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1. Introduction

In 1977 Sterman and Weinberg /1/ calculéted the O{CLS] two—jet cross section

in & e —annihilation. Two years later Smilga /2/ claimed that the leading and
next—to-leading logarithm of the Sterman-Weinberg formula should exponentiate
to give the leading and next-to-leading two-jet croszs section in any order.
This is reminisecent of the behaviour of certain cross sections and form factors

in GQED.

In a recent paper /3/ we have calculated the full two-jet cross section in
O(CLSE). We were able to confirmSmilga's conjecture to a certain degree. Namely

the QED-part of the cross section exponentiates as predicted. The pure GCD-part

which according to the conjecture should only contribube a next-to-leading loga-—

rithm gets in addition a leading contributicn — although with a rather small
coefficient. It is the purpose of this letter to examine the origin of its

appearance.

One remark is in order here: If we naively integrate the four parton diagrams
of the process ¢V ip,} + e {p) LACRIE {py + “3{(!31] +glpy)+ q(r“'\
over the two-jet regions of phase space we confirm Smilga's conjecture /4/. How-
ever, this 1s no longer true, if we want the two-jet cross section to be adjusted
to the bthree- and four-jet cross sections as used in experimental analyses, By
this we mean that Lhe two—Jeb cross sectlon together with the thrée— and four-jet

cross sections should add up to yield the total eross section as calculated by

Celmaster and Gonsalves /5/.



-2 -

2. Deviation from EBxponentaticn

The Sterman-Weinberg formula in O 065) reads

g oW = T, [’“‘ X C, (‘an*’%-’3%%r;‘4+ %ﬂ 0(«3))] (1

2-qut 21

o

Here O, = j*?:.c(”‘NJ% Qé) ’(3‘.1‘2') is the lowest order cross sechion, CF = /3,

=3 and y is the invariant mass cut used to define a jet /3/. Exponentiating

the leading and next-to-leading logarithm of (1) gives

. Yy
(I;g;t = Uy exp {'— ___ﬁ_‘xs;: Ce (2(-\42fg+3ﬂh4&)f (2)

Expanding this to O o{,sz) we get

(Tl- = T, { 4 Q{S( z

(2&«1"%1—6 by

{3}

obd‘l)c [(. Z%%%+6LW3%)+(1N__M*)£“1 ]j

In (2) the running coupling has been introduced at the scale yq? to produce the

desired ¥ - and nf~contributions in (3) (nf = number of flavours). We call the

Nc~contribution “pure QCD", because in the QED-limit N, =0, C =1, Eg. (2) is

in accordance with Smilga's result /2/. In contrast to (3) the explicit calcula-

tion of the O(®_2} two-jet cross section /3/ gives a term -~ ( ) C N, ﬁn"'a&

to be added to the terms on the right hand side of (3). It is the purpose of this

letter to trace its origin.

3. Origin of bLhe Additicnal N -Tern

The origin of the additionsl lesding logarithmic contribution lies in a term

oz

. (h)
<Y Ya Yae

where y.. = 2p.p./a?. This term is the most singular contribution from the four-
1J 17

-

parton diagrams to the Nc—term. If integrated over the two-jet region

P,oo= ("alm(“'l& o "?-Z-‘*{q%\

(5)
+ (43154\"3. <y Y Y, Magy> 1&)

(wndh hw:t B Yiut h,jk)
the additional term ~ Nclnhy does not appesr. In other words: Using Pobo one
verifies Smilga's conjecture /2/. This is the "singular approach” of ref. 3
{see also /h/). However, the three- plus four-jet region used to calculate three-
and four-jet cross sections /6/ is not the complement to (5). Instead it is de-
fined as the region, where at most one of the yij 1s smaller than v, So what cne

does is the following:

As b appears in the symmetrical combination b, + (1-2) + {(3-4) + (1-2, 3-L)

{here (1-2) etc. refers to interchange of momenta P, & p2), one rewrites it as

br -2y e Bowdr oz3-m) = B+ (-2)+ Gotre (-2,3-4) (&)
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with Bo = B3h + B!3 and

Y

B, = (1)

2 M (s Y3 ("azu+ Yy

M Y

= +
s (v Yay) (g, ) (g v 42 Ogar ) (Yo # Y2e) (8

13

(In fact one has 2b = B + Bo( 1-2, 3-bU}.) The partial fractioning in (7T) and (8)
has the advantage that in the three-— plus four—jet region every term has a singu-
larity for at mcst one. ¥i3 going to zero. For example, B3ll has a singularity only
for yqy — 0. Therefore it is natural to define the three-jet region as (th < ¥,

Yi34> s Yoq 7 ¥) and the two-jet region as being only P3h:= (y]Sh { y or

Ypa) € ¥) in contrast to {‘5).(P31l is the natural two-jet region for B3h glsc from
the standpoint of differential three-jet cross sections., There one defines effec-

. + - . .
tive three—particle variables Y11z = Yigye Y1y orim = for e e poing into

Yos3h

jets I = 1, 1T = 2, IIT = 3+1¢.)In the remaining phase space B ) is finite and can

3

ve integrated numerically. For B13’ on the other hand, we must define the two-jet

region as ?13:= (y13h< vy )+ (y13( Vs Yok ¥s ¥yqp > y}. This follows from the

fact that for the y,. pole term the three-jet region is defined as (y,, ¢ ¥, ¥ ¥
13 13 24 7

Yiah > y) for caleulating the three—jet cross section /6/. In the following we

shall prove that the difference P13B..3 + P325B3h - Pobo provides for the additional
A

term ~ Ncln ¥

Let us first introduce the notation

Po= (13'503 VY Yo 7 Y Yy Pom Py {9)

One can rewrite P__B + P, B

13513 7 Pty 8

T'E- ?’ls kl'})yl "Bivc- = ('B” + B;q) - .‘Pi Bi‘t

{10)

- l.(llaﬂ\'l)"‘a'] /hlaa(/\&\ = (4313<da;'162'r<4%l '3'3'4} 1&!1 ny‘("a)] Bi.'!

