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Apbstract

We investigate unified models where all small guantities in the fermion mass
matrices are given in terms of one small ratic of symmetry breaking scales.
We describe for a U(1) generation symmetry how the size of masses and mixings
is determined, including possible contributions from heavy mirror quarks and
leptons. This can be used for computerized model scanning. We search for
realistic mass patterns in anomaly free SU(E) x U(l)G models and find several

examples. Interesting patterns for neutrinc masses can be obtained.

It has been propcsed recently b that the orders of magnitude of all fermiecn

masses and mixings can be understood in terms of symmetry and one small para-

. meter }_ which is the ratio of a symmetry breaking mass scale MG divided by the

overall mass scale M of the model. The main assumption is that all Yukawa couhl-
ings are of the same order as the gauge coupling g (as suggested in higher di-
mensional models) so that all small quantities in the fermion mass matrices
should be related to symmetry 2). This approach requires a symmetry G larger
than SU(3) x SU{Z2) x U(1). In the limit of unbroken G only the top guark (or
fermions of a fourth generation) should be allowed to couple te the low energy
weak Higgs doublet ?7 and acquire a mass from weak symmetry breaking. 8reaking
of G at the scale MG induces mass terms for the cther fermions suppressed 3)-6)

by powers of A.: MG/M. The various powers of ;l appearing in the mass matrices

determine their structure. They can be calculated by group theoretical methods 7).

We also assume here that all possible fermion bilinears are coupled to scalar
fields. (All these scalar mecdes are typically present in compactified higher
dimensional models, except when either the scalar fields or their couplings to

a fermion bilinear are forbidden for topolegical reasons 2)’8).) The generic
mass of these scalars (doublets under SU(’Z)L X U(l)Y) is of the order M, o
cubic couplings are ~ gM and quartic couplings have strength 92. If all super-
heavy particles have a mass of the same crder M the calculstion of the structure
") We generally assume a high scale, say M=% 1017 GeV. Mevertheless, all our
discussion is valid for lower M as long as MW/M<K (MG/M)4 {(up to an appropriate

rescaling of light neutrinc masses).



of mass matrices is greatly simplified. It is sufficient to detemine the G trans-
formation properties of a fermion bilinear corresponding to a given mass matrix
element. These then determine the power P needed to construct an invariant of
the type ty/"//’?)z [ . Here SD is the doublet whose vacuum expectation value
{vev) breaks SU(Z)L X U(l),{x’is an SU(3) x SU{2) x U(1) singlet whose vev breaks
the symmetry G. The corresponding element in the mass matrix will then be of

the order ,)P 7), with = 174 GeV the scale of weak symmetry breaking.
g Pr ‘

However, not sll heavy particles have always mass M. Sometimes G symmetry requires
some of the superheavy masses to be of the order AB-M instead of M, Effects from
the exchange of these particles are enhanced and cne has to account for this

in the analysis of the structure of fermion mass matrices. R The most important
case are fermions 6) which are chiral with respect to G but vectorlike with re-
spect to the low energy symmetry SU(3} x SU(2) x U{1). These fermions are mass-
less in the limit of G symmetry. Once G breaks to SU{3} x SU(2)} x U{1) their

mass is not protected anymore and masses appear from direct or indirect couplings
to X . They are of the order }\ﬁ M where P can again be calculated by group
thecretical methods. A second class of particles with mass MG = A Mare the

gauge bosons corresponding to G/SU{3) x 3U(2) x U{1) if G contains local
symmetries beyond the standerd model. Due to Lorentz symmetry they give no direct
contribution to mass terms in the tree approximation and play only & role in

* &
loops. We neglect them here. ) Finally, the dynamics of spontaneous symmetry

&
) In ref. 1 we only considered the case where all relevant heavy particles have
mass ~ M.
%) . . e s
A typical loop suppression v qqﬁT is smaller than a reslistic value

A% 1/20 - 1/10. for fermion masses due to radistive corrections see ref. 9.

_ 4 -

breaking Tequires that all scalars which belong to the same G multiplet as

@gory have at most mass MG = A M. In this paper we are meinly concerned with
the case G = SU(3) x SU(2) x U(1) x U(l)G where exchange of such scalars in inter-
mediate channels does not play a role for fermicn mass matrices. We assume that
the masses of ¥ and 99 are MG and Mw whereas all other scalars have mass M.*)
In this paper we discuss the role of hesvy mirror partners of quarks and leptans
for the structure of fermion mass matrices. Pairs of mirrors and ordinary guarks
{leptons) will scquire a heavy mass and disappear from the low energy spectrum,
but their contribution to the low energy fermion mass matrices may be important.
Mirror guarks and leptons appear for many compactifications of higher gimensional
thecries (including superstrings). Sometimes they are required for a cancellation
of anomalies with respect to G. We are alsc interested in heavy SU(3)xSU(2)xU{1)

11)

singlet fermions {right handed neutrinos). They play an important rcle for

the masses and mixings of the (left handed) low energy neutrinos.

