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Abstract 

The Chiral Anomaly of Antisymmetric 

Tensor Fields 

M. Reuter 
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2000 Hambu~·g 52 

JSSN 0418-9833 

For antisymmetric tensor gauge fields of rank 2n-1 coupled to 

gravity in 4n dimensions it is shown that the symmetry under 

duality rotations is broken by quantum effects. The anomaly is 

related to a local version of the signature index theorem. The 

zeta-function technique, Fujikawa's method and the stochastic 

regularization scheme are discussed. 
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(I) Introduction 

As was first pointed out by Alvarez-Gaume and Witten [1], (anti-) 

self-dual antisymmetric tensor fields in 4n-2 dimensions have 

anomalies in their coupling to gravity. Similar to the case of 

fermions, these gravitational anomalies are related to chiral 

anomalies in 4n dimensions [2]. For the antisymmetric tensor 

fields these chiral transformations are realized as duality 

rotations of a tensor field of rank 2n. On the other hand, 

consider. in9 this tietct Tu.. u. :=2n. a Au. u. ...as being the 
t , ... , 2.n Cf'"t I %"''t •oU 

field strength of a gauge potential A,.._, ... f'z.r~-t one is led to 

study the "duality anomaly" of a U(l) gauge theory where the 

gauge fields are antisymmetric tensor fields of rank 2n-1. For 

n=l, say, this means that there is an anomaly associated with 

duality transformations of the field strength Frv belonging to 

the photon At' . 

Along a different line of investigation, Zakharov (3J recently 

used dispersion relation techniques to show that if the photon 

field is quantized in a 4-dimensional curved space-time {with 

Minkowski signature) for which the pseudo-scalar EJA-vrct'R,..,..,.p 'R,"f\Sct 

does not vanish, the vacuum expectation value of the Paul~­

Ljubanski vector 

I< r ~ 
I 

<f r cr"t-' A.._ ().1' Ao 

is not conserved. This means that the pseudo-scalar 

acquires a vacuum expectation value: 

I 1.1 I 

")..>' * r /< >' 

V._.<l<'r>"' t<r.r,*Tr"')~-'-q-ic: 1<~"' 'R"-~f~(l.2) 
I IU ~r' f<>'f<! <>1.(1 

As we shall see below, this equation expresses the fact that 

quantum effects spoil the invariance of the classical theory 

under duality transformations. For a free electra,magnetic field 

this symmetry causes the difference of the numbers of right and 
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left circularly polarized photons to be conserved [4]. Hence, if 
the RHS of (1.2) is non-zero, the gravitational field 

continuously produces (chiral) photons fro~ the vacuum. This is 
analogous to the anomalous fermion pair creation by Yang-Mills 

fields as expressed by the famous relation 

A Q!> = ~~' rcl"x ·h ( 'Ff-v "'rr~) I 1. 3 J 

where A Q5 is the change of the chiral charge. 

The purpose of this paper is to show how Z.tkharov' s result is 
related to an anomalous breaking of the du.:tlity symmetry. 
Furthermore, we shall see that a similar effect exists in all 
4n-dimensional theories containing antisym~:~etric tensor gauge 
fields of rank 2n-1 coupled to gravity. Wocking in Euclidean 
space, we will relate the generalization of (1.2) to a local 
version of the signature index theorem so ':hat for all n the 
anomaly can be expressed by the Hirzebruch L-polynomial [5,6]. in 

section (II) this result is derived using che zeta-function 
method for regularizing infinite dimensior,,:~.l determinants. Then, 
in section III, we show that, similar to the fermionic case, the 
chiral anomaly of antisymmetric tensor fi~lds is associated with 
a non-trivial Jacobian of the path integral measure [7j. Finally, 
in section (IV) it is briefly described how the anomaly is 
obtained in the framework of stochastic quantization (8]. 

(II) Zeta-function regularization 

We are considering a 4n-dimensional oriented Riemannian manifold ~ 
of Euclidean signature which has no boundary: 'dvl{ = ¢ . We 

define totally antisymmetric tensor fields Art ... )'J.-7.~-I (X.) 
on e)(.. which we frequently will write as differential forms: 

At•J = ;--,)1 
,2~- . 

