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Abstract

We present a rigorous path integral treatment of free motion on the Poincaré
upper half plane. The Poincare upper half plane, as a Riemannian manifold, has
recently become important in string theory and in the theory of quantum chaos. The
calculation is done by a time-transformation and the use of the canonical method for
determining quantum corrections to the classical Lagrangian. Furthermore, we shall
show that the same method also works for Liouville quantum mechanics. In both

cases, the energy spectrum and the normalised wave functions are determined.
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In this paper we shall present a complete path integral treatment for a particle
moving freelv on the Poincaré upper half plane U = {: = x+iy,y » 0}. Recently. this
model for a non-Euclidean geometry has become important in the theory of strings,
in particular in the Polyakov approach for the bosonic string - see e.g. (1], and in
the theory of quantum chaos - see e.g. [2,3,4]. In both cases one considers bounded
domains in the upper half plane, which are fundamental regions of discrete subgroups
of PSL(2,R). We shall not consider the motion in bounded domains; our paper will
deal with the free motion on the entire upper half plane.

The Poincaré upper half plane is analytically equivalent to three further Rieman-
nian spaces: the pseudosphere A’ the Poincaré disc D and the hyperbolic strip S.
For a review of classical and quantum mechanical motion (in bounded and unbounded
domains) in these four Riemannian spaces, see e.g. Balazs/Voros [4].

The study of Liouville quantum mechanics and quantum field theory arises in
many areas of mathematics and physics, recently also in string models - see e.g. [5].

Classical mechanics on the Poincaré upper half plane is described by the classical
Lagrangian and Hamiltonian, respectively:
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with p, = mz/y?, py = my/y* and the metric gop = (1/y*)6sp. The Laplace-Belirami
operator or quantum Hamiltonian reads (A = 1):
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In order to construct the path integral on U, we follow the canonical approach
as described in our previous paper [6]. We want to express the Hamiltonian (2) by
hermitian momenta p, = —i(d. + Ta/2) (@ = z,y), where Iy = 8,(In/g) and g
denotes the determinant of the metric tensor. The quantum correction AV to the
classical Lagrangian Lcy follows then easily from the prescription given in [6]. We
have
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' 1 8° 8* '
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1 -
AV = — [g“bl"arb + 23a(g“bl‘b)] =0 J
and the Hamiltonian (2) reads:
1 ab
H{z,pz,y,2y) = 5—Dag" po- (4)

Notice that a necessary condition for wave functions ¢ € LEH(U)ND(H) is ¥(z,y) = 0
fory =0 (z € R).



Now we can write down the Hamiltonian path integral (z(t') = 2, z(t") =
:r”'. y(ff) — yl" y(t”) — t',:. T — t” _ ff)
K(z",y",2',yiT)
t”

= C(g',g")/Dw(*)Dy(f)Dpz(f)Dpy'(f)GXP {i ft (pe# +pyy — H)dt| (5)

with Dz(t)Dy(t) Dp. (1)Dpy(t) — T105;" degs dycy X I1jes (2m) 72 dpay dpyy (N = 00),
where H coincides with the classical Hamiltonian. Here C denotes the normalisation

(see also [7])':
_1
C(g',g") =1g'd"1"* =v'y" (6)
where ¢' and g are the determinants of the metric tensor at initial and final points,
respectively. Performing the momentum integrations we get (¢ = T'/N):
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K i) = [ PO o [ [ S gy

y v Y
= lim ( m )N/w /Oo dz(1ydy(1) fco /m dz(n-1)3YN-1)
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. N 2 2
. Ty — T(5- -+ N — Y-
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Equation (7) is the correct path integral on U. This can be verified by deriving the
Schrodinger equation from the short time kernel of (7), see the appendix.

In order to make the p'éth iﬁtegra.l manageable we perform a tirrme-fraﬁsformation.
(see [6]): ' '
0= [ s
s(t) =
» Fylo))

with f(y) = 1/y*. The variables z and y are transformed into
z(t) = £(s) with £(s(t)) = 2(t) }
y(t) - n(s) with n(s(t)) = y(t)

with £(0) = ', &(s") = 2", n(0) = ¥’ and n(s") = y". Let us assume that the
constraint

do, s" = s(t'"), s(t'y=0 (8)

(9)

it

$ ds
[ =T (10)

has for all admissible paths a unique solution s" > 0. Of course, since T 1s fixed,
the "time” s will be path-dependent. To incorporate the constraint (10} we use the
identity

' 1 i s ds
1= — ds"§ f - T
y"* Jo ( o nHs) )
1 oodE _iTE oo . s’ E
— as i L i 11
77 f_m 5 € /; ds" exp (z/o ds nz(s)) (11)

1 We wish to thank N.K.Falck for drawing our attention to reference 7
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in the path integral (7). The only difference to the prescription given in 6] is that we
have now only a time- and not a space-time-transformation. This has the consequence
that the additional factor in equation (IV.6) of [6] is absent in the present case.
Defining the energy-dependent Feynman kernel G(E) via the Fourier transformation

1 e . . .
K", ¢y",2'.¢\T) = %/‘ e""iTEG(;t”,y”,m',y’;E)dE (12)
we obtain the transformation formula
w -
Gla" "o Wi B) =i [ R(E "€ n's )" (13)
0

where the transformed path integral is given by

i3

ff({" 7" e n'5s") /D§ s)ua|n)Dn(s) exp [ 5 /a (52 +ﬁ2)dJ

m f\f
J}__oo 5mid / fd!;’(])dn(], j f df(f\undmh—n

x palng) exp 25 Z [ (€ = &G-n)* + sy = mg-)) } (14)

with 6 = 5" /N and A = 1/1/4 — 2mE. The functional measure i$ given by

N ,

paln] — H [V/%?"%)’?Uﬂ) exp (‘%”’H;‘)’?(rl)) Iy ( 6?7(3)7?(3 ] )J (15)

