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Abstract 

The effect of the finite lattice size on physical quantities, like masses and 
coupling constants, is numerically investigated in the 4-dimensional Ising model. 
The feasibility to obtain numerical information about low energy scattering from 
finite volume effects in a lattice Monte Carlo calculation is demonstrated. 

1 Introduction 

The ntJ.mcrical investigation of relativistic quantum field dynamics is based on the approxi­
mation of the space-time continuum by a 4-dimensional discrete lattice. This approximation 
becomes good if the physical length scale is much larger than the lattice spacing. Since the 
number of lattice points is lim.ited by the available computing power, the need to minimize 
the influence of the space-time discretization necessarily drives the numerical investigations 
into regions, where the lattice extension is not. much larger than the characteristic physical 
length scale. In this respec.t the number of dimensions plays a rather negative rOle, because a 
mere douhliug oft he linear extensions implies a drastic factor of 16 .increase in the number of 
lattice pOints·. AsH coiisequenl.'e, thf. kno·\\fledge ·and coi1frol of finite lattice size effects is very 
important iu ('\'en· numerical lattice calculation. In fact, an optimal calculation f.urns the 
tables and u::.t·::- the calculated finite sizf' effects to obtain additional dynamical information 

on the infinite Yohune system. 
Although the question of the finite size effects on masseS or coupling constants was con­

sidered in many of the numerical investigations of 4-dimensional quantum field systems, the 
earlier theoreticltl studies of the finite size effects were mninly oriented by st.atistic:al physics 
considerations, such as phase transitions etc. (see, for instance, Refs. [1,2,3]). From the point. 
of view of the 4-dimensional numerical simulations a very import-ant. question is the influence 
of the finite lattice size on the calculatr-d particle masses. A systematic theoretical study of 
the finite "Volume problem was performed in the recent papers by LUscher [4,5]. In Ref. [4] 

'Heisenberg foundation fdlow 

, ..... ,_,....._ "'~· -· 

the volume dependence of single-particle states was considered, whereas Ref. [s; is devoted to 
the question of 2-particle scattering states in finite volumes. An interesting outcome of these 
investigations was the relation between the energy shifts of the 2-particle states in a finite 
box to the elastic scattering amplitude in infinite volume. This relation allows, in principle, 
t,o obtain numerical information on the low energy scattering from an accurate study of the 
volume dependence of 2-part.icle energy levels. 

The main motivation of the present work is to study the feasibility of the numerical 
calculation of the scattering length by LUscher's formula [5]. The choice of the particular 
quantum field theory, where our numerical simulation has been performed, was also influenced 
by a possible future application to SU(2) Higgs systems, which are physically important for 
the understanding of the Higgs-sedor of the standard modeL (For recent numerical studies 
of the standard SU(2) Higgs model see [6,7] and references therein.) The 4-dimensional 
Ising model is a limiting case oft he 1-component ¢ 4 model for infinitely strong self-coupling, 
therefore it has some similar qualitative features as the standard Higgs sector (which is based 
on a 4-component ¢ 4 model). The infinite scalar self-coupling (,\ ~ oo) limit is, in fact, 
also characteristic to the behaviour at ..\ ::::: 0(1), even after the introduction of the SU(2) 
gauge coupling in the Higgs system [6]. From the point of view of our present problems, the 
triviality of the continuum limit of the ~4 model is not relevant. ~Ne take the non-trivial 
finite cut-off model as a representative of quantum field systems on a finite 4-dimensional 
lattice. (For questions of the continuum limit see [8], where also a detailed list of references 
to earlier work can be found.) Concerning the physical application to the standard Riggs­
sector, the finite cut-off lattice models can be considered as approximations to the effective 
quantum field theory which has, for some physical reasons, also a finite cut-off. The choice 
of the 4-dimensional Ising model as a testing ground for numerical simulation methods is, of 
course, also advantageous because of simplicity. We could perform a large number of s'veeps 
(in the order of 106 - 107 } on a variety of lattices within a reasonable amount of computer 
time. This allowed an accurate determination of the physic.al quantities of interest. A last 
piece of motivation of our investigation of the 4-dimensional !-component ¢4 model is the 
fact that, up to now, this simple model received relatively little attention in the numerical 
simulations. The previous numerical works, we arc aware of, were concerned mainly with the 
questions related to the triviality of the'continuum limit. [9.10,11] and with the Monte Carlo 
renormalization group behaviour !12,13j. The masses and couplings were caleulated in most 
cases, by present standards, only with moderate accuracy. 

The 4-dimensional Ising model has a erit.ical point at the critical hopping parameter value 
"'cr ::-: 0.0748. For 1\ ~ Kc, the s~·mmetry <Px ---t -Q .. of tl~e ;,ction get.s spontaneously broken. 
In the vicinity of the critical point the correlation leuo.:t\1 ._: twhich is t.he inverse of the mass 
in lattice units:~= (am)- 1 ) is very large. The !attic!' size hecomes infinitesimal on the scale 
oft he infinite volume correlation length, therefore near the critical point the finite size effects 
haw to become infinitely large. As a function of 1\ this happens rather suddenly, because K 

is l:l ''fine tuning paran1eter" (near l'icr am behaves as:::::: ·/1\cr---=--;:z). 
The consequence of the critical behaviour near 1\cr is: 

• For the study of finite size effects on physical qnantities. like masses or coupling con­
stants, one has to stay in the region where ;:.L := Lm""' ::::: 0(1). (Here Lis the linear 
extension of the lattice and m= is the mass in latt.ice units in an infinite Yolume.) 

• The region wit.h ::L ::o 0(1) has a very sharp boundary in" due to the fine tuning nature 
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of K. 

According to this, in our numerical calculations on L 3 
• T lattices we kept ZL in the range 

ZL :::: 2 - 6 and ZT =: Tmoo near ZT :::: 5 - 6. This was achieved by the fine tuning of K in 
shorter Monte Carlo runs. 

The organizat.ionof this paper is as follows: in thenext Section the lattice definitions of 
the variables and of the physical quantities are collected. The general formulae for the volume 
dependence are given in Section 3. In this section also some analytical calculations of the 
finite lattice siz_e effects in lattice perturbation theory ~e summarized. In Section 4 the Monte 
Carl~ calculations are- described in detail and comp~red .to ihe th~~retical expectations. The 
last Section contains a short summary and a few concluding remarks. 

2 Lattice definition of physical quantities 

The euclidean lattice action of the 4-dimensional Ising model is defined by 

s = -K L "'·"'··· (1) ..• 
Here ¢,., = ±1 is the field variable at the lattice site :c, and the summation L~ goes over 
p = ± 1, ±2, ±3, ±4. x + j). is -the neighbouring- site to -:c in the direction f.l· The only bare 
parameter in the action is the (positive) hopping parameter K. The other parameter of the 
!-component ¢ 4 model, the bare self-coupling ,\, is infinite in the Ising limit. We will work 
on finite -L3 

· T hyp_ercubic lattices with periodic boundary conditions in all directions. 

