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We present a rigorous path integral treatment of free motion on the Poincare 

upper half plane. The Poincare upper half plane, as a Riemannian manifold, has 

recently become important in string theory and in the theory of quantum chaos. The 

calculation is done by a time-transformation and the use of the canonical method for 

determining quantum corrections to the classical Lagrangian. Furthermore, we shall 

show that the same method also works for Liouville quantum mechanics. In both 

cases, the energy spectrum and the normalised wave functions are determined. 

* Supported by Gradui~rtenstipendium Universitiit Hamburg 



In thio paper we shall present a complete path integral treatment for a particle 
moYing freel:v on the Poincare upper half plane [' = { ~ = x + iy ,y -,_ 0}. Recently. this 
model for a non-Euclidean geometry has become important in the theory of strings, 
in particular in the Polyakov approach for the bosonic string - see e.g. [1], and in 
the theory of quantum chaos- see e.g. [2,3,4]. In both cases one considers bounded 
domains in the upper half plane, which are fundamental regions of discrete subgroups 
of P SL(2, R ). We shall not consider the motion in bounded domains; our paper will 
deal with the free motion on the entire upper half plane. 

The Poincare upper half plane is analytically equivalent to three further Rieman­
nian spaces: the pseudosphere A 2 , the Poincare disc D and the hyperbolic strip S. 
For a. review of classical and quantum mechanical motion (in bounded and unbounded 
domains) in these four Riemannian spaces, see e.g. Balazs/Voros [4]. 

The stud~' of Liouville quantum mechanics and quantum field theory arises in 
many areas of mathematics and physics, recently also in string models- see e.g. [5]. 

Classical mechanics on the Poincare upper half plane is described by the classical 
Lagrangian and Hamiltonian, respectively: 

m 1 ·2 ·2 
.C.c1 = -;;--z(x +y ), 

~ y 
1 2( 2 . 2 

Hcl = Zm Y Px + Py) (1) 

with Px = mx/y2
, Py = myjy2 and the metric 9ab = (1/y 2 )8ab· 

operator or quantum Hamiltonian reads (li = 1 ): 
The Laplace-Beltrami 

(2) 

In order to construct the path integral on U, we follow the canonical approach 
as described in our previous paper [6]. \1Ve want to express the Hamiltonian (2) by 
hermitian momenta Pa = -i(8a + fa/2) (a = x,y), where fa = 8a(lnyg) and g 
denotes the determinant of the metric tensor. The quantum correction ~ F to the 
classical Lagrangian .C.c1 follows then easily from the prescription given in [6] .. We 
have 

1 
V9 = z. r x = o, 

y 
2 18 1(8 1) r y = - y' Px = i 8x ' Py = i 8y - y 

and the Hamilto.nian (2) reads: 

( ) 
1 ab 

H x,px,!f,py = ZmPa9 Pb· 

(3) 

(4) 

Notice that a necessary condition for wave functions V' E L 2 (U) n D(H) is 7/;( x, y) = 0 
for y = 0 (x E R). 
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Now we can write down the Hamiltonian path integral (x(t') 

x", y(t')=y', y(t")=t",T=t"-t') 

x', x(t") 

K-( , , , , T) 
X ,y ,x ,y; 

= C(g',g") j Dx(t)Dy(t)Dp,(t)Dpy(t)exp [i [" (p,x +NY -1-l) dt] (5) 

with Dx( t)Dy(t )Dp, (t)Dpy( t)--> rrf=,~ 1 dx(j)dY(j) X Ilf=1 (271" )-2dp,(il dpY(;) (N--> 00 ), 

where 1-l coincides with the classical Hamiltonian. Here C denotes the normalisation 

(see also [7J)L 
C(g',g") = [g'g"J-i = y'y" ( 6) 

where g' and g" are the determinants of the metric tensor at initial and final points, 

respectively. Performing the momentum integrations we get ( c = T jN): 

K( , , , '·T)=JDx(t)Dy(t) [·mi'"2_(. 2 + ·2)dt] 
x,y,x,y, 2 

expt 2 x y 
y 2 t' y 

= lim (? m_ ) N joo {00 

dx(I~dy( 1 ) ... joo {00 

dx(N-:)dY(N-1) 
N-oo -?rtf -oo Jo Y(I) -oo Jo Y(JV-1) 

[
im ;... ( X(j) - X(j-1) j2 + (Y(i) - Y(j-1) )

2
] 

xexp ~L, · 
2c i=1 

Y(J)Y(J-l) 
(7) 

Equation ( 7) is the correct path integral on U. This can be verified by deriving the 

Schrodinger equation from the short time kernel of ( 7), see the appendix. 

