The magnetization due to a single particle is given by 

< ~ln+• '> = 

R«J F~'" 
r r "" +r L "l-l.nH e J 

+ r l e. ~-<21", Fl'" J 
Using the trace identity 

+ l I"'• r ~l.ll\+4 ~ ••• { 

0 . +or 
1/ l'j, J = n I'• ... ~'-'" 
0 (-:l.;) £ 

one obtains for its high temperatur limit 

1~j<:l.n 

+.or J = :l.10 

<'!<n+• '> = ~ (~)· ~- +r [ t,.+1 u,...r=·~<·)"] ( -'1 + 0(~)). 

(3.4) 

( 3. 5) 

( 3.6) 

( 3.7) 

Considering now a grand canonical ensemble with Fermi-Dirac statistics, the particle 

number density becomes 

n (T,,_..) = 7 <N> = ~ Tr ( -'1 +e.-pre. ~H r~ 

= \"'Tf + t ( Pr- -<P6t<.FI") 

( 3.8) 

A"lt' r- n e. e.. 
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with the Fermi integrals fn as in (2.111). Its high temperature limit is indepen-

dently of the chemical potential ~ and the field strength given by 

VI( T) ~ ("':,::-)" ((1) l1 + C1(f)] l:l. 9 I 

This T
0

-behaviour is just what is needed to cancel the 1/Tn fall-off of the magne-

tization due to a single particle. In fact for the magnetization per unit volume 

we get a finite, but non-zero high temperature J:imit 

\J\ (T,r-l ~ ~ TrL ~>n+1 ( 1 + .._-rr "- rH ( j 

= 
(""T)"+rr, t-r Pr "'P 6r·F~"';J 
\ -:2.1r L 6?-¥~+1 ..,. \.e e. 

= ( ':~ )" _j__ 

"! 
f h L 'LH (6,., F /"' (] ( 1 tO (:~J) · < 3.1o1 

Next we show that the above model correctly describes the essential features of 

the vacuum fluctuations 9'; (X') cont,t•ibuting to the anomaly ( 1.3) when the regu-

lator is removed. Recall that the expression (1.3), which is essentially the trace 

of the cutoff factor, can be evaluated by going to a plane wave basis 

<xlp> exp(ipx) and then imitating Dyson's expansion up to a certain order, 

which depends on n /3/. In this way one finds 

~ ~2.l;,., 
v"1'" ~ ~"~ M ~ o::l 5 i'"r 

(<lr)<" 
( 3.11 I +r ( t ... ., -HffYM,J) 

With Fujikawa 1 s choice for f (1.5) the integral can be performed easily and one 

arrives at 

" " J,_ - )._ (-1) ltl h L '[,-"+1 (6/"' Fi"v)"J 
A~"~ - (l.1r)"' n ~ 

(3.121 

or 

" 
),_~- = 

(-1) E. F l'<v< ... F' ~"-""" 
1.1'1--1 

'If" Yl\ 
rA.)J-1 ... r-.,v., 

)_ 

(3.131 
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The result, however, doe~ not depend on this particuJar choice of f. Comparing 

(3.12) to (3.10) we ~ee that ~he anomaly is precisely four time~(*) the high 

temperature limit of the magnetization in the above mOdel if one chooses~~ - 1/bm: 

J, ~ 4--
"" 

li, M lT) 
T->oo 

( 3.14 I 

'rhis is not an accident since if the cutoff factor .f (XfVM~) is considered 

a Fermi-Dirac weight factor (3.1) the corresponding Hamiltonian is given by(**) 

\1 _j__ ,tJ' < = 
,_,., 

< 
~ (r,.._-Arl + 

_1_ 
'\-..., 

6 Fi'v 
I"' 

( 3.15) 

Th.;o mass scale m was introducec! to ensure that H has the correct dimension. Apart 

from the A~-term appearing in the covariant deri;rative, the Hamiltonian {3.15) 

coincides with ( 3. 3) for o<. = - 1 /4m. SLraif!:htforwardly applying !'uj ikawa' ~ pro-

cedure to ( 1.2) one finds that all terms coming from ~he covariant derivative 

cancel and that it is the lf"ll F ,....v -term 3.lone '..;hich l.':ives rise ~o ~he anomaly. 

