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Abstract

The effect of the finite lattice size on physical guantities, like masses and
coupling constants, is numerically investigated in the 4-dimensional Ising model.
The feasibility to obtain numerical information about low energy scattering from
finite volume effects in a lattice Monte Carlo calculation is demonstrated.

1 Introduction

The numerical investigation of relativistic quantum field dynamics is based on the approxi-
mation of the space-time continunm by. & 4-dimensional discrete lattice. This approximation
becomes good if the physical length scale is much larger than the lattice spacing. Since the
number of attice points is limited by the available computing power, the need to minimize
the influence of the space-time discretization necessarily drives the numerical investigations
into regions, where the lattice extension is not much larger than the characteristic physical
length scale. In this respect the number of dimensions plays a rather negative role, becanse a
mere doubling of the lincar extensions implies a drastie factor of 16 increase in the number of
latiice pdints. As a coniséquenée, the knowledge‘and control of finite lattice size effects is very
important iu every numerical lattice caleulation. In fact, an optimal caleculation turns the
tables aud uses the calculated finite size effects to obtain additional dynamical information
on the infinite volume system,

Although the question of the finite size effects on masses or coupling constants was con-
sidered in many of the numerical investigations of 4-dimensional quantum field systems, the
earlier theoretical studies of the finite size effects were mainty oriented hy statistical physics
considerations, such as phase transitions etc. (see, for instance, Refs, {1,2,3]). From the point
of view of the 4-dimensional nutnerical simulations a very important question is the influence
of the finite lattice size on the calculated particle masses. A systematic theoretical study of
the finite volume problem was performed in the recent papers by Liischer [4,5]. In Ref. {4}
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the volume dependence of single-particle states was considered, whereas Ref. {5} is devoted to
the question of 2-particle scattering states in finite volumes. An interesting outcome of these
investigations was the relation between the energy shifts of the 2-particle states in a finite
box to the elastic scattering amplitude in infinite volume. This relation allows, in principle,
to obtain numerical information on the low energy scatiering from an accurate study of the
volume dependence of 2-particle energy levels.

The main motivation of the present work is to study the feasibility of the numerical

- calculation of the scattering length by Lischer’s formula {5]. The choice of the particular

quantwn field theory, where our nuinerical simulation has been performed, was alse influenced
by a possible future application to SU(2) Higgs systems, which are physically important for
the understanding of the Higgs-sector of the standard model. (For recent numerieal studies
of the standard SU{2} Higgs model see {6,7] and references therein.) The 4-dimensional
Ising model is a limiting case of the 1-component ¢! model for infinitely strong self-coupling,
therefore it has some similar qualitative features as the standard Higgs sector (which is based
on a 4-component ¢* model). The infinite scalar self-coupling (A — oo) limit is, in fact,
also characteristie {o the behaviour at A =~ (1), even after the introductior of the SU{2)
gauge coupling in the Higgs system [6]. From the point of view of our present problems, the
triviality of the continuum limit of the ¢! model is not relevant. We take the non-trivial
finite cut-off model as a representative of quantum field systems on a finite 4-dimensional
lattice. (For questions of the continuum limit see [8], where also a detailed list of references
to earlier work can be found.}) Concerning the physical epplication to the standard Higgs-
sector, the finite cut-off lattice models can be considered as approximations to the effective
quantum feld theory which has, for some physical reasons, also a finite cut-off, The choice
of the 4-dimensional Ising model as a testing ground for numerical simulation methods is, of
course, also advantageous because of simplicity, We could perform a large number of sweeps
(in the order of 10% — 107} on a variety of lattices within a reasonable amount of computer
time. This allowed an accurate determination of the physical quantities of interest. A last
piece of motivation of our investigation of the 4-dimensional 1-component ¢* model is the
fact that, up to now, this simple model received relatively little attention in the numerical
simulations. The previous numerical works, we are aware of, were concerned mainly with the
questions related to the triviality of the‘continuum limit [9.10,11] and with the Monte Carlo
renormalization group behaviour 112,13}, The masses and couplings were caleulated in most
cases, by present standards, only with moderate accuracy.

The 4-dimensional Ising model has a critical point at the critical hopping parameter value
Ker = 0.0748. For & = s, the symmetry ¢, — —¢, of the sction gets spontancously hroken.
In the vicinity of the critical point the correlation lensty & iwhich is the inverse of the mass
in lattice units: £ = (am) ') is very large. The lattice size becomes infinitesimal on the scale
of the infinite volume correlation length, therefore near the critical point the finite size effects
have to become infinitely large. As a function of x this happens rather suddenly, because «
is a "fine tuning paranieter” (near k. am behaves as ~ k., — & ).

The consequence of the critical behaviour near ., is:

s For the study of finite size effects on physical qnantities, like masses or coupling con-
stants, one has to stay in the region where z;y = Lm, =~ O(1). (Here L is the linear
extension of the lattice and m., is the mass in lattice units in an infinite volume.)

¢ The region with z;, ~ O{1) has a very sharp boundary in x due to the fine tuning nature
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of k.

According to this, in our numerical calculations on L* - T lattices we kept zj, in the range
2z, 2= 2 — 8 and zp = T'my near zr > 5 — 6. This was achieved by the fine tuning of « in
shorter Monte Carlo runs. ' '

The organization of this paper is as follows: in the next Section the lattice definitions of
the variables and of the physical quantities are collected. The general formulae for the volume
dependence are given in Section 3. In this section also some analytical caleulations of the
finite lattice size effecis in lattice perturbation theory are summarized. In Section 4 the Monte
Carlo calculations are described in detail and compared to the theoretical expectations. The
last Section contains a shert summary and a few concluding remarks,

2 Lattice definition of physical quantities
The euclidean lattice action of the 4-dimensional Ising model is defined by

§= _"Z¢=¢m+,& (1)

Here ¢, = %1 is the field variable at the lattice site #, and the summation L. Boes over
g o= £1,£2, 33,44, = + i is the neighbouring site to ¢ in the direction p: The only bare
parameter in the action is the (positive) hopping parameter x. The other parameter of the
1-component ¢* model, the bare self-coupling X, is infinite in the Ising limit. We will work
on finite L® - T hypezcubic lattices with periodic boundary conditions in all directions.

2.1 Correlation functions

Let 7 denote the transfer matrix in direction 4. T is positive definite and commutes with
the translations I#{a) in the spatial directions. For a range of x arcund the critical point, the
theory is thought to describe the interactions of a massive scalar particle. Thus we expect the
lowest eigenstates of T above the ground state ! to be single particle states with quantized
momenta {due to the periodic boundary conditions) k = %’n, n = (n,,n3,n3), (n, = infeger)

and energy w(k), _
Uta) [ k) = e ** | k) (2)

T ik = e ™Mk (3)

The physical single pasrticle mass m(L) is given by
m(L) = w(0) (4)
The energies w(k) are determined in the numerical calculations from the 2-point correlations
Ci{ts — ta1k) = {S(t1; k) Sc(tai k) + S,t1:K) S, (21 k), (5)

of "time-slice” variables with spatial iomentum Kk

S.(tk) = % 3" e cos(kx)

!7-is normalized so that its largest eigenvalue is 1, i.e. the ground siate energy Eg = 0.
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Su(tik) = 75 3 e sinkx) (8)

# is the euclidean time t = z, and {z;,23,23) = x are the spatial components of the site
vector 2. In Eq. (5) {...}. denotes the connected expectation value with respect to the
Boltzimann-distribution e~5 with the action §.