Ar .... r·~_,(X) ch~'' ... rJ.,)'>•-• I 2.1 J 

We associate to A a field strength 2n-form in the usual way (9J 
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F dA ( 2. 2a) 

where 

t-r· ··-r·· = :Z..n 'CJ A [}-<, f'-> ··)'l1.n1 I 2. 2bl 

Obviously F is invariant under gauge transformations 

A~ A + d;t ( 2. 3) 

for any (2n·-.:":)-form Z, so that for n=l ordinary (Euclidean} 
electrodynamics is recovered. For our purposes it is convenient 
to lnt.roduce the scalar product 

( <i., ()) ""c""",\<n 
~ 

J_ c{ h ·--rp 
r! r····h ~ 

fvr all p-£c11 ms o( and 0. Here we used the Hodge operator * 
defined as 

I 2. 4 J 

-IHXx /"'• ... at/' P 

13 
= (4-n-p)! 

r· .. -;·. r··· r ... C: ~-<- ••. ~< .. olx .... otx .12.sJ 
I f>+• I n 

J:'he action f::·r A is the follov1ing generalization of the Maxwell 
action ( E denotes the volume form {g'ctx1 ... dx40 ): 

S=i~c.-,:r)e "'H(A,SclA)t 12.6) 

The second equality follows from the fact that the co-derivative 0 
is the adjoint of d. we will perform all calculation in a 
generalized Lorentz gauge defined by 

&A = 0 I 2. 7 J 

For n=l this reduces to the ordinary Lorentz condition vr At<= 0 I 
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where 
of Jl(. 

Vf is the covaria'nt derivative constructed from the metric 

. For fields fulfilling (2.7) the action can be written as 

f1 = t l(A,AA)£ I 2. 8 l 

where A=d8+8ol is the Laplacian. In its original form (2.6), 

S is invariant under global duality rotations (or "chiral 

transformations") qf the form 

F--+ F cos~ + *F sin d.. , 

or infinitesimally: 

I 2. 9 l 

S T = o<."*'T 12.1o> 
01. 

Now we turn to our main task, namely the calculation of the 

vacuum expectation·value of 

Vt'" Kr E 
I .JI. 

( T, *"F) =(<n)! ~····r·· rf····r ... I 2.11 l 

for the prescribed background gravitational field given by the 

metric g ry (X) of c)(.. (The generalization of {1.1) for arbitrary 

n can be read off from (F,*F) =SK where K =*(AdA).) We define 

the generating functional 

Z. ["() = J WA]L& exp t-~\CA,AA)!: +)<.clA, "'Z*cl.A)} 12.12 l 

for any real, scalar function ! because then 

value of (2.11) reads: 

<._(TW,*TCa<l)) _ 

=: 

<ol ( T<••,* Tea<!) \0) 

<olo) 

6 
81 (~! 

in Z.. [ [] 

the expectation 

I 2.13) 

t" 0 
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The subscript "LG" at the path integral measure is to indicate 

that the integration has to be performed only over fields obeying 

the Lorentz gauge condition (2.7). We are not going to 

exponentiate this constraint since it is much simpler to 

explicitly take it into account in doing the Gaussian integration 

(see below). In particular, any complication due to the necessity 

of introducing ghosts for the ghosts is avoided (!OJ. 

