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Within the framework of stochastic quantization the parity 

violating anomalies in odd space-time dimensions are derived from 

the asymptotic stationarity of the stochastic average of a 

certain fermion bilinear. Contrary to earlier attempts, this 

method yields the correct anomalies for both massive and massless 

fermions. 
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Recently the derivation of anomalies within the framework of 

stochastic quantization [1] has been studied intensively. In the 

case of chiral anomalies it has been shown that even by using the 

stochastic regularization scheme (2] it is not possible to 

maintain both chiral symmetry and gauge invariance as intact 

symmetries at the quantum level and that the anomalies known from 

standard field theory are also present in stochastic 

quantization. (3] The situation is less clear in the case of the 

parity violating anomalies in odd dimensions which were first 

discussed by Redlich [4,5,6}. He demonstrated that similar to the 

conflict between gauge and chiral invariance in even dimensions 

there is a conflict between parity and gauge invariance in 

theories of fermions interacting with gauge fields in odd 

dimensions. Using a gauge invariant regularization scheme, say, 

the vacuum current induced by an external Yang-Mills field 

contains a parity-breaking piece, which is responsible for the 

(possibly fractional) vacuum charge and for the quantum Hall 

effect of the vacuum [7]. This is true for both massive and 

massless fermions. The effective action corresponding to the 

anomalous part of the current is given by the Chern-Simons term 

of the respective dimensionality [5,6]. In reference 8, 

henceforth referred to as (I), we showed that for massive 

fermions this anomaly is unambiguously reproduced by the 

stochastic quantization procedure. This was proven by explicitly 

solving the fermionic Langevin equation and then calculating the 

vacuum charge 

Q2n+l s d.'""x <O\ '\' l><) 1! 0 
'\-l>O \O) I 1 l 

by expressing the field theory expectation value in the usual way 

in terms of an average over the white noise. (The dimensionality 

of space-time is assumed to be 2n+l.) Doing the same for massless 

fermions an inconsistency is found. It turns out that the 

dimensionful stochastic time ~ acts as an additional IR cutoff 

which has no analogue in standard field theory. This allows to 

regularize the theory in a way so as to obtain no anomaly for 
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massless fermions. On the other hand, using Pauli-Villars 

regularization and computing the contribution of the regulator 

field to the effective action by stochastic quantization too, one 

finds ~he same anomaly as in the massive case. This is the same 

type of inconsistency which also has been found by Nissimov and 

Pacheva [9] using a different approach. 

Recently Namiki et al. [10] proposed an interesting new method to 

obtain the ordinary (chiral) anomalies from stochastic quantiza­
tion. It is the purpose of this note to apply their strategy to 

the parity violating anomalies in odd dimensions. Let us briefly 

recall the main ingredients of this approach. Instead of starting 

from the naive Langevin equation, which is well known not to 

allow for a mathematically rigorous treatment, we use Ito's 

stochastic differential calculus [llJ. For a theory of fermion 

fields ~ll(,"C) and lF(X','C)which is defined by an action s, the 

basic stochastic differential equations read 

ss 
ol..Y"' tx,-c) =-

dty (X<t:) : ... . 

Sq.- tx.-q ... 

ss 
8 4- ()(,"t) 

"-

ct. 

at:" 

+ cte ex,""' ... 

+ ole c><,"L) 
" J 

(2.a) 

I 2.b) 

where ~ is a spinor index. The differentials of the Grassmann 

random sources E>u. t:') and e llC,'C') , which are a fermionic 

analogue of the Wiener process, have the following averages 

<ole\l(. > , <d.Go() = 0 (3.a) 
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< ct e" c1. e~ '> = < r.:Wo~. ot 0~ > = o ( 3 .b) 