Qur method first determines the orders of magnitude of the full mass matrices
for all fermions with mass smaller than M. This includes quark-mirror pairs
and right handed neutrinos which are chiral with respect to 6 end therefore
acgquire mass v %FH , ﬁ e , as well as all light fermions, chiral with
respect to SU(3) x SU(2} x U(1), which have mass of the order Mw or smaller.

We separate the heavy from the light modes and discuss the remaining low energy
mass matrices. This is in some respect superlor to a graphical methnd**) with
) This assumption was used in refs. 3)-6) and became later known as extended
survival hypothesis. 10) For an example where scalars with mass MG play an im-
portant role see refs. 3}, 5)

e In principle, the graphical method is equivalent. For all our discussion we

wark in the tree approximaticn.



intermediate heavy fermions 5).86) since particular features as vanishing or small
determinants of mass matrices can be easier detected. The mass matrices contain
singlet terms ~ AFf1 as well as doublet terms 'V‘APf1;A0r triplet terms

~ )\SM:;/M for neutrinos). We give a simple algorithm how orders of
magnitude of mass eigenvalues and mixings can be determined for such matrices.

It can be implemented on a computer.

We concentrate on the case of an Abelian local generation group,

6 = SU(3) x SU(2) x U(L)y x U{1);. The structure pof the mass matrices only
depends on the U(l)G charges of the fermions and the scalars ;t and gp . In section
2 we give the mass matrices in terms of the small parameter ;\: MG/M. In section

3 we show an example hb& realistic fermion masses and mixings can be obtained

for a set of fermion charges without anomalies, We describe the general algorithm
for finding masses and mixings for quarks and charged leptons in presence of

mirror fermions.

In section 4 we turn to the neutrino sector. Light neutrino masses are of the

. =] .
order )lPszlM. If there are no right handed neutrinos ¥~ the power P is
necessarily positive (oT zero) and neutrino masses come out small. (For a typical

7 GeV neutrino masses would be of the order 10_4 eV or smaller.)

scale M2 10
However, the power P can be negative due to the exchange of intermediate »
with mass smaller than M. We found examples with neutrino masses as high as

2 10 eV {although M %—1017 GeV!) or examples where masses and mixings could
account for solar neutrino oscillstions. In genersl, the generation pattern ob-

served for quarks and charged leptons is not repeated in the peutrino sector.

The structure of neutrino mass matrices is given by the U(l)G charges of triplet,

-6 -

doublet and singlet operators in a way quite different than for quarks and

charged leptons. (There are examples where the hsaviest neutrino is the electron
neutring.) Neutrinc mass patterns depend critically on the charges of righf handed
neuvtrinos. For an anomaly free U(l)G symmetry the ¥ & charges are related to

quark and lepton charges by ancmaly cancellation. Unfortunately this constraint

is not strong enough to fix the »*© charges completely.

In the last section we investigate conditions for a mass structure from local
U(:I)G generation symmetry compatible with (four dimensional) grand unification.

We perform a computerized scan for anomaly free models with SU(5) x U(l)G symmetry
and arbitrary charges for the fermion multiplets (within a certain range}. We
find several possible choices for the charges leading to realistic mass patterns
where all small guantities are explained in terms of A . No such solutions are
found for models basad on S0(10) x U(l)G or E6 X U(l)G. Although our investigation
should he extended to generation symmetries different from U(l)G, we think that

it will be rather difficult to obtain realistic mass matrices in terms of only

one small parameter from a generation symmetry commuting with 50(10) or EB' This
suggests that possible unifications based on gauge groups containing S0(10)

as a subgroup may be more attractive in higher dimensions, with a nontrivial

2y,12)

breaking of S0(10) in the course of compactification.

2) The structure of mass matrices

We aim for a general discussion of fermion mass matrices in theories with a U(1)
generation greup broken at MG somewhat below the characteristic scale M. Let

us assume that the theory contains n+m quarks {(charged leptons) 1. and m mirror



c C)

quarks (leptons) ';& of a given type (q, uC, d’, 1,e’}. The "generation" charges

of the guarks are Qi and for the mirrcrs ﬁk. We only consider particles chiral
with respect to SU(B)C X SU(Z)L X U(1)Y X LJ(l)G and eliminate all pairs with

Qi + [_Jk = 0, (Different types of guarks and leptons may have different charges

q;, G,

to be of the order of the gauge coupling g) to SU(3)C X SU(?)L b U(l)Y singlet

Quarks and mirrers have Yukawa couplings -y« 1;% ]_‘(,{ (which we assume

L) . Once (1) is spon-

. _ = .
scalars Xq with charge g = -{(Q; + Q) { X"T 2}
taneously broken, the jt'q acquire vacuum expectation values (vev's) and induce

a mass matrix coupling guarks and mirrors
{ o : g = . ]
LP1H );&‘ > 9 <247 g o= o Lo F Oy ) (1)

Assume that U(l)G is broken by X’t at a scale MG

M. ~ M
i = o (2)

£y
& ¥

\

<X, > %

The ratio MG/M =A is the only natural small parameter appearing in the fermion

mass matrices. We take A ¥ 1/20 - 1/10. Interactions between the different

¥ . induce nen-leading vev's of the order 3-5)

. i
(7(7‘,\ v ) M (3)

Since the vev of any operator with charge g must be proporticnal to (}(’4>? ,

opne obtains for the guark-mirror mass matrix MM

(M, V4

pr
e

e {4)

- g -

These mass terms will eliminate m quarks and mirrors from the spectrum of light
particles and leave only n gernerations of guarks chiral with respect to

SU(3)C X SU(E)L X U(l)\,.