This is just a trivial redistribution of the different contributions. Because of
the symmetry properties of PD and Bo one has PO(B13+B3h) = Pobo' Furthermore

Yoy < ¥ implies y,y & y- Therefore (y 3 <& ¥, ¥y, < ¥s ¥19,7 ¥ ¥pg < ¥) =

= (y13 < Vs Fyqur Vo leif.(y). With this one gets from {10)

P’:‘i ’P’h'* ?-ls By - T, L‘c = - 33*1 - 1 (4:1"5"‘}16 "‘az"ﬁll‘a\
- {ya oy, Jor> g Yaa < 4] .343 (1)
== Ty 29 Mo 74 Yy By,

== By, - (42 e, < y) 313
The second term on the right hand side of (11) is finite. It has been calculated

numericelly as part of the partial fractioned four-jet cross section in /6/. It

does not contribute any leading or next-to-leading logarithms. Therefore we have

to look only at P B, . In full length P, is given as /3/

N ] ¥ (- 2

) - -t L
?, = J oy, e §dogr, ™ (-g50,) { Sdaz» J et
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where u = ySh/(yTBM_y13)' We work in n = b-2y space time dimensions for the
purpose or regularisatien. We have kept the ¢ —dependence in the four particle
phase space (12), because P1B3h is singular in the limit & = 0. The singularity
comes from the region (u + O & Yo 0). Therefore it is isolated in the second
part of {12). It is a non-leading singularity {~ ¢ Aj) znd the logarithm asso—
ciated with it is also non-leading ( ~ lay). Therefore we are left with the first
part of {12}, Putting £ = 0 we get

Y
AU m.)

3
N Jd\a,s jdﬂm —= Sdgh

(13}

] e A= 4
o Muer (Yoo Yyt (YY)

s
b 4~ 74n

,‘3151

in the leading and next-to-leading logarithmic approximation. It is now a guestion

of some analysis to prove that in the leading and next-to-leading approximation

.«Pi B';.' = 4_. _f“lf ‘3’

A2 (1)

as claimed. Let us remark that we have checked this result by calculating

P73B13 + P3hB3h and Pobo independently. Both expressions carry leading singu-
b

larities {(~ & ) which drop out only in the difference. These leading singula-

rities generate the leading logarithms in the following sense:

o . 5
').15"&15"" r%‘P’y, = [52_%2?_ -2 1 " . ;% '%hba

(1)

Phe= L kL —L—«a"“] e L olke™ (16)
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Expanding {15) and (16) into powers of £ we obtain the correct leading logarith-—
mic contributicns. There are no other sources of leading logarithms. One may note
that high powers of y'a as in (15) aredriven by two sources. One is a high
number of ¥'s as integration boundaries and the other is a high number of partial
fractioned factors in the integrand /7/. In order to prove that there is no next-
to-leading difference between P13313 + P3yB3h and Pobo we also quote here the

ol E —3)*C0rrections Lo equations {15) and (16). They are equal and given by

(15,461 = U, 46) ¢ 1842 2473 ¢7% 4 oo(e?) (17)

For the convenience of the reader who wants to verify our calculaticn, we give

specific leading and nonleading contributions separately
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In these expressions ¥ is the Euler number and !h are the usual ¥ functions.

So we see that the difference in the leading logarithm behaviour of the Nc—term
comes from different definitions of the two-jet region in the two
approaches. In the so-called singular approach the two-jet region was
defined in terms of P, given in (5), saying that all configurations, vhere either
three partons or two pairs of partons have invariant squared masses less than y
are considere& two jets. If we apply the two-jet constraint to the original four-
particle configuration this is the correct kinematic definition for twe jets. It
is in complete analegy to the two-jei region used for the other pcle terms, as
for exanple the y73—pole term in the CF and Nc—contributions /3/. But, as already
mentioned, the region Py is not the complement of the three-plus four-jet region
used for calculabing three- and four-jet cross sections, so that with Po the total
cross section could not be matched. This is possible only if we use thelkinematic
region P3h in the th—pole term. As already mentioned above, P3h can be characte-
rized as the procedure that the two-jet criteria is applied to the three-jet con-
figuration, described by the variables Y11z T Yisy snd yopor1r = Yogy gnd not to

the original four—particle configuration. Since both procedures are legitimate we

have no reason to prefer either one. Of course, only the approach with P3h matches
the thfee— and four-jet calculation. In case we would prefer Po instead of P3h’ we
must trensfer the terms included in the three- and four-jet celculation, i.e. the
term {14) and the additional one-leading terms, to the two—jet cross section. The
fact, that different two-jet constraints, as our P0 and P3h’ lead to different
results for cross section, has been found also recently by studying the recombina-

tion dependence of the O(cts?) three-jet cross section /8/.

h. Conclusions

We have found an additional leading logarithm in the two-jet cross section con-
trary te naive expectabions, We have traced back its origin to the definition of

the three—jet cross secticn ag used in all earlier calculations /6, 9/.

The importance of the additional leading logarithtm became clear tous when we triedto

reproduce the total cross section at very small values of y {(y = 0.001), However,
it plays a role even at physical values of y {(0.02 < v ¢ 0.05), where the leading
and next-to-leading contribution of the Cp-term almost compensate each other. This
is to say, the nonabelian (NC—) part of the theory is very much influenced by this

sdditional term and depends very much on how the two-jet cross section is defined.
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