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ABSTRACT

Leptonic decay constants of heavy pseudoscalar mesons are
estimated in QCD by méans of Hilbert transform power-moment sum
rules at Q2=0. The meson masses are also obtained in ovder to
assess the reliability of these predictions. Qur results are:
fD/fE= 1.7%0.2, fF/fl= 2.1+01 , and fB/fw= 1.1-1.6. As a
byproduct a bound on stlfB is obtained.
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An accurate knowledge of the leptonic decay constants of heavy
pseudoscalar mesons is quite important as they play the key role
of absolute normalizations to a wide variety of heavy flavour
weak transitions. In the absence of experimental data, consider-
able effort has been devoted to the theoretical estimate of fD’
fF’ fB’ etc., in particular in the framework of QCD sum rules [l]
(for a review of other estimates see e.g. {2]). As is well known,
this method relates through dispersion relations low energy para-
meters, such as particle masses and coupling constants, to the
short distance Operator Product Expansion (OPE) of current
correlators. This OPE is assumed to be wvalid in the presence of
non-perturbative effects which are parametrized by a set of vacu-
um expectation values of quark and gluon fields. These vacuum
condensates induce power corrections to asymptotic freedom [3].
Although this method seems well defined, there is some freedom in
the choice of the optimal weight in the dispersion relation and
in the modei used for parametrizing the spectral function. Also,
the method is sensitive to the number of loops considered in the
calculation of the asymptotic freedom contribution, as well as to
the number and actual values of the vacuum condensates included
in the OPE. All this has resulted in a wide spectrum of predict-
ions for fD, fB' etc, e.g. fB = 60-200 MeV. Since on the one
hand, better .knowledge of these constants would allow for more
accurate predictions in a number of semi-leptomnic and
non-leptonic transitions, and on the other hand there has been
racent progress in the determination of vacuum condensates, we
feel that a sysgematic reanalysls of this problem is needed. We
attempt to do this here by choosing as a starting point the
Hilbert transform power moment sum rules at Qz=0. Aside from
keeping the number of free parameters to a minimum, these sum
rules provide a natural framework to study systems with a heavy
quark, in the sense that at Qz=0 non-perturbative effects are
parametrized through:the OPE as a series in inverse powers of the

heavy quark mass m i.e. the only large mass scale. To this

%
extent, 1/mQ plays the unambiguous role of the short distance
expansion parameter. The situwation is not so transparent with
Laplace transform sum rules as they involve an additional short

distance parameter, i.e. the Laplace variableﬁil/ﬁz. Neverthe-
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less, we shall also comment on this methed at the end. In our
analysis we incorporate the leading power corrections of dimen-
sion d¢6 and consider perturbative effects up to order O(d;).
Regarding the spectral function parametrization, in addition to
the lowest pseudoscalar meson pole we include continuum contri-
butions and compute the corrections they induce at the one and
two-loop level. Finally, to assess the reliability of our results
for the leptonic decay constants we also estimate the masses of

the heavy pseudoscalar mesons.

We begin by defining the two-point function

Yid) = gd“x e‘“(o\T@"Artx) FA )10y, O

where

iy _ ) (2)
a Ar('x) = (m% MEaPR I ST SRR FRCRCIEN

with q(x) (Q{x)) being a light (heavy)} quark field and mq(mQ) its
corresponding current mass. By selecting g=u,d,s and Q=c,b the
axial-vector current divergences (2) will have the quantum

numbers of D,F and B mesons. The function\ys(q) satisfies the

dispersion relation (QZE -qz)ﬂ)
\‘J ol
2y 24 T (3)
5lq ) T g ds _ﬂ(_s_)- + sultraetions,
o (s+ w?)

defined up to two subtractions, arising from external renormali-
zation, which can be disposed of by taking at least two deriva-
tives in (3)}. This procedure leads to the Hilbert transform cor

. 2
power moment sum rules, which at Q=0 become

ey \ e

n+
l{’ = (—) d At 2 i ds (4}
= —_ = a3 Ta .
(na4)! kd a* Ysla )\Ql:o T gm2 4,5(5)

Up to the actual values of the vacuum condensates the moments
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l{)(n) can be computed in (QCD and thus Eq.{4) relates the resonance
parameters in the spectral function #Im‘l{r(s) to the fundamen-
tal perturbative and non-perturbative QCD parameters in \P(n).
Although the quark and gluon condensates cannot yet be computed
from first principles, they can be extracted from independent
experimental data using QCD sum rules in other channels, e.g. the