Similarly, SU(E)L doublets gpq will give contributions to the mass matrix for

the light guarks. Assume that (pq acquires a vev of the order ¢ = 174 Gev.
(9

By effects of LJ(l)G symmetry breaking a doublet (p.f will scquire an induced

1) R -
VEV of tl d ote E !
0 e order {n (P-c; £ (ff? )

. R
@ > = ) ! ¢ (3)

i

. . c .
Consider the up quark matrix for u and Y : Yukaws couplings

give a mass contribution

(" (uwy =)
i 'Qi - Qj

C
~ U =
gqu UJ (Fq , 4

(M) N = 2 A

=

e

. [ ™) Al .
P« & 2 g ®

The total mass matrix including mirrors is

« Frar PR
- [z
o :\ M
o
H O
{7}
e holt

*
) This 1s equivalent to secticn 1. The fleld ¢  could also be considered as
k)

composlte qO(f ~ CP% R4 179 .
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Here ~» denotes transpasition and we have put the irrelevant V50 mass term to

*
zZero. ) All orgers of magnitude are determined by the calculable powers of A

i.e. the pij in eqs. (4) and {B). For down type quarks and charged leptons =q.

. _ 1
(B) is replaced by pij =1 Qi + Dj - 0, ‘ .

Neutrino mass matrices invelve left handed neutrinos 3y , mirror neutrinos i;

and possible SU(B)C X SLE(2)L X U(1)Y singlets W € (which we may call right handed
neutrinos - or more exactly their antiparticles). The U(l)G charges are Q, o}

and QC respectively. Up to irrelevant terms (which we put to zero) the mass

matrix in the neutrino sector is

v
. Mo M, M
:./ i:f)
My =My KHH ©c e (8)
c s
v
M, © MR
3 b E¥
The matrix MT comes from Yukawa couplings to SU(Z)L triplets and is of the
order 3,5
2
: .M
(M_, ~ A7
1 E !\.,1
i — 7 & - Ag 9
p = @& 2. | ©

whereas the "Dirac mass” MD 1s due to the doublets q%:

&
) These terms only correct heavy masses by contributions of the order MW‘
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e
2
o

¥

&

[
Po= | @ # Gm +%| o
e [3
The singlats /rq couple hoth to MM (see eq. (4)) and MR ")

I
(Mg Jo = AT

c I (11
P [ Qe @ |

iy

i

Again, orders of magnitude in Mﬁ;only depend on the charges Q, G and at.

3) Massses and mixings for the light quatks and leptons

We want to know which light quarks and leptons are left, what are their mass
eigenvalues and flavour mixing angles. Before discussing the matrices uﬂ%,;4zb
b{fLandtlﬂmera systematically we may understand the structure of the problem
by studying an example, Consider an anomaly free set of U(i)G quantum numbers,

consistent with SU(5} without edditicnal singlets (1)5):

Qlu )= Qlet)= RleS)=(-4, 0 4 4, &)

QUwed)= QA = (4,4, 2,2, 3,3 )

/

_;Z ()z(ab) il g) (_3/_2/) (12}

)=
RVE)=QUAS) = (-4, ~4, O )

*
) If there is an additional B-L symmetry broken at MB_EK M an additional

N . 5)
factor (MB~L/M) appears in MH .
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The model has three 5 and two IE mirror representations of SU(5). (0f course
one could add an arbitrary number of nonchiral guark-mirror pairs.) We assume
that the leading part of the low energy doublet has 9 = -2 and that AA: MG/M

is about 1/20-1710.

* .
We vse a notation ) for the mass matrices which only indicates the power of /{

of the slements (Pij)' Consider first the singlet part of V4YU coupling quarks

to mirrors:
-4 o 1 El +
% “ B 47 * -
™M, o 32 41 2 )
o~ S\ 32 a4 A {13

{A star means that the corresponding element, by & suitable cheoice of basis for
the two u with charge one, will be cne (or several) orders of magnitude smaller
than the number indicated.) In leading order A_ the two underlined elements will
eliminate the two up quarks with charge 1 and 4 together with the two mirror
gquarks from the spectrum of light particles. Non leading orders of A, however,
lead to mixing between the Q eigenstates. For example, the light guark with Q=1
has &n admixture cf order ) of the quark with {Q = 4. We keep track of these
mixings by indicating the power of A of an adnixture by & subscript. In this

notation the charge of the remaining light u guarks is

* -
( 1,4, 05, -1,
-
Qu) = 0, 1., 4, -l (14)
N

-
) This is related to the notation of ref. 1 by g = 4P .
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(We often omit the subscript zero and use the lesding charge as a name for the
corresponding light guark}. The elimination of u® is dere in parallel and we

obtain for the light up-gquark matrix

-1 0 1
A -1 4 3 2
Ti = 0f 3 21
M, 1 V2 10 (15)

Tn this case the pattern (6) is not modified by the mixings and we have, as far
A c
as orders of magnitude are concerned, MU = Méu u} {restricted to the charges

(-1, 0, 1N.