2.1 Correlation functions 

Let T denote the transfer matrix in direction 4. T is positive definite and commutes wit-h 
thl"' translations· U( a) in the spatial directions. For a range of K arOund the critical point., the 
theory is thought to describe the interactions of a massive scalar particle. Thus we expect the 
lowest eigenstates of T above the ground state 1 to be single particle states with quantized 
momenta (due to the periodic boundary conditions) k = ~n, n = ( n 1 , n 2 , n 3 ), ( n, = integer) 
and energy w(k), 

U(aJ I k) = ,-'•·' I k) 

T : kf~ ,·-wfkl I k) 
The physical single particle mass m(l) is-given by 

m(L) =..>(0) 

(2) 

(3) 

(4) 

The energies w(k) are determined in the numeric-al c-alculations from the 2-point correlations 

C,(t,- t,;k) = (S,(t,;k)S,(t,;k) + S,(t,;k)S,(t,;k)), 

of "time-slice" variables with spatial tno'rheil'tUiil k 

1 
S,(t;k) = 0 L¢x,eo,(kx) 

L X 

17-is normalized so that its largest eigenvalue is 1, i.e. the ground state energy Eo:::: 0. 
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(5) 

S,(t;k) = ~' L¢.,,in(kx) 
X 

(6) 

tis the euclidean timet= x4 and (x 1 ,x 2 ,x3 ) =X are the spatial components of the site 
vedor x. In Eq. (5) ( ... )c denotes the connected expectation value with respect to the 
Boltzmann-distribution e-S with the actionS. 

The spectrum: ofT also contains states corresponding to scattering 2-particle states with 
definite total momentum and relative momentum q. To numerically investigate these channels 
it would, in principle, also be possible to use local 2-particle variables like e. g. ¢;,but these 
would couple only weakly. In order to have a strong overlap with 2-partide states one has to 
consider variables which are "smeared'' in space for fixed time. Good operators, projecting 
on states with total momentum zero, can be obtained simply by squaring the !-particle 
time-slices: 2 

S,( t; q) = S,(t; q)' + S,( t; q)' (7) 

The corresponding correlations are denoted by 

C2(t,- t2)q,q2 = (S2(tt;qt)S2(t2;q2))c (8) 

In the unbroken-symmetry phase, where our Monte Carlo calculations will be performed, there 
is no mixing between !-particle and 2-particle states. This is due to the exact symmetry¢"'~ 
-¢x· There is, however, no exactly conserved quantum number which would forbid the mixing 
of 2-particle operators with different relative momenta q. Consequently, although the various 
2-particle states have a large projection in the corresponding diagonal correlations, the off­
diagonal correlations with q 1 i- q1 are also non-vanishing. An energy estimate for the different 
2-particle states can be obtained by computing the matrix C2 ( t )q1 q2 and diagonalizing in q 1 q2 . 

We denote the lowest 2-particle energy by M 0 (L), the first excited 2-particle energy with unit 
relativt> momentum by M 1(L). 

2.2 Masses 

The determination of the low-lying spectrum from the correlation functions would be trivial 
if th~:" time extension T of the lattice and the statistics would be infinitely large. In real life, 
for finite T and finite statistics, the situation however is more complicated. Denoting the 
eigenvectors of the transfer matrix by : n) and En the corresponding eigenvalues, the two 
point correlation function of an operator O(t) defined on one time slice, and its expectation 
value are given by, 

IC'J(tlO(On = z-1 :L (;-E~T-t(E...,-E,) I Anm !' (9) 
m," 

(O(tJ) = z-' L ,-E"r A"" (10) 

where 

z = L'-E"T (11) 

and 

Am" = (m I 0(0) In) (12) 
2To project out the spin 0 part one should sum over rotations of q ; but we did not do this in our 

measurements. 
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The dominant t-dependent contributions for large t comes from the lowest. stater for which 

Aor #- 0. We first note that, due to the periodic boundary conditions, there are also states 

propagating over the boundary in negative time direction: and therefore the exponential time 

dependence of the correlation functions is modified to a cosh-behaviour. Our main purpose 

however to recall the well-known relations above is to stress the fact that if ('] has non­

vanishing expectation value then its connected 2-point function has in general t-in dependent 

contributions. In particular for large T the dominant t-independent contribution is given by· 

I Aoo- A 11 12 e-m(L)T 

Therefore the generic behaviour of the correlation functions one has to consider for large T 

and tis: 
CT(t) ~ Coe-Tni + Ct ( e-tEr + e-(T-t)Er) (13) 

Sometimes the t-independent term is known to be absent, e.g. for the 1-partide correlation 

in the symmetric phase. But for the 2-particle correlations c0 f 0. Despite the fact that the 

t-independent terms vanish exponentially for large T, their omission in fits can considerably 

disturb the determination of the mass: the apparent masses obtained from the logarithmic 

slope at large t seem to be smaller on the finite-T lattice than forT-> oo. 

The behaviour in Eq. (13) is, of course, only the asymptotic form because above the lowest 

state with energy E, there are also states with higher energies. In practical calculations 

one has to extract somehow the lowest contribution, for instance, by fits and/or by some 

extrapolation procedure. For an accurate calculation the uncertainty of this extrapolation 

may be comparable to the statistical errors. Therefore it is better to separate this problem 

from the other sources of errors by defining effective maJus p 1, 12 := am1, 12 for given pairs 

(it, t2) of time-slices. In the case of Co= 0 (no f-independent contribution) a simple way to do 

this is to assume a cosh-behaviour between the two time-slices. The ratio of the correlation 

function at. h and t2 is then 

e-tH"'•'• + e-(T-t,)""'•'• 
rn 

e t'"''•'> + e-(T-t;)l,,,,2 

The value of p 1, 1, can be obtained, for instance, by numerically solving the equation 

TJ2 (x,.t + x-'"2) (;z.r' + x-T') 

(14) 

(15) 

with T; := ( 'f -- f;) for x := exp(- Jlt,t; ). In the case of Co i- 0 one can proceed similarly aftei 

eliminating the t-independent term by subtraction. For instance, for (t2 - tt) ?: 2 one can 

take an intermediate time-slice at t0 = (1 2 + t!)/2 (t; integer) and solve the equation 

TJ2 ( XT> + .1: -..-? _ X TO _ X -To) = ( XTl + X-T) _ X TO _ X -To) (16) 

The third time-slice t0 can, of e.ourse, also be chosen differently, but from the practical point 

of view it is better to take some definite function "af t 1 and t 2 , otherwise the effective mass 

will already depend on 3 variables (t0 f 1t 2 ). 

Another possible way to introduce an effective mass p. 1117 is to fit the correlation funct.ion 

in the interval t 1 ::; t ::; t 2 by the asymptotic form in Eq. (13). This assumes that an error 

estimate of the correlation function is also available and then it is possible to define J-L1, 1, by 

the minimum of x2 (sum of quadratic deviations weighted by the inverse error squares). In 
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our case it. turned out that both methods are practicable and give comparable results. Solving 

the equations (15) or (16) is, however, simpler. The fit procedure is more cumbersome and 

numerically more delic.ate, especially in the case c0 i- 0. 
The question of extrapolating J-t 1, 12 to the limiting value J1 is, of course, still there. In 

general they provide upper bounds and in an ideal case 11 can be deduced from the set of 

obtained J-L 1, 11 values together with an estimate of the error of this extrapolation. 