<olE> t~.•1 ote,.,r.~'.•l' =- l 8 Sr.x-x'J c:H 
~ ,- / "~ 

I 3 .c I 

It is important to note that any functional F of the variables ~ 

and 4" satisfies 

( T[ ttrrl, <FtolJ c(~ c•;CJ) = (T['\'rrl, 'FcrJ1d El,. l•,<l) = d 4•
1 

This follows from (3a) together with the fact that :r[4l~, ijrtn] 
is a nonanticipating function of L [11]. Applying the rules of 

Ito's calculus, it is easy to derive a stochastic differential 

equation for the functional F itself [12J: 

s s (t:) s :r,,, 
otnrl = Jd.x l &{ t)(,t:l o<f-" lX;rJ 

+ )d.x i d 0.._t•,t:) 
& :fir) 

8'/- (X,t:) 

" 

+ 
8 Sm 

S<i;. tx;rl 

8 Tc1:1 

.S 'I-" lX ;r I 

+ dG (><"rl 8 +crl 
" ' 8 <f- (X, 1:) 

" 
1 

8' Tc "C) 

+ Jdxoty[ d.~<>~;qdE)~cy,r> O<f-r--C.y,rl &<t<•,•J 

b2+cr) 

+ ~ d.G"l>C,l:) cH:f,r.y,o) 8</-~cy,t:l 8't_ <"·"' 

I +-2 

8""T e-el 
cJ. e ... (X,l:)ol E)r-- ty, t:) s <j-j'> ly, "t") C 'f',. (X, t:) 

} r.h-

I 5 I 

1 
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(The functional derivatives are understood to be left-deriva­

tives.) A further point which will be important is that in the 

equilibrium state for 1;" __,. oo -the average of F will become 

stationary, i.e. 

~ < d.T <T:l ') ~o 16 I 
r--.oo 

A formal proof can be found in reference 10. The averaged version 

of equation (5) was used by Namiki et al. to derive the chiral 

anomaly. Their choice for the functional F was 

+ = + ( x, t:) 0 5" '+' ()(, q 

Inserting this on the RHS of (5) yields for the firs·t integral 

precisely the· axial vector divergence ~{ft~"-<r'5 lf') , the 

second one vanishes according to (4) when the averaqe is taken, 

and the third integral, finally, turned out to be the anomaly 

term. Because for ~-. ~ the LHS of the averaged equation 

vanishes, one thus recovers the usual anomalous divergence 

relation of the axial vector current from the stationarity 

property of the pseudoscalar < lf-' <J's-tt') . 

Now let us turn to the parity viOlating anomalies in 2n+l 

dimensions. We first consider massive (Euclidean) Dirac fermions 

interacting wit:h a topologically non-trivial background Yang­

Mllls field A~= A~Ta, where·Ta are the gauge group generators. 

The action is·given by 

S = 5<l"•1
x <f' ( i J/>- m)lf' 

17) 

where '::r/> = }{fl(O,._ + i A.r). (We use the same conventions as in 

(!);in particular we write )(JA-:{>(~)('~')=(X:~)() with 

i., j.,k,. ~; = .1,;,, 2n and f'• ).)1 ~, ••• =. 0
1 

••• , 2..Y\. • ) To detect the 

anomalous term in the vacuum current, it is sufficie~t to 

calculate the induced charge (1) for static magnetic background 

fields, since it is known [5,6] that the parity even part of the 
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current does not contribute to the vacuum charge. Therefore we 

may set A0 = 0 and Ak = Ak(xi). For the functional F whose 

stationarity property is to be exploited we make the ansatz 

5 
2"+' 

T cc:J = cl )( 't<><,t:} 6 '\'(><, t:) 

The operator G is implicitly defined by the relation 

G (i :rf>-m) + ( i "li>-""')G = o0 

(8) 

19 I 

This equation could be solved by introducing appropriate Green's 

functions. It turns out, however, that the explicit solution will 

not be needed.- The reason for this definition of F is, that when 

inserted into the first integral on the RHS of the stochastic 

differential equation (5) for the act1on (7), it essentially 

yields the vacuum charge (1): 