The spectrum of 7 also contains states correspending to scatiering 2-particle states with
definite total momentum and relative momenium g. To numerically investigate these channels
it would, in principle, also be possible to use local 2-particle variables like e. g. ¢2, but these
would couple only weakly, In order to have a strong overlap with 2-particle states one has to
consider variables which are “smeared” in space for fixed time. Good operators, projecting
on states with total momentum zero, can be obtained simply by squaring the 1-particle

time-slices: ?

Si(t;q) = S(t;q) + S.(t;q)° (7}
The corresponding correlations are denoted by
Colty — ta)qq = (Sg(il;ql)SQ(tg;qg))t {8)

In the unbroken-symmetry phase, where our Monte Carlo calculations will be performed, there
is no mixing between 1-particle and 2-particle states. This is due to the exact symmetry ¢, —
—d,. There is, however, no exactly conserved quantum number which would forbid the mixing
of 2-particle operators with different relative momenta g. Consequently, although the various
2-particle states have a large prejection in the corresponding diagonal correlations, the off-
diagonal correlations with ¢; # q; are also non-vanishing. An energy estimate for the different
3-particle states can be obtained by computing the matrix Cy(t)q, q, and diagonalizingin g;qs.
We denote the lowest 2-particle energy by My(L), the first excited 2-pariicle energy with unit
relative momentum by M;(L).

2.2 DMasses

The determination of the low-lying spectrum from the correlation functions would be trivial
if the time extension T of the lattice and the statistics would be infinitely large. In real life,
for finite T and finite statistics, the situation however is more complicated. Denoting the
eigenvectors of the transfer matrix by | #) and F, the corresponding eigenvalues, the two
point correlation function of an operator O(#) defined on one time slice, and its expectation

value are given by,

OOy ) = 27 3 e Bl BB g P (9)
(O)y =273 e 5T 4, (10)
where .
7z = E e_E“T (11)
and
Ama = {m | O(O} } n) A (12)

ITo project out the spin 0 pazt one should sum over rotations of q ; but we did not do this in our
measurements.



The dominant t-dependent contributions for large t comes from the lowest state » for which
Ag, # 0. We first note thai, due to the periodic boundary conditions, there are also states
propagating over the boundary in negative time direction and therefore the exponential time
dependence of the correlation functions is modified to a cosh-behaviour. Our main purpose
however to recall the well-known relations above is to stress the fact that if & has non-
vanishing expectation value then its connected 2-point function has in general t-independent

contributions. In particular for large T the dominant t-independent contribution is given by’

LAOO_-All E? E—m(L)T

Therefore the generic behaviour of the correlation functions one has to consider for large T
and t is:
CTt) = cpe ™™ 4 ¢ (ef"‘E" + e“T_‘)E') (13)

Sometimes the t-independent term is known to he absent, e.g. for the 1-particle correlation
in the symmetric phase. But for the 2-particle correlations ¢ # 0. Despite the fact that the
t-independent terms vanish exponentially for targe T, their omission in fits can considerably
disturb the determination of the mass: the appareni masses obtained from the logarithmic
slope at large ¢ seem to be smaller on the finite-T lattice than for T — oo.

The behavicur in Eq. (13) is, of course, only the asymptotic form because above the lowest
state with energy E, ihere are also states with higher energies. In practical calculations
cne has to exiract somehow the lowest contribution, for instance, by fits and/or by some
extrapolation procedure. For an accurate calculation the uncertainty of this extrapolation
may be comparable to the statistical errors. Therefore it is better to separate this problem
from the other sources of errors by defining effective masses p,,,, = am,,, for given pairs
{#1,t2) of time-slices. In the case of ¢o = 0 (no t-independent contribution) a simple way to do
this is to assume a cosh-behaviour between the two time-slices. The ratio of the correlation
funciion at #, and {2 is then

e~hann L e (T-hleng

= etk -+ B‘(T“tz}“'ﬂ: (14)

The value of y,,,, can be obtained, for instance, by numerically solving the equation
T12 (z” + ;1'772) = (17’ + J:’”) (15)
with 7; = {% — ;) for @ = exp(—ft,r, ). In the case of ¢g # 0 one can proceed simitarly after

eliminating the t-independent term by subtraction. For instance, for (£, — £,) > 2 one can
take an intermediate time-slice at tg = {1z + #1}/2 (1; integer) and solve the equation

19 (x” +z 2" — a:””) = (a:” +aeT? -2 — w"’“) (16)

The third time-slice fo can, of course, also be chosen differently, but from the practical point
of view it is better to take somne definite function of t; and 13, otherwise the effective mass
will already depend on 3 variables (fof14y).

Another possible way to introduce an effective mass gy, is to fit the correlation function
in the interval #; < £ < {, by the asymptotic form in Eq. (13). This assumes that an error

estimate of the correlation function is also available and then it is possible to define p,,,, by
the minimum of x* (sum of quadratic deviations weighted by the inverse error squares). In
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our case it turned out that both methods are practicable and give comparable resnlts. Solving
the equations (15) or (18) is, however, simpler. The fit procedure is more cumbersorne and
numerically more delicate, especially in the case ¢ # 0.

The question of extrapolating p.,., to the limiting value p is, of course, still there. In
general they provide upper bounds and in ad ideal case p can be deduced from the set of
obtained p;,,, values together with an estimate of the error of this extrapolation.

2.3 Off-shell couplings

Information on the physical couplings can be obtained in the symmetric phase from the
connected 4-, 6-, ete. point functions. The simplest possibility is to consider the couplings at
zero four-momenta, which can be numerically obtained from the generalized susceptibilities

1
Xo = Fam 2L (Be- ek (17)
LT :E“ “ "
The 2-point susceptibility y; plays a special réle since it defines a dimensionless field renor-
malization factor z through

L, T) = (aml{ L)) x2 {18}

The multiplicative field renormalization factors in the susceptibilities can be cancelled by
taking ratios [7]:
at A, an.
(x2)2
Here the dimension is indicated by the explicit power of the lattice spacing a, therefore a
convenient dimensionless combination is:

(19)

ML, TY = m™ A, (20)

It is also possible to consider off-shell couplings for non-zero euclidean momenta. In the
special case of space-like momentum pairs in the 4-point coupling the appropriate generali-
sation of Eqg. {17) is

