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The decaf{s Y, Py, w-» 1“’ w-e 3N and v 3n are )
studied in the framework of the chiral 1nvar1ant effectlve Vector
Meson Lagranglan beyond the tree level. The standard Lagranglan
is enlarged by including an infinite number of radial exc1tat10ns
which are summed according to. the dual model AS a result tree
level diagrams are meodified by a universal form factor at each
vertex containing off-mass-sheil mesons, but still respecting
chiral anomaly low energy theorems. These vertex corrections
bring the tree level predictions into better agreement with ex-
periment. The presence of the Ww+3in contact term is confirmed but
its strength is considerably smaller than at tree level.
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There has been a recent revival of the effective Lagrangian
approach [1] tec soft hadronic physics, motivated in part by the
absence of analytical solutions to QCD at low energies. In parti-
cular, efforts have been made [2] to construct effective
Lagrangians which exhibit the global symmetries of QCD [3},
respect chiral anomaly thecrems [4), and incorporate successful
phenomenological models such as e.g. Vector Meson Dominance {VMD)
[5]. An example of such a Lagrangian, to lowest order in the
number of fields and derivatives, is given by
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where additional fields of no interest here have been omitted.
The coupling constant G measures the strength of the so called
W = 37 contact term [6] whose presence may be needed to ensure
consistency between this theory and the chiral anomaly low energy
theorems contrclling the amplitudes for processes such as'“q+'87
and ¥ >t w® . In fact, a confrontation between the chiral
ancmaly prediction for the ratio of these ampiitudes, i.e.
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and that obtained through VMD
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seems to suggest a quite sizeable contact term [2.¢]
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This result was cbtained in VMD after assuming universality {s]:
Yowr = .Qe , and the KSFR relation [7}: Jeqn = He /N2 .
In the framework of chiral invariant VMD at the tree level it is
possible to derive a plethora of relations among the various
coupling constants, such as e.g. Eq. (4). As elegant as they may
look, the ultimate test of these relations has to come from a
direct confrontation with experimental data. In doing so, cne
should not ignore the fact that off-mass-shell mesons couple
strongly to their radial excitations and thus induce propagator
and/or vertex corrections. Indications that these effects may
indeed be important come from various sources, e.g.

39““’ = 4.22
%? EXY.

L (5)

a deviation from the KSFR relatiocn aﬁ the 10 % ievel, the
inability of VMD to account properly for the béhaviour of the .
pion form factor [8}, some problems of consistency between
radiative meson decays and uq-rswc in VMD (9], etc. With écme
exceptions (see e.g. (2.d,e,i,j], (10]}) these effects have been
traditionally neglected in applications of the chiral effective
Lagrangian formalism, The standard-disclaimer is that predictions
are only to be trusted at the 10-20 % level, i.e. at
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roughly the same level of accuracy as the tree level relations
among coupling constants. That a 10 % effect here and another one
there may conspire to produce in the end a 100 % correction may
be seen by recomputing &, as in (2.c] but using instead experi-
mental values for the couplings at each step. The result is now
Qe = - (29 £ 1) Gev 2| Other values to be found in the
literature include <, ,= 0 [11], which shows the need for a

systematic reanalysis of this important issue.

In this note 1 present an attempt in this direction by studying
the related processes: T('o-r‘ﬁx, A\ ¥, to» WY, w-» 3,
and ¥ » 3T in the framework of the effective Lagrangian Eg. {1}
beyond the tree level. All of these decays have in common the
coupling cons§ant G, < which may be fixed as usu:l by reguiring
consistency with the chiral anomaly theorem in W -»> 8% ; pre-
dictions for the rates of the first three decays above then
follow. Requiring éonsistency with the chiral anomaly thecorem in
.Y »3n fixes in furn the strength of the L-—»3W contact term
Gy, ; one may then proceed to predict the tw -+ 3™ rate as well as
the on-mass-shell amplitude for ¥ -* 3K . The latter can be com-
pared with a recent determination from pion pair production in
pion-nucleus collisions [12].