In the representation (2.13) we can evaluate < (F,*F)) using the 

same technique as developed in ref. [11] for fermionic chiral 

anomalies and subsequently used for the evaluation of various 

other types of anomalies (12]. Performing the integral for zone 

formally obtains 

<.CTt•>,*Tt><t))=-~.i_ .R..n cMS2..\ 
0'7.(><) "7.=0 I 2.14 l 

where the operator .52.. is given by 

..Q = 6 -r r-z + 1 * (chz) A ol I 2.15 l 

To control the usual IR divergences associated with massless 

fields we have introduced a small mass parameter }.1... For '?..(I(J:=O 

the operator Sl is positive and hermitian. Because we may 

consider ~ infinitesimal, this is sufficient for the 

zeta-function method to be applicable, i.e. we can define the 

determinant as exp £-J1 (Sl. \ o)} , where f(St. f s) is the zeta­

function associated with..U. [13]. Hence one has 

< (nx>, * Tu<>)) 8 
=z- 6"2(>0 

To evaluate the RHS of (2.17) we 

normalized eigenfunctions of the 

(2n-1)-forms: 

( A+;-c') Q.(X)= 

' 

.sL\ .f (.sL Is) 
ots o 

I 2.17 l 

introduce a complete set of 

operator A.+,....1. acting on 

'7. Q. (X) 
A., ' 2; > 0 ( 2 .18a) 
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~(a;' Qj )E: "' 8ij l2.18b) 

It has been shown in ref. 11, for instance, that in terms of the 

ai's the functional 

written as 

derivative of the zeta-function can be 

s }'(.Sz.t s) 
&~ (~) 

~ -(I+S) r 8S2_ 
=-s"T--2; jCai, 0 ~'";a 1 )E (2.19) 

As was already mentioned, the path integril (2.12) has to be 

performed only over fields satisfying- bA = 0. Therefore it is 

only their eigenvalues which contribute t) the determinant in 

(2.14). Consequently, in (2.19) the sum 11ns only over 

eigenvectors ai fulfilling 8ai = 0. Ins~cting (2.15) yields 

ol \ "'> -(l+s) ) <(Ttx> lf- t<"l)) =- S L A_· (cio .<x> >\<do. t~l . 12 . .>0 I 
1 d50. 1 1) l 

l 

At this point it is advantageous to chan~e the normalization oi 
the basis fields; we introduce 

' 
cl_. (xi=}._. 

' l 

>:Q.(x) 
' 

For r ~ 0 the Ol.. i are normalized according to 

~(ct~i 1 dol_j) ~ 8;j 
Exploiting the identity 

l(- s = 
fts) 

we obtain 

0<:> 

Jc:H is-• e-xt 
0 

"" 

X)O 

<(Fcxl1 * Ttx!)> = rA~ L s 
r(sl foti t:s-1 -r'l: e . 

0 

-1·t 
~ (clot; <•I 1 * ot~ 1 C>O) e ' 

z 

12. 21) 

( 2. 2 2) 

12.2 3) 

12. 24) 
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In this representation we can relate the expectation value of 

(F,*F) to the index theorem for the signature complex [5,6]. Let 

us recall that the signature t:"' of a 4n dimensional manifold J'l 
i.e. the index of the signature complex is defined by 

T(J.l)~ lr+[e-tAJ-Tr_[e-u] 12.25) 

The traces Tr·'!: refer to the space of self-dual and 

anti-self-du&l 2n-forms, respectively. Note that because the 

pl-ojectors on these spaces are P;t = -£ ( 1 ± *) this also could be 

written as 

T(tM)= 1f[.,l(.e.-t.A1 
12.26) 

where the tv1.ce is over all 2n-forms now. (One even could perform 

the trace w.-i.th respect to the whole exterior algebra; all 

additional c·::mtributions would cancel between the p- and the 

(2n-p)-forms.) A standard argument shows that only the zero-modes 

of A contribute to the signature. Hence rC~)is the difference 

of the number of self-dual and anti-self-dual zero modes of the 

Laplacian. The signature can be explicitly calculated from the 

asymptotic expansion of the relevant heat-kernels (5,14,15j: 

1 - Ll:t -t I ~ ± I I< 
k ± (ll; t) o= r.r <x l e \ll) == t'" L ~ l<(l() t 

l<=o 

(2 .27) 