Concerning the down gquark mass matrix we eliminate the heavy d-a'pairs as

described for u. The matrix determining the eliminaticn of d°a® pairs is

4, 2, 3,
a0 %y = -4, 2%, 3
= R T

L 3, -4, 2 (17
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we derive the orders of magnitude of the mass matrix MD for the light down quarks

10 1
- 3 4 3% 2*
rj@ = .2 3 2 1
Flw -4 3 2 1 (18)

) ~
(The glements M12 and M13 are 5 and 6 without the effects of charge mixing.)
A o~ 3 c c
ML is of the order of MD since 1 and d~ as well as e
1)

and d have the same U(1)G quantum numbers. As discussed earlier

~

The lepton mass matrix
the matrices
{15}, (18) reproduce correctly all orders of magnitude of mass eigenvalues and

mixing angles.

Let us now give a more systematic discussion for the mass matrices of the light
quarks and charged leptons. (We take three generations and up type quarks as

an example.) We dencte the eigenstates of U(l)G charge by ”?_ and Uj with charge

c
L]].(_U ’ and Qéu). As & consequence of U(l)G breaking and mass terms involving mirrors

the mass eigenstates in the limit cP L= 0 comprise three zero mass quarks u:_,

. . . [+
u"(3 and a certain number of heavy states {coupling to the mirrors) a‘r'u. ; u@g .
(The indices dl,/ﬁ have the same range than i,j and denote mass eigenstates in
the limit (foL = 0. Three values of these indices correspond to light quarks,
the rest to heavy ones.) The light mass elgenstates ui consist of a mixture of

states with different charge

“C. _ <.
w = Ywi ¢

Koot {(19)

Yur = A

- 14 -
A
and mixings involve various powersg,. of A . Our short hand notation Q= (CQ(-‘ )
: . P PT
means, for example, that the light quark (20, 11, 31, 54) has dominantly charge
2 with an order )\ admixture of charge 3 and 1 and A4 admixture of charge 5.
(For every « at least one X‘ti is zero.)} The leading powers of A appearing in

the various elements of the mass matrix for the light gquarks are given by

A 11
Al e} () %
= L . + Ll S AN I S A
Pw/s tfj/ {!Qi *@} QO{ < 'f/s’(},
- . (20)
e ) N
c'/ ? { Pf,j/ + K-a{[ + K/ﬂf} }
This is seen easily by writing (MF)ij {eq. 6) 1n the aé,/@ basis and restricting

it to the light quarks

el & * (21}
A (MF){} ey = (’{'i Yui 2;5;,‘ (HF)(;, “ta

+ negligible terms involving u;w and/or UH/7

What remains is the determination of the light ui and ‘-'/6’ and a calculation

of the mixing coefficients 7{«:(, 7‘}&3, . This depends cn MM (4) and must 1n
general be calculated separately for both vt and u. We use a step by step pro-
cedure and start with the lowest power of /I s Pﬂ KL in MM' {If there are several

equal lowest P we may take an arbitrary one.} This dominant mass term will

eliminate Ugi and Eﬁl from the spectrum of light particles. After this step the

A .

remaining n+m-1 quarks u:,_(l) have charges Q:) = (LQ i) ) with mixing
3 G .

s Twi

coefficients G(l) (similar to the ¥ above) given by
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J e for € = ¢
(4
Cui = i) 1))
Py P2 P P -7
wk,  ig, VR LG o (22)
S74)
A P (2 7P

o= AP+ +F I g

14 £+a { 4 ( A A e ” ) @
(This accounts for mixing of uf‘_ with Uci ,which in turn is mixed with

4

u?' and for effects from u° mixing - see below.) If there are no mirrors left

(4}

the K are given by G _.

. Otherwise we repeat the same procedure by looking
for the lowest power of a, in the remaining matrix le,il} for the n+m-1 guarks
and m-1 mirrors left after eliminstion of Ucil and uir We repeat this until all

mirrors are eliminated and obtain
K, = G (24}

For any given step the G'(”) can be calculated from G'(n_i) by

fo -] g(.ﬂ; ?

&l ; w{

R

o f

. g ~ = i) i —
Sl e i 'Pm” +PIJM)—2,PM + 6”7‘. v i
A ! X ot Yo o, p2n a’t (25)

qere P77 g the leading element in (M"Y uhich will eliminate at
o Yoo 3 Mo ey

. c =
step n the particles e and ¢

£~

We have to specify how to calculate (Ml\(dn)) from (Mrsgn'i)). This will also explain

(ot —i)
the formulae {22)}-(25). The leading element at step n 1s Po: and we first

T

16 -

=c . . s =
rotate the ”a’ so that the mass matrix has vanishing elements (MM)%J, <«
for a/‘;’-_ Yo After this, the powers of A in MM are
'd

{2} ey {*P""") (m—i} (1) ) T

®y B,J_Fiy “'3//( ”‘;J’j r”‘-—'.)’ E’..,,)”' ZP&_WX,‘ ) (26)
A subsequent rotation brings (MM) Yo ! &« £ o, to zero. ) The mixing angles

