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Abstracg

In SU(2) gauge theory colour confinement occurs if the vacuum
condenses intc a coherent monopole plasma. To verify this
picture, the first guestion to be answered is whether the vacuum
supports meonopoles at all. Since we expect the monopoles to be
dilute and massive in the deconfinement phase, we begin the
search there. The method relies on cooling equilibrium lattice
gauge field configurations - which are generated at the
appropriate temperature - until the underlying semi-classical
solutions emerge. We then pass to the confinement regionrn and ask
whether the monopoles condense. Finally, we repeat the procedure

for gauge group 5U(3). The results confirm our expectations.

I. Introduction

The present paper continues previous efforts [1] to reach an
intuitive understanding of the QCD vacuum and the dynamics that
drives it using the lattice formulation and numerical

simulations.

A first step in this directicn is te look for the underlving
semi-classical structure. So far, we have learned [1,2] that the
vacuum of the pure SU{2) gauge theory ait zero temperature carries
instantons. This result is maybe not surprising, but we consider
it the first proof that sewi-classical ideas are indeed relevant

for parameterizing the vacuum state.

While instantons offer an intuitive understanding of topology (as
described by the Pontryagin index) and its implication for QCD,
they {alone} cannot give confinement. 't Hooft [3] and Mandel-
stam [4] have argued that the confinement phase is a coherent
plasma of colour-magnetic monopoles, just as the superconducting
phase is a coherent plasma of charges. In this picture colour-
electric flux cannot spread out unless it is squeezed into tubes
of cquantized flux, which ensures guark confinement. Similar ideas

have also been formulated by Mack [5}.

In pure Yang~Mills theories colour-magnetic monopoles {can) arise
in the presence of dynamically generated Higgs fields as time-in-
dependent {particle-like) soclutions of finite energy to the

classical field equations. In the confinement phase the monopoles

must become very light, formally even
M*< o (1)

(M: monopole mass), in order to induce a colour-magnetic Higgs
mechanism, which is the condition for colour-magnetic super-
conductivity. In the deconfinemcent phase, on thoe other hand, we

may o¥pout the monopoles to be massive and dilute.
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This picture can be tested by cooling {1} equilibrium lattice
gauge field configurations. If it is correct, we should find
monopoles accompanied by a plateau in the action in the decon-
finement phase, whereas in the confinement phase the action
should decay rapidly to zero, modulo instanton configurations,
due to the effectively vanishing monopole mass.

The purpose of the present paper is to carry out this test. The
paper is organized as follows. In section 1I we briefly review
the characteristic features of SU(2) monopeles. Secticn III pre-
sents evidence that the sU{2) lattice vacuwn carries colour-
magnetic monopoles in the deconfinement phase. In section IV we
ask whether the monopoles condense to a coherent plasma when we
pass to the confinement phase. Section V repeats the search for
monopoles for gauge group SU(3}. Finally, in section VI se draw

the concliusion.

II. A profile of SU{2) monopocles

Consider a SU(2}) Yang-Mills field coupled to an adjoint Higgs
field in the continuum. The Lagrangian density for the model is

& = Tr‘g_'{?z?/‘vﬁv “br?btbr?ﬁ "’1(95?"5”2)% (2)
where

bR L bl A B ERT

We are looking for finite energy solutions. The energy of a field

configuration is

£=Jdr Il E1EMB [ 1. YY)
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Finiteness of equ. (4) requires that

£ ra
19l = Tr (6" )= (499 —— o, (s)
f)?’/——-?w
4 {6)
(3,¢) ——= o.
X — e
Equation (5) implies that jé/ = v at each point on the 2-sphere

at spatial infinity, S4r but it places no restriction on the
orientation of ¢ . The space of possible orientations is iso-
morphic to the 2-sphere SZ. Thus, asscclated with every finite-

enerqgy field configuration is a mapping
~1 ey
2 2 -
¢.~ Sm~—>5 J§25=/¢/ 95 (7}

This mapping has a winding number g. Because it is an integer, it
is preserved by smooth deformations of the fields within a finite

energy sector. Hence, it is a topological invariant.

Define now the conserved magnetic current (6]

Fp = Goge v Fpe ()
where gk\' is 't Hooft's Abelian electromagnetic field tensor {7]

ES a X P
which refers to fields in ths gauge _g: = V?SV "[8}, i.e. where ?ﬁ
is diagonal,

. 3 -
7('(“\, _ ’Dﬁa\)_’.)ya/h , 0?‘:--.7?[0* V(A‘/..‘*?..)V F (9)

Then one ¢an write
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It is readily checked that the r.h.s. of equ., (10b} equals the
number of times the vector é‘ covers the unit sphere }é‘! = 1.
The r.h.s. of equ. (10a) is the magnetic flux through S;. Hence,
q counts the magnetic charge in 3-space. Since j, vanishesz
everywhere except at the zeros of the Higgs fieia ¢ s ¥y
equ. {10} can be written

@ X <
o Se
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€
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where Se(xo) is the infinitesimal sphere surrouniing xo.