1

X_‘(kl‘kz] _ W . E{kl(xl--x-_»}-il'k;»(x;Ax;)(@z] "'é-'l'd)f
L .
= ? Z ([Sc(fl;kl)sc{hikl} + Ss(fl;kl)SJ(fzékl)j
tyonty
[(S.(tai k) Seltas ke) + Saftaska}Salta ke )i}, (213
In the present paper we shall consider only two cases, namely ky = 1. ky = 0 and k; =
1,, k; = 1,. Here 1 and 1, # 1, denote one of the threc possible space-like momenta

with length {2x}/L. The corresponding dimensioniess couplings can be defined in analogy to
Eqs. (19, 20), for instance, as

As(1,0) = (E1*Aq(1,0) z(a.El)‘i“’—(;;—m
Az
A 8,
s = a0, = B (22)



e 0w e

R A T RN RPN TR TR

.

bl st

A e i

b nd

Pl

S menl baddas el

Here E, is the energy of the 1-particle state with lowest non-zero momentum. Near the
continuum limit and for large volumes it has to satisly Lorentz-invariance, therefore

472

+ F (23]

aBy o y/(am)?
The non-zero momentum couplings could aiso be made dimensionless just by the powers of
the mass. The advantage of choosing the above combinations of the energy and the mass is
that for these definitions the coniribution of the 1-particle pole is the same for Ay, Ay{1,0) and
A4(1,1). Therefore, the comparison of these couplings diréctly tells how strong the dominance
of the 1-particle pole in the 4-point function is. If Ay, Ai{1,0), A4(1,1) are nearly the same,
the common value can also be considered as a good estinate for the on shell coupling.

3 Theoretical aspects

3.1 Further definitions

In this section we collect some definitions which are required in order to compare the Monte-

Carlo results with analytic ealculations. * For perturbative and other analytic studies it

is convenient to work in the T -+ oo limit. The one particle energies w(k) then manifest

themselves as poles of the ¢ - propagator G(k, ks} in the complex &k, - plane. Near the pole
we have 2(k)

Gk, k) = — ' 401 24

(k) = 15 7+ O0) (24)

A renormalized mass parameter mp(L) and a wave function renormalization constant Zp(L)

are usually defined through the behaviour of the inverse propagator for small momenta by *

G(0,ky)™" = 26 ZR(L) " (m} + k2 + O (25)

The zero momentum wave function renormalization factor Zn above is related to that defined
in Eq. (18} by

Zpll) = ')KT{L)zz(L,OO) {26}
where (L)
mp
i) - A (27)

The n-point zero momentum couplings in renormalized perturbation theory are conven-
tionally defined {8} by appropriate factors of Zg(L) times the susceptibilities Eq. {17) and
hence are simply related to the dimensionless couplings A, in Eq. (20} measured in the nu-
merical simulation. In particular for the 4-point coupling gr and 8-point coupling hz we

have
gr(L) = —r{L)*A(L, 0) (28)

hp(L) = (LY Xe(L,00) (29)

3We set the lattice spacing a = I throughout this seclion.
*The Zp defined here differs from that defined in [8] by a factor 2x.

Finally in the infinite volume limit the spectrum becomes continuous and a scattering am-
plitude can be defined by analytic continuation of the connected amputated 4-point function

r

a

T(p',q' | p,q) = (Z(p')2(d)Z(p)2(a)) ¥ im T(5', &', —5, ~3) (30)

where

k= (k, (i — ej(k))
and energy momentum conservation holds:
p+a=p'+d (mod2r)
w(p)+ w(q) = w(p’) +w(q)
We can now define an on-shell coupling g by the value of the scattering amplitude at threshold,
¢=-T(0,010,0) (31)

In terms of this the s-wave scatiering length ay is given by

m.g
327m?

(32)

ag —

where m, is the kinetic mass defined in
2

Y + O(kY (33)

wik) =m+

Here we have denoted the I = oo mass m{oo) simply by m ard this convention will be
adopted for other quantities in the following.

3.1.1 L = oo predictions :

The predictions from the r-expansion and renonnalization group equation analysis [8} for the
main & values measured in our Monte Carlo runs are as follows.
For x = 0.07102:

mp = 0.49(2)
gr = 41(8)
Zr = 6.85(7) (34)
For x = 0.07400:
mp = 0.21(4)
gr = 24(3)
Zp = 8.59(8) : (35)
Some 2-loop perturbative results (L = oo) for the quantities defined in the previous

subsection are as follows [8), with ap = gr/{167%):

3 9 '
hg = 10g% (1 L + ZazR + O(g;,m;gﬂ)) (36)
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bi
9= 59n (1-an+09270% + O{gh,mhon)) (37)
= 2log ((1 + —)z + ) (1 - 0.0013a% + Ogh, mhan)) (38)
N
P — (1 + T%‘i) (1 - 0.0013a + O(gh, mhon)) (39).

We see that the mass ratio r{co) defined in Eq. (27) is approximately 1.01 for mp-~ 0.5
{the deviation from 1 coming mainly from Ola?) effects), and approximately 1.002 for mp =~
0.2,

3.2 Finite volume effecis

Formulae for the leading finite volume effects for continuum theories in a box with periodic
boundary conditions have been derived by Litscher for boih stable particle masses [4] and for 2-
particle masses [5]. © Analogous formulae can be derived for the theory with lattice cut-off f14)
% and also to other quantities such as gr(L) and Zg(L). In the following we merely summarize
these results together with simple calculations in leading order renormalized perturbation
theory in the ¢* model which, according to the picture elucidated in Ref. [8], should suffice
to give a good quantitative description when the bare parameters are such that the model is
in the scaling region’ where the renormalized coupling is sufficiently small.

3.2.1 Stable particle mass:

The volume dependence of the physical mass m{L) is due to vacnum polarization effects [4],
and is, in the symmetric phase where there is no 3-point coupling, given by

3 g &g
LYy —m—= —_—j — —wlg)Lp .9 p, . 40
m(LY—m el (271')32w(q)€ (p.aipal+ {40)
where the momentum p is given by
p = (im,0,0) (41}

The expression (40) neglects higher exponeniially damped contributions (indicated by the
dots), but includes all lattice artifurss. Extracting the leading behaviour of the integral,
by expanding around the saddle peint. shows that m(L) approaches its asymptoiic value
exponentially, with pre-factor proportional to the forward scattering amplitude analytically
continuved to an unphysical peint,

m.

2 _m1 +
o) e+ O(LT) (42)

3
m(L)—m= —mT{PsO | p, 0)(

We see that, due to the repulsive nature of the interaction, in the symmetric phase, the limit
is approached from above.

*The formulae are proven to all orders of pertarbation theory, but are thought to be of more general validity.
%4e are of course primarily interested in the limit L 3 { % n.

Expanding all quantities oceurring in (40) in leading order renormalized perturbation
theory one ohtains
‘ 3gpm 7 4
m(L) —m = ng g
mi J-x (27 2w0(q)

e L 4 O(gh) 4 .. (43)
with we{qg) given by
sst (24} = e )8 (a4)

where we have introduced the usual notation §, = 2sin %. The mass difference can of course
be directly calculated in renormalized perturbation theory giving

m{L)=m = " (ma(L) - mp) + O(gh}

IR

= 2 (B(mn, I} - Jalm, ) + O{g}) (45)
where
dky ‘2 24y-n
Jnlmn, L} = L3Zf oy R+ k) (46) -

In the latter expression the sum over k goes over one Brillouin zone. The formula (45), which
can easilly be evaluated numerically, is manifestly consistent with (43) and gives an indication
of the magnitude of higher exponentially damped terms omitted in the latter.