<oiTm) =- Icl.l.h+~ <~(X', t:l (!'. ty(l(, r::) > clr 

(' ,_,.... - 6 > - .\ cl X < oi.G (><,t:l elf) (x,rJ 

110) 

=- oh: (' ol.x 0 Q en J ,.,.1 +ott-
Note _that because of ( 4) the terms linear in d 0 and d9 vanish 

upon taking the average of equation (5). Since the LHS of (10) 

vanishes for 1:" _,. co , we suspect the anomaly to be contained in 

the quantity 

<-'4 = - s cJ. '2.n+ll( <de (X,t:) G c{ Gtv, t:) > 
(11) 

(Since all expectation values are time-independent, we restrict 

the x 0 -integration to a finite interval.) As we shall see below, 

in the present fOrm~ has not yet a well defin~d meaning and 

hence must be regularized. We do this by smearing out the 
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S -function [10] of the correlation function (3c): 

e - I U· ""<P+ I -A.)/Al <rA ot!><,t:Jo1.0r--t~.rl) =ld.:r: Mtm ~ 1;,.,(><Je 'f;o(<><l 
A-..oo z ,-

(12) 

Here { 'fi l denotes a complete set of orthonormalized eigenfunc-

tions of the Dirac operator: J/>tfi = lt fi . Hence (11) yields 

.4 = .2d.r ~ 2::: 
A.-+oo i 

-l~/A' ( ...,., 
e' j<:l.>< + <fs l><l G 'f; <><> 

= ott:' ~ 2:: 
-1;//1.1 

e - >( 0 I Yi'"•' + u.-m 'fi ()() (( 'f· (><) 
1\-.oo i • l 

( 13) 

= - cl.t:' 1.»w.. sol~·~ <x\h'a'0{ilj>+WI} 1 -:Ijlf/l.t -....>..._..,• e \x) 
1\-..oo 

To obtain the second line of (13), relation (9) and the 

eigenvalue equation for :J/; have been used. We note that the 

:rf> = i 0 d
0 

+ ~k..J:\ part of the curly bracket in the last line of 

(13) does not contribute to A. The first term vanishes because, 

when going to momentum space, it becomes odd in k0 and the second 

one gives no contribution since it anticommutes with~0 . Using an 

integral representation for the inverse of JP 2 + m2 , we thus have 

found 

.ll n· U·••' r o -(JJ>l+.., ... )(w+,f') 
a+ =-'M d.• .~(Arm. J"' x Jol"' <>< \ ·h ~ e \x)< 14 > 

A_,..oo 
0 

>. .,\..'2. 
If we note that ::rf>'l.=- ~0 +""'Y,~ where 

k . ) J:P2., == 't ( '01( + i. A k txl l 
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is independent of x0 and that, upon introducing s w +A -2, 

'd's -'h 
<x•\ e • \X 0

) == (4-rs) 

we may write 

.fi= -'h 
- ""- ( 4- 1r) o(:r 

00 

-~ Sots 
A-«> A-2. 

-m's 
e -'ll. J-·u.·• <-.. 1, vo -Jb.,!s -.)11SJ s IJ\ x x t:r o e \X • 

Next we exploit that, since y0 anticoiTUTlutes with l/> 2n, 

Scl'·'x 
2. 2. 

<xlh¥0 e- TP.,~ s 1it) = lY[¥0 e- :tl>," 5 } 
( 16) 

is the index of 

Chern character 

strength form F 

the Dirac operator J/> 2n, which is given by the 

[13J of the gauge field A. (xk) with the field 
. . 1 

= i/2Fijdx~dxJ: 

index JP.,, = J e><p ( ~ t) (17) 

(We use the standard differential form notation [13]). In (I) 

this was shown explicitly by applying Fujikawa's method [14] to 

equation ( 15). Thus ( 10), ( 15) and ( 16) imply 

Q l'C) = -., 
'Z.n+l 

00 

-•h 0· s (4-lr) ~ ols 
1\->oO ~~.->. 

c:h: 
<?:en) cl -- ) 

-"""" 'ts -'It 
e. s inolex .1/>?.\'1 

( 18) 
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where F is obtained from F by omitting the x 0 -integration. 