: + - .
charmenium system, e e' total cross sections, etc,

The perturbative QCD expression for the spectral function at the
two-loop level, as first obtained correctly in [l.ej, [4], is
given by

1 L]
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and -(32 = q2 - (rnq - mo)z, v = (1 - 4mg mg f?qz)lfz. The express-

ions for AZ. B,isly and (52 are obtained from (7} - (8) by the
interchange mq‘-)m In particular, in the limit mq—b 0, well

'
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justified for up- and down-quarks as in the case of D and Bu d

mesons, as exact integration of (5) leads to [l.e]
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>
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where B{x,y) is the beta function and aon are the rational

numbers
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Parametrizing non-perturbative corrections to asymptotic freedom

in44) (rv2)

through the OPE and keeping the leading vacuum condensates of

dimension d$6, one has, always neglecting m_,

z 3
‘Jr’sk‘i‘)l”.?.—-: .‘i‘_f._l Cq(04> 4 w87 Q400D

Wyt - g b ()
1 (11}
y g K 21 . 2 i ‘“c:\ d 11
6 (WQ -9 ) (ho\ -1")3 (h;-iz)ﬁ] 6<06>’

where the C.n<0n> are defined as

¢g<0q7:<i5— QI*“*QE%>' (12)

1w

d‘s(Os? = <35711'U'ZT'_&9»>; (13)
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Computing the non-perturbative part ofl?(n) through {l1) and
adding it to (9) one finds using (4) that for the first few
moments, with increasing n the perturbative piece of'?(") de-
creases in magnitude but at the expense of an increase in the
non-perturbative contributions. As a compromise we then choose to

consider only the first twe moments; this will allow us to
P

(
Yap = M>+ 3 dr<°r>_ g G oy  (®

i =
UAQ di t“qr b*Qb

estimate fp as well as M_. From Eg.{ll)} one obtains

wi

(1) 1 Ao )
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Adding (15) - (16} to (%) completes the theoretical calculation
of the l.h.s. of (4) in QCD.

Turning to the hadronic spectral function appearing in the r.h.s.

of {4) we choose the following parametrization

‘ - ? 4 1

’-:?L'“ ‘#s-(s)\“w_' I'QE Mp S (s-Mp)
(17)

+8(s-50) & Tu Ve (D), o

where s is the threshold for asymptotic freedom, the second term

in (17} is given in (5), and

Lol A \1(4s)> iz {, R, W

def;nes the leptonic decay constant fP' with this normalization
e.g. f 93 2 MeV, Given the rather large masses of the D,F and
B mesons we would expect the spectral function to be relatively
smooth for s > MZP. and thus the second term in {17), i.e. ;he
pgrturpatlyg QCD continuum, should be a reasonable parametrlzaj

tion of hn¥’5(s) gap 3t such energies. In other words, we assume

-8_

that potential radial excitations of the heavy pseudoscalar
mesons do not show up as prominent narrow peaks in the spectral

function. In this case the first two moments read

2
25
. I (t-a,y) + os (0.75¢ —bqﬂ
Mp g’

(19}

Gy s S 5 dy o

gt 4 - Qs 3

umqt

244 :
__f_ - *_‘}Tz S 'L; Y.U‘“")* o5 (1706 - Ezﬂ
Mp g, \,3”? (20}

W 2 s 3 A
1Y hna una

2 bl’ b2 are the continuum corrections which can be
computed by integrating the second term in (17).

where 2, a

Concerning the values of the QCD parameters entering the sum
rules {19) - (20) we use for the "on-shell" quark masses:

mC(QZ =m %) = 1.3 Gev, mb(Q2 = mbz) = 4.6 Gev,ds(mcz) = 0.296,
ando/s(mb ) = 0.211’42. For the vacuum condensazes we take

mc<6§> = -0.014 GeVV amd mb<aq> = -0.055 GeV , which follow from
the most recent determination of light quark masses and conden-
sates [5]; <A’ G )/LZT_. 0.03 GeVa as extracted from e+e dat.a [6]
and charmon1um {7]. The guark-gluon condensate <g q 16’& ~1k q>
= ZMUZ <3q> seems to play a particularly important role in the
QCD analysis of the baryon spectrum. The results obtained for the

N 2 \
mass parameter M g 2res however, .somewhat controversial. We take

MZO = (0.5%20.1) Gev?® as a compromise between e.g. Mzo ~
(0.1-0.4)Gev? (8] or M2 ¥ (0.6-1,0) Gev® [9], and N’ (¥ 0.3 Cev?