3.2.2 Coupling constant:

gr(L) also approaches its asymptotic value exponentially, however, from below. A formula
obiained using similar methods to those used to derive (40), giving the leading behaviour to
all orders of perturbation theory, is

g Zlq)

QR(L) —~ §r = —9L j 211_ 3 4w(q ﬂd(q)LF(O: (1'10) _Q)Z Em:iw(q) T+ (47)
and hence
3
m.N: _. _
9riL) = 9n = - 3 Z(O)T{0, . ~0. )" (5«7:) e PL(L - O(L 7)) (48)
where the momentum p is given by
pooos0.am) (49)
This in leading order perturbation theory hecomes
9gt 1 43 o _ )
on(L) = gn = =28 () CTEL(L 4 O(LT) + OlgR) (50)
am? =T

I comparison, the full result to leading order is

2
IR (1 (mp, L) — Jelmp, o0)] + Olgh) (51)

gn{L) - gr = -

Typically one finds that the finite volume effects for gg(L) are percentually larger than for
m{ L} and again just including the leading behaviour (50) underestimates the effects.
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3.2.3 Wave function renormalization constant:

The volume dependence of Zg(L) is very weak for moderatety large m(L)L in the scaling
region. In 2-loop renormalized perturbation theory we find
Zr(L)

2
1= 8 (2(0,ma, L) - I'(0,mp, o)) + O(g}) (52)

with I’ defined by

1 ” dQ4 " dq, . ] _ d* ——
I L) = f 9 2 2y % 2y-1 ; 2 27-1
(psma, L) = 75 Zq:%: e 2m) e @y TR mR) e g p) )
(53)

I' can be calculated numerically and it can readily be seen that Zz(L) attains its asymptotic
value from below.

3.2.4 2-Particle mass shift:

The shift in the 2-particle mass is due to scattering effects [5] and is given by 7

_ 4nag ag [: T &
Mo(L) — 2m(L) = — =% (1+clf+cg(—L—))+O(L } (54)
with constants ¢; and ¢; given by
o = —2.837207 (55)
¢z = 6.375183 {56)

A study of the volume dependence of this shift {hus provides direct guaniitative information
on the physical scattering length ag, the situation being extremely favourable due fo the
notable feature of Eq. (54) that up to O{L™®) only ag appears. As stated above, for the ¢*
theory in the symmetric phase the interaction is repulsive, hence ap < 0 and then from (54)

follows Mp(L) ~ 2m(L) > 0.

4 The Monte Carlo calculation

4.1 The Monte Carlo runs

The numerical Morte Carlo caleulatiuz:s were performed partly on a serial coputer (IBM 3084)
and partly on a vector machine (CYBER 205 at the Karlsruhe University). Consequently,
we had two rather different versions of almost all of our programs. This turned out quite
useful for checking possible programmming errors. During the updating we stored the spin
variables in single bits and used multi-spin coding. However, for the Metropolis hits separate
random numbers were generated for every spin, in order to avoid the systematic errors due
to the multiple use of random numbers [15]. By comparing the results of the first CYBER
run on a 16%.24 lattice to previous IBM runs we realized the danger of the correlations in the
pseudo-random generator in a dramatic way. As it was observed previously [16,17,18], the
correlations present in the commonly used pseudo-random number generators can influence

TWe cite here only the formula for zero relative momentum. For other cases see ref. [5].
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the Monte Carlo results considerably if the number of sites is a multiple of a high power of 2,
and if in a program the number of generated psendo-random numbers is an integer multiple
of the number of sites. (In a serial program this usually does not happen, because the total
number of pseudo-random numbers depends on the acceptance of the hits and hence also
on the configuration.) In the first version of our vectorized program we ignored the warning
of Refs. [18,17,18], and received wrong results (e.g. the l-particle mass was about 10%
smaller than the value given in Table IIA). After realizing the source of the discrepancy
we changed the vectorized program according to the suggestion of Ref. [18]: we left out 1
pseudo-random number after every sweep. In the CYBER program we used most of the time
the fast generator of Ref. [19], in the IBM program the NAGLIB routine GOSCAE.

In order to fix the x-value in the final runs we performed a series of shorter runs on a
12% lattice. The aim was to tune «x in the unbroken symmetry phase in such a way that the
infinite volume mass be near 0.5, respectively, 0.2. This tuning lead to £ = #;2 = 0.07102
for am = 0.5, respectively, to £ = xyy = 0.074 for am = 0.2. (Actually x = 0.071 would
be as good as our ki3, but after having made already some longer run we did not want to
change x again.) The time extension T' of the lattices was chosen in such a way that the
systematic error of the mass determination due to T < oo could be made sufficiently small
{smaller than the statistical errors). In a series of runs for fixed & on 12%, 12°.24 and 12736
lattices the masses were determined and compared with each other. The conclusion was that
T = 12 is enough for k = K12 and T == 24 for k& = x4 (hence the indices of x). This means
zr = Tm ~ 6, respectively, zr =~ 5. For the spatial extension we have chosen L = 4,6,8,12
in the first case and L = 8,10,12,14,16,18,20 in the second case. {Originally a 24" run was
also planned but, unfortunately, this did not fit in our computer budget.)

The masses and couplings were calculated always after every 5 sweep. The total num-
ber of sweeps per lattice ranged between 10° and 107 (see Table 1A,ITA for details). The
estimate of the statistical errors was directly done for the time slice correlation functions
{sec Egs. (5-8)) and for the off-shell couplings as defined in Egs. {20,22). This means that
these "primary” quantities were calculated in every bin of the data sequence for bin lengths
2% (k =0,1,2,...) and the statistical errors were estimated by the resulting estimates of the
standard deviations. For every other quantity (as, for instance, the mass} the statistical error
estimates were obtained indirectly by assuming, as a rule, that the directly measured sta-
tistical errors are uncorrelated, By this procedure the indirectly calculated errors are most
probably overestimated, because the different quantities (like the correlations at different
distances or am and a*~?"A,) are obviously correlated. Therefore in some cases the errors
of some quantities were neglected in the calculation of the errors of some function of these
quantities. {The way of the statistical error estimate will always be explicitly stated in the
tables and figures containing the results.) One way to avoid the uncertainties of the indirect
error estimates would be to determine every quantity of interest in every data bin. Another
possibility would be to measure also the correlations between the primary quantities and take
it into account in the error estimates. (This method was shown to work for the functions of
Wilson-loops in the SU(2) Higgs model |20].) Both these ways of improved error estimaies
are, however, rather cumbersome and require a large amount of additional data handling.
Therefore, we decided to pursue our simple method which involves some uncertainty, but it
is probably always on the safe side of overestimating rather than underestimating the errors.