Equation (6) implies that the gauge field at spatial infinity
r

must be a pure gauge. & classical fiesid configuration with unit

magnetic charge, a monopole, will therefore be of the form sho

in fig. 1. It consists of a central region, in which the mignetvic

field is concentrated and the Higgs fieid =? has a zerw, and

EIN

H

A
wherel¢ is the identitfy map, is the famous 't Hooft-Polyvakov

monopole [(7,9].
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ITI. Search for monopoles at finite temperature

Qur first question is: does the SU{2) vacuum in the finite tempe-
rature deconfinement phase have an underlying monopole structure?
To answer this question we proceed in two steps. First, we
generate equilibrium lattice gauge field configurations at the
desired temperature. Then, we cool thess configurations by a
suitable relaxation method such that after a number of sweeps
through the lattice we are left with the underlying solutions to
the c¢lassical field equations.

We use Wilson's action

)=F>%—_['-‘Tf((/ u y O e

S:ﬁzx; (f—--LTv’U ,‘f‘x‘?ﬁvuxh,/.. kv

X, pv
p<v f Vol

with periodic boundary conditions for equilibration. To relax the
X, p

guantum fluctuations we replace each link matrix U

successively by

(17}

+
Z}‘[ o Ui Yoo UL Yo Yonisyo

where ¢ is a mormalization factor such that (17} is a SU(2)
matrix. This means that each link matrix is replaced by the sum
of all parallél transporters which form a plaquette with U;

When all link matrices have been replaced we call this one sweep.
Experience has shown (1] that after a number of sweeps the action
either goes to zerc, in which case the field configuration has
decayed into the trivial vacuum, or it ends up in a plateau. On
the plateau

$S (18}

F S I S S P
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which is the lattice analogue of the classical field equations.

In the course of this work we have investigated a large sample of
lattice gauge field configurations, each of which contains at
least about a thousand sweeps for equilibration, and individual
gauge field configurations in the sample are separated by a

further 50 sweeps. The sample is listed in table 1.

We begin our search by cooling gauge field configurations on
103-4 lattices, which were equilibrated at ﬁ = 2.4. This corres-
ponds to a temperature that lies well above the deceonfinement
phase transition temperature [12]. In fig. 2 we show the history
of 3 typical such field configurations as a function of the
number of cooling sweeps. Configuration A decays intc the trivial

vacuum. Configuraticon B shows a plateau at
4
S wr B e, {19)

which suggests that it carries an (anti)instanton. Upon a closer
iook - i.e. by computing the energy density, the topclogical
charge and the eigenvalues of the fermion matrix for staggered
fermions {1] - this proves indeed tec be the case. Instanton
configurations are, however, rare. More often we find
configurations of type ¢, which show a plateau of about half the
height of an (anti)instanton configuration. On the plateau the
topological charge is zero, and we also observe no approximate
zero mode in the eigenvalue spectrum of the fermion matrix. This
indicates that the soluticns to the classical field egquations we
have found are something new. In the following we shall show that

they are (anti)monopoles.

To gqualify as monopoles, the field configurations must be static
modulo gauge transformations, their energy density must be
localized in space, they must have a magnetic charge and give
rise to zero modes in the spectrum of the 3-dimensional Dirac

operator.
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{a} Static selution

Defining the colour electric and magnetic fields

2
E ) = ZE (1~ Tr U, os) (20)

and

¥4
B = ._2:'(!—,{ TYU,‘M::-), (21)
4<?
respectively, we can write
2
p7ls = Z (E%) +BGa) . (22)
»

In fig. 3 we have shown both contributions separately for confi-
guration C. On the plateau we find

E%) = 0. (23)

This is a sufficient condition for the configuration to be
static. Equation (23) indicates furthermore that the configu-

ration is not self-dual.
{b) Energy

To see whether the energy is localized in space, we have computed

the energy density

. 2
Dex)y = 3l Z_ (1-3Tr Ux,«'j) =£8 0. (24)
1.(3

10
On the plateaus we find that the energy is concentrated in
"jumps". In fig. 4 we show the energy density for a 2-dimensional
cross section through the center of such a "lump”. The units are.
(10 P{x}). It is striking that the energy density falls off much
siower than the action density does in case of an instanton [1].
This is what we expect for an (anti)monopole configuration.