(e D

are given by powers of /%

o for o = o

) —
ot ! g ) (=1 -1)
P s P, - 2P fo.'— oA’
Ay o’ fo Ao Yo (27)
. . c . -
Expressing Ui’ in terms of guantum number eigenstates u, with the use of (5';;‘.[)

&k p—
gives ) {25). Tne final mass matrix after step n, eliminating 6(,;“‘ and af(}ﬂ_)

is given by

TJ
1

(") en Ay} ey e ) (i)
P = { P ( P -4 ) (28)

"y ' “y “y iy Pown fon

At this place we should note that the A.-powers in the mass matrices discussed
so far are only the group theoretically allowed minimal values. There are certain

cases where the actual powers of ), for some elements are higher even if there

*) This induces again nenvanishing (MM)“’"‘X and one has to check if repeating

this procedure with these values would lead to lower 6’(”) or F’{n). For most

cases this will not happen.

*xy . . ()
£q. (22) is obtained for &

T ¢ fore = i and o2 gtherwise,
{
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is no unnatural cancellation of contributions. For example, if two quarks have
the same U(l)G charge one can always work with a basis where one appropriate

element in the mass matrix for these particles is set to zero. (This corresponds

to the star above.) Also, our procedure overestimates the contribution from mix- .

ing to the eigenvalues for matrices of the type (;: g g ) since it does.not
acceunt for the vanishing determinant of this matr;i ?;:L similar if zeroes are
replaced by small elements). Discarding these special cases (they are relatively
rare and could in principle also be treated systematically) we have given an
algorithm how to estimate crders of magnitudes of eigenvalues and mixings for

matrices of the type (7). Of course, this algerithm does not depend on the

specific assumption of a U(l)G generation group. The only input needed are the

powers of A , Pij' and’ the separation of light and heavy mass scales Mw and M.
4) Neutrino masses
The mass matrix for the light neutrinos for the example (12) is
3 -4 -4
e
F1 3 2 3 3*
1) —
2z -4 3 4 4*
M,/
-4 3*  4r 4* (23)

In this case the electron neutrino would be the heaviest neutrino with mass
~4A2Mw2/M 4 2'2 10_4 eV .6.-10'B eV. The second eigenvalue of the order A_4 comes
mainly from the crder /{ admixture of Q = 3 to the Q = -4 neutrino (1/). All

neutrino masses are very small. This situation may change dramatically in models

- 18 -

with right handed neutrinos 4%, where masses of the order of the cosmological
bound % 100 eV can be obtained naturally even if the unification scale M is high

{Ma 1017 GeV). Neglecting mirror neutrinos 3 far a moment, the mass matrix
5)

for the light neutrinos is

AN R eed
M, = Moo+ Mg Mot M (30)

x
If all SU(E)L—triplet scalars have mass M ) the first contribution is always

P
small (of the order ;l 10 4 eV with P2 0.) In contrast, the eigenvalues

T
of MR will be suppressed compared to M by one or several powers of A if »°©

has nonvanishing U(l)G charge. This may result in light neutrino mass elgenvalues
enhanced compared tag MWEIM by inverse powers of.l . {The generation group U(l)G

9)

may therefore replace the recle of U{ for setting the scale of neutrino

VgL

masses. )
As an example consider the following neutrino charges

Q{v) = (-4, -4, 3}

Q= (1, 4 (31)

The » -charges correspond to (12} neglecting those eliminated by coupling to
mirrors and we assume again 4, = -2, The mass eigenvalues for v % are of the
order :\QM and :lBM. The Dirac mass term coupling the neutrinc with Q0 = -4 to

the € with Q = 4 is af the order /{ 2 (compare (10}). A mixture of '9..:. and }/34_

*)

See ref. 5 for cases where the triplet masses are required toc be at a lower

scale.
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(Q = -4) acguires therefore a mass of the order 174 MWZ/M a 1-20 eV, For the
remaining two light neutrinos the contribution of MT is dominant {(for the mass
of a7E the contribution from Dirac mass terms involving the 2% with mass ;}EM
is of the same size as the contribution from MT)' One finds mqéﬁfAZszlM and
the lowest neutrino mass is ~ A4MWE/M. The neutrinc mixing between the heaviest

neutrino and 1?8 is of the order ;ia.

An investigation of a few mors examples with other Qe Q('QC) quickly shows

that the spectrum of neutrino masses and mixings has often a quite unexpected
structure, depending very sensitively on the U(l)G quantum numbers. In general,
neutrino masses and mixings do not follow the usual gemeraticn pattern for charged
quarks and leptons! There are many examples where ¥ @ is not the lightest neutrino
and it may even have mass in the 10 eV range. There are also many examples where
the neutrino mass pattern would be consistent with solar neutrino oscillations 13)
where a linear combination of '3K and ~ has mass = lszWZ/M A 10_2 eV {where-
as hﬂﬂa is smaller or roughly equal)and the mixing angle is not too small. It

is not difficult to obtain neutrino masses in the range relevant for dark matter
in cosmology ( m_, = Rd?fﬁj /’/1 y - some choices for neutrino charges
have even to be excluded because neutrino masses exceed the cosmological bound

of about 50-100 eV. Mixing angles relevant for neutrino oscillations appear in

various patterns, in general quite distinguished from the guark mixing pattern.

