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1. Introduction 

In 1977 Sterman and Weinberg /1/ calculated the 0( <t 5 ) two-jet croSB section 

in e+e--annihilation. Two years later Smilga /2/ claimed that the leading and 

next~to-leading logarithm of the Sterman-Weinberg formula should exponentiate 

to give the leading and next-to-leading two-jet cross section in any order. 

This is reminiscent of the behaviour of certain cross sections and form factors 

in Q~D. 

In a recent paper /3/ we have calculated the full two-jet cross section in 

0( C{.s 2 ). We were able to confirm Smilga's conjecture to a certain degree, Namely 

the Q~D-part of the cross section exponentiates as predicted. The pure QCD-part 

which according to the conjecture should only contribute a next-to-leading loga-

rithm gets in addition a leading contribution - although with a rather small 

coefficient. It is the purpose of this letter to examine the origin of its 

appearance. 

One remark is in order here: If we naively integrate the four parton diagrams 

of the process ,. <p,l + •· (p-l --. ~ r1 1 _, 4 <p,\ • 'f(r,) + ~ 'r.,l + ~lp,·l 

over the two-jet regions of phase space we confirm Smilga's conjecture /4/. How-

ever, this is no longer true, if we want the two-jet cross section to be adjusted 

to the three- and four-jet cross sections as used in experimental analyses, By 

this we mean that the two-jet cross section together with the three- and four-jet 

cross sections should add up to yield the total cross section as calculated by 

Celmaster and Gonsalves /5/. 
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2. Deviation from Exponentation 

The Sterman-Weinberg formula 

tTSW 
. 2-:Jtt cr, \ ~ >-

%, 

2tt 

in 0( eX, ) reads 

' 

c, (- 2 1" "'4 - 3 ~ ~ - 1 + !_" t O(;j-l)] 
3 

(1) 

Here cr, ~ l+r.;«'-l{lf Qf)/(3~2 ) is the lowest order cross section, CF = 4/3, 

N, 3 and y is the invariant mass cut used to define a jet /3/. Exponentiating 

the leading and next-to-leading logarithm of (1) gives 

'I''f 
2-~ 

<T, ~xp \ - c<-, ("11
2

) 

2'1C 

Expanding this to 0( 1)(.
8

2 ) we get 

(F (21-,•1 d.t~"i) I 

'T, = 'T ) 1 
-<.-Jet () L ox,(q') (21,_'"1+>l~1) 

2. 

f "'~~9'\ l CF (z !,., ''a+ 6 .tn,' ~) + ( t N,- ~"'I) .t,' ';! J J 

( 2) 

( 3) 

In (2) the running coupling has been introduced at the scale yq 2 to produce the 

desired Nc- and nf-contributions in (3) (nf =number of flavours). We call the 

Nc -contribution "pure QCD", because in the QED-limit N c = 0, CF = 1 , Eq. ( 2) is 

in accordance with Smilga's result /2/. In contrast to (3) the explicit calcula

tion of the 0( <Xs 2
) two-jet cross section /3/ gives a term ·- i}; fl"o(

2
ot.; t CF Nr., .it-. 'I-)

to be added to the terms on the right hand side of (3). It is the purpose of this 

letter to trace its origin, 
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3. Origin of the Additional Nc-Term 

The origin of the additional leading logarithmic contribution lies in a term 

' 
b, 

'aoc 

; ')j, '<h '\1,. 
( 4) 

where yij = 2pipj/q 2 , This term is the most singular contribution from the four

parton diagrams to the Nc-term. If integrated over the two-jet region 

1'0 ( ":J•>t <'a or "1''' < "1 ) 

+ (';Ill"-":;' "<J,,< "1' '\J.,., ~' )>3, >'<I) 
( 5) 

( "'-tk 'J ,1,:" '';l'j ,_ '<J '" t- ~i' J 
. . 1 4 . 

the add1t1ona term "' Ncln y does not appear. In other words: Us1ng P
0

b0 one 

verifies Smilga's conjecture /2/. This is the "singular approach" of ref. 3 

{see also /4/). However, the three- plus four-jet region used to calculate three-

and four-jet cross sections /6/ is not the complement to (5). Instead it is de-

fined as the region, where at most one of the yij is smaller than y, So what one 

does is the following: 

As b
0 

appears in the symmetrical combination b0 + (1-2) + (3-4) + (1-2, 3-4) 

(here ( 1-2) etc, refers to interchange of momenta p 1 
~ p2 ), one rewrites it as 

b t- (.~-2) t- (' -4) 1- (A-2, 3-lt) ~ '130 -+ (~-Z) + (3-4) + (~-Z,3 -'t) 
0 

I 6) 
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with 6
0 
~ 634 

+ 6
13 

and 

1>,, ~ ~1L 
171. 