Including explicitly in Eg. (1) an infinite number of vector
meson radial excitations with masses and point couplings fixed by
the factorizable dual model (8]-{91]1, it turns out that all tree
level diagrams are effectively modified by a form factor at each
vertex containing an off-mass-shell meson. To illustrate this
with an example let us concentrate on the pion form factor in the
zero-width aproximation, i.e.
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In the dual model M%” = M%(l+2n) and the ratic of coupling

constants in Eg. (6) is determined by requiring the form factor
tc be aratio of gamma functions. In this way Eg. (&) becomes (8]

Fod) = Mo dexn g ogn

Se Me' -4 €

(7)
where
- _ [ 2_ 2
Rl¥D = T(p-1) P -1 ] ,
PLp-t-a'(9-Ke)]
o'z 1/amu2,
0 (8)

The generalization to other fields, e.g. the pionic sector [10)
or the baryonic sector [13], is straightforward but it will not
be needed here. On the other hand, when more than one particle at
a vertex is off the mass shell one simply uses the factorization
property of the dual model. In this fashion one is able to dress
all tree level vertices appearing in the decays mentioned before
with the single form factor _ Fe (34 = Fm(f_\’-) =z Ty Ht), where Lu-(l’
degeneracy is implied. The free parameter f? in Eg. {8) has been
determined earlier (8] from a chi-squared fit to the pion form

factor in the space-like region up to qu: - 10 Gevz. The result

is
@ = 2.1 - 2.4 ; (9)

notice that @ = 2 would correspond to naive (tree level) VMD. In
comparison with a few other models, Egq. (7) gives one of the best
values of chi-squared. In particular, naive VMD fails to account

for the falil-otff of the data above -q2 >~ GeV2 and misses the
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ratio (5) by 20 %, although it yields (r%g> = 0.39 fmz, to be

compared with £ riﬁ)' EXE. = 0.44%0.03 fm® (14]. In contrast,
B. (7) gives §or,/§p = 120 = 1.22 and <riy = 0.44 fm’. with
(® fixed as above the remaining parameters in. the effective

It

Lagrangian (1), except for 3'-—‘ Tt and &, , are known from ex-
periment [15} e

M, = 770 MeV, M, = 782.6 MeV

€

£ =5.0%0.1, £ =16.3%.5, ¢ = 6.09%0.04.
Lo g

¢

Deviation of the w-¥ mixing angle from its "ideal" value will be

(1o

neglected in the seguel; its impact on the present analysis is at

the level of the errors to be guoted in the predictions.

Beginning with T° > %Y and requiring consistency between the

chiral anomaly low energy theorem [4)

¥y
&o.o,---)\ = -
N R
{11)
and the expression from the effective Lagrangian
%Y
¥ o(0¢6..) = 8'1(03. 3 €, (o)l
w .
? {12)
with Fv(qzl given by Eg. (8), one obtains
9 =<(16 ¥ 1) gev i, ‘ 113)

hJ?n_
'Re'q'uiring'the same consiséer‘icﬁr but with naive VMD ((5‘: 2) would
give instead

= - {11.1 ¥ 0.4) Gev”

3
YMD

The resulting decay rate is given in Takle 1. It is of course the

\ 1 (14)
UJ?“-'

same with or without the form factor correction as they have both
been normalized to the same value (11). However, there is a
difference in the predictions for e—v ¥ and w-» Y (see
Table 1). Netice that the form factor correction appears now only
cnce in these amplitudes and it cancels cut in the ratio. From
the present point of view the agreement between this ratie in VMD
and experiment should not be understood as a success of VMD but
rather as a result of the fact that the off mass shell correction
cancels out. In fact, the individual rates at the tree level do

not compare so favorably with the data.

The next two decays, W23W and ¥+3I® , involve now the contact

term, viz.