Equation (18) describes the "C" -evolution of the vacuum charge. 

Obviously, the anomaly does not depend on the stochastic time; 

the only r -dependence arises through the time derivative of 
~ <.+cc>) which vanishes in the infinite r limit. After a trivial 

integration we therefore arrive at 

Qz.,..., = ~ 
r-eo 

1 'ht. =---
:2. 1 ""' 

Q tel 
'-l1+1 

ii'Ul!ex :Q>.,_.._ 

(19) 

This is the correct result for massive fermions. Here we concen­

trated our discussion on the vacuum charge; however, it is well 

known, that Q2n+ 1 1 0 is equivalent to the presence of the 

parity-odd part in-the vacuum current and of a Chern-Simons term 

in the Heisenberg-Euler effective action [S,6]. Hence we may con­

clude that the present approach correctly reproduces the anomaly 

in the case of massive fermions. 

We now come to the discussion of massless fermions. It is here 

that we will find a crucial difference to the more standard 

approach of (I) where the Langevin equations were solved 

explicitly and the solution was inserted into 

Q2n+l l~l = Sc~. ""'>< <4' (><,1:"Jl(0 <.f ()(, 1:")) (20) 

The stochastic evolution of Q20+1 was found to be given by 

'r-A-~ 
' 

QZ.n+l t't:)"' _..., (4-1!")-;: .Ri.,. S Ills 
A-1:10 A-l. 

-M
4

S 

e 
_I/~ 

s ii'Ullex Jl>,_,., 'I 21 J 

Form~ 0 this equation yields the correct result (19). On the 

other hand, in the derivation of (21) it was nowhere used that 
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m # 0. Hence the anomaly of massless fermions is obtained by 

setting m = 0 in equation {21). For finite values of r, the 

integral exists even without the exponential factor, so that we 

have Q 2n+l (t"} == 0 for all l:' . Taking the limit r--+ oo , we would 

conclude that there is no anomaly. This is clearly inconsistent, 

because, as we discussed in (I), even within stochastic 

quantization there is a regularization scheme with Q
20

+
1 

# 0. We 

can introduce a Pauli-Villars regulator field of mass M and 

regularize the effective action (calculated via stochastic 

quantization) by subtracting its contribution for M~ oo [4]. What 

one finds is (19) with m replaced by M. In (I) we attributed this 

inconsistency to the fact that the dimensionful stochastic time ~ 

acts as an IR cutoff for the proper-time integral in (21), which 

has no analogue in standard field theory. There 1in all comparable 

regularization schemes (zeta-function, heat-kernel)
1 

the upper 

limit is equal to infinity from the outset, so that we are not 

allowed to set m = 0 in the integrand and thus are forced to use 

Pauli-Villars regularization form= 0. 

Let us now come back to the approach based on the asymptotic 

stationarity of < '=Ftt:"l). The important difference between (18) 

and ( 21) is that in the present formulation the anomaly is T:­

independent. The proper-time integral in (15) or (18) ranges to 

infinity even for finite stochastic time and therefore it is not 

possible to set m = 0 in (21) (15]. Hence massless fermions 

cannot be treated in the way described above. This means that we 

are now forced to use a different re~ularization, such as a 

Pauli-Villars regulator, say, to allow for a well defined deter­

mination of the vacuum charge. Then our calculation applies to 

this massive regulator field (cf. Redlich [4]) and hence the 

anomaly is recovered. This shows that, contrary to the naive 

approach to stochastic quantization used in (I), the present 

method unambiguously reproduces the parity violating anomaly for 

both massive and massless fermions. 

I would like to thank Jose Magpantay for interesting discussions. 
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