2.3 Off-shell couplings 

Information on the physical couplings can be obtained in the symmetric phase from the 

connected 4-, 6-, etc. point functions. The simplest possibility is to consider the couplings at 

zero four-momenta, which can be numerically obtained from the generalized $11.5ceptibilitieJ 

1 
Xn"' L'T 2..: (¢,, ... ¢,,), 

:q ... :tn 

(17) 

The 2-point susceptibility x2 plays a special rOle since it defines a dimensionless field renor­

malization factor z through 
,(£, T) "'(am(L))'x, (18) 

The multiplicative field renormalization factors in the susceptibilities can be cancelled by 

taking ratios [7]: 
a4-2n A = Xn 

"- (x,J' (19) 

Here the dimension is indicated by the explicit power of the lattice spacing a, therefore a 

convenient dimensionless combination is: 

An(L,T) := m 2"-4A, (20) 

It is also possible to consider off-shell couplings for non-zero euclidean momenta. In the 

special case of space-like momentum pairs in the 4-point. coupling the appropriate generali­

sation of Eq. ( 17) is 

.v.(k, k.J"' _ 1_ ~- eiki(x,·-X2)+ik2(x,-x.)("' ,.;.. \ 
-..~ ' • LJT L yx, · .. ..,..,,,c ,,,.,,, 

L' . 
~ T 2..: ([5,(t,;k,)S,(t,;k,) + S.(t,;k,)S.(t,;k,)j 

t, ... t, 

i(5,(t,;k,)5,(t,;k,J + S,(t,;k,)S,(t,;k,l]), (~1 j 

In the present paper we shall consider only two cases, namely k 1 = 1. k 2 = 0 and k 1 = 

1 1 , k 2 = 12 . Here 1 and 11 #- 12 denote one of the t.hree possible space-like momenta 

with length (21r)/L. The corresponding dimensionless couplings can he defined in analogy t.o 
Eqs. (19, 20), for instance, as 

.\,(1,0)'" (E,)'A,(1,0) "'(oE,)'""'(l,O) 
X~ 

(E)' (aE )' (1 1 ) 
.\4 (1,1) :=:: -'-A4 (1,1) :=:: --'-~-__!__:______2__ 

rn4 (arn)4 .\~ 
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Here E 1 is the energy of the 1-particle state with lowest non-zero momentum. Near the 

r.ontinuum limit and for large volumes it. has to satisfy Lorentz-invariance, therefore 

aE1:::-
4n' 

(am)2 + V (23) 

The non-zero momentum couplings could also be made dimensionless just by the powers of 

the mass. The advantage of choosing the above combinations of the energy and the mass is 

that for these definitions the contribution of the 1-particle pole is the same for ,\4 , ,\4 (1, 0) and 

,\4 (1, 1 ). Therefore, the comparison of these couplings directly tells how strong the dominance 

of the 1-particle pole in the 4-point function is. If .\4 , A4 (1, 0), .\4 (1, 1) are nearly the same, 

the common value can also be considered as a good estimate for the on shell coupling. 

3 Theoretical aspects 

3.1 Further definitions 

In this section we collect some definitions which are required in order to compare the Monte­

Carlo results with analytic calculations. 3 For perturbat.ive and other analytic studies it 

is convenient to work in the T - oo limit. The one particle energies w(k) then manifest 

themselves as poles of the </> - propagator G(k, k4 ) in the complex k4 - plane. Near the pole 
we have 

Z(k) 
G(k,k4) = , 2 , ·''-'? + 0(1) (24) 

A renormalized mass parameter mR(L) and a wave funct.ion renormalization constant ZR(L) 
are usually defined through the behaviour of the inverse propagator for small momenta by 4 

G(O,k,t' ~ 2<Zn(L)-'(m1 + k! + O(ki)J (25) 

The zero momentum wave function renormalization fact.or ZR above is related to that defined 
in Eq. (18) by 

where 

Zn(L) ~ 2<r(L)'z(L,oo) 

r(L) ~ mn(L) 
m(L) 

(26) 

(27) 

The n-point zero momentum couplings in renormalized perturbation tlwon <~.re conven­

tionally defined [8] by appropriate factors of ZR(L) times the susceptibilities Eq. (17) and 
hence are simply related to the dimensionless c.ouplings .Xn in Eq. (20) measured in the nu­

merical simulation. In particular for the 4-point. coupling 9R and 6-poin1 coupling h R we 

have 
gn(L) ~ -r(L)'>.,(L,oo) 

hn(L) ~ r(L)'>.,(L,oo) 

3 We set the lattice spacing a= 1 throughout this section. 
4 The ZR defined here differs from that defined in {8] by a factor 2~~:. 
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(29) 

Finally in the infinite volume limit. the spectrum becomes continuous and a scattering am­

plitude c,an be defined by analytic continuation of the connected amputated 4-point function 
r, 

T(p', q' 1 p, q) ~ (Z(p')Z( q')Z(p)Z(q)) >lim r(p',q', -p, -q) ,_, (30) 

where 

k ~ (k,(i- c)w(k)) 

and energy momentum conservation holds: 

p+q=p1 +q1 (mod21r) 

w(p)+ w(q) ~ w(p') + w(q') 

We can now define an on-shell coupling g by the value oft he scattering amplitude at threshold, 

g ~ -T(O,O I 0,0) 

In terms of this the s-wave scattering length ao is given by 

m.g 
ao = - 327rm2 

where m+ is the kinetic mass defined in 

k' 
w(k) ~ m +-+ O(k') 

2m. 

(31) 

(32) 

(33) 

Here we have denoted the L = oo mass m(oo) simply by m and this convention will be 

adopted for other quantities in the following. 

3.1.1 L = oo predictions : 

The predictions from the K-expansion and renormalization group equation analysis [8] for the 

main K values measured in our Monte Carlo runs are as follows. 
For n = 0.07102: 

For n = 0.07400: 

mR = 0.49(2) 

9R ~ 41(8) 

ZR ~ 6.85(7) 

mR = 0.21(4) 

9R ~ 24(3) 

(34) 

Zn ~ 6.59(8) (35) 

Some 2-loop perturbative results (L = oo) for the quantities defined in the previous 

subsection are as follows [8], with CYR:::::: 9R/(167r2
): 

, ( 3 9 ' ( ' ' l) hR = 10gR 1 - 4QR + 4o;R + 0 9R, mR9R (36) 
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m
2 

2 3 2 
9:::: 29R (1- O:R + 0.927aR + O(gR,mR9R)) 

m. 
(37) 

( 
m~ ' mn) , , , 

m = 2log (1 + 4 )~ + 2 ( 1 - 0.0013o:R + O(gR, mn9R)) (38) 

2 - ~ m. = mR ( 1 + ~R) (1 - 0.0013a~ + O(g~, m~gR)) (39) 

We see that the mass ratio r(oo) defined in Eq. (27) is approximately 1.01 for mwc::: 0.5 

(the deviation from 1 coming mainly from O(a2 ) effects), and approximately 1.002 for mn ~ 

0.2. 