The trace t.r refers to the tensor indices only and 4.:t = A 'P± 
is the Laplacian restricted to the space of (anti-) self-dual 

fields. One finds 

T( ,).,{) = jot"'; ~ :Bif.n (>() 12 .28) 

where B4n = B~n- B~n· One possible strategy to evaluate the 

coefficients B2k(x) is to use a method similar to Fujikawa's 

computation of spinorial chiral anomalies (7]. This has recently 

been done by Endo and Takao (2]. They add to the kernel (2.27) 

additional tensor fields (cf. the remarks above) to form a Dirac-
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Kahler fermion (1,16]; the computation is then similar to the 

evaluation of the anomaly for the Rarita-Schwinger field (17]. In 

accordance with the mathematical literature their result can be 

represented as 

(' [ ( .R 1:/.rr) 11f~ 
-c (.){ ) = J ol. e-!. t..n.h. ( .sL 1:/. 'I!') ( 2. 29) 

The integrand is the Hirzebruch L-polynomial for the curvature 

2-forms 

.-..!' _11(1' ~ f/ 
-"L ., - 1 --r~ clx cl.x ( 2. 30) 

constructed from the metric ofJi. This notation means that we 

have to expand the integrand in a power series inSt and to keep 

only those terms which have the correct 4n-dimensional volume 

form. 

To make contact with equation (2.24) we consider the kernel 

\( (Xj~) :: l<+(l(,-1,)- {(_ (l(, tl 

== L. ( -t', ex>,* .f>a) e- :t.;i 
; 

The sum runs over a complete set of 2n-forms fi with 

and 

,t,.f. = :l.· r. il t-tJ. 

ju,, ~i )e = 'b;j 

,-1;)0, 

I 2. 311 

( 2. 32) 

( 2. 33) 

According to the Hodge decomposition theorem, our 2n-forms f can 

be uniquely decomposed as a sum of an exact form (the derivative 

of a (2n-1J-form ~ ), a co-exact form (the co-derivative of a 

(2n+l)-form ~ ) and a harmonic form: 

t = d<>~. + 8~ + 4> A<\:> "' 0 ( 2. 34) 
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The three pieces are mutually orthogonal and fulfil the 

eigenvalue equation (2.32) separately. This means that we can 

divide ·the f.'s into three classes: 

f (?) = """ .• ~ence ( 2. 31) decomposes 
' 't'l 

r"l ol ,u> ll. 
-tj = «i l 1'; = b\ .. i 
according to 

and 

ktl(;·U = L. (clot.1 ,-*cllll;)e-:t;l 
<:/... 

+ L: (~~i,* ~~.)e 'l.;l 
(1> 

+ LC¢>,,*<\:>.) . ' . 
• 

( 2. 35) 

It is important to note that the first two sums in {2.35) are 

equal. This follows from the identity 

( 8~; I .,v 8,~; J = ( c1[.1'~;1 ) -.1' d [,1•~; 1) 
and the fact that the Hodge operator provides an isomorphism 

between the space of the til 's and the ~' s. Furthermore, this sum 

coincides with the one appearing in equation ( 2. 24) since for A, :fO 
the spectrum of A acting on Q(. and ol '1:11.. coincides and the 

normalization (2.22) is the same as in (2.33). 

Returning to (2.24) we may write 

ol "" l 

( ( Tlxl, * Ttxi)> = 1: tts lo r~st lotH_"-' e r { 
0 

( 2. 36) 

. t K(>H.) - L (<jJ.(.><Il *~(xi) 
) i 1 I 

Inserting the expansion {2.27) one easily finds the r -inde­

pendent relati~n 

v,. <Kr> =' < (+txl]>~" T<xi)) = i B,.n (l()- i ~ ( ~l<l,.l'4ll•~l 2. 371 

2 

This is the desired result. It states that apart from the 2n-form 

zero modes of the Laplacian the vacuum expectation value is given 

by the well known Seeley coefficients B4
n(x) (5,6,14]. For n=l 

and 2 they are explicitly given by 

I - 1h 
~ (x) = ---~ ~ cj<,j'6 

'+ 'f6" 
'{2/' >' 'i) "~ ~ .,. 