Observing the dependence of the error estimates on the bin length it is possible to obiain
information on the autocorrelation time for different quantities. As representative examples,
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the errors of three different quantities at k = &34 and of two quantities at x = x4 are shown in
Figs. 1A-1E as a function of bin length (2*~* in this case). The saturation of the errors occurs
on the 18% . 24 lattice {Figs. 1A-1C) for a bin length b ~ 2% = 512, whereas on the smaller
lattice {12*%, in Fig, 1D-1E) for b ~ 27 = 128. ® Since the measurements were done only
after every fifth sweeps, the number of sweeps is 5-times more. This gives for the ratio of the

autocorrelation times a factor ~ 4, which is not far away from the expected proportionality

to the sguares of the correlation lengths (i. e ~ 25/4).

4.2 Results and comparison to the theory

The time-slice correlations and off-shell couplings were calculated in the Monte Carlo runs
according to the definitions in Sect. 2. All the correlations could be determined to a good
precision, in most cases for every considered time-distance. As a sample case, we include in
Table HI the correlations at mps on the 18% . 24 lattice. (There are similar tables for every
lattice. They are available upon request from the authors.) The masses were determined from
the correlations in two different ways: by fitting with the asymptotic form in Eq. (13) for a
variety of time intervals and also by solving Eqs. (15-16) for different time-slice pairs. Both
procedures allow a reliable and consistent mass estimate because the time dependence for
larger time-distances is small (smaller than the quoted statistical error). As an illustration of
the second method we show the obtained mass estimates on the 18%.24 lattice in Fig. 2A4-2B,
respectively, for the 1-particle and 2-particie mass. The errors on these figures were obtained
by considering only the error of the more distant time-slice. In this way the correlation
between the different time-slices can be approximately taken into account. As it can be seen
from Figs. 2A-B, the mass estimates are practically independent from the chosen distance
pair. The summary of the final results for the masses is contained in Tables IA and IIA. The
notations are as follows: a is the latfice spacing, m the l-particle mass, E; the 1-particle
energy with lowest lattice space-like momentum, My the 2-particle mass with zero relative
momentum and M, the 2-particle mass with unit relative momentum. The definition of 2
and yj is given in Egs. (17,18). The values of the mass and renormalization constant are in
good agreement with the theoretical estimates Eqgs. (34,35).

The volume dependence of the 1-particle mass is shown in Fig. 3A-B. Also included
in these figures are the asymptotic formula in Eq. {43) and the exact 1-loop expression in
Eq. {45), for which we used the theoretical estimate gr = 41 and an extrapolated value
amy, = 0.4877 for k = 0.07102 and, respectively, the set of values gp = 24, am, = 0.2130
for k = 0.07400. Az one can see, both formulae work well for the largest volumes. For the
smaller lattices 1-loop lattice perturbation theory is somewhat better: the asymptotic formula
is underestimating the finite size effects, the 1-loop formula is slightly overestimating. The
theoretical curves are on safer grounds for sy than for s;; because both the higher order
periurbative corrections and the lattice artifacts are smaller if x is closer to the eritical point.
Besides higher orders and lattice artifacts there is also an uncertainty in the values of the
parameters of the curves, mainly in the case of the rencrmalized coupling gr. For this we took
the theoretical values from Eq. (34,35) which are consistent with the Monte Carlo results,
but gg-values differing by 10-15% would also be possible. This leads to a similar relative
uncertainty for the predictions of the mass shift m(L)—m{oo). In view of this the agreement

5Note that, contrary to naive expectation, the bin length at which the errors saturate for a given correlation
is practically independent of the time separation ( for fixed x and volume ); compare ¢.g. Figs. 1A and 1B.
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in Figs. 3A-B is quite satisfactory,

The mass extracted from the data on Ey using Eq. (23) is consistent with m(L) for large
L. We expect that the ohserved discrepancies at small L are due to finite a? effects.

As mentioned already in Seci. 3.2.3, the volume dependence of the wave function renor-
malization constant is very small for the « values we studied. For example for the values
grn = 24, ams = 0.2130 in Eq (52) we obtain the results —0.01, —0.001, —0.0005 if, re-
spectively, L = 10,14,16. There is an indication of the expected few percent shift at L = 8,
but the errors are not small enough. Apart from that our results are consistent with volume

" insensitivity when M{L}L > 2.

For the difference of the lowest 2-particle mass minus twice the 1-particle mass the results
are shown by Figs. 4A-B. The continuous curve in these figures is Lilscher’s formula Eq. (54),
using the same sets of values of gp and awm which were quoted above (and used for Figs.
3A,3B). The corresponding values of the infinite volume scattering length are: ap = —0.84,
respectively, ag = —0.96. The agreement between the theoretical curve and the Monte Carlo
results is impressive. Since M(L) — 2m(L) is roughly proportional to the scattering length,
its L-dependence can be used to determine ap and the relative error of the result wilt be
essentially given by the relative error of the last points for Mo{L) - 2m(L) where the formula -
is still valid. With our present errors we could obtain in this way the value of ap with an
error of about 10 — 15%,

Unfortunately, the data on the mass difference for the exited 2-particle state M;{L} —
2E;(L) is not precise enough to make any useful comparison with the theoretical prediction,

The results for the off-shell couplings are collected in Tables IB and IIB. For the notations
see Egs. (17-22). Besides the 4-poini couplings Ay, A4(1,0) and Ag(1,1) the 6-point coupling
Me could also be determined in most of the cases. The errors of the off-shell couplings are, in
general, considerably smaller on the small latiices. This is, of course, to be expected, because
the difficulty comes from the large cancellations involved in the ealculation of connected parts.
If the lattice extension is much larger than the correlation length, there are many uncorrelated
pieces of the lattice. This makes the required cancellations problematic. Among the 4-point
couplings A4(1,0) seems to be the best from this point of view: it has usually smaller errors,
and even the finite size effects are smaller in it than in the other two 4 point couplings. This
is the result of a partial cancellation between the finite size effects for the quantity A4(1,0)
defined in analogy with Eq. (19) and for the energy E,.

Again for large L there is good agreement with the predictions of Eqs. (34,35) (the L =
20 result, which is based on comparatively low statistics, is presumably an unfavourable
statistical fluetuationr. In Ay there are rather strong finite size effects: its value is considerably
smaller on the smill larrices than the large volume limit. The data isin good semi-quantitative
agreement with the perturbative discussion in Sect. 3.2.2 . For example from Eq. (51) we
expect for am ~ G.5 and gg = 41 that gp(l) — gr(oc) takes the values > —3, ~ —1, ~ —0.3
for L = 8,10,12 respectively. For am =~ 0.2 and gz = 24 we expect gr(L) — gr(co) = —5§, =~
3, ~ —1.7if L = 14,16,18.