3.2 Finite volume effects 

Formulae for the leading finite volume effects for continuum theories in a box with periodic 

boundary conditions have been derived by LUscher for both stable particle masses [4] and for 2-

particle masses [5]. 5 Analogous formulae can be derived for the theory with lattice cut-off [14] 
6 and also to other quantities such as 9R( L) and ZR( L ). In the following we merely summarize 

these results together with simple calculations in leading order renormalized perturbation 

theory in the ~4 model which, according to the picture elucidated in Ref. [8], should suffice 

to give a good quantitative description when the bare parameters are such that the model is 

'in the scaling region' where the renormalized coupling is sufficiently small. 

3.2.1 Stable particle mass: 

The volume dependence of the physic.al mass rn( L) is due to vacuum polarization effects [4], 

and is, in the symmetric phase where there is no 3-point coupling, given by 

(L) 3 j' d'q -w(q)LT( ' ) . 
rn -rn= -2rn _,. (21l')32w(q)c p,q I p,q --r (40) 

where the momentum pis given by 

P = (im,O,O) (41) 

The expression (40) neglects higher exponentially damped contributions (indicated by the 

dots), but includes all lattice artif1lrt~. Extracting the leadin~ behaviour of the integral. 

by expanding around the saddle poitll. shows that. m(L) approaches its asymptot.ic value 

exponentially, with pre-factor proportional to the forward seattering amplitude analytically 

continued to an unphysical point, 

m(L) - m ~ - _3_,r(p, 0 I p, 0)(-""- )l ,-mL(l + 0(1 _,)) 
4m .21!'1 

(4~) 

VVe see that, due to the repulsive natttH' of the interaction, in the symmetric phase, the limit. 

is approached from above. 

5The formulae are proven to all orders of perturbation theory, bu: are thought to be of more gcn~ral validity. 
6 We are of course primarily interested in the limit L » E » n. 
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Expanding all quantities o<:'curring in (40) in leading order renormalized perturbation 

theory one obtains 

3gRm j' ~~e-wo(q)L + O(g~) +. 
m(L)- m ~ m; _, (2~)'2wo(q) 

with wo( q) given by 

'inh ( w,;q)) ~ (m~ + q')i 

(43) 

(44) 

where we have introduced the usual notation ij~' = 2 sin T. The mass difference can of course 

be directly calculated in renormalized perturbation theory giving 

where 

m(L)- m ~ mR(mR(L)- mR) + O(g~) 
m. 

~ _!!'!_(J,(mR,L)- J,(mR,oo)) + O(g1) 
4m. 

J"[mR,L) ~ ;, 'fL~:·)(k'+m1r" 

(45) 

(46) 

In the latter expression the sum over k goes over one Brillouin zone. The formula (45), which 

can easilly be evaluated numerically, is manifestly consistent with ( 43) and gives an indication 

of the magnitude of higher exponentially damped terms omitted in the latter. 

3.2.2 Coupling constant: 

9R( L) also approaehes its asymptotic value exponentially, however, from below. A formula 

obtained using similar methods to those used to derive (40), giving the leading behaviour to 

all orders of perturbation theory, is 

) _ Lj' d'q Z(q)' -w(q}Lr( )'I 
9R(L - 9R - -9 _,. (2-n-)3 4w( q)2e 0, q, 0, -q q•=iw(q) + .... ( 47) 

and hence 

9 ( m. ) l 9R(L)--gR~--,Z(O)'r(O,p.-O,p)' -~ ,-mLL(l,O(L-')) 
4m 21l'L 

(48) 

"·here the tnoment.um pis given by 

J' 'O.i1n) (49) 

This in leading order perturbation theorr lJeconw~ 

9gh ( 1 ) l -mL , -1 , 3 
gn[L)-gR~--, ,--· < L(l .. O(L )),O(gR) 

4m; ~7r L 
(50) 

lu comparison, the full result to leading order is 

3 , 
gn(L)- 9R = -- ~R[Iz(mR,L)- J~(mR,oo)] + O(g;i) (51) 

Typically one finds that the finite volume etfcets for gR(L) are percentually larger than for 

m( L) and again just. including the leading behaviour (50) underestimates the effects. 
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3.2.3 Wave function renorrnalization constant: 

The volume dependence of ZR(L) is very weak for moderately large m(L)L in the scaling 
region. In 2~loop renormalized perturbation theory we find 

Zn(L) _I~ 91(I'(O,mn,L)- J'(O,mn,oo)) + O(gh) 
Zn 6 

(52) 

with I' defined by 

I 1 "'"'"'"'/,. dq4 !.,. dq~ -2 2 -l -,2 2 -1 d
2 

I 2 2 -l I(p,mR,L)~ L''-''-' -(2) -(2-)(q +mn) (q +mn) 2d ,[(q+q +p) +mnJ 
q q' _.,. 1r _,. 7r P4 

(53) 
I' can be calculated numeric.ally and it can readily be seen that ZR(L) attains its asymptotic 
value from below. 

3.2.4 2-Particle mass shift: 

The shift in the 2-particle mass is due to scattering effects [5] and is given by 7 

41rao ( ao au 2) s M0(L)-2m(L)~--- l+c,-+c,(-) +O(L-) 
m~£3 L L 

with constants c1 and c2 given by 

Ct = -2.837297 

c2 = 6.375183 

(54) 

(55) 

(56) 

A study of the volume dependence of this shift thus provides direct quantitative information 
on the physical scattering length au, the situation being extren1ely favourable due to the 
notable feature -of Eq. (54) that up to O(L-6 ) only a 0 appears. As stated above, for the ¢ 4 

theory in the sYmmetric phase the interaction is repulsive, hence ao < 0 and then from (54) 
follows M0(L)- 2m(L) > 0. 

4 The Monte Carlo calculation 

4.1 The Monte Carlo runs 

The numerical Monte Carlo calculatiu:t,: Wf"re performed partly on a serial c.oput.er (IBM 3084) 
and partly on a vector machint> (CYBER 205 at the Karlsruhe LlniYersity). Consequently, 
we had two rather different versions of almost all of our programs. This turned out quite 
useful for checking possible programming errors. During the updating we stored the spin 
variables in single bits and used multi-spin coding. However, for the Metropolis hits separate 
random numbers were generated for every spin, in order to avoid the systematic enors due 
to the multiple use of random numbers [15]. By comparing the results of the first CYBER 
run on a 163 • 24 lattice to previous IBM runs we realized the danger of the correlations in the 
pseudo-random generator in a dramatic way. As it was observed previously [16,17,18], the 
correlations present in the commonly used pseudo-random number generators can influence 

7W'i' cit'!' her'i' only the formula for zero relative momentum. For other cases see ref. [5]. 
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the Monte Carlo results considerably if the number of sites is a multiple of a high power of 2, 
and if in a program the number of generated pseudo-random numbers is an integer multiple 
of the number of sites. (In a serial program this usually does not happen, because the total 
number of pseudo-random numbers depends on the acceptance of the hits and hence also 
on the configuration.) In the first version of our vectorized program we ignored the warning 
of Refs. [16,17,18], and received wrong results (e.g. the !-particle mass was about 10% 
smaller than the value given in Table IIA). After realizing the source of the discrepancy 
we changed the vectorized program according to the suggestion of Ref. [18]: we left out 1 
pseudo~ random number after every sweep. In the CYBER program we used most of the time 
the fast generator of Ref. [19], in the IBM program the NAG LIB routine G05CAE. 