ln the context of our model this was verified explicitly ror the case d=2 in 

section 2. The coincidence of the high temperature limit of ( 3, 10) with I-~. 13) 

suggests- that in a basis were the fermionic field mode~; t:f; (xt'-) are represented 

by p1 ane waves exp( i k • x) there is a one-to-one correspondence beV,.reen these field 

modes and the Pauli electrons with momentum k1
l populating a world '..rith 2n spatial 

dimensions. In a (2n+1 )-dimensional sense these particles are ;,, thermal and diffu-

sive contact with a reservoir, so that their energy and partic.lenumber density is 

a function of temeperature. (This is ana.lof_';ous to the black borly radiaticn in '.:-he 

case of the photon.) In this thermodynamic picture the existence or the anomaly is 

equivalent to a magnetization which even in the infinite temperature J.i~it is not 

(*)One factor Or 2 in (3.14) is due to the fact that "Y and "'f independently con

tribute to the anomalous Jacobian for a chiral rotation. The other factor of 2 

is due to the normalization (3.1). 

(**) . . . 
The gauge coupl1ng 1s set e·1ual to un1 ty. 
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completely destroyed by the thermal agitation. For this interpretation to be 

possible it is crucial to use non-relativistic particles with a kinetic term 

quadratic in p~. Using a relativistic kinetic term linear in p~ would yield_ a 

wrong answer. 

4. The trace anomaly 

Also the trace (or conformal) anomaly of Dirac fermions can be interpreted in the 

above framework. In Fujikawa's treatment /8/ the trace anomaly appears as an ex

pression which is very similar to ( 1.2) with (1.3), viz., 

< 0 l T ~ (><l \ 0 > "').. h (x\ = L;.., __At. (x;M) 
~-~~"' 

(4. 1) 

where 

+ ( !: ) J..h (X; M) = L "1',\xl 
I 

"''; (x) 
(4.2) 

The only difference between (4.2) and (1.3) is the absence of the matrix ~ 
0 2.~4-1 

Restricting the discussion to 4 dimensions (n~2), Fujikawa obtains for (4.2) 

J\.h lx;H\ = 
M't -('ltr)~ 

"' 
S<~. 
0 

s tl<) +-1-
::>.'1-tr' 

F Fl'" 
/"V + ~(*) (11. 3) 

Renormalizing (T~ ~ at vanishing background field, i.e., subtracting the diver

" gent M4 piece from (4.3), the renormalized anomaly is given by -1 /(l'+ir1.) F,... 11 f~"-
11 

It is independent of the choice of f(s), To make contact with statistical mechanics 

we use the form (3,1) corresponding to Fermi-Dirac statistics. ~mploying (3.8) 

with (3.15) we then find 

j,h l><·,M\ = ?.. .1._ Tr 
v 

( 1 + eJ'S/M' f1 ' = 2.n(!:"M , o) 
(4.4) 

----._-._...,_--_~- --- ~--.,,---,_-----....__,--~- -.... --.....----~~-- --".-~~--~~--.--.--.,--
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Obviously the. unrenormalized trace anomaly ( 4. 3) is equal to the particle number 

density 

M4
-term 

forT~ M2 /2rn. Its leading contribution (3.9) which corresponds to the 

in (4.3} is independent of F~v and hence is irrelevant for the renorma-

lized anomaly. Thus the renormalized trace anomaly can be obtained as the tempera-

ture independent part of the particle number density. 

5. Conclusion 

We have shown that for a large, but finite, value of the cutoff M the field modes 

l:f; (X. r") behave like a grand canonical ensemble of Pauli electrons. The regu

larized chiral anomaly ~'~ (x; t1) can be obtained within this quantum statistical 

mechanics system as the average of the generalized magnetization defined above. A 

finite, but non-zero, infinite temperature limit is obtained because for high tempe-

ratures (i.e., for a large cutoff) the increasing particle number density exactly 

compensates for the decreasing magnetization of a single particle. Similarly, the 

renormalized trace anomaly is the temperature independent, but field dependent, part 

of the particle number density. 
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