The total energy seems also to be roughly independent of the
spatial size of the lattice as it should be for a genuine monopo-

le: in fig. 5 we compare {3'15 for 3 typical configurations on 81

4, 10& 4 and 143-4 lattices, respectively, which were equi-

librated at {3 = 2.4, The height of the plateau is about the same.
Later on we shall argue that the energy scale is given by the
temperacure.

(¢} Magnetic charge

A necessary condition for the configuration in fig. 4 to carry a
magnetic charge is that the Higgs field, in our case Ao, has a
zero. We have transformed the gauge field configuration to the
gauge f)vo = (¢ and computed Ao from the Polyakov loop

be’ Sdit A, TA
Lexy = T T

N=o

0

=Tre =Tre s (25)

xt+h8,0

where Lt is the number of time slices and T denotes the
temperature. The result is shown in fig. 6, where we have plotted
Tr(T_le)2 and B%(x} for a 2-dimensional cross section through
the center of the "lump"”. The section is indicated by the dashed
line in fig. 7. We see that AO is indeed approximately zero at
the peak of Bz(x). We alsce find close resemblance to the monopole

configuration sketched in fig. 1.

Now we turn to the quantitative analysis. Using the algorithm
developed in ref. [8], we have computed g{ci(x)) for all spatial
cubes cf{x} for the configuration in fig. 4. Since the field

configuration is static, we can restrict ourselves to a single
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time slice. We find that q{c(x)) is zero except for two cubes,
for which q = +1 and q = -1, respectively. The position of these
cubes is marked by circles in fig. 8. The plane at the bottom is
the plane shown in fig. 4, and the area encircled is the central
region ([10 D(x)] 2> 5). This indicates that the "lump" carries
one unit of magnetic charge in the central region. The other cube
lies in the region where BZ(x) % 0. It is associated with a
second zero of the Higgs field AO, which has tc appear somewhere
as a consequence of the periodic boundary conditions. Note that

this "spurious" charge costs practically no energy.

{(d} Zero modes

We shall now investigate the eigenvalue spectrum of the
latticized 3-dimensional Dirac operator (12) in the limit pm> 0.
We choose staggered fermions for obvious reasons. The correspond-

ing matrix connecting the lattice sites is

A “
x f--va- .

- ] it ) - 26

€l Ux,fb ! M)ul:':)x Nx xpd " (26}

b

M

-
X, Xt

The boundary conditions are taken to be antiperiodic. To compute
the eigenvalues of (26} we use the Lanczos algorithm [13].

We start by computing the eigenvalue spectrum in the background
of configuration A (cf. fig. 1} after 30 cooling sweeps, where it
has decayed iﬂto the trivial vacuum. We expect no small eigen-
values. The result is shown in fig. 9, which confirms that. Next
we compute the eigenvalue spectrum in the background of confi-
guration C after 30 cooling sweeps. The result is shown in fig.
10. In accord with the index theorem (13) we find "one" approxi-
mate zero mode, which in fact is twofold degenerate due to the
flavour degeneracy of the staggered fermions. The result is
typical of many other configurations.

This finishes the "proof" that the new objects we have found are

indeed (antilmonopoles.

i2

Before we continue with the next subject we like to report cne
more result on zero modes. A 3-dimensional section of an instant-
on through its center is a dyon [14], which carries one unit of
magnetic charge. We therefore expect the 3-dimensicnal Dirac
operator to have one zerc mode on this section and none else. In
table 2 we list the lowest eigenvalue of the instanton
canfiguration B (cf. fig. 1) after 30 cooling sweeps for each
time slice. The instanton sits on the fourth time slice. This

confirms our expectation.
{e) Stability

We have studied in detail [1]) what causes the instanton
configurations to decay to the trivial vacuum: as we apprcach the
end of the plateau, the instantons shrink, become a dislocation
[15] and finally are annihilated. The situaticn is different for
the meonopocle configurations. At the end of the plateau we cobserve
that the cubes, which carry the magnetic charge of the "genuine
{say) monopole and the "spuricus" antimonopole (cf. fig. 8},
respectively, move towards each other until they cceincide and all
local charges are zero. This means that the "genuine" monopole
and the "spuricus™ antimonopole annihilate each octher. The
annihilation process starts rather abruptly and takes only a few

cooling sweeps to complete.