In order to make the path integral manageable we perform a time-transformation 

(see [6]): 
!' 1 

s(t) = },, f(y(o-)) dcr, " - (t") s - s ' ' s(t') = 0 

with f(y) = 1jy2. The variables x andy are transformed into 

x(t)--> ~(s) with ~(s(t)) = x(t) 

y(t)--> 1J(s) with 1J(s(t)) = y(t) } 

(8) 

(9) 

with ~(0) = x', ~(s") = x", '7(0) = y' and 1J(s") = y". Let us assume that the 

constraint 

1.," ~- T 
o '72(s)-

(10) 

has for all admissible paths a unique solution s" > 0. Of course, since T is fixed, 

the "time" s" will be path-dependent.. To incorporate the constraint (10) we use the 

identity 

1 {
00 

, (1.'" ds ) 
1 = y"2 j o ds 8 o '72 ( s) - T 

( " ) 1 00 . dE -iTE 00 " . ' E 
= --;;z j ·._ e 1. ds exp ti. ds ~( ) 

y -00 271" 0 0 1) s 
(11) 

1 We wish to thank N .K.Falck for drawing our attention to reference [7) 
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in the path integral (7). The only difference to the prescription given in (6] is that we 
have now only a time- and not a spare-time-transformation. This has the consequence 
that the additional factor in equation (IV.6) of [6] is absent in the present case. 
Defining the energy-dependent Feynman kernel G(E) via the Fourier transformation 

K( " " , , . T) = _1_1"" -iT E G( " " , , . E)dE x,y,x,y, . e x,y,x,y, 
27TZ _

00 

(12) 

we obtain the transformation formula 

G( " " ' '·E)= ·fn""K-("" " "' '· ")d" x,y,x,y, z ~,1J,':.,7J,s .s 
0 

(13) 

where the transformed path integral is given by 

K((',ry",(,r/;s") = j D~(s)J.L~[TJ]Dry(s)exp [i; ["(ez +7j 2 )ds] 

= Jim ( mc)N ["" r= d~(l)dT/(1) · · · ["" ["" de(N-l)dTJ(N-1) 
1\ _.oo 21rtv } -oo Jo J -00 Jo . 

X J.L~[TJ(j)] exp { i;; ~ [(e(j)- e(j-1))
2 + (TJ(j)- T/(j-1))

2
]} (14) 

with 8 = s" fN and>.= .)1/4- 2mE. The functional measure is given by 

I~ denotes a modified Bessel function. Following our general theory [6], we have used: 

9ab = bab, ,;g = 1, r{ = 0, rry = 0, .o.v = 0. (16) 

The path integral in (14) factorises into a path integral for a free particle in ~ E R, 
and into a radial path integral with "angular momentum" >. in the variable 'I E R +. 
Using the well-known path integral identity 

( 

. t" ) . . , zn? 2 m zm 12 n2 m. ' " J J.L~[rJDr(t)exp? f rdt =..;:;:yt-_ exp(?(r +r ))r~(-. rr) . ~ },, zT ~T zT 

(17) 
(see [8]) we can immediately write down the solution of (14): 

k( ,, " ,, , . ") 
'::, '"' ''::, 'TJ 's 

r;;r:;f ( m ) 3/2 { m , 1 2 , 2 , 2 } ( m , ") = V -z;;- is" exp - 2is" [(~ -e) + TJ + TJ ] h is" TJ TJ · (18) 

Inserting (18) into equation (13), the s"-integration can be carried out by first per­
forming a Feynman-Wick rotation (s" -+ -ir, T E R+), and then introducing 
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the integration variable 2 = my'y" /T and the Poincare distance coshd(z", z') 

!(x"- :r')2 + y'2 + y"2 ]/2y'y". We then obtain (see p.712 of reference [9]): 

!.= d• 
11 r 11 r m, - z cosh d - m 

G(x ,x ,y ,y ;E)= ,-;;-:: e l;p(z) r:; = -Q_l+ip(coshd) 
y 27r 0 y z 7r 2 

(19) 

where we have introduced the momentum p = J2mE- 1/4. Equation (19) gives 

a closed expression for the energy-dependent Green's function (resolvent kernel) in 

terms of the Legendre function of the second kind Qv 1 . This result agrees with the 

one obtained by solving directly the Schrodinger equation (see e.g. [2]). Using the 

integrals (see [9] pp.819, 732): 