In order to fix the .-.:-value in th~ final runs we performed a series of shorter runs on a 
124 lattice. The aim was to tune Kin the unbroken symmetry phase in such a way that the 
infinite volume mass be near 0.5, respectively, 0.2. This tuning lead to "' = K 12 =- 0.07102 
for am :::: 0.5, respectively, to K = .-.:24 = 0.074 for am ~ 0.2. (Actually K = 0.071 would 
be as good as our K 12 , but after having made already some longer run we did not want to 
change K again.) The time extension T of the latti-ces ·was-· chosen in such a way that the 
systematic error of the mass determination due to T < oo could be made sufficiently small 
(smaller than the statistical errors). In a series of runs for fixed.-.: on 124

, 123 
· 24 and 123 

· 36 
!attires the masses were determined and compared with each other. The conclusion was that 
T = 12 is enough forK= ,_; 12 and T = 24 forK= K 24 (hence the indices of K). This means 
zr = Tm ~ 6, respectively, zr :::: 5. For the spatial extension we have chosen L = 4, 6, 8,12 
in the first case and L = 8,10,12,14,16,18,20 in the second case. (Originally a 244 run was 
also planned but, unfortunately, this did not fit in our computer budget.) 

The masses and couplings were calculated always after every 51
h sweep. The total num­

ber of sweeps per lattice ranged between 106 and 107 (see Table IA,IIA for details). The 
estimate of the statistical errors was directly done for the time-slice correlation functions 
(sec Eqs. (5-8)) and for the off-shell couplings as defined in Eqs. (20,22). This means that 
these "primary" quantities were calculated in every bin of the data sequence for bin lengths 
2k ( k = 0, 1, 2, ... ) and the statistical errors were estimat.ed by the resulting estimates of the 
standard deviations. For every other quantity (as, for instance, the mass) the statistical error 
estimates were obtained indirectly by assuming, as a rule, that the directly measured sta­
tistical errors are uncorrelated. By this procedure the indirectly calculated errors are most 
probably overestimated, because the different. quantities (like the correlations at different 
distanN·s or am and a4- 2" A,) are obviously correlated. Therefore in some cases the errors 
of some quantities Ken• neglected in the calculation of the errors of some function of these 
quantities. (The way of the statistical error estimate will always be explicitly stated in the 
tables and figures containing the results.) One way to avoid the uncertainties of the indirect 
t>rror estimates would be to determine every quantity of interest in every data bin. Another 
possibility would be to measurf" also the correlations between the primary quantities and take 
it. into account in the error estimates. (This method was shown to work for the functions of 
Wilson-loops in the SU(2) Higgs model [20].) Both these ways of improved error estimates 
are, however, rather cumbersome and require a large amount of additional data handling. 
Therefore, we decided to pursue our simple method which involves some uncertainty, but it 
is probably always on the safe side of overestimating rather than underestimating the errors. 

Observing the dependence of the error estimates on the bin length it is possible to obtain 
information on the autocorrelation time for different quantities. As representative examples, 
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the errors of three different quantities at K = K24 and of two quantities at K- = r.: 12 are shown in 

Figs. lA-lE as a function of bin length (2k-l in this case). The saturation of the errors occurs 

on the 183 
• 24 lattice (Figs. 1A-1C) for a bin length b :::::: 29 = 512, whereas on the smaller 

lattice (12\ in Fig. 1D-1E) for b :::::: 27 = 128. 8 Sinc-e the measurements were done only 

after every fifth sweeps, the number of sweeps is 5-times more. This gives for the ratio of the 

autocorrelation times a factor ~ 4 1 which is not far away from the expected proportionality 

to the squares of the correlation lengths (i. e. ~ 25/4). 

4.2 Results and comparison to the theory 

The time·slice correlations and off-shell couplings were calculated in the Monte Carlo runs 

according to the definitions in Sect. 2. All the correlations could be determined to a good 

precision, in most cases for every considered time-distance. As a sample case, we include in 

Table III the correlations at x:24 on the 183 
• 24 lattice. (There are similar tables for every 

lattice. They are available upon request from the authors.) The masses were determined from 
the correlations in two different ways: by fitting with the asymptotic form in Eq. (13) for a 

variety of time intervals and also by solving Eqs. (15-16) for different time-slice pairs. Both 

procedures allow a reliable and consistent mass estimate because the time dependence for 

larger time-distances is small (smaller than the quoted statistical error). As an illustration of 

the second method we shOw the obtained mass estimates on the 183 
• 24lattice in Fig. 2A-2B, 

respectively, for the 1-particle and 2-particle mass. The errors on these figures were obtained 

by considering only the error of the more distant time-slice. In this way the correlation 

between the different time-slices can be approximately taken into account. As it can be seen 

from Figs. 2A-B, the mass estimates are practically independent from the chosen distanc.e 

pair. The summary of the final results for the masses is contained in Tables lA and IIA. The 

notations are as follows: a is the lattice spacing, m the 1-particle mass, E 1 the 1-particle 

energy with lowest lattice space-like momentum, Mo the 2-particle mass with zero relative 

momentum and M 1 the 2-particle mass with unit relative momentum. The definition of z 
and Xz is given in Eqs. (17 ,18). The values of the mass and renormalization constant are in 

good agreement with the theoretical estimat-es Eqs. (34,35). 
The volume dependence of the 1-particle mass is shown in Fig. 3A-B. Also included 

in these figures are the asymptotic formula in Eq. ( 43) and the exact 1-loop expression in 

Eq. (45), for which we used the theoretical estimate 9R = 41 and an extrapolated value 

amoo = 0.4877 for K = 0.07102 and, respectively: the set of values 9R = 24, amoo = 0.2130 

for K = 0.07400. A~ one can see, both formulae work well for the largest volumes. For the 

smaller lattiee~ 1-loop lattice perturbation tht-ory is somewhat better: the asymptotic formula 

is underestimating the finite size effects. the 1-loop formula is slightly overestimating. The 

theoretical curves are on safer grounds for ti-2 4 than for litz because both the higher order 

perturbative corrections and the lattice artifads are smaller if K is closer to the critical point. 

Besides higher orders and lattice artifacts there is also an uncertainty in the values of the 

parameters of the curves, mainly in the case of the renormalized coupling 9R· For this we took 

the theoretical values from Eq. (34,35) which are consistent with the Monte Carlo results, 

but 9R-values differing by 10-15% would a~so be possible. This leads to a similar relative 

uncertainty for the predictions of the mass shift m.( L)- m.( oo ). In v~ew of this the agreement 

&Note that, contraty to naive expectation, the bin length at which the enors saturate for a given correlation 
is practically independent of the time separation (for fixed K and volume); compare e.g. Figs. lA and lB. 
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in Figs. 3A-B is quite satisfactory. 
The mass extracted from the data on E 1 using Eq. (23) is consistent with m(L) for large 

L. We expect that the observed discrepancies at small L are due to finite a2 effects. 

As mentioned already in Sect. 3.2.3, the volume dependence of the wave function renor­

malization constant is very small for the K values we studied. For example for the values 

9R = 24, am00 = 0.2130 in Eq (52) we obtain the results -0.01, -0.001, -0.0005 if, re­

spectively, L = 10, 14, 16. There is an indication of the expeded few percent shift at L = 8, 

hut the errors are not small enough. Apart from that our results are consistent with volume 

insenSitivity when M(L)L > 2. 
For the difference of the lowest 2-particle mass minus twice the 1-particle mass the results 

are shown by Figs. 4A-B. The continuous curve in these figures is LUscher's formula Eq. (54), 

using the same sets of values of 9R and am which were quoted above (and used for Figs. 