2 "1'> ('a" r ·;j,l (.\!, + '\b,) 

+ 
')JtL 

't, ":\I" 
"J,,('i).,•1J,,) (.,.,,. 'J.,) (1J., r1J1,) ()1,•)3,) (~11 t ~.,) IBI 

(In fact one has 2b
0 

= 6
0 

+ 6
0

( 1-2, 3-4).) The partial fractioning in (7) and (8) 

has the advantage that in the three- plus four-jet region every term has a singu-

larity for at most one yij going to zero. For example, 6
34 

has a singularity only 

for y 34 -'t 0, Therefore it is natural to define the three-jet region as (y
3

h < y, 

y 134 
') y, y234

) y) and the two-jet region as being only P
34

:= (y 134 <. y or 

y234 < y) in contrast to (5).{P34 is the natural two-jet region for B34 
also from 

the standpoint of differential three-jet cross sections, There one defines effec-

. . . + - . . 
t1ve three-partlcle var1ables y1 III== y 134 , yii III= y23h fore e go1ng 1nto 

jets I = 1, II = 2, III = 3+4.) In the remaining phase space 6 311 is finite and can 

be integrated numerically. For 6
13

, on the other hand, we must define the two-jet 

region as P13 := (y
13

4 < y) + (y 13 <. y, y24 < y, y
13

!, > y). This follows from the 

fact that for the y 
13 

pole term the three- jet region is defined as ( y 
13 

< Y, y 
24 

> y, 

y
13

4) y) for calculating the three-jet cross section /6/. In the following we 

shall prove that the difference P
13

B
13 

+ P311B
34 

- P
0

b
0 

provides for the additional 

term "' N ln 
4
y. 

0 

Let us first introduce the notation 

1'·= .. ('dl,<iJ' ':1,,<'\J' ":J·~) '<!' ";),,.,'1) ·~ 10 -1~ ... .. 191 

--~-----~---~---- -----·-----•'"--c-
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One can rewrite P
13

B
13 

+ P
34

6
34 

as 

1',~ '1\\ r 'l\;1 J\'~- 1', 1 ·s,, ,. 1l,, 1 - T, 13,, 
I 101 

- l (";)",> '(\, '\J>w < '\\ l - (";J,,< '\\<'a"< 'l I~.,,, 'a • '4 ,.,<"J )j llu 

This is just a trivial redistribution of the different contributions. Because of 

the symmetry properties of P
0 

and 6
0 

one has P
0

(6
13

+B
34

) ~ P
0

b
0

• Furthermore 

y234 < y implies y24 < y. Therefore (y 13 <. y, y21t <.. y, Yl31t) y, Y23it< y) = 

= (y 13 < y, Y
13

4/' y, y~ 3't<y). With this one gets from (10) 

~li :P,l>t P.,l Y,,, - /', bo -l',Jl,,.- l ("'~'"'il•":J<>,<'J) 

- I";Jn ''J 1 'J•,'"a• '\J1,<'\)l] ·J\,3 

~ - 1',11,,- ( '"" > ~' '\),,. > "i '"<JZ3. <1\) 1\,, 

~ - 1', ll 1, - ( '1n> 'a 1 "~"• < ';!) 1l., 

I 11 I 

The second term on the right hand side of (11) is finite. It has been calculated 

numerically as part of the partial fractioned four-jet cross section in /6/. It 

does not contribute any leading or next-to-leading logarithms, Therefore we have 

to look only at P1B34 • In full length P1 is given as /3/ 

0} 1 -~ (~- ~") 
s j -< J I - H ( ) ..._ r·~ J 1'1 ~ . L ·~,J ~~l ( 41l•> ';)H4 1-~IJ; [ ,{;), 4 

'.! 
' .. ,_ :a.. 

~- 'all. 

":\ I 
;~l't 

,_ J d '"'' 
J dv.- j '\1;~" ,.-c (A-<cY' 

I 121 

"J (h-).>.!_) 
. ~1~1 
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where u = y
34

;(y
134

-y
13

). We work inn= 4-2~ space time dimensions for the 

purpose or regularisation. We have kept the L-dependence in the four particle 

phase space ( 12), because P1
B

3
4 is singular in the limit L ~ 0. The singularity 

comes from the region (u ~ 0 ~ y 34 
-~ O). Therefore it is isolated in the second 

part of ( 12). It is a non-leading singularity ( ~ & -l) and the logarithm asso-

ciated with it is also non-leading ( N lny). Therefore we are left with the first 

part of (12). Putting f:.. = 0 we get 

'1', Jl, "' ~ , ' 
~ 

a ' 
J <t 'a•J J d )l,, 

..f- ~~N 

~· .. -'\I., 

A 

J 
";)-

~ 

.:k 

"' 