( 
a

2 + b
2 + c2

) -1"" , p' tanh 1rp' ( a
2 + b2 + c2

) 
- dp p ' 1 

2ab 0 v 2 + p'2 •P - ' 2ab 

(a2 + b2 + c2) 4Vab 1"" . 
= --2 - cosv1r dkKv(ak)Kv(bk)cosck, 

2ab 1r 0 

equation (19) can be rewritten as 

G( " " , ' E) X ,y ,x ,y; 

(20) 

= 2_ joo dk food, p' sinh7rp' ~ K· •(lkl ')K· •(lkl ")eik(•"-•'l (21) 
1r3 -oo j 0 P (p'2 +~)/2m-EVYY •P Y •P Y 

(Kv denotes a modified-Bessel function). The representation (21) shows clearly that 

G(E) has a cut on the positive real axi' in the complex energy plane with a branch 

point at E =· 1/Sm. We. thus infer that the quantum mechanical motion on the 

Poincare upper half plane U ~as a continuous energy spectrum. From (21) we imme­

diately read off the normalised wave functions 

I p sinh 1rp ikx 
7/Jp,k(x,y) = y 7r3 

e ylj/K;p(lkly) (x E R,y > 0) 

E = _1 (P2 + ~) 
P 2m 4 l (22) 

with p > 0 and k E R \ {0}. These are the correct wave func.tions (see [4], [10]). The 

spectrum has a largest lower bound E 0 = 1/Sm. A state with p = 0 and Eo = 1/Sm 

does not exist, because 1/Jo,k vanishes identically. One also has to exclude the case 

h = 0, which is obvious from the behaviour of the Kv func.tion for z-> 0: Kv(z) -> 

f( v) ( ~ r ( v # 0 ). It is nevertheless possible to define a function </Jp(Y) := y'P+1 i 2 

which is an eigenstate. of H, H </Jp = Ep</Jp, but this function is not normalizable in U. 

</Jp is only normalisable in a bounded domain. 

Finally, we perform a Fourier transformation in ( 21) to get the time-dependent 

Feynman kernel 

K( " " , , T) X ,y ,x ,y; 

= ~j"" dk {"" dppsinh1rpe-iTP';•;,:I• ,fi)l'K;p(lkly')K;p(lkly")eik(z"-•'), (23) 

1T -oo Jo 
1 We use P:;-(z), Q~(z) for z E C \ [-1, 1] and P:;(z), Q~(z) for z E (-1, 1) for the Legendre 

functions of the first and second kind, respectively. 



The </'p,'k form an orthonormal basis 

N = ;= dx r= d;,Pp,k(x,y)1/';',k'(x,y) = fJ(k- k')b(p- p'). (24) 
-oo Jo Y 

Proof: Inserting 1/Jp,k from equation (22) and performing the x-integration yields: 

N -fJ(k-k')2,jpp'sinh7rpsinhp'i
00

~K ( )R-· ( )d - · 2 •P y •p' y Y · ' . . 7r 0 y 
(25) 

We now use the integral ([9] p.693): 

r= >.-v-~ bv 
Jn y->.K~(ay)Kv(by)dy = 22:>-r(1- >.) 

x r ( 1 - >. ~ 11 + v) r ( 1- >.; 11 + v) r ( 1 - >.: 11 - v) r (1 - >. ; 11 _ v) 
(
1-.\+p.+v 1-.\-fl+v. .. b2 ) 

X F ' '1 - >., 1 - -2 . 2 2 a 
(26) 

Let a= b = 1, ,\ = 1- 2e, fl = ip and v = ip + 2iq, q = (p' - p)/2, then 

{
00 

2<-1 () ( )d r(E+ip+iq)f(E+iq)f(E-iq)r(E-ip-iq) Jo y K;p y Kip+2iq y y = f(2E)23-2, . . 

(27) 
The "good" terms yield in the limit E--> 0: 

1., r(E+ip+iq)r(E-ip-iq) 1lr(· .. )'.2 lm = - 'p + •q ' = -:----:--:------,-<~0 23- 2< 8' ' 8(p+q)sinh7r(p+q) 
(28) 

where we have used a well-know property of the f-function .. The remaining terms 
yield 

1
. r( e + iq )r( E - iq) 

1
. f tm = 27r tm --c----eo- = 4ifJ(p' - p ), ,~o r(2e) ,~o7r(c2+q2) 

(29) 

and equation ( 24) is proved. 