3A,3B). The corresponding values of the infinite volume scattering length are: au= -0.64, 

respectively1 a0 = -0.96. The agreement between the theoretical curve and the Monte Carlo 

results is impressive. Since M 0(L)- 2m(L) is roughly proportional to the scattering length, 

its £-dependence can be used to determine a0 and the relative error of the result will be 

essentially given by the relative error of the last points for M0(L)- 2m( L) where the formula · 

is still valid. With our present errors we could obtain in t-his way the value of a0 with an 

error of about 10- 15%. 
Unfortunately, the data on the mass difference for the exited 2-particle state M 1(L)-

2E1(L) is not precise enough to make any useful comparison with the theoretical prediction. 

The results for the off-shell couplings are collected in Tables IB and liB. For the notations 

see Eqs. (17-22). Besides the 4-point couplings ..\ 4 , ..\ 4 (1, 0) and ..\4 (1, 1) the 6-point coupling 

..\6 could also be determined in most of the cases. The errors of the off-shell couplings are, in 

general; considerably smaller on the small lattices. This is, of course, to be expected, because 

the difficulty comes from the large cancellations involved in the calculation of connected parts. 

If the lattice extension is much larger than the correlation length, there are many uncorrelated 

pieces of the lattice. This makes the required cancellations problematic. Among the 4-point 

couplings ).4 (1,0) seems to be the best from this point of view: it has usually smaller errors, 

and even the finite size effects are smaller in it than in the other two 4-point couplings. This 

is the result. of a partial cancellation be,tween the finite size effects for the quantity A4 (1, 0) 

defined in analogy with Eq. (19) and fo~ the energy E 1 • 

Again for large L there is good agreement with the predictions of Eqs. (34,35) (the L = 
20 result, which is based on comparatively low statistics, is presumably an unfavourable 

statistical fluctuatioi• 1. ln ..\ 4 there are rather strong finite size effects: it.s value is considerably 

smaller on t.he smdlla r lices than the large volume limit. The data is in good semi-quantitative 

agreement. with the perturbative discussion in Sect. 3.2.2 For example from Eq. (51) we 

expect for am::::: 0.5 and 9R = 41 that gn(L)- 9R(oc.) takes the values::::: -3,::::::-1,::::::-0.3 

for L = 8, 10,12 respectively. For am:::::: 0.2 and 9R = 24 we expect. 9R(L)- 9R(oo):::::: -5, :::::: 

-3, :::::: -1.7 if L = 14, 16, 18. 

Finally the results on the 6-point coupling are of the same order of magnitude as that 

obtained from the pert.urbative calculation Eq. (36), however, the large statistical errors do 

not permit a more precise statement. 
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4.3 A short excursion in the critical region 

As discussed in the introdudion, slightly beyond the hopping parameter values we considered 
up to now the finite lattice size effects become very large. Of course, in a numerical approach 
one can ignore this and perform calculations in the critical region with a fixed lattice size. 
In order to see what happens we did a series of runs in the critical region on a 104 lattice, 
since this lattice size was common to several earlier Monte Carlo calculations [9,10,11]. In 
particular, we saw the paper [11] during the course of this work. In this paper the possibility 
of a vanishing wave-function renormalization factor ZR ~ 0 was advocated near the critical 
point. If taken at the face valuf', this would be in C'ontradiction to our previous results and 
also to the analysis in Ref. [8]. 

The theory of the critical behaviour on finite lattices is formulated in !1,2,3,21]. We do 
not intend to do a complete finite size scaling analysis here, since our main goal is to obtain 
information on the physical quantities of the infinite volume theory. (For a very rec,ent finite 
sizf' sc-aling study see !22].) 

Our 104 nms were performed near the infinite volume critical point Kc" :::::- 0.0748, namely 
for 0.0745::; K S 0.0753. Besides 104 also 103 • 16 or 164 lattices were considered in a few 
points. The number of sweeps was between 2.5 to 3.0 ·106 per point. The results confirmed 
that the wave function renormalization factor z 1 = 2Kz is decreasing in this ~~:-interval. At 
K = 0.0753 we obtained a.m = 0.1101{19) and z1 = 0.827(32). The gentle decrease of z1 is 
probably a finite size effect. This expectation is strengthened by the 164 result z' = 0.957(16) 
at r; = 0.0745, compared to the 104 number at the same K, namely z1 = 0.935(17). However, 
in this K-region there might be a substantial difference between z' and ZR. In addition, the 
time extension of the lattiC'.e is by far too small t.o project out the lowest. eigenvalue of the 
transfer matrix, therefore the result obtained from a fit by the asymptotie formula (13) cannot 
really be considered to he the "mass". 

At K = 0.0753 we stopped our systematic runs, because this point is already in the region 
dominated by the finite volume dynamics of the constant field mode [3,21]. This means 
that on the finit.e lattice, for increasing K, the correlation length is further increasing due 
t.o the oscillation between the two degenerate minima of the effective potential. The field 
expectation value in a long enough run still averages out to zero. The critical dynamics is 
characterized by an autocorrelation time which is proportional to the square of the finite 
volume correlation length [21]: TL ::::,- a. This behaviour was roughly verified by 104 runs 
at r; = 0.0755 and- K = 0.0760. In this latter point the "mass", obtained from a fit by the 
latge-1 asymptotic form. was am = 0.068(11) and the wave function renormalization factor 
,, ~ 0.63(21). 

In summary, our 104 calculations are in agreement with -the decrease of z' in the critical 
region on this finite lattiC'.e. This C'annot., however. be interpreted as the vanishing of the 
infinite volume ZR and as the failure of thf. expected 1-loop renormalization group behaviour 
ZR-----> 0.97(1) [8]. On the C'ont.rary, in the region of ;;L =::: 0{1)- 0(10) the renormalization 
group scaling behaviour and 1-loop renormalized perturbation theory do describe the finite 
size effect.s quite well (see Figs. 3A-B, 4A-B). Note- that. our results are at infinite bare self· 
C'OUpling A, whereas the calculations in Ref. [11] we-re- performed at finite A. However, as we 
mentioned before, the behaviour at A = oo is qualitatively rather similar to the situation for 
-1 ~ 0(1). 
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5 Summary and conclusions 

The control of finite cutoff and finite volume effects is essential in order to extract relevant 
physical information from any numerical lattice field theory simulation. With respect to the 
finite :'-'olume effects we are potentially in a good situation since for these universal asymptotic 
formulae are avai.Jable (for periodic boundary conditions) [4,5]. Although these results are 
thought to be of general validity, they_ are so far only proven in the framework of renormalized 
perturbation theory. The present numerical simulation in the 4-dimensional Ising model is in 
good agreement with- the asymptotic formulae. In particular, the measurement of the finite 
volume 2-particle energy levels demonstrates the feasibility to obtain valuable numerical 
information on low energy scattering from the study of finite volume effects. 