[10], the latter value belng suggested by charmonxum sum rules,

We have found that the hlgher value H2 = GeV [11] is in
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disagreement with the observed D~ and F- meson masses. Such a
sensitivity to the guark-gluon condensate is actually an inter-
esting aspect of Eqs. (19) - (20). Finally, for Cue0.> we use
C6<06>1‘. -Qﬂds <§q>2, which takes into account a factor of five
increase in the factorization estimate according to recent
results from an e+e- analysis [6] as well as previous claims from

other sources {81, [11].

Starting with the D-meson and solving (19} - (20) for values of
the asymptotic freedom threshold within the wide range
2

802 2MD - BMZD we obtain

HD: 1.35.*:0.45 &E.\/, {21)

to be compared with M = 1.87 GeV, and

DlEXP

-‘;-_D = 1bo * 15 MeV (22)

Continuum corrections in this channel are important, i.e. without

them M +2-2.2 GeV, but yet not so large as to spoil the

predicEive power of the sum rules. We wish to stress that S0 is a
free parameter in the sum-rule approach; the choice we made is an
educated guess based on experience in other channels. The two
important points are: {i) predictions should be reasonably stable
under changes in S, within a (hopefully) wide region, and (ii)

obtaining a value for £, from the sum rules is not enocugh. Even

with everything else figed fD is clearly a function of SD' Hence,
some other quantity whose experimental value is well known, e.g.
MD in our case, should be estimated simultanecusly in order to

assess the reliability of the prediction for fD. It is rewarding

that our results above meet these two requirements.

Considering next the F-meson, if we continue to neglect the light
quark mass, ms in this case, we would obviously find MF = r1t),
and fF = fD. Given the uncertainties in the values of the

vacuum condensates and in S,, which reflect themselves on the

0
errors in (21} - (22), we will be unable to predict the small

SU(3) breaking mass splitting HF - MD. Notice that the mass is

-10_

obtained from the ratio of twe sum rules. However, the situation
is better for fF. For example,kby retaining terms of order 0(€)

and O{elne€), with esmslmc, Eq.{19) becomes

2
.'l{‘F ‘ { th i
v =éL“,11*3"=* ols 0351 + %e(+§-+°~‘e>]

+ continuum + non-perturbative. (23)

A comparison with the corresponding relation for fD leads to the

approximate expression

ﬁir_ @_Eki+ie):1.,z, (24)
ip Mp .

We have solved the two sum rules in this channel by numerical
integration of the imaginary part Eq.{5) retaining m but without
approximations, i.e. without expanding in€ as in Eg.(23).
Concerning the non-perturbative terms, at the present level of
accuracy we have safely ignored the small 3U(3) breaking in the
quark condensates and used the samezvalues of Cn<0n> as before.

In the broad duality region 503 ZMF - 3HF2 we obtain

Me = L9404 Goy, (25)

as expected, and

_ = H
T = 134 £ 42 Mey, (26)

in nice agreement with the €-expansion result Eq.(24).

Turning to the B-meson an inspection of the various contributions

to (19) - (20) shows that except: for Cd<04> the non-perturbative

terms are unimportant. Continuum corrections in this channel are
very large, a fact known from previous analyses [l.c], e.g.
without them we would predict MB?iB GeV as cpposed to HBIEXP =
5.27 GeV. Including these corrections and allowing for the
asymptotic freedom threshold to vary in the range SO: 1.1 Hzn -

2 MB2 brings M, down to Maf.(S.l - 6.2)GeY. Given the large value
of the B-meson mass it would be reasonable to expect a precocious

onset of asymptotic freedom in this channel, e.g.



-1l - _ . : _ - 12 -

2 o . .
S, = (‘{.{ - 1’3) HB , (27) Eqs.{19} and (20) reproduce the experimental value of My within
: . some error, e.g. 3%. In prin‘ciple, Laplace transform QCD sum
which narrows down the resultfing mass to ‘tules are expected to be far less sensitive to SO on account of
‘ (28) their exponential weight. In the present application these sum