Vice versa, th,. 1/•p.k form a complete set, i.e. 

j oo dk r= dp</'p,k(x",y",).P;,k(x',y') = y'y"b(x"- x')fJ(y"- y') (30) 
-oo Jo 

(the factor C = y'y" = (g'g")-i has to be included, see equation (5), due to th,. 
Riemannian structure of U ). 

Proof: Consider the integral ([9] p.772): 

1.= dx K;,( a)K;,(b) cosh[( 1r- ¢> )x] = K 0 (\/ a2 + b2 - 2ab cos¢>). (31) 

Differentiation with respect to ¢> gives on the left hand side: 

8 r= r= -
8

¢> Jo dxK;,(a)K;,(b)cosh[(7r- ¢>)x] = Jo dxxsinh[(1r- ,P)x]K;,(a)K;,(b), 

(32) 
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while the right hand side yields: 

8 absind> 
--,---Ko(va 2 + b2 - 2abcos¢)= ' K 1 (yia2 +b2 - 2abcos¢). 

v¢ .Ja2 + b2 - 2abcosd> 
(33) 

Here we have used some properties of the Kv-function (see e.g. [9], p.510). Therefore 

we have in the limit ¢-+ 0 and for y' # y": 

(34) 

It remains to consider the case y' ::: y". Let us set y = y', y" = y + ii with Iii I ~ 1 and 

cos d>"" 1 - ¢ 2 /'2 for !¢1 <',( 1. Using K 0 "" -ln( z /2) (z -+ 0) we get for the right hand 

side of equation ( 31 ): 

from which we get in the limit <P-+ 0: 

(36) 

Together with the well-known equation 21~ J::= dkeik(x"-x') = ii(x"- x') the com­

pleteness relation (30) is proven. 

The sam.- technique as for th.- path integral on the Poincare upper half plane is 

also applicabl.- to Liouville quantum mechanics. Let us consider the Hamiltonian of 

Liouville quantum mechanics (x E R) (see [5], [11]): 

1 d2 'j,-2 -
H = --- + - 0-e"'. 

2m dx 2 '2m 
(37) 

The path integral reads (T = t" - t'): 

-( " ' T) j ) [ · 1'" ( m · 2 Vo
2 

2x) d ] 
K x , x ; = D x ( t exp ' t' . '2 x - '2m e .t · (38) 

In order to make the path integral manageable, we perform a space-time transforma­

tion. Following the gep.eral theory of section IV in reference [6] we have to start with 

the Legendre transformed Hamiltonian HE: 

1 d2 Vo2 2x 
HE=---+-e -E. 

2m dx 2 2m 
(39) 

We consider the transformation q = ex and get a transformed Hamiltonian HE( f., q). 

With fiU.,q) = (1/q2)HEU.,q) we obtain 

-d 1(d2 1d) V0
2 E 

H(-,q)=-- -+-- +---. 
dq '2m dq 2 q dq 2m q2 

(40) 
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The relevant expressions for calculating the quantum correction .6.1/ are: 

1 r = -, 
q 

1 
LI.V(q) = ---. 

8mq2 

Thus we arrive at the effective Hamiltonian: 

1 2 Vt 2mE + 1/4 
Hett(Pq,q) = -

2 
Pq + -

2 
- 2 2 • m m mq 

(41) 

(42) 

Notice, that in this case one has a non-vanishing quantum correction. The path 
integral for Liouville quantum mechanics can now be calculated via the equations: 

K(x",x';T) = -. e-iTEG(x",x';E)dE 1 1"" 27rt _
00 

(43) 

where 

. 1"" ,, t -,,,, 
G(x ,x ;E)= r::r-::rr K(q ,q ;s )ds 

y q'q" 0 
( 44) 

and 

-,.... " r 11 ~is 11 V. 2 2m tm ·2 ( . •" ) 
R(q ,q ;s ) = e ol j Dq(s)J.L;v'zmE[q]exp z-1· q ds . (45) 

The functional measure is given by (15). With equation (17) for radial path integrals 
we can write down the solution of ( 45) immediately, yielding 

[. l'2"] k , , . , - m ' " 2m. ,z ,2 . . o s I m , , (q,q,s )--cnR?'exp -2,(q +q )-t-2- iv'2mE(-cnqq). 
tB S m ?,S 

(46) 

For G(E) we get 

( 4 7) 

where we have used the integral ([9] p.719): 

We have assumed without loss of generality that x" > x'. Otherwise one has to 
interchange x" and x'. We now use the integrals (20a) and (see [12] p.194): 

1 1"' ( a2 + bz + t2) Iv(ax)Kv(bx) = r> dtQv-l b cosxt 
7rV ab o ' 2a 

1r 1"' ( a2 + bz + t2 ) Kv(ax)Kv(bx) = rT dtPv_l cosxt 
2v ab o ' 2ab 

) (49) 

to obtain 
, 1 21"' psinh1rp ' " G(x ,x ;E)= 2 dp , K;p(V0 e' )K;p(V0 e' ). 