We have checked that the monopole configurations are to some
extent stable against guantum fluctuations. This was done by
heating the configurations with about 30 Monte Carlo sweeps and
then cooling them again. We got the menopole configurations back.

They moved, however, in 3-space.
(f) Monopole mass

Monopoles are sclutiens of finite energy and hence carry a scale,
the monopole mass. A priori there is no reason why the mass
should be quantized. But this seems to be the case: above we have
seen that the action of the monopole configurations on Lt = 4
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lattices at.ﬂ = 2.4 clustered around half the instanton actiecn.
We shall investigate this circumstance in more detail now.

To do so we cool configurations on lattices of varicus temporal
extents and couplings - and hence of varying temperatures

T = 1/Lta {a: lattice spacing). The results are shown %n fig. 11
for a few representative configurations. They are on 874
lattices at {5 = 2.3, 2.35 and 2.4 and on 12> 6 lattices at

(b: 2.45, 2.5 and 2.56 . We find that the height of the plateaus is
roughly the same in all cases:

'S = E/T = M/T » const. (27)
(E(M}: monopole energy (mass)). This requires
M~ T (28)
If we take only those plateaus into account where ﬁ“t? changes by

less than 1 over at least 20 cooling sweeps, we obtain
furthermore

oy
S =9-/0 (29)
and the monopole mass

M= (9-10) 7. {30)

This result is not really surprising. It reflects that the
physics of the spatial degrees of freedom at finite temperature
is determined by the dynamics of the corresponding 3-dimensional
theory at zero temperature with coupling ng [16].

IV, The transition region

What happens now to the monopoles when we pass to the confinement
region? Do they condense? To try to answer this quetion we have
computed the "density" of monopoles as a function of the

i4

temperature. The result is compiled in figs. 12-and 13 for two
lattice sizes: 83-4 and 12316. In fig. 12 we show the frequency
D[q of finding an (anti)monopole configuration {(basically a
plateau). Each entry is based on 40-60 equilibrium gauge field
configurations. In fig. 13 we show the density

\S)M - VM /(L.SQ)3, ) (31)

where Ls is the spatial extent of the lattice. For the lattice
spacing we have assumed the 2-loop formula

5 2
-y 2 = 3%
e \12d - 7

a= A", (7{5 e . (32)

The units are AL3. The shaded area indicates the location of the
deconfinement phase transition. Note that the values at the
lowest temperature have errors. This is due to the fact that the
plateaus become by and large shorter and sometimes are not
unambiguously identifiable as monopole configurations. We find
that the monopole "density" decreases rapidly as we enter the
confinement region. The "density" reported here should not be
confused with the genuine monopole density computed in ref. (8].
Rather, 1t should be noted that a very light monopole or a
coherent plasma of them will not show a plateau and hence will
not be counted.

We shall compare this result now with the equivalent guantities
for instantons. Based upon the same sample of gauge field confi-
gurations we have computed the frequency i’I of finding an
(anti}instanton and thé instanton "density"

8, = v, /et al, (33)

The guantities ¥ r and § . are shown in figs. 12 and 13,
respectively. In this case we find the opposite picture: the
instanton "density" drops sharply as we enter the deconfinement
reglion.
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In ref. [8] it was found that the genuine monopole density is
large in the confinement phase and small in the deconfinement
phase. For an update see also ref. [17). Not answered was the
question whether the monopoles condense. The present work
indicates that this is the case, because the only explanation we
can think of which is consistent with both results is that the
monopoles become very light and coherent as we enter the confine-

ment region.
V. SU(3)

We shall extend the search for monopoles now to the gauge group

SU(3). We use Wilson's action

!
= I~ =R
S=p 2 (1-3ReTv Ue,, ) (34)
/-4\)
with periodic boundary conditions for eguilibraticn. To relax the
quantum fluctuations we follow Cabibbo and Marinari [8) and write

the new link matrix
(57)
= \o
i ’
o(so)(io) 0(”00(‘,2) U

= FS a ! o

o ! 9 & %! o o Sl
'S 2z

is the old SU(3)
link matrlx We compute a( first. Let us wrlte

(500 (5 ) v

£35)

P - %e U z_( U’ fu',’ U

bAd X1‘-V/H x;/ub'

We then chocse

16
¥ ®
VAL NS AT o
X = ¢ ' « M )
'?3; 1‘?” ?3_\ + ?‘»‘-
where ¢ is a normalization factor such that the r.h.s. is a sU(2)
matrix. Next we compute X 2. For that we replace Ux in
eqgu. (36) hy Ui;;. and call the result P(l). We then choose
3
?ﬂ)f W _on
2 2t By ey
X =¢C G ek Wi, e (38)
- F
Azt lay Pyt P
Finally we compute
(e3p _ <2) €z) (e
3 . ?:1 +?2?_ —3'2.+?:’.1
« = C @ - cu# @y | (39)
Czr t 722 }3:
where P(Z) is given by equ. (36) with U replaced by U(z) The
choices (37), (38) and (39) minimize the action (34). when all

(3]

link matrices U have been exchanged by U, we call this one

cocling sweep. In order to avoid getting trapped in metastable
states we found it necessary to update the three SU({2} sub-
matrices in random order.