The Ising model is a limiting case of the (p-t field theory. The analysis in Ref. [8] of 
the ¢4 model in the symmetric phase supported the previous conjectures that close to the 
critical line it describes an effective continuum theory: there exists a "scaling region", roughly 
characterized by am< ~,where cutoff effects are small. The latter analysis required as input 
the validity of renormalized perturbation theory in the scaling region which, despite shown 
t.o be self-consistent, remains an assumption to be substantiated. 

A short summary of our conclusions from the numerical Monte Carlo calculations is as 
follows: 

• The !-particle mass can be measured with sufficient accuracy to exhibit its expected 
exponential approach to the a.symtotic L ~ oo limit, the asymptotic behaviour setting 
in for zL > 2 - 3. The absolute magnitude of the effect requires the knowledge of some 
forward scattering amplitude. Calculations of this in renormalized perturbation theory 
yield good agreement with the data. 

• The extrapolated L = oo values of various quantities are all consistent with the quan­
titative results of Ref. [8]. In particular, our data at K = 0.074, where the correlation 
length is approximately 5 lattice units, gives added confidence to the validity of the 
analysis in [8] for an extreme value of the bare self-coupling at which one might be 
most suspect. 

• The volume dependence of the lowest 2-particle mass is in remarkable agreement with 
LUscher's formula. The hope is that, indeed, information on pion-pion scattering lengths 
can eventually be obtained by measuring the analogous quantity in QCD [5j, once the 
enormous hurdle of finding an efficient fermion simulation method is overcome. For the 
two measured points the value of the scattering length times the mass was aom :::::- -0.3 
and, respectively, a 0m ::::::: -0.2. Estimates of the physical pion 5-wave I= 0 scattering 
length, on the other hand, give agm,. =::: 0.2 \23]. Therefore the percentual effects for 
a given value of ZL are expected to be quantitatively similar in our simulation and in 
the physical pion case, the difference being that the asymtotic limit is approached from 
below there. 

• In the Ising model, as mentioned above, finite size effects are reasonably small provided 
ZL > 2- 3. However, when the correlation length is approximately equal to the size of 
the lattice enormous finite size effects are known to occur. In particular, the observed 
decrease [11] of the wave function renormalization constant for fixed lattice size in the 
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critical region can be understood as a finite size effect, and no significant conclusion 

about the behaviour of this quantity in the continuum and infinite volume limit can be 

made therefrom. 

It. is plausible that the finite volume behaviour in other r,D4 -related models, as e. g. Higgs 

models, are qualitatively similar to the present case. Nevertheless a numerical study of these 

related models would also be desirable, in particular also in the broken phase where the 

interaction is attractive and the 3-particle coupling is non-vanishing. 
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Table lA 

The number of sweeps M s (in units of 106
) and the results for the masses at K = 0.07102 on 

L 3 
• 12 lattices. The statistical error estimates in the last numerals are given in parentheses. 

The error estimates for the masses were obtained from fits with the asymptotic behaviour 
Eq. (13) by assuming that the measured statistical errors of the time-slice correlations at 
different distances are uncorrelated. The statistical error of x 2 was determined directly by 
binning. For z the error of x2 and am were taken as uncorrelated. 

L M, am aE, aM0 aM0 - 2am aM, X' z 
4 10.1 0.5621(5) 1.414(2) 1.330(7) 0.206(8) 3.0(3) 20.90(2) 6.60(2) 
6 5.2 0.5000(12) 1.070(2) 1.096(6) 0.096(7) 2.2(2) 26.47(3) 6.62( 4) 
8 2.5 0.4945(9) 0.8844(17) 1.015(8) 0.026(9) 1.87(12) 27.69(6) 6. 77( 4) 
12 10.1 0.4875(5) 0.7011(4) 0.983(4) 0.008( 5) 1.43(5) 28.20(3) 6.70(2) 

Table IB 

The results for the off-shell couplings at K = 0.07102 on U · 12 lattices. The statistical error 
estimates in the last numerals are given in parentheses. The error estimates for a 4- 2" A, were 
obtained directly by binning. Those for the ..\ 's were calculated from the error of the A's 
alone, by neglecting the errors of the mass (or energy). Otherwise the errors of the ..\ 's would 
be strongly overestimated due to the obvious correlations between these quantities. 

L -a-4 A4 -.I, -a-• A,(1, 0) -,\,(1,0) -a-'A,(1,1)' -.1,(1,1) ..\6 . 10-3 

4 279(2) 27.9(2) 8.30(8) 33.2(3) 0.17(1) 26.7(1.6) 5.08(8) 
6 543(10) 33.9(6) 29.4(6) 38.5(8) 0.65(9) 17.9(2.5) 8.78(5) 
8 644(38) 38.5(2.3) 64.4(2.8) 39.4(1.7) 3.3(6) 21(5) 8(3) 

12 748(75) 42.2(4.3) 169(9) 40.8(2.2) 41(3) 43(4) I 30(20) 
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Table IIA 
The same as Table lA, for K = 0.074 on £3 · 24 lattices. 

L M, am aE, aM0 aM0 - 2am aM, X' z 

8 3.1 0.2452(8) 0.786(2) 0.586( 4) 0.096(5) 1.7(1) 105.7(3) 6.36(6) 
10 3.0 0.2293(7) 0.649(2) 0.520(3) 0.061(4) 1.34(3) 122.5(3) 6.44(6) 
12 4.8 0.2231(6) 0.557(1) 0.479(3) 0.033(4) 1.16(5) 131.8(4) 6.56(6) 
14 5.2 0.2168(5) 0.491(1) 0.460(3) 0.026(4) 1.03(4) 137.7(3) 6.47(5) 
16 2.4 0.2142(7) 0.4427( 5) 0.452(4) 0.024(5) 0.91(3) 140.1(3) 6.43(7) 
18 4.9 0.2144(5) 0.4063(6) 0.440(3) 0.011(4) 0.84(3) 141.1(4) 6.48(5) 
20 1.6 0.2125(10) 0.374(1) 0.432( 5) 0.007(6) 0.78(4) 142.6(8) 6.44(10) 

Table liB 

The same as Table IIA> for K = 0.074 on £3 · 24 lattices. Here the values in the second and 
last c,olumns are multiplied by a scale fad or S = 10-3

. 