"fl K 
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B\'(X) == ( 2. 38 I 

- Yz fo···f'~ >'o . 7<"'1 'R,g>' 'Rg._ 
4- 6o8rr"" 

9 
£ 'R -)>t'f' "·r·t~ g,rsr' 8,f1f~ 

1- ~-'11 fo··"f<i v, 'J<.""z 'R.~ 'R"""" 
11 s-.zo It',. E R -)·r·r' "~r·tq ..,,.rsr, "·r~r~ 

If we integrate (2.37) over a manifold which has no boundary so 

that the '7,..(\(r)-term does not contribute, we recover the 
signature index theorem 

n+ - n ~cl"""x rf B<J.n (><) 

where n+ and n_ denotes the number of self -ct.1al and 

anti-self-dual zero modes. For n=l we have found 

V,. < K~') == ~ < tr.Jif.TI'~) 

(2.39) 

- I -'h 
- 1'1< rr' 3 £,."f~ 'R.r".._~ 'R.""~.fo' _l L:C<R "*~-) (2.401 

2. . 1 1 't"l . 
z 

This differs from Zakharov' s result ( 1. 2) for Minkowski space by 

the zero mode term. The situation is similar to the case of the 

fermionic anomaly. In Euclidean space the complete form of the 

axial vector divergence reads (18] 

. t _,,, 
v,<'J~) =-:.Ph'~ er"-s<~ 'Rr" m"-~.!'6' 

!f~ 1'. 

+ 
+ ::2. ~ ll'o; 05 <f'oi 

z 

I 
+ f ,..• ir ( r,.., *T /"') 

( 2. 411 

where the if' oi 's are the zero modes of the Dirac operator J/>. 
Integrating equation (2.41) over a manifold with~~=~ one 

reproduces the index theorem for the spin complex. In analogy we 

~herefore expect that in Minkowski space Vr <. Kr > is given by 

2. B4n(x) for all n. 
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III. The anomalous Jacobian 

In this section we show that the anomaly (2.40) can be understood 

as arising from a non-trivial Jacobian of the path integral 

measure. The problem one encounters in this approach is that the 

relevant transformations, the dual rotations (2.9) or (2.10), are 

defined in terms of F rather than in terms of the integration 
variable A. One possibility to avoid this complication is to use 

the first order formalism [19]. Here we use a different approach. 

We define a chiral transformation of A by the requirement 

d. (So~. A) = o(. *d. A ( 3.1 I 

This transformation law guarantees that (2.10) is fulfilled by 

F = dA. As we shall see below, for our purposes it is not 

necessary to so:.ve this equation for Se(.A. Following Fujikawa 

[7J, the derivation of the anomaly proceeds as follows. Consider 

the path integral 

z = s[~A] - rs(oll\,oi.A.)E 
LG e 

a~d change th2 lntegration variable from A to A' = 
the parameter ~ is allowed to depend 

Then the classical action changes by 

Jacobian we make the ansatz 

on the space 

)«(T,H)£. 

( 3. 2 I 

A +61/...A , where 

time point x. 

For the 

[SA1L~ == e><r[ icl.""~ ~ ~(><) utJ-ltnl~>} UJA}LG • C 3. 3 I 

Because Z is independent of tJ.,. , one finds the "Ward identity" 

I -s J [~ A]LG t (Tl><l, "'f TC><l)- o4-4 ,,cx>} e ~ 0. ( 3. 4 I 
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If 64-4n would vanish, K f' would be conserved and the duality 

rotations would be an intact symmetry even at the quantum level. 