Finally the results on the 6-point coupling are of the same order of magnitude as that
chtained from the perturbative calculation Eg. (36), however, the large statistical errors do
not permii a more precise statement.
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4.3 A short excursion in the critical region

As discussed in the introduction, slightly beyond ihe hopping parameter values we considered
up to now the finite lattice size effects become very large. Of course, in a numerical approach
one can ignore this and perform calculations in the critical region with a fixed lattice size.
In order to see what happens we did a series of runs in the critical region on a 10? lattice,
since this lattice size was common to several earlier Monte Cario calculations [9,10,11]. In
particular, we saw the paper [11] during the course of this work. In this paper the possibility
of a vanishing wave-function renormalization factor Zp — 0 was advocated near the eritical
point. If taken at the face value, this would be in contradiction to our previous results and
also to the analysis in Ref. [8].

The theory of the critical behaviour on finite lattices ts formulated in [1,2,3,21]. We do
not intend 10 do a compiete finite size scaling analysis here, since our main goal is to obtain
information on the physical quantities of the infinite volume theory. (For a very recent finite
size scaling study see [22].)

Our 10* runs were performed near the infinite volume critical point «,, ~ 0.0748, namely
for 0.0745 < & < 0.0753. Besides 10% also 10* - 16 or 16* lattices were considered in a few
points. The number of sweeps was between 2.5 to 3.0 .10° per point. The results confirmed
that the wave function renormalization factor z' = 2x:z is decreasing in this x-interval. At
# = 0.0753 we obtained emn = 0.1101{19) and z' = 0.827(32). The gentle decrease of =’ is
probably a finite size effect. This expectation is sirengthened by the 16* result 2 = 0.957(16)
at k = 0.0745, compared to the 10? number at the same &, namely z' = 0.835{17). However,
in this r-region there might be a substantial difference between ' and Zg. In addition, the
time extension of the lattice is by far too small to project out the lowest eigenvalue of the
transfer matrix, therefore the result obtained from a fit by the asymptotic formula (13) cannot
really be considered io be the "mass”,

At k& = 0.0753 we stopped our systematic runs, because this point is already in the region
dominated by the finite volume dynamics of the constant field mode {3,211. This means
that on the finite lattice, for increasing &, the correlation length is further increasing due
to the osciliation between the two degenerate minima of the effective potential. The field
expectation value in a long enough run still averages out to zero. The critical dynamics is
characterized by an autocorrelation time which is proportional to the square of the finite
volume correlation length [21]: 7, = £%. This behaviour was roughly verified by 10 runs
at & = 0.0755 and' x = 0.0760. In this latter point the "mass”, obtained from a fit by the
latge-1 asymptotic forn. was am = 0.068{11) and the wave function renormalization factor
' = 0.63(21). ’

In summary, our 10* calcujations are in agreement with the decrease of 2" in the critical
region on this finite lattice. This cannot, however, be interpreted as the vanishing of the
infinite volume Zg and as the failure of the expected 1-loop renormalization group behaviour
Zr — 0.97(1) 18]. On the contrary, in the region of z; >~ O{1) — O(10) the renormalization
group scaling behaviour and 1-loop renormalized perturbation theory do describe the finite
size effects quite well (see Figs. 3A-B, 4A-B). Note that our results are at infinite bare seif-
coupling A, whereas the calculations in Ref. [11} were performed at finite A, However, as we
mentioned before, the behaviour at A = oo is qualitatively rather similar to the situation for

A =0(1).

15

5 Summary and conclusions

The control of finite cutoff and finite volume effects is essential in order to extract relevant
physical information from any numerical lattice field theory simulation. With respect to the
finite volume effects we are potentially in a good situation since for these universal asymptotic
formulae are available (for periodic boundary conditions) [4,5]. Although these results are
thought to be of general validity, they are so far only proven in the framework of rencrmalized
perturbation theory. The present numerical simulation in the 4-dimensional Ising model is in
good agreement with the asymptotic formulae. In particular, the measurement of the finite
volume 2-particle energy levels demonstrates the feasibility to obtain valuable numerical
information on low energy scattering from the study of finite volume effects.

The Ising model is a limiting case of the ¢* field theory. The analysis in Ref. [8] of
the ¢* model in the symmetric phase supported the previous conjeciures that close to the
critical line it describes an effective continuum theory: there exists a *scaling region”, roughly
characterized by am < %, where cutoff effects are small. The latter analysis required as input
the validity of renormalized perturbation theory in the scaling region which, despite shown
1o be self-consistent, remains an assumption to be substantiated.

A short summary of our conclusions from the numerical Monte Carlo calculations is as

follows:

e The 1-parficle mass can be measured with sufficient accuracy to exhibit its expected
exponential approach to the asymtotic L — so limit, the asymptotic behaviour setting
in for z; > 2 — 3. The absolute magnitude of the effect requires the knowledge of some
forward scattering amplitude. Caleulations of this in renormalized perturbation theory
yield good agreement with the data.

e The extrapolated L = oo values of various quantities are all consistent with the quan-
titative results of Ref. [8]. In particular, our data at x = 0.074, where the correlation
length is approximately 5 lattice umits, gives added confidence to the validity of the
analysis in |8] for an extreme value of the bare self-coupling at which one might be

mosi suspect,

o The volume dependence of the lowest 2-particle mass is in remarkable agreement with
Liischer's formula. The hope is that, indeed, information on pion-pion scattering lengths
can eventually be obtained by measuring the analogous quantity in QCD [5], once the
enormous hurdie of finding an efficient fermion simulation method is overcome. For the
two measured points the value of the scattering length times the mass was gym ~ —0.3
and, respectively, ggm = —0.2. Estimates of the physical pion 5-wave [ = 0 scattering
length, on the other hand, give ajm, ~ 0.2 {23]. Therefore the percentual effects for
a given value of zp are expected to be quantitatively similar in our simulation and in
the physical pion case, the difference being that the asymtotic limit is approached from
below there. ‘

In the Ising model, as mentioned above, finite size effects are reasonably small provided
zp > 2 — 3. However, when the correlation length is approximately equal to the size of
the lattice enormous finite size effects are known to occur. In particular, the observed
decrease [11] of the wave function renormalization constant for fixed lattice size in the

*
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critical region can be understood as a finite size effect, and no significant conclusion
about the behaviour of this quantity in the continuum and infinite volume limit can be
made therefrom.

It is plausible that the finite volume behaviour in other $*-related models, as e. g. Higgs
models, are qualitatively similar to the present case. Nevertheless a numerical study of these
related models would also be desirable, in particular also in the broken phase where the
interaction is attractive and the 3-particle couphing is non-vanishing,

Acknowledgements

It is a pleasure to thank Martin Liischer for discussions and for his constant interest in
this work. His important contributions during the first stages of this project considerably
influenced the final content of the paper. Finally we would like to thank Paul Weber and
Klaus Geers at the Karlsruhe Rechenzentrum for frequent kind assistance with problems we
encountered using the CYBER 205.