L -a-4 A4 · S -,\, -a-4A4(1,0) -.1,(1,0) -a-4A4(1, 1) -.1,(1, 1) ..\6. s 
8 4.61(8) 16.7(3) 64. 7(1.6) 24.8(6) 0.56(13) 23(5) 1.83(6) 
10 7.1(2) 19.6(6) 144( 4) 25.4(7) 2.8(5) 32(6) 2.8(2) 
12 9.1(2) 22.5(5) 276(8) 26.6(8) 7.5(9) 28(3) 4.0(2) 
14 10.2(4) 22.5(9) 483(16) 28.0(9) 18.6(2.2) 28(3) 4.3(5) 
16 12.6(1.0) 26.5(2.1) 713(48) 27.4(1.8) 49(7) 34(5) 7(2) 
18 10.8(1.0) 22.8(2.1) 1026(56) 28.0(1.5) 92(10) 32(4) 4(2) 
20 18(2) 36(5) 1370(160) 27(3) 119(35) 23(7) 15(8) 
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Table III 

Time-sliee correlations on 183 
· 24 lattic.e at K. = 0.074. The first column is the time-slice 

distance t. The second column is the !-particle correlation, the third and fourth are, respec­

tively, the two-particle correlations with relative momentum 0 and 1, the fifth column is the 

off-diagonal correlation of two-particle states and the sixth one is the !-particle correlation 

with lowest non-zero lattice momentum. The last two columns are obtained from columns· 

3-5 by diagonalization. 

0 2.617E-03 1.326E-05 5.197E-06 -6.168E-07 1.344E-03 1.327E-05 5.185E-06 

± 3.4E-06 ± 3.5E-08 ± 3.1E-09 ± 5.2E-09 ± 5.5E-07 ± 3.6E-08 ± 3.6E-08 

1 2.117E-03 8.570E-06 2.256E-06 -4.994E-07 8.953E-04 8.580E-06 2.246E-06 

± 3.4E-06 ± 3.5E-08 ± 3.1E-09 ± 5.2E-09 ± 5.5E~07 ± 3.6E-08 ± 3.6E-08 

2 1.716E 03 5.561E-06 9.815E-07 -3.659E-07 5.966E-04 5.568E~06 9.742E-07 

± 3.3E-06 ± 2.3E-08 ± 1.7E-09 ± 3.8E-09 ± 5.0E-07 ± 2.3E-08 ± 2.3E-08 

3 1.394E-03 3.628E'06 4.277E-07 -2.558E-07 3.978E-04 3.633E-06 4.226E-07 

± 3.3E-06. ± 2.3E-08 ± 1.7E-09 ± 3.8E-09 ± 5.0E-07 ± 2.3E-08 ± 2.3E-06 

4 1.130E-03 2.392E-06 1.867E-07 -1.733E-07 2.652E-04 2.395E-06 1.833E-07 

± 3.1E-06 ± l.SE-08 ± 1.4E~09 ± 3.5E-09 ± 4.3E-07 ± 1.6E-08 ± 1.6E-08 

5 9.311E-04 1.595E-06 8.178E-08 -1.171E-07 1.770E-04 1.597E-06 7.952E-08 

± 3.1E-06 ± l.SE-08 ± 1.4E-09 ± 3.5E~09 ± 4.3E-07 ± 1.6E-08 ± 1.6E-08 

6 7.721E-04 1.084E-06 3.535£-08 -7.717E-08 1.184E-04 1.085E-06 3.393E-06 

± 2.9E-06 ± l.OE-08 ± 1.4E-09 ± 3.7E-09 ± 3.8E-07 ± l.lE-08 ± l.lE-08 

7 6.515E-04 7.565E~07 1.608E-08 -5.299E-08 7.966E-05 7.574E-07 1.513E-08 

± 2.9E-06 ± l.OE-08 ± 1.4E-09 ± 3.7E-09 ± 3.8E-07 ± l.lE-08 ± l.lE-08 

8 5.529E-04 5.459E-07 8.044E-09 -3.694E-08 5.418E-05 5.465E-07 7.410E-09 

± 2.8E-06 ± 9.0E-09 ± 1.3E-09 ± 3.5E-09 ± 4.0E-07 ± 9.7E-09 ± 9.7E-09 

9 4.784£-04 4.154E-07 3.651E-09 -2.755E-08 3.777E-05 4.159E-07 3.191E-09 

± 2.8E-06 ± 9.0E-09 ± 1.3E-09 ± 3.5E-09 ± 4.0E-07 ± 9.7E-09 ± 9.7E-09 

10 4.334E-04 3.377E-07 2.770E-09 -2.174£-08 2.758£-05 3.381E-07 2.418E-09 

± 2.8E-06 ± 9.1E-09 ± 1.4E-09 ± 4.0E-09 ± 4.6E-07 ± l.OE-08 ± l.OE-08 

!Ji4.o78E 04 i 2.940E-07 3.499E-09 -1.914E-08 2.212E-05 2.943£-07 3.184E-09 

j ± 2.8E-06 i ± 9.1E-09 ± 1.4E-09 ± 4.0E-09 ± 4.6E-07 ± l.OE-08] ± l.OE-08 

12 ! 3.987E-04 I 2.803E-07 4.061E-09 -1.929E-08 2.040E-05 

1

2.806£-07 3.725E-09 

2.9E-06 i ± l.OE-08 :±- 1./E-09 ± 4.5E-09 ± 5.0E-07 ± l.lE-08 ± l.lE-08 
-- --- -· -------
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Figure captions 

Fig. lA. The dependence of the error estimate on the bin length 2k-t for the !-particle 

correlation at time-slice distance t = 2. The lattice is 183 • 24 at K = 0.074. 

Fig. lB. The same as Fig. lA, for t = 10. 

Fig. lC. The same as Fig. lA, for the 4-point coupling at zero momentum. 

Fig. lD. The same as Fig. lA, for the !-particle correlation at distance t = 4 on ·124 

lattice at "- = 0.07102. 

Fig. IE. The same as Fig. lA, for the 4-point coupling at zero momentum on 124 

lattice at ""= 0.07102. 

Fig. 2A. The !-particle mass estimates on 183 
• 24lattice obtained by solving Eq. (15) 

for different time-slice pairs. On the horizontal axis the first time-slice distance is given. 

Identical symbols belong to same diferences of the time-slice distance. The horizontal line is 

the final mass estimate. 

Fig. 2B. The 2-part.icle mass estimates on 183 
• 24 lattice obtained by solving Eq. (16) 

for different time-slice pairs (t 1 ,t2 ). The third time-slice is t 0 = (t1 + t 2 )/2, (integer). On 

the horizontal axis the first time-slice distance is given. Identical symbols belong to same 

diferenc,es of the time· slice distance. The horizontal line is the final mass estimate. 

Fig. 3A. The dependence of the 1-particle mass on the spatial extension L of the 

L 3 
· 12 lattice at I'L = 0.07102. The Monte Carlo results are the open circles with error-bars. 

The dotted horizontal line is the asymptotic value for infinite volume. The full line is the 

asymptotic formula for 2L > > 1 in the form Eq. ( 42), the dashed line is the 1-loop asymptotic 

form Eq. (43). The full dots give the full1-loop perturbative result in Eq. (45). 

Fig. 3B. The same as Fig. 3A on--the £3 · 24 lattice at x. = 0.074. 

Fig. 4A. The difference of the 2-part.ide mass minus twice the 1-particle mass as a 

function of the spatial extension L of the L 3 ·12lat.tice at ;; = 0.07102. The line is LUscher's 

formulc-: Eq. (54) for a scat.t.ering length a 0 = -0.64. 

Fig. 4B. The difference of the 2-partide mass minus twice the 1-particle mass as a 

ftmct.ion of the spatial extension L of the L 3 
· 24lattice at K = 0.074. The line is Li.i.scher's 

formula Eq. (54) for a scattering length a0 = -0.96. 
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