To show that this is not the case in general, we first expand the 

gauge field as 

A{x) =~ ci ai (x), 

' 

( 3. 5) 

where the (2n-l)-forms ai are a complete set of basis vectors 

which are orthonormalized as in (2.18b). For convenience we 

choose them as eigenvectors of the Laplacian. Furthermore, 

because the integral (3.2) is only over fields fulfilling the 

Lorentz gauge condi tio.n, they are constrained to satisfy 8 a. =0. 
l 

Thus one has 

[:UA1L& = 11 ole. 
• • l 

I 3. 6 J 

Under A__,. A 1 the Coefficients ci change according to 

c;-c.'= ~ )ca.;,[1+8<L1oi)E =L.(g,J+MiiJCj 
J J 

) 
I 3. 7 J 

i.e. the Jacobian for an infinitesimal transformation is given by 

ol.et M = exf t Tr en (I+ M l} 

= ex pZ ~ J (Ct;, 8-tCJ.i )£} 
' 

To be able to apply {3.1), we exploit the fact that the 

eigenfunctions of ~ {with eigenvalues A i) and satisfy 

write 

Q. = 2:- 1 (cl.d +liot) Q· 
' ) ' 

-1 " ~ :1_. cci.Q· . ' 

I 3. 8 J 

ai's are 

&a{==O to 

Inserting this in (3.8), integrating by parts and using (3.1) one 

obtains 

:2:: j (U;, b._ Ct;)c 
l 

== 

= 
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4= :1.;-')c&otoi, Sotu,)e 
' 

:Z::: J.£ 1 J (cln; 1 cl6._o.J[ 
i 

= ~ :(' ~(etc., J ol-* olet;)E 
I 

I 3. 9 I 

Again introducing the differently normalized function ~i of 

(2.21), we find by comparison with (3.3): 

dj. [X) 
q..,. 

= L ( o\<>1.; (><) J * cloi- i !><)) 
' 

I 3.10 I 

Because of the completeness of the oti's this is an ill defined 

quantity of the form 0· 00 . (This is analogous to the sum 

L; c.r;+ ¥
5 

c.pi for the fermionic case.) We regularize it by 

introducing a Gaussian cutoff: 

u4 (I() 

'~-" 
= 

:t; I ' 
L L (cl.<ii

1 
* e- M cto~.;) 

M-oo . 

13.111 

According to the discussion which led to {2.36) this is the same 

as 

-1 (><> = 
U+"""' k 

M~oo 

.,_ l k (><, ~.)- L(cB(">,-.1' cl:;(xJ) t 
• 

! 3. 12 1 

- .'.. JS (X) -
- l. 4-" 

~ L (<\>,ex>,* q,,cx>) 
i 

This shows that, contrary to the claims in ref. 2, Fujikawa's 

method is very well applicable even in a first order formulation. 

The result coincides with that of the zeta-function method and 

the calculation clearly displays the analogy with the fermionic 

anomaly. 
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IV. Stochastic quantization 

Recently stochastic quantization [8] received much attention as 
an alternative to the usual canonical or path integral 
quantization. One of the reasons might have been that this scheme 
provides a new type of invariant regularization which was hoped 
to respect simultaneously all symmetries of the field theory 

model under consideration. Later on it turned and, however, that 
the anomalies associated with continuous symmetries also appeat· 

within stochastic quantization (20,21]. It is only in the case of 
the parity violating anomaly in 2n+l dimensions that an ambiguity 
has been observed [ 22 J. In this section w·~ are going to 

explicitly show that the {continuous) dua_·_ity anomalies, too, are 

unambiguously reproduced in the framework of stochastic 
quantization. Our essential tool will be che stochastic regulatcr 

function which was first introduced by Breit, Gupta and Zaks 

( 23]. 

The basic ingredients to start with are tne Langevin equation 

derived from the action (2.6), 

'd 
'Cit: Alx,T:.J =- E;ot A.cx,-r:l + ycK,"Ll 

and the correlation function for the random source {(tt',"C"): 

"').?, ••• ~z < '?_ 1<. ••• '-'- (l(ot;) '17 n-' ( ,/;r:') '-. 
I I I 'Z."-1 (_ /}' 

., -1. ~ :z -z o'o> 
= ':! c•> Jr J /'t J<• 

g)?··-· 
!'•·-·] 

8 ex- x'J QA c-r- -r '> 

( 4.1} 

( 4. 2) 

Being a source for A(x, 't"), the noise 'f(IC,'t') is a (2n-1)-form, 
too. In (4.2) we introduced the Breit, Gupta, Zaks regulator 