5 HB = S5.2%0.2 GaV. rules are }1.f], [1.i}, [L.j]

. k) s°
It should be emphasized, though, that (28) is not a genuine . 2 %2 HA ~Hp/y2 -5/
prediction. If we have riot had baforehand information on HB and I E e _ ds e 4 Ta q‘s (5)\
had allowed EN to vary over a wider range the uncertainty would ‘ ' \u; - * |ch
‘ P .
have been considerably larger. The above procedure is then to be
understood more as a determination of 5. than of M . However, 2
, - J 8 -y ) o d L g g
since our purpose is to predict fB’ assessing the reliability of + € y COla} - 4 — k( - e ) d'S <0,‘->
t Y
this prediction through the resulting value of HB’ we can use SO H aH
in the range (27) to obtain (31}
. + 4 2 w T 4 C
- : 29) - 28 L
§,= 104 - 450 Mey ( 2\ - C0ey p
) : 6™ a2 L b ¢ 7
Using the experimental value of MB as input, the eigenvalue
solution for SO ist S0 = 1.2 !‘EBZ. and fé = 127 MeV., However, the where
result (29) provides a better feeling for the true uncertainties Se - 5/Mm2 g 4 -
- 3 e At
invelved in this channel. g ds e L T \\’S {S)\ = g Y.t‘l __Q)
< Red  ggt | M2
gt
Concerning the Bs-meson, its decay constant is given by an 2
- 2
expression analogous to Eq.(23) except that now€Em_/m 2 0.04. So 2 2 2 = e /H?' ~So/n
s'"b SR e M (Mg ) e - M Hhs) &
Given the smallness of € and of the non-perturbative power H
i i 32
corrections we expect the ratio stIfB to be more accurately 2 X —.w;/ . ~ So/mr (323
predicted than either f;_or f, separately. (ur result for this —a g M Ke Me e ) A O(A’S)
ratio is E
‘g_ with P =D, F, B, etc., and
B
{-ﬁs 2 Mgs , (30) od %
™ e (33)
B B €, 2) = & dk,
which should be useful in connection with oscillations in the ? t
BO-EO‘rﬁeson system (for reviews see e.g. [2al, [13]).
Farlier estimates based on these sum rules [1.f}, {1.if, [1.j]
The most severe source of uncertainty in the estimate of fB, have claimed somewhat smaller values of fD and fB than the cnes
Eq.(29), is its power dependence on S,. This is a characteristic obtained here through Hilbert transforms. However, the point we
feature of the Hilbert transform sum rules {4), which has a wish to raise here is that although Eq.(31) does exhibit a better
bigger impact on fB than on fn or fF,'Eqs.(Z?.) and (26). To {softer) behaviour on SO’ it has conceptual as well as numerical
minimize this sensitivity to some extent, we have salected a disadvantages. First, the power corrections in Eq.(31) appear

duality region for SO by requiring that the ratio between dominated by C‘,'<O‘,‘> on acceunt of the smallness of C5(05> and
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C6<06> rather than because of the usual Laplace suppression;
notice that the terms multiplying CS<05> and C6<06> are roughly
comparable. This means that inside the "sum rule window" (Mzﬁ 0.8
- 2.1 GeV2 for P=D' and H22£3.3 - 4.2 GeV2 for P=B)} the Laplace
variable Mz has lost the unambiguous character of short distance
expansion parameter it usually has in the familiar applications
to light quark systems. A second cause of discomfort is the
pronounced sensitivity of the perturbative contribution Bq.(32)

to the values of m, and Mz. In fact, the dependence on m, is in

Q
this case exponential. For instance, in the case of fB a 4%
increase in m fromm = 4.6 GeV to m_ = 4.8 GeV produces a

change in thebperturb:tive contributizn of a factor of 2-3 for
M22 3-5 GeVz. On the other hand, for fixed Sg and My Eq.(32)
changes by a factor of 8-16 fer P=D and by a factor of 40 for
P=B, inside the "sum rule window" in MZ. The corresponding
changes in the non-perturbative piece are roughly a factor of 3
and 20 (in the same digection), respectively. In the case of fD
these extreme variations are offset by corresponding large
variations in the exponential on the l.h.s. of Eq.(31), so that
in the end the result for fD appears somewhat stable. All things
considered we find £ 120-150 MeV inside the Muindow" M2 1.5-3
GeVz, and for 5073(1.5-3)MD2, which is consistent with Eq.(22).
However, in view of the above remarks we would net attach much
significance to this result. For fB the huge variations of the
perturbative and non-perturbative contributions are not entirely
offset by the variation of the exponential in the l.h.s. of
Eq.{31), so that uncertainties are beyond the 100Z level. We wish
to point ocut that such a dangerous situation is not encountered
in the usual applications of Laplace sum rules to light quark
systems. Also, these problems do not affect the Hilbert transform

power moments at Q2=0, which in our view, are more reliable to

treat charm and beauty mesons as they lead to stable predictions.