7r o L_E 
2m 

(50) 
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The resolvent kernel (50) has a cut on the positive real axis in the complex E-plane, 

and we immediately can read off the wave functions and the energy spectrum: 

1 
1/;p(x) = -)2psinh7rpK;p(V0 c') 

7f 

(p > 0). 

(p > O,x E R) ) (51) 

This is the correct result.- see [5], [11]. From equations (24) and (30) we infer that the 

wave functions have the correct normalization and form a complete set. The Feynman 

kernel K ( T) is given by 

K(x",x';T) = 2 dppsinh7rpe->Tfm K;p(Voe' )K;p(V0 e' ). 2 100 . 2 ' " 

7f 0 

(52) 

In this letter we have presented a complete path integral treatment of free motion 

on the entire Poincare upper half plane. The calculation was based on the canonical 

method for calculating the quantum correction ~ V to the classical Lagrangian and a 

time transformation in the Lagrangian path integral. 

The canonical method also works for Liouville quantum mechanics, where the 

path integral could be calculated via a space-time transformation. 

In a forthcoming paper we shall present a path integral treatment for the pseudo­

sphere A2 , the Poincare" disc D and the hyperbolic strip S. Of special importance is 

also the d-dimensional pseudosphere A d- 1 . where again the canonical method works 

very well, yielding the energyspectrum 

(p > 0) (53) 

with largest lower bound 
E(dl _ (d- 2)2 

0 - 8mR2 
(54) 

A recent path integral formulation due to Bohm and Junker [13] for the d-dimensional 

pseudosphere gives unfortunately a wrong result, because these authors missed the 

quantum correction ~ V, which is crucial and which is caused by the curvilinear 

nature of Ad- 1
• In our forthcoming paper we shall also show that the "mysterious 

phase factors'" in Gutzwiller's semiclassical calculation [2] arise very naturally. 

These new examples in path integral techniques show very clearly the great ad­

vantage of the canonical method i6J over other approaches, giving in a simple way the 

correct quantum corrections and thereby the correct path integrals. 
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Appendix 

We want to prove that with the short time kernel of equation (7): 

K((,z;e) = (~) exp [im (~- x)2 + (ry- y)2] 
27l"U 2f yry 

(Al) 

and the time evolution equation: 

,P((,t+f)= dx ;K((,z;<),P(z,t) 100 100 d 

-oo 0 Y 
(A2) 

the Schrodinger equation follows: 

(A3) 

(We have used the abbreviations z = Z(j), ( = Z(j+I), with z = x + iy, ( = ~ + iry, x = 
xul, ~ = x(J+I)> y = Y(j) and ry = Y(i+IJ·l One has to perform a Taylor expansion in 
(A2). We get ((1 = ~' (2 = ry): 

,P((,t) + /N~~,t) = (
2
:J [1/;((,t)Bo + j~2 o,P~~;t) (Be;- (jBo) 

+ ~ . L 8:~;~( t) (Be,e; -(;Be; - (jBe, + (;(jBo)] 
i,J=l ,2 ) 

(A4) 

i2j 

with 

C:') 

(A5) 

Here 
L.:N((,z)= m (~-x)2+(ry-y)2 

2£2 yry 
(A6) 

denotes the Lagrangian on the lattice. We shall only calculate the integral B 0 • The 
remaining integrals are similar. We get: 
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( 
2r._ 'if) 1/2 - mji< 1= -3/2 (" T11 
-~ v77 f y . exp ~ -;:;-:-!! ~ 

nl u ..... l t77 

m 

In the last step we have used the integral ([9] p.340): 

mryl) ·-.- dy 
21f y 

P-1 - f -~xd. ~ ? '._ r.· (? IJF) 1oo ( ') v/2 
.T t .;r - ..... .O.v .... y ; .. ry 

0 1 

(A7) 

(A8) 

and the exprf'ssion I').-=-~ (:: l = V/ .;_"';;. c-::. Inserting: the expressions 

the Schrodinger equation ( A3). 

(A5) in (A4) yield 
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