17

References

[1] M. E. Fisher, in Critical Phenomena, Proceedings of the 51** Enrico Fermi Summer
School, Varena, ed. M. S. Green, Academic Press, New York 1972

2] M. N. Barber, in Phase transitions and critical phenomena, Vol. 8, ed. C. Domb, J. L.
Lebowitz, London, Academic Press 1983

[3] E. Brégin, J. Zinn-Justin, Nucl. Phys. B257 [FS14], {1985) 867

[4] M. Liischer, in Progress in Gauge Field Theory, ed. G. 't Hooft et al., Cargese lectures
1983, Plenum Press 1984; Commun. Math. Phys. 104 (1986) 177

[5] M. Liischer, Commun. Math. Phys. 105 (1986) 153

[6] I. Montvay, Nucl. Phys. B269 (1936) 170

[7] W. Langguth, I. Montvay, P. Weisz, Nucl. Phys. B277 (1986) 11

[8] M. Liischer, P. Weisz, DESY preprint 87-017 (1987}

[9] B. Freedman, P. Smolensky, D. Weingarten, Phys. Lett. 113B (1082) 481
(10] L A. Fox, L G. Halliday, Phys. Lett. 1598 (1985) 148
[11] K. Huang, E. Manousakis, J. Polonyi, MIT preprint CTP-1420 {1986)

[12] D.J. E. Callaway, R. Petronzio, Phys, Lett. 1398 (1984) 189; Nucl. Phys. B240 [F512]
(1984) 577

(13} C. B. Lang, Phys. Lett. 1558 (1985) 399; Nucl. Phys. B265 [FS15] (1986) 630
[14] G. Miinster, Nucl. Phys. B249 (1985) 650

I15] G. Bhanot, D. Duke, R. Salvador, Journ. Stat. Phys. 44 {1586) 985

[16] G. Kalle, S. Wansleben, Computer Phys. Comm. 33 (1984) 343

[17] G. Parist, F. Rapuano, Phys. Lett. 1578 (1985) 301

18" T. Filk, K. Fredenhagen, M. Marcu, Phys. Lett. 165B (1985} 125

[19] W. Celmaster, K. Moriarty, Journal of Comp. Phys. 64 (1986) 271 '

[20] W. Langguth, 1. Montvay, DESY preprint 87-020 (1987)

[21] J. C. Niel, J. Zinn-Justin, Nucl. Phys. B280 [FS18] (1987) 355

[22] E. Sénchez-Velasco, Cornell preprint, CLNS-87/37 (1987)

[23] J. Gasser, H. Leutwyler, Ann. Phys. 158 (1984) 142

18



Table TA

The number of sweeps M's (in units of 10%) and the results for the masses at x = 0.07102 on
L?-12 lattices. The statistical error estimates in the last numerals are given in parentheses.
The error estimates for the masses were obtained from fits with the asymptotic behaviour
Eq. (13) by assuming that the measured statistical errors of the time-slice correlations at

different distances are uncorrelated. The statistical error of x; was determined directly by’

binning. For z the error of y2 and am were taken as uncorrelated.

L | Ms am ek aM, aldy — 2am alM X2 z

4 |10.1[0.5621(5) | 1.414(2) | 1.330(7) | 0.206(8) | 3.0(3) | 20.90(2) | 6.60(2)
6 | 5.2 | 0.5000(12) | 1.070(2) | 1.096(6) [0.096(7) | 2.2(2) | 26.47(3) | 6.63(a)
8 | 2.5 | 0.4945(9) | 0.8844(17) | 1.015(8) | 0.026(9) | 1.87(12) | 27.69(6) | 6.77(4)
12 [ 10.1 | 0.4875(5) | 0.7011(4) | 0.983(4) | 0.008(5) | 1.43(5) | 28.20(3) | 6.70(2)

Table IB

The results for the off-shell couplings at x = 0.07102 on L* - 12 lattices. The statistical error
estimates in the last numerals ate given in parentheses. The error estimates for a?-2"A,, were
obtained directly by binning. Those for the \'s were calculated from the error of the A's
alone, by neglecting the errors of the mass (or energy). Otherwise the errors of the X’s would
be strongly overestimated due to the obvious correlations between these quantities.

L} —atA, — Ay —a ' A(1,0) | —Ad1,0} | —afAL(1,1) | —A(1,1) | Xe 1077

4 1279(2) |[27.8(2) |8.30(8) 33.2(3) 0.17(1) 26,7(1.6) | 5.08(8)

6 | 543(10) | 33.9(6) | 29.4(6) 38.5(8) 0.65(9) 17.9(2.5) | 8.78(5)

8 | 644(38) [ 38.5(2.3) | 64.4(2.8) 39.4(1.7) i 3.3(6) 21(5) 8(3}

12 | 748{75} | 42.2(4.3) | 169(9) 40.8(2.2) | 41(3) 43(4) 30(20)
19

Table ITA

The same as Table IA, for x = 0.074 on L7 - 24 lattices.

L | Ms am ok, aM, aly — 2am alM, X2 z
8 3.1 0.2452(8) 0.786(2) 0.585(4) 0.096(5] 1.7(1) 105.7(3) ( )
i0| 3.0 0.2293(7) 0.649(2) 0.520(3) 0.061(4) 1.34(3) 122.5(3) ( )
12 | 4.8 0.2231(6) 0.557(1) 0.479(3) 0.033(4) 1.16(5) 131.8(4) ( )
14 | 5.2 | 0.2168 5) 9.491(1) 9.460(3) 0.026(4) 1.03(4) 137.7(3) 6.47(5}
) ) (M
) ) (5)
0 ) (10

(
16 | 2.4 [0.2142(7) | 0.4427(5) | 0.452(4) | 0.024(5) 0.91(3) | 140.1(3
18 | 4.9 | 0.2144(5) | 0.4063(6) | 0.440(3) | 0.011({4) 0.84(3) | 141.1(4
20 | 1.6 | 0.2125(10) | 0.374{1) | 0.432(5) | 0.007(6) 0.78(4) | 142.6(8

Table IIB

The same as Table ITA, for x = 0.074 on L*- 24 lattices. Here the values in the second and
last columns are multiplied by a scale factor § = 1073,

Li-a*Ay- 5| -X —a7*AL1,0) | —Aa{1,0) | —a"tA4(1,3) | —A{1,1} ] 26- §
8 | 4.61(8) 16.7(3) | 64.7(1.8) 24.8(6) | 0.56(13) 23(5) 1.83(6)
10 | 7.1(2) 19.6(6) | 144{4} 25.4{7) | 2.8(5) 32(6) 2.8(2)
12 | 9.1(2) 22.5(5) | 276(8) 26.6(8) | 7.5(9) 28(3) 4.0(2)
14 | 10.2(4) 22.5(9) | 483(16) 28.0{9) | 18.6(2.2) 28(3) 4.3(5)
16 | 12.6(1.0) | 26.5(2.1) | 713(48) 27.4(1.8) | 49(7) 34(5) 7(2)

18 | 10.8(1.0) | 22.8(2.1) | 1026(56) 28.0(1.5) | 92(10} 32(4) 4(2)

20 | 18(2) 36(5) 1370{160) 27(3) 119(35) 23(7) 15(8)




Table 111

Time-slice correlations on 18% - 24 lattice at x = 0.074. The first column is the time-shice
distance t. The second column is the 1-particle correlation, the third and fourth are, respec-
tively, the two-particle correlations with relative momentum 0 and 1, the fifth column is the
off-diagonal correlation of two-particle states and the sixth one is the 1-particle correlation

with lowest non zero lattice momentum. The last iwo columns are obtained from columns’

3-5 by diagonalization.