The 8*

. 4 lattices

and 8% 4 lattices at F = 5.7
lattices are in the confinement phase, whereas the 8

We have investigated 84
3

are in the deconfinement phase. Both sets of lattices have been

equitibrated by about a thousand.sweeps. In fig. 14 we show 3

typical 84 lattice configurations as a function of the number of
cooling sweeps. Configurations A, B and C show plateaus at

{3_5 % 13, 26 and 39, respectively. This is what we expect for a
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1-, 2-, and 3-{anti)instanton configuration:

p-/S _ ;nzN, N= 12,3 (40)

We have not gone through all the tests to prove that they are
indeed {anti)instantons. But we have checked that the action is
localized. Now we turn to the 83»4 lattices in the deconfinement
phase. In fig. 15 we show a typical configuration. It shows a
plateau at about half the instanton action, i.e. (5"’-3 6.
This configuraticon is a monopole configuration. Thus, we obtain

the same picture as before also in SU(3).

VI. Conclusions

This work provides first evidence that SU(2} and SU{3)} gauge
theories support indeed an underlying monopcle structure. The
next step is to turn this picture into quantitative calculations.
First prbmising results are already available [8,17].

The conclusions so far are that the deconfinement phase is a
dilute gas of monopoles, whereas evidence is mounting that the
confinement phase can be understocd as a coherent monopole

plasma.
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20
ﬁ lattice size #  configurations
8. 4 100
2.4 103, 4 100
‘ 143 4 20
2.2 40
2.25 40
2.3 40
g3.4
2.325 50
2.35 55
2.4 60
2:45 1236 60
2.5 60
2.56 60
1632 20
2.3
1033 20

Table 1: The sample of SU(2) gauge field configurations

investidgated in the course of this work.
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time slice smallest eigenvalue Figure captions
2 . .
1 0.449 Fig. 1 Sketch of Higgs field [¢/  and colour magnetic field
2 0.614 /Bifz in a monopole field configuration.
3 0.395
4 0.065 Fig. 2 5/ as a function of the number of cooling sweeps for 3

cypical SU(2) gauge field configurations.
Table 2: Smallest eigenvalues of the 3-dimensional Dirac operator
) in the background of a 3-dimensional section of an Fig. 3 The colour electric and magnetic field strengths shown
instanton at fixed times. separately for configuraticn C.

Fig. 4 The action density (10 D{x}] for a 2-dimensicnal cross
section through the center of the "moncpole.

Fig. 5 Comparison of the '"monopcle" acticn on 83-4, 103-4 and

143-4 lattices.

Fig. & 8%(x) and Tr(7"%

through the center of the 'monopole" of fig. 4.

AO)2 for a 1-dimensional cross section

Fig. 7 The l-dimensional sectiocn through the center of the

"menopole".

FPig. 8 A time slice of the "moncpcle" configuration of fig. 4.
The encircled area indicates the central region of the
"monopole’. The circles mark the position of cubes which

carry one unit of magnetic charge each,

Fig. 9 The eigenvalue density of the 3-dimensional Dirac
operator in the background of configuraticn A after 30

cooling sweeps.

Fig. 10 The eigenvalue density of the 3-dimensional Dirac
operator in the background of the "monopole" cenfigura-

tion C after 30 cooling sweeps.
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Comparison of the "monopole" action at varying tempe-
ratures: (3= 2.3, 2.35, 2.4 on 8> 4 lattices and
f=2.4,2.5 2.56 on 123, 6 lattices.

The frequency y)M(I) of monopole (instanton) configura-
tions on {a) 83-4 and (b) 123-6 lattices. The shaded area
marks the location of the deconfinement phase transi-

tion.

The "density" ?M(I) of monopole {instanton) configura-
tions on (a) 8°-4 and (b) 12 6 lattices.

S/p as a function of the number of cooling sweeps for 3
typical SU{3) gauge field configuration in the confine-

ment phase.

S/ﬁ as a function of the number of cooling sweeps for a
typical monopole configuration in the deconfinement

phase.
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