QA c-c--c') defined by the properties [23] 

~ 
1\-.. o 

Ct. cr:-z:'' 
" 

a.Arr-r'J 

= Scr-r') 

, o. cr'- -z:l 
" 

f: I f Jclt: O..A a:- r; ) = 

( 4. 3) 
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The limit A~oo will be performed after all calculations have 
been done. As is well known, the stochastic quantization of gauge 

theories does not necessarily require the fixing of a gauge [24], 

but, nevertheless, it can be computationally advantageous to fix 
a gauge. In our case we would like to do this in a way so that 

the Langevin equation contains the complete Laplacian rather than 

the SOC -operator only. To achieve this we perform a gauge trans­

formation which depends on the stochastic time r : 

f A lX,'cJ = A(>(, -.;J + ot x ()(, n ( 4. 4) 

This transformation changes the form of the Langevin equation, 

but it does not change any gauge invariant expectation value 

calculated from it [8,24]. Choosing~ to satisfy 

:-c ol:r+ot6(A+cC:~:') = 0 ( 4. 5) 

the new Langevin equation has the desired form: 

() f f 

'dr A tx.-o : - /:::,. A rx, o +(IX,7:). ( 4. 6) 

A possible solution of (4.5) is 

r _ L).Cr--r'J 
::r-cx,r) =-f. o.t-z:' e 8A.cx,-r:'> 

0 
( 4. 7) 

For notational simplicity we do the following calculations for 

n=l; the generalization will be obvious. To solve equation (4.6), 

we define 

r" r -r:A "-r ex,>< ; t) '= <}'.xI e I~', x' > ( 4. 8) 

The solution of (4.6) with the initial condition A(x,O)=O then 

reads 

A~ 
r 

r 
(><,-.:) = Jol.c' 

0 

r ~ , r. 6 , '> " , , J"')( ~~ i"'"(x,x;r-r L C><;c > i4.9J 
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(We omit the prime from A again.) Employing this solution, we can 

compute 

<(Fe><>,* Tclt>))"" ~f'" E:r~g~. 

~ ~ ~ <A..., ex'> A.,- tx>> 
' 'dx't' 'dx~ X->< 

by straightforwardly evaluating the expectation value : 

< l\.,tx1
J f\ 6 ex>)=~ 

A-oo 

!" 

=t- L... )ct.-, 
A.~oc -c-«:~ o 

1:" 

}ot.-, 
• 

L <A~ cx:rl A~ rx,u) 
r-oo 7 

jet\ l';lty.) ~ct\ l~cy,J' 

I 4.10) 

I 4.11 l 

1 r <ot. ~ -'-G.,ot. (x, y, i r:- r;,) o 6 (> ex, y,; r-.-.,_) '7 cy11 r,) 7 cy, h) /Y 

1: t 

~clr; 1 \ot-.:L 
".....,.00 '{;-'X) 

2Q cc-,-rt.) G t><~x i .2-r-c-,--z:,) 
A "?<i • =kv.. ~ 

0 0 

Inserting into (4.11) yields 

1:" " 

0 

<((Too,*T<><l)) = £.... ;;,..... Jell:, \otr, 
A-tX:> "t_,.ao. o 

.ZQ Ct,-t:.,_) 
A 

L ( clex..c>o * o(Q. C><>)~:/.;(Zc:--t:,-r,_) 
i l ) l 

I 4.12 J 

Here the heat-kernel (4.8) has been represented in terms of a 

complete set of orthonormalized eigenfunctions of the Laplacian: 
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Gt'" , L f' ., ' -1; r 14.131 
(< x ·-c)"' Q. c><l Q.c•l e 

I ) , l 1 
I 

Equation ( 4 .12} holds for all values of n ~ 1 again. The following 

steps parallel Tzani's (21] treatment of the fermionic case. 