""" ~- "a!> 
"a1;'t 

,.f-.Vv 

"<!·- • ( 11•"- "d·•) At 

~ .. ) ')j (A- -
'bn~ 

} J~,, 
' 

I 131 
A 

'11•1. ( 1).,,- "J•l) ""' 

in the leading and next-to-leading logarithmic approximation. It is now a question 

of some analysis to prove that in the leading and next-to-leading approximation 

·p, il,, = _1_ 
1.1. i~" '} 

as claimed. Let us remark that we have checked this result by calculating 

I 14) 

P13
s 13 + P34B3

h and P0b0 
independently. Both expressions carry leading singu

larities (N L -
4 ) which drop out only in the difference. These leading singula-

rities generate the leading logarithms in the following sense: 

PH 1\" ;- -r 3> 'B,, ~ 
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[ ~ '!3-2~ - zs 
A), 

A 

"' 
"a 

A 

1Z 

-sc 
t' 

";)- t"- 1 

-~ f. -H. 
~ +;,'l'il 

A 3"<~-6< 

c~ ;- o (C-') 

. I s -. 1 - ,, 

~ b,- z Y'' - "''1 + 4 ';:\_,,] <-" + o(c') 

I 15 I 

I 161 

Expanding ( 15) and ( 16) into powers of £ we obtain the correct leading logarith-

mic contributions. There are no other sources of leading logarithms. One may note 

that high powers of y ~E. as in ( 15) are driven by two sources. One is a high 

number of y's as integration boundaries and the other is a high number of partial 

fractioned factors in the integrand /7/. In order to prove that there is no next-

to-leading difference between P
13

s 13 
+ P

34
s34 and P0

b0 
we also quote here the 

0(£ - 3 )-corr(~ctions l.o equations (15) and.(16), They are equal and given by 

(,,,,,. 1 ~ \'>,1b), l.sy"'-zy"J c' +0(>--'l I 17) 

For the convenience of the reader who wants to verify our calculation, we give 

specifjc leading and nonleadinc contributions separately 



'"':"I("\\ 
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~I'" 

~ 
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(~1)' "J' ':\,,<·,'\' 'Jn,) '\)' ')},,> ''!j) h" ~ 
f-t + '+-z~, .-Al-2>',-.<>s,

t 

s 
It 1;', 

t ! _<,_ <.0 
< 

+ 3-. -lt>,.-6~,\h"::+l <' 
t 

< 
-It -8-2',1 .(,/'~ 

+ l <1 
3 t \ ,t,'";\ + 

14 
24 ..t .. ') 

(2h) 

In these expressions f is the Euler number and ',!;n. are the usual 'S functions. 

So we see that the difference in the leading .logarithm behaviour of the Nc-term 

comes from different definitions of the two-jet region in the two 

approaches. In the so-called singular approach the two-jet region was 

defined in terms of P0 given in (5), saying that all configurations, where either 

three partons or two pairs of partons have invariant squared masses less than y 

are considered two jets. If we apply the two-jet constraint to the original four-

particle configuration this is the correct kinematic definition for two jets. It 

is in complete analogy to the two-jet region used for the other pole terms, as 

for example the ~ 13-pole term in the CF and Nc-contributions /3/. But, as already 

mentioned, the region P0 is not the complement of the three-plus four-jet region 

used for calculating three- and four-jet cross sections, so that with P
0 

the total 

cross section could not be matched. This is possible only if we use the kinematic 

region P34 
in the y 34

-pole term. As already mentioned above, P34 
can be characte

rized as the procedure that the two-jet criteria is applied to the three-jet con-

figuration, described by the variables YI III Y13h and YII III y 234 and not to 

the original four-particle configuration. Since both procedures are legitimate we 
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have no reason to prefer either one. Of course, only the approach with P
34 

matches 

lhe three- and fQur-jet calculation. In case we would prefer P
0 

instead of P34
, we 

must transf<$r the terms included fn the three- and four-jet calculation, i.e. the 

term { 14) and the additional one-leading terms, to the two-jet cross section. The 

fact, that different two-jet constraints, as our P
0 

and P34 , lead to different 

results for cross section, has been found also recently by studying the recombina-

tion dependence of the 0( ~5
2 ) three-jet cross section /8/. 

!1. Conclusions 

We have found an additional leading logarithm in the two-jet cross section con-

trary to naive expectations. We have traced back its origin to the definition of 

the three-jet cross section aS used in all earlier calculations /6, 9/. 

The importance of the additional leading logarithm became clear to us when r,.'e tried to 

reproduce the lotal cross section at very small values of y (y 0.001). However, 

it plays a role even at physical values of y (0.02 ~ y !::_ 0.05), where the leading 

and next-to-leading contribution of the CF-term almost compensate each other. This 

is to say, the nonabelian (Nc-) part of the theory is very much influenced by this 

additional term and ch"pends very much on how the two-jet cross section is defined. 
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