0 | 2.617E-03 1 1.326E-05 | 5.197E-06 | -6.168E-07 | 1.344E-03 | 1,3278-05 | 5.185E-06
+ 3.4F-06.| = 3.5B-08 | + 3.1E-09 | & 5.2E-08 | + 5.5E-07 | + 3.6E-08 | + 3.6E-08
1 [ 2.117E-03 | 8,570E-06 | 2.256E-06 | -4.994E-07 | 8.953E-04 | 8.580E-06 | 2.246E-06
+ 3.4E-06 | £ 3.5R-08 | + 3.1F-09 | + 5.2E-09 | & 5.5E-07 | & 3.6E-08 | + 3.6E-08
2 | 1.716E-03 | 5.561E-06 | 0.815E-07 | -3.650E-07 | 5.966E-04 | 5.568E-06 | 9,742E-07
+ 3.3E-06 | + 2.35-08 | + L.7E-09 | + 3.8B-09 | + 5.0E-07 | & 2.3E-08 | + 2.3E-08
3 | 1.3045-03 | 3.628E-06 | 4.277E-07 | -2.558E-07 | 3.978E.04 | 3.633E-06 | 4.226E-07
+ 3.35-06.| + 2.3B-08 | + 1.78-09 | + 3.8E-09 | + 5.0E-07 | + 2.3E-08 | + 2.3E-08
4 | 1.130E-03 | 2.392506 | 1.867E-07 | -1.733E-07 | 2.652E-04 | 2.395E-08 | 1.833E-07
+ 3.1E-06-| + 1.5E-08 | + 1.4E-09 | + 3.5E-09 | £ 4.3E-07 | + 1.6E-08 | + 1.6E-08
5 | 9.311E-04 | 1.505E-06 | 8.178E-08 | -1.171E-07 | 1.770E-04 | 1.597E-06 | 7.952E-08
|+ 3.1E-06 | + 1.5E-08 | + 1.4E-09 | + 3.5E-09 | + 4.3E-07'| + 1.6E-08 | + 1.6E-08

8 | 7.721B-04 | 1.084E-06 | 3.535E-08 | -7.717E-08 | 1.184E-04 | 1.085E-06 | 3.393E-08
+ 2.9E06 | + 1.0E-08 | + 1.4E-09 | + 3.7E09 | + 3.8E-07 | + 1.1E-08 | + 1.1E-08
7 1 6.615E-04 | 7.565E-07 | 1.608E-08 | -5.299E-08 | 7.966E-05 | 7.574E-07 | 1.513E-08
4+ 2.9E-06 | = 1.0E-08 | + 1.4E-09 | + 3.7TE-09 | + 3.8E-07 | + 1.1E-08 | = 1.1E-08
8 | 5.500E-04 | 5.459E-07 | 8.044E.00 | -3.694E-08 | 5.418E-05 | 5.465E-07 | 7.410E-09
+ 2.8E-06 | + 9.0E-00 | + 1.3E-00 | & 3.5E-09 | + 4.0B-07 | & 9.7E-09 | + 9.7E-09
9 | 4.784E-04 | 4.154E-07 | 3.651E-09 | -2.755E-08 | 3.777E-05 | 4.159E-07 | 3.181E-09
+ 2.8E-06 | + 9.0E-00 | + 1.3E-09 | + 3.5E-09 | + 4.0E-07 | + 9.7E-00 | + 9.7E-09
10 | 4.334E04 | 3.377E-07 | 2.770E-0% | -2.174E 08 | 2.758E-05 | 3.381E-07 | 2.418E-09
4 28E-06 | + 9.1B-00 | + 1.4F-00 | + 4.0E-09 | £ 4.6E-07 | + 1.0E-08 | & 1.0E-08
111 4.078E 04 | 2.940E-07 | 3.499E-09 | -1.914E 08 | 2.212E-05 | 2.943E-07 | 3.184E-09
+ 2.8R-06 | + 9.1E-09 | + 1.4E-09 | + 4.0E-09 | & 4.6E-07 | £ 1.0E-08 | + 1.0F-08
12 | 3.057E-04 | 2.803E-07 | 4.061E-08 | -1.920E-08 | 2.040E05 | 2.806E-07 | 3.725E-09

- 2.9E-06 | + 1.0E-08 | 4 1.7E-09 | + 4.5E-0¢ | £ 5.0E-07 | = 1.IE-08 | + 1.1E-08

Figure captions

Fig. 1A. The dependence of the error estimate on the bin length 25~* for the 1-pariicle
correlation at time-slice distance £ = 2. The lattice is 18% - 24 at x = 0.074.

Fig. 1B. The same as Fig. 1A, for ¢t = 10.
Fig. 1C. The same as Fig. 1A, for the 4 point coupling at zero momentum.

Fig. 1D. The same as Fig. 14, for the 1-particle correlation at distance t = 4 on 121
lattice at x = 0.07102,

Fig. 1E. The same as Fig. 1A, for the 4-point coupling at zero momentum on 12*
lattice at « = 0.07102.

Fig. 2A. The 1-particle mass estimates on 183 - 24 lattice obtained by solving Eq. (15)
for different time-slice pairs. On the horizontal axis the first time-slice distance is given. .
Identical symboels belong to same diferences of the time-slice distance. The horizontal line is
the final mass estimate.

Fig. 2B. The 2-particle mass estimates on 18%. 24 lattice oblained by solving Eq. (16}
for different time-stice pairs (;,%;). The third time-slice is tg = (1) + #;)/2, {infeger). On
the horizonial axis the first time-slice distance is given. Identical symbols belong to same
diferences of the time-slice distance. The horizontal line is the final mass estimate.

Fig. 3A. The dependence of the 1-particle mass on the spatial extension L of the
L*. 12 lattice at & = 0.07102. The Monte Carlo results are the open circles with error-bars.
The dotted horizontal line is the asymptotic value for infinite volume. The full line is the
asymptotie formula for z;, > > 1 in the form Eq. (42), the dashed line is the 1-loop asymptotic
form Eq. {43). The full dots give the full 1-loop perturbative result in Eq. (45).

Fig. 3B. The same as Fig. 3A on'the L?- 24 lattice at x = 0.074.

Fig. 4A. The difference of the 2-particle mass minus twice the 1-particle mass as a
function of the spatial extension I of the L* - 12 lattice at » == 0.07102. The line is Liischer’s
formule Es). (54) for a scattering length ag = —0.64.

Fig. 4B. The difference of the 2-particle mass minus twice the l-particle mass as a
function of the spatial extension L of the L3 . 24 lattice at x = 0.074. The kine is Litscher’s
formula Eq. (54) for a scattering length ag = —0.96.
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