F(w—V'.J;TL) = 6 [-Gw - té()““ c&_uen va(S)\z],
He"‘-s (15)

2
with s = H2 + rl—leE , such that

8]
£z
- 3[2 2
Mwa3n) = Muw AE T p) (s-apt) ] x | Fwosml,
fhy (am)® 1 Vs
Ey : (16)

2 a
and E., = r“" E2 = (Hw- 3)‘1\)/2}-‘.“. For ~ — 3T one has
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Unlike the case of radiative decays these two processes probe ncw
the form factor in the time-like region, i.e. 4]*“ £ 8% (Hg - rn)
for (w*3%™ | and 5((0)“: for % -#3™ [12]. Notice, however,
that Fv(M 2) = 1 while the first singularity in FV(s} lies well
above this kinematical regicon. As a result one finds that
unitarity corrections [17] are small for such values of s and
thus they will be neglected in the sequel. At this point if one
were to set S, = 0 then

4.9+ ¢, % = a
Mwa3m | [ Attouved, paz (vup) s

G0 1 6GSttoMey, P=23-2.4 {18b)
to be compared with T{w> 3w)lexp = 8.9 2o 38V [15].
somewhat higher rates in VMD are often guoted in the literature,
but they are just accidental as they invelve tree level relations
such as e.g. universality or the KSFR relation. Instead, the
value in Eq. {18.a) was obtained using Eqg. {(10), i.e. actual
data, and Eqg. (14); it should then be understood as the true VMD
prediction. Given the fair agreement between (18.b} and experi-
ment does not help to determine the strength of the contact term,
which is expected to interfere destructively with the second term
in Eg. (15) and thus lower the Ui 3T rate. However, the issue is
rather cone of principle, i.e. it is easy to check that with Gﬁ»:
0 Eq. (17) would not be consistent with the chiral anomaly

theorem {4.e,f]
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Requiring consistency between Egs. (17) and (19) determines eh:
i.e.

Gy = {L 34 g

T 3

%- Fv(O){] ,

frx (20)
or numerically, using experimental data Eg. (10), fTo = 93.2 MeVv,
and Eqs. (13)-(14),

-3
c ([ ~(2ax3)@ev b=2 (vhy) Cla)
w T 3
1 - (44 & 4) GeN , B=23-2.4 {21.b)

Recomputing the s —»3W rates with these values of &, cne

obtains the results given in Table 1.

Finally, coming to the Y- “+'K_T&° amplitude its value in the
kinematical region: s ™ (6—10),-‘1?{ , qz( 1.3/““1 , has been
extracted from the differential cross sections for T & (ﬁ\,i)
—» w” w® 4+ (A, 2 ) [12]. Ccmputing the amplitude through
Egq. (17) in the same Kinematical region one cbtains the results
shown in Table 1. Notice that the chiral anomaly low energy

theorem gives the slightly smaller value F{¥-»3m) 2 9.5 GeV_3

’

but this corresponds to the full off shell point.

The results displayed in Table 1 serve as conclusions to this
Wwork . When oxperimental values of the coupling constants are
systematically used throughout, then trce level VMD predictions
are not in such a good agreement with data as is often being
claimed. Although off shell extrapolations are by no means

unigue, I have discussed a convenient and economical framework to
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estimate vertex corrections which still respects the chiral
anomaly low energy theorems. (For other realizations of Extended
VMD see e.g. [5.b}, [18]. No additional parmeters are introduced
as the power fall-off of the vector form factor Eg. {8) is known
frem a fit to the pion form factor. These vertex corrections
bring the tree level predictions into better agreement with
experiment. The presence of the W=} contact term is confirmed
but its strength is considerably smaller than at tree level. This
is rewarding as it prevents the -3 rate to become
dangercusly low.
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TABLE 1

Predictions for the various decay rates. The results in VMD at

the tree level were obtained using experimental values for the

coupling constants (see text).

DECAY . TREE LEVEL THIS WORK EXPERIMENT
VMD (15]-(16]

T (w2 3%) (ev) 7.6%0.8 7.6%0.8 7.8%0.4

Cle™ 1Y) (reV) 586 84711 8114

Mw-r e) (keV) 655255 9s51%105 861556

Muwars)/r{eawy)  11.2%0.9 11.2%0.9 10.6%0.9

Tlwswren) (meV)  3.s5%0.s 6.0%1.0 8.8%0.3

¥ *3iR -3

Foars.t,w) 6ev ) 10.9t1.2 13.4%1.6 13.0%0.9
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