For a more systematic discussion of the neutrimc mass matrix D”ZD (eq. 8) we

first eliminate the mirrors ] according to the procedure described above for
Fal -

the guarks. This will leave us with modified matrices MT and MD and a mixing

K -
A~ A of elgenstates due to intermediste heavy states. The matrix element

- 20 -

ot

(ﬁ1>) has then maximal size ;{ ﬁﬂ MwZ/M,

P e (P, PP P R ) (32)
01/8 = PR .?&) ” ﬂ-z &¢
ith P P X in M. and M end R th £ A in M
with 53 and ka the powers of in Mpoan p @n €l e power of AL 1n M-,

Here R may be obtained from (1l1) by a simple matrix inversion algorithm and
containsalways some negative elements. Although (32) is useful for a quick in-
spection of the heaviest neutrino mass and for mixings it will often be misleading
for a determination of the smaller neutrino mass eigenvalues. The determinant
of the matrix ﬁbMélﬁg is always zero if the number of % is smaller than the
number of ¥ . Similerly, one very light 2° gives a relatively large mass only
to cne of the light neutrines. Instead of (32) (which only gives the maximal

size of matrix elements consistent with U(l)G symmetry) we need a step by step

LA -~
procedure to extract eigenvslues and mixings from MT’ MD and MR'

We first choose a basis for ¥ € where MH is diagonal

Y 2

Y Vo (33)
R
(M )/m) S

by starting with the lowest Pmn in (11) and proceeding similar as for the mirror

M S

A . P
matrix MM' In this basis MD & A ﬁﬁ»v with

B®Y e [ PO }
= +
PJ/L o it iam
(34)

The eigenvalues of ﬁb I‘-‘IRL1 ﬁb can now be obtained step by step, looking first
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for the lowest power of /\,

Cor | = i) — (R
s i 2 }Dfi“ —_ t)‘ % (35)

o(,//“

then eliminating 1¢b and :;t (while accounting for mixing among 2, ) and preo-

ceeding in the same way until all ¥_ or all 3¢i are eliminated. These eigenvalues
have then tec be compared with the corresponding relevant elements of ﬁ} and the
final neutrino mass eigenvalues are obtained by taking the dominanmt contribution
either from ﬁ} or from ﬁbMaiﬁE. Neutring mixings are calculated by comparing

off diaganal elements of the combined metrix ﬁv with the size of corresponding

eigenvalues. The mixing angles relevant for neutrino oscillations are composed

‘ -
from these neutrino mixings and the mixings in the lepton mass matrix ML.

5) A scan of anomaly free 5SU(%S) x U(1) models

In the preceding sections we have described how to celculate fermion masses and
mixings for given quantum numbers with respect to the generation symmetry U(l)G.
Orders of magnitude only depend on A= MG/M and on the leading charge 4 of the
low energy doublet. (We normalize the charge of X to one.) For given 3,31/2041/10
we can check if a certain choice of fermion charges and 4, leads to an acceptable
fermion mass spectrum. The algerithms for determining mass eigenvalues and mix-
ings described above can be used for a computerized scan of which quantum numbers
are realistic. In this paper we will only be concerned with quantum numbers con-
sistent with (four dimensional} grandg unificatien, i.e. the U(l)G charges of

C

u, d, UC, e’ as well as dc, v, & must be egusl. (U(l)G commutes with SU(S)).

We also restrict our scan ta models where SU(5) x U(l)G is free of all anomalies.

I

To start with, we first determine analytically for three generations all realistic

U(l)G charges (not necessarily anomaly free) consistent with grand unification

1n the absence of mirror particles. We will use in this section a short hand

notation u. instead of Q(u,) etc. For u. = d. = W=eansdf =9, =e the
1 i i i i i i i i

mass pattern (6) (and the corresponding formula for MD' ML) is left invariant

under the following shift in quantum numbers b
Ly = e v b

¢ c -
A = 33 (36)
o G 2D

We can therefore choose £ = b =t =¢ 5 =0, A top quark mass of the order Mw

requires 9y = 0. From wa, NP A “TK, we conclude b =T = 1. {We have a

freedom in the choice of the overall sign of U(l)G charges.} The only charge

. . c _+ .9 : 2 A
assignment compatible with m. is c=¢ = - 1. One obtains MU of the type (4 (})
with a mixing angle ifzg betwsen the second and third generaticn of the order A
and & consistent order of magnitude for me (for a more detailed discussion of

mass patterns compare ref. 1). Now uc cannot he -1, otherwise ML would have an

element (A'Y;af)nf order Mw’and therefare ¢ = c© = s = pc =+ 1. For the up quark
mass matrix there are two possible choices u = u® = d = e% = +2 or -4 with mass
patterns
4 3 2 8 3 4
My = 3 2 1 or M, = 3 2 1 (37)
2 1 0/ 4 10
. . 14),86)
For the second choice we have a Fritzsch type structure where the up guark