Introducing 

t~-r,-r:~ 

T = t Co,+ r: ._) 

'"e have 

(('Fj-K-TJ) = k 
A .... «> 

7:/l +lT "C +lCt"-T) 

.fi- ( JolT ) ott + J otT j ci! 
r-..oo o -tT 1:f 

l -"l.(t-T) 

L: (d.ct;, *ol.a.;)e-A;(Zr-r,-rt) 

' 
The properties (4.3) 

2T 

~ o\1 Q" li) = 

-1T 

+ ur-Tl 

J cU QA l-1,) = 

-Hr:--n 

imply for the regulator function 

GCT-2~.)+0(;,) J 

tJ ( "!: -' 2
1
A, - T) + 0 ( ~· ) 

) :;_a A (-tl 

I 4.14 l 

I 4. 15 l 

Inserting this into (4.15) and doing the T-integration yields 

<C't. *:rJ'> = ( 4.16) 

~~ 
~ -1 f_l·(I I) "2.} L_J.,.(o!Q.*ob)e' r:-R ::1.;/1\ -.2;/ .. r 

i .,, l -e. e ~ 
1\..-00 T-oo 

At this point the L -limit may be performed: 
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<Cr>~ F)>=~ 
A.-Ho 

L ;t-:- 1 (r:J.A. *olo.·) -J..;/A., 
i ' J' z e 

(4.17) 

(To obtain strictly positive eigenvalues A. i one could introduce 
a small 11 photon" mass as in section II.) Finally we can change 
the normalization of the ai's according to (2.21) and (2.22). 
What we find is 

_'J..JA' 
<CF,*'f'J>= J.i-. ~(cl.<"-;>'*e cl.x;) 

A._.,. <X> " 

( 4.18) 
I 

i.e. the same expression as in Fujikawa's approach, cf. equation 
(3.11). Obviously, Fujikawa's prescription for cutting off the 
large eigenValues is equivalent to using the Breit-Gupta-Zaks 
regularized version of the noise-noise correlation function. 
Hence the stochastic quantization scheme leads to the same 
anomaly as the path integral or zeta-function method. This gives 
further support to the assumption that the stochastic method 
correctly reproduces all anomalies assciated with continuous 
symmetries. 

V. Conclusions 

Using various independent methods, we have established the 
Euclidean analogue of Zakharov•s formula (1.2) for an arbitrary 
4n-dimensional space-time. The result (2.37) differs from the 
Minkowski space version of the anomaly equation by the zero mode 
terms. Their presence allows the anomalous divergence equation to 
be interpreted as a local version of the signature index theorem. 
In the path integral formalism the anomaly manifests itself in a 
non-trivial Jacobian for the duality transformations. This result 
has been established within the second order formulation of the 
quantum theory, where duality transformations are defined by 
(3.1). we also found that the anomaly is correctly reproduced by 
the stochastic quantization procedure and that the stochastic 
regulator aA is equivalent to Fujikawa's prescription. All these 
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properties of the duality, or chiral anomalies of antisymmetric 
tensor fields are very similar to those of spinor fields. 

To close, let us ask for possible physical applications of (1.2) 
or its generalizations. An example of a metric for which the 
pseudo-scalar e}'\Yf6 'R"".pti.~ Ro(.(\g6' does not vanish is the 
metric of a rotating mass distribution, a rotating star, say. 
This means that such a star permanently creates photons and 
thereby redUces its angular momentum in very much the same way as 
a dyon produces fermion pairs via (1.3) and thereby reduces its 
electric charge (3]. It is important to note that this radiation 
has nothing to do with the familiar Hawking radiation or the 
gravitational particle creation in expanding universes [25]. 
These phenomena have their origin in a non-trivial Bogolubov 
transformation between the creation and annihilation operators 
used by different observers: the vacuum of one observer can 

correspond to a state with non-zero particle number for another 
observer. On the other hand, the (pseudo) scalar E'rvtfi 12.~'"'atj$ RIIC.{lf6 

which is responsible for the anomalous photon creation, cannot be 
arranged to vanish by employing a particular vacuum state; it is 
the same for any observer. 

I would l~ke to thank Professor V.I. Zakharov (ITEP) for bringing 
these problems to my attention and for a helpful discussion. 
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