In conclusion, collecting our results and nermalizing to f1t=

93.2 HMeV we have found

o
S S€ 2 243000, Sg o qaony, Sos, Ma, (30)
b fx fa  Hp
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The quality of these predictions is gauged by the results
obtained for the mescn masses in the same fl_ra.mework, i.e. Egs.
(21), (25), and (28). As usual, however, the ultimate test will
have to come from experiment. In this connection we wish to
mention a promising proposal [l4} to measure these decay

constants form various exclusive B-decays.

Acknowledgements

The authors are indebted to Ahmed Ali for enlightening
discussions. One of us (C.A.D.) wishes to thank the Istituto
Nazionale di Fisica Nucleare, Ttaly, for support during the

course of this research.



_15-

REFERENCES

[1.

[1.

(2.

[2.

a}

b

.c)

.d}

el

£

N3

-h]

i)

il

2]

b]

V.A. Novikov, M.A. Shifman, M_B. Voloshin, A.I.
Vainshtein, V.I. Zakharov, in "Proceedings of the

Neutrino-78 Conference" {West Lafayette, Indiama, 1978).

E.G. Fioratos, S. Narison, E. de Rafael, Nucl.Phys. Bi55,

115 (1979},

L.J. Reinders, H.R. Rubinstein, 5. Yazaki, Phys.lLett.
104B, 305 {1981).

V.S, Mathur, T. Yamawaki, Phys.Lett. 107B, 127 (1981}.

B.J. Breoadhurst, 5.C. Generalis, Open University Report
No. OUT-4102-8/R (1982).

$.C. Generalis, Ph.D. Thesis, Open University Report No.
OUT-4102-13 (1984}.

E.V. Shuryak, Nucl.Phys. B198, 83 {(1982).

S. Narison, 2.Phys. Cl4, 263 (1982).

A.R. Zhitnitskii, I.R. Zhitnitskii, V.L. Chernyak,
Sov.J.Nucl.Phys. 38, 775 (1983).

T.M. Aliev, V.L. Eletsky, Sov.T.Nucl.Phys. 38, 936 (1983).

A. Ali, DESY Report Nc. DESY-86-041, and Proceedings of
the LEP-Physics-Jamboree, CERN (Yellow) Report No.
CERN-86-0G2, Vol. 2 (1986).

J. Kérner, in Proceedings of the International Symposium
on Production and Decay of Heavy Hadrons, Heidelberg

(1986).

[3.a}

[3.b}

[4]

[5]

(6]

t7)

(8]

{9}

[to]

(11}

[12]

_16_

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl.Phys.
B1l47, 385, 448 (1979).

L.J. Reinders, H.R. Rubinstein, §. Yazaki, Phys.Rep. 127,
1 {1985).

D.J. Broadhurst, Phys.Lett. 10lB, 423 (1981).

C.A. Dominguez, M. Kremer, N.A. Papadopoulos,
K. Schilcher, Z., Phys. C27, 481 (1985); C.A. Dominguez,
E. de Rafael, Ann. Phys. (N.Y.} 174, 372 (1987).

R.A. Bertlmann, C.A. Dominguez, M. Loewe, M. Perrottet,

E. De Rafaei, DESY Report (toc appear). See alsa,

R.A. Bertlmann, in "Proceedings of the XVII Internaticnal
Symposium on Multiparticle Dynamics", M. Markytan,

W. Majerotto, J. Mac Naughton, Editors {Worid Scientific,
Singapore, 1987); C.A. Dominguez, DESY Report No.
DESY-87-002 (1987), and "Proceedings of the International
Workshop on Quarks, Gluons and Hadronic Matter", Cape-Town

(1987) (to be published).
J. Marrow and G. Shaw, Z.Phys. £33, 237 (1986).

¥. Chung, H.G. Dosch, M. Kremer, D. Schall, Z.Phys. C25,
151 (1984},

V.M. Belyaev, B.L. Ioffe, Sov.Phys. JETP 56, 493 (1982).

S.N. Nikolaev, A.V. Radyushkin, Sov.d.Nucl.Phys. 39, 91
(1984).

M. Kremer, G. Schierholz, DESY Report No. DESY-87-024
(1984) and Phys.Lett.B (to be published).

M, Kremer, N.A. Papadopoulos, K. Schilcher, Phys.Lett.
143B, 476 (1984).



*(£861)
£TL1 ‘GEA "A99-sAyg ‘TopusH M'¥ ‘sTTodreq g ‘weTId 'S [%1)

“(9861) 11-98-¥d °‘oN 3zoday NIS ‘=pexeN ‘i [€1)

- {1 -