—
) We have defined tc, c® and u® so that they have the same f) than %, ¢ and _u,

respectively. They are indeed also the mass partnegcs. This is obvicus for t¢
since the largest element in M, cannot be off diagonal. For the charm mass one
easily finds that different asSignments would lead to unacceptable values either
for the up quark mass or the mixing angle i?la.
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mass is generated by paired off diagonal elements of the order ;XBMW {their size
should be around 80 MeV). For both possibilities the fairly large Cabibbo angle

i}iz is not obtained from MU and must come dominantly from MD. This requirement

together with the values of m, and mp fixes s = p = +1. (The charges -3

or s° = 42 {limiting case) are consistent with My but do not lead to an acceptable
Cabibbo angle.) From a typical value m. ¥ Ad Mw we find for v = 2 the two possi-
bilities dC = e =+2, -6 and for v = -4 one gets dC =g = -4. The MD’ ML mass
patterns for these three possibilities are
4 3 2 4 5 6 {8 3 4
M=M= /321 32 1 321 (38)
\321/ 321.-"! 32 1)

It is easily checked that for appropriate )\ the mass patterns (37), (38) lead
to correct mass eigenvalues and mixings up to a factor about three which is well

within the uncertainty of our approsch.

To summarize, we found the fellowing realistic U(l)G charges consistent with

SU(S)

10 i 5
01 2 l 11 2
012 ; 1 1-6 {39)
0 1 -4 5 1 1-4

Other realistic charge assignments can be obtained by using the shift 3 {eq. 38).

We note that for none of these examples the charges sre equal for 10 and 5. It

24 -

foliows that a mass pattern from U(l)G symmetry breaking at MG =A Mis not

realistie if U{1). commutes with SO(10} or E6 (unless additional small parameters

G
are introduced). This festure persists in models with additionzl guark-mirrar
pairs. Far U(l)G commuting with left-right symmetry every element in MU gene-
rated by a doublet q% will be mapped by left-right symmetry cnto a correspond-
ing element in MD generated by a doublet with opposite charge qlz . This dees
and M

nat imply that M must have the same structure(except fer q, = 0)but this

D U
mapping is nevertheless the origin of the difficulties to construct reslistic

models based on S0{10) x U(l)G.

There are much more realistic charge assignments without mirrors if U(l)G only
commutes with SU(3) x SU{2) x Li{1) but not necessarily with SU(5). In this case
there are three possible shifts similar to (36) which may be used to set
t=b=t"=7%=0 so that again a, = 0. One needs b° = 1 and T = 1. (Both
the sign of b and ‘T are convermtion since the overall sign of quark and lepton
charges can be choosen separately.) One finds already 23 possibilities for the

assignment of (c,s}, c® and s® {campared to only one for the SU(S) case). A few

simple conditions for realistic mass patterns are

{c,8) =1or 2 0or -3 or -4

fc + Cc! =tlorc=c" =1
{s + scf =2ors =1, s*=2o0r s = -3, s° = -1, -2
!p sl =2ar w =2, WCraf=1, 2 (40)
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None of the SU(5) x U(l)G models with realistic charge patterns (without mirrors
and without singlets ¥ %y is anomalj’free. If we dencte the U(l)G charges of
the SU(5) representations 10, 10, 5,5, 1by a, Ai' bi’ Bi, Ni the absence

»
of all anomalies of SU(B) x U(l)G {including mixed gravitational anomalies) re-

quires

32&{ '-BZA( hl th + —Z B( = O

1T FLTA ¢ P b LB LN O
. 3 — 3 - 3 = 2 1w fvri - )

2/ 262!‘ * Zf Z, A{ + Lb[ + Z. Bl *+ < 2,. N <

(41)

If we interprete U(l)G as a local gauge symmetry the cancellation of anomalies
implies relations between singlet (ﬁ’c) charges and guark charges. As a con-
sequence the quark and lepton mass matrices (7) and the neutTine mass matrix
{8) are not independent anymore. For given quark and lepton charges the choice
of Ni and therefore the passible neutrino mass patterns are restricted. First
of all, the sums Z'Ni and E:Ng must be divisible by five (in a normalization
where a, and bi are integer). We give in table 1 the charges of up ta three
neutrines with lNi}é 5 fuylfilling this condition. (This includes the W € charges
(31) discussed in the preceding section.) Table 2 shows the number of different
(linear + cubic) anomaly centributions fer up to ten » €. {Nenchiral pairs of
Y& with opposite N or N=0 are always discarded. We note that different sets

{N.} may give the same value for Z N, and Za0 )
X 1 1

The vanishing of mixed SU(5)2 X U(l)G anomalies (the first eqguation in (41))

is independent of Ni' We found that it cannot be accomplished for realistic

_ 2B -

charges ((39) or those obtained from (3%8) by 5 -shifts), Additional quark-mirror
pairs, which are chiral with respect to U(l}G, are therefore needed for any
anomaly free SU(S) x U(l)G model with realistic mass patterns involwving only

one small parameter A . Using the general algorithm of section 3 one may perform
a computerized scan for anomaly free SU(5) x U{1} models with mirrers which lead
to realistic mass patterns. As a first step we have chosen the following simpli-
fied (incomplete) procedure: We take the "realistic” quantum numbers obtained
from (39) and add all possible chiral guark-mirror pairs with charges such that
all anomalies are cancelled for appropriate v ¢ quantum numbers, We then evaluate
the mirror mass matrices and ask if the leading guantum numbers of the light
quarks and leptons correspond to {389) - i.e. if the "right" quarks are eliminated
by couplings to the mirrors. The number of "realistic" solutions fulfilling these
criteria ) is shown in tables 3 and 4, where we bave considered up to six quark-
mirror pairs with{ 0/ £4, Finally we checked explicitly (by hand) for some of
these solutions if they lead indeed to realistic mass patterns, including all

mixing effects from mirrors as described in sect. 3.

Among the "realistic" solutions we found various interesting neutTino mass patterns
as described in section 4, The explicit check showed that realistic anomaly free
SU{E) x U(l)G models indeed exist which explain all masses and mixings 1in terms

of a single small parameter )l (compare the example in sect. 3). However, for

none of these examples the U(i)G quantum numbers look particularly attractive.

Often three or more guarks have the same U(l)G charge. Without additional criteria

) Instead of (26}, (28) we used a simplified algorithm

(2} { =y -} L pe - NI T - i
[ PRy STy % P . (’ 4 o - f'J
oy ‘ ¥y

- Yy oy ¥ =

which for most (but not alll) cases leads to identical results.
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on the "allowed” U(l)G guantum numbers it seems difficult to single out one Table 1: Possible sets of right handed neutrino (:JC) quantum numbers with up
specific model. On the other hand, the additional requirement that & given charge to thres »? © of U(l)G charges smaller than 5 and anomalies divisible
a; appesrs at most twice (similar for bi etc.) already leads to a drastic reduc- by .5. The sets with cpposite signs are also possible.

tion of thne number of solutiens. If the general form of the charge spectrum is

. B : . . e . _ ) [ = a3 |
given - as may be expected for higher dimensional compactification - the answer ", "{-ZN; + 2_{\;‘2 Nl N2 N3
ahout the existence of realistic mass patterns may be unique. We have locked ! e o e

2).7) [ ! -1 -25 -5
at a six dimensional example “’'’‘ where U(1), is embedded into a generation :
\ G 2 -2 -50 -5 -5
group SU(Z2) x U(1}_ with g = - 1/2 for all fermions and with SU(2). representa- :
q & 2 -1 13 -4 1 ]
tions given by monopole numbers from spontaneous compactification. There is no i ;
2 -1 -7 -3 -2
realistic mass pattern st all if U{1)}. commutes with SU(3), independently of
G
3 -3 -75 -5 -5 -5
the various possible embeddings of U(l)G into SU{2) x U(1)} )
g i3 -2 -38 -5 -4 -1
|
‘\ 3 -2 -32 -5 -3 -2
l 3 0 -12 -5 1 4

3 0 -18 -9 2 3



- 29 - - 30 -

Table 2: The total number of different sets of anomalies divisible by 5 for n,, Table 3: The leading quantum numbers of the B and 10's for the light SU(E)
righthanded neutrinos and quantum numbers [Nif < N. . families and the number of totally anomaly free "realistic" solutions
with at most six added 5 or 10's and six § or 10's with U(i)G quantum
hﬂ . numbers less than or equal to 4 (absolute values). We give the number

1 2 3 4 5 8 _ , of solutions without Tight handed neutrinos % ° and with cne right

zl

[ handed neutrino of chargs Iy,

4 l 1 5 5 13 29 37
5 ! 3 9 19 37 69 105 ‘ 5 charges 10 charges # sol. # sol. with one 2 © j
5 1 3 13 29 83 129 199 ‘ : | without?® | N =25 |
10 5 37 135 411 ' { I i - '
1 1 4 0 1 -4 40 a0 ‘
4 a4 -1 1 0 -5 0 .13 |
1 A4 a1 -2 0 1 2 0 Lo |
2 2 1 4 2 -3 2 27 }
5 5 4 2 -3 -4 0 0
‘4 4 s 10 -1 1632 - 2175
4 -4 3 100 -1 16 952
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Table 4: A more detailed search, including mors neutrino patterns with up to

six extra quark-mirror pairs with U(1)G quantum numbers Q1< 4 and

up to three SU(5) singlets with U(1), quantum numbers !NT<5. Here ne

is the number of 5 and 5's adged and Mg is the number of additional

10 + 10's. The charges of the light 5's are 2 2 1 and those of the light

10's -1 -2 -3. There are a total of 504 sclutions.

5 ™a M50l M5 Mo Fsol
a 0 0 4 1 0
0 1 0 5 0 0
1 0 0 0 G 0
a 2 s 1 5 28
1 1 0 ‘ 2 4 109
2 0 0 3 3 145
0 3 0 .4 2 105
1 2 3 S 1 0
2 1 0 8 ¢ 0
3 0 0

0 4 0

1 3 8

2 2 g

3 1 0

4 0 0

0 5 0

1 4 14

2 3 38

3 2 45

1}

2)
3}
4}
2}

6}
7
8}

9}

10)

11)

12)

13}

14)
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