I denotes a modified Bessel function. Following our general theory [6], we have used:
gab = bapy /g=1, T¢=0, T,=0, AV =0. (16)

The path integral in (14) factorises into a path integral for a free particle in 616 R,

and into a radial path integral with "angular momentum” ) in the variable n € R*.
Using the well-known path integral identity

) n
fﬂ,\{r]Dr{t).exp (%‘/; ,,;.de) Jot r_— e}Lp( T( C ;.rz)) I, (;fr Tn)

(17)
(see [8]) we can immediately write down the solution of (14):

R(ﬁn,’n”, 61777" S”)

1ot m N 3/2
1,5”) €Xp {*

mn (

2m
Inserting (18} into equation (13), the s”-integration can be carried out by first per-
forming a Feynman-Wick rotation (s” — —ir, 7 € R%), and then introducing

L€ €Y " }}A(—T’,n'n”) (18)
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the integration variable = = my'y"/r and the Poincaré distance coshd(:",z"}) =

(2" —z')? + ¢ +y"?]/2y'y". We then obtain (see p.712 of reference [9]):

! L m = —2COS dz m
G(w r’xr,y + Y ;E) = \/—2_7;,/; € hdIip(Z)—\/—E = ?Q_%+,-P(Coshd) (19)

where we have introduced the momentum p = /2mE — 1/4. Equation (19) gives
a closed expression for the energy-dependent Green'’s function (resolvent kermel) in
terms of the Legendre function of the second kind Q,}. This result agrees with the
one obtained by solving directly the Schrodinger equation (see e.g. [2]). Using the
integrals (see [9] pp.819, 732):

o . (_tb_+_) :f’"dp’ ptashmp’ ), (L
: 2ab . 0 v 4 pt  PT3E 2ab (20)
Po_1 i S Vab Cos VT dk K, (ak)K,(bk)cos ck,
z 2ab T2 0
equation (19) can be rewrnitten as
G(z",y", 2", y"s E)
1 [ e p' sinh7p’ T
=— | [ d o Ko (kly') Kipr (JEly") €720 (21
™) o /1; p(P'Z-F%)/zm—E vy p(i ') p(| Iy) ( )

(K, denotes a modified-Bessel function). The representation (21) shows clearly that
G(E) has a cut on the positive real axis in the complex energy plane with a branch
point at E = 1/8m. We thus infer that the quantum mechanical motion on the
Poincaré upper half plane U has a continuous energy spectrum. From (21) we imme-
diately read off the normalised wave functions

/psinhﬂ'p " .
Yph(z,y) = ‘\/ TR ey Kip(kly) (x € R,y >0)

Boo (]
P 2m "4

with p > 0 and k € R\ {0}. These are the correct wave functions (see [4], [10]}). The
spectrum has a largest lower bound Eo = 1/8m. A state with p = 0 and Eg = 1/8m
does not exist, because gk vanishes identically. One also has to exclude the case
k = 0, which is obvious from the behaviour of the K, function for z — 0: K,(z) —
T{v) (—2:—)” (v # 0). It is nevertheless possible to define a function ¢p(y) = y'PH1/2
which is an eigenstate of H, H¢, = Ep¢,, but this function is not normalizable in U.
®p is only normalisable in a bounded domain.

(22)

Finally, we perform a Fourier transformation in (21) to get the time-dependent
Feynman kernel

EK(z",y", 2", ysT)

1 [ o _prius k(e 2’

= — dk[ dppsinhmpe™*T = \/y'y”K,-p(ikiy')Kip([kly")ek( Y. (23)
o g

T3

1We use PE(z), @¥(z) for z € C\ [-1,1] and P} (2), Q4(2) for z € (—1,1) for the Legendre
functions of the first and second kind, respectively.
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The o form an orthonormal basis

f f O (2, 9)05s o (229) = Bk — K')6(p — p'). (24)

Proof: Inserting ¢, 1 from equation (22) and performing the z-integration yields:

2v/pp'sinhwpsinhp’ 1 .
=i W) IR [ kR (9)
We now use the integral ([9] p.693):
aJ\—u—lbv

jels} Y . -
/(: y “Kylay)K,(by)dy = 224AT(1 — A)

_ Ay _ - N N
xI‘(l )\+;.t+v)r(1 A ,u—I—V)F(l A+ i r/)r(l ) 1'/)
2. y 2 2 2

1—-XA+u 1—X— b?
xF( Tety ”+21—M1;ﬁ).(%)
2 2 a?

Let a=5b=1, A =1~ 2¢, p=1pand v = tp+ 2ig, g = (p' — p)/2, then

= gen | e +p + ig)T(e + ig)T(e — ig)T'(e — ip — ig)
2e~1 .
Kip(y)Kiptai =

/0‘ Y p(U)Kip+2ig(y) dy T(2e)23 -2

o | (27)
The ”good” terms yield in the limit € — 0:

L Tlede g){e —ip 1 1

R T L. CTe7 " (28)

e—0 23-2¢ 8 8{p+ g}sinhm{p + q)

where we have used a well-know property of the I-function. _The remaining terms
yield

. Ile+ ig)I‘(e —1q) ) € o
= —_— — 2
Him I'(2e¢) =T R 2]

and equation {24) is proved.

Vice versa, the 1, ; form a complete set, i.e.

f dk / dpipala " Wiz y) = o'y (2" — VS — o) (30)
— oo d

[l

{the factor C = ¢'y" = (¢'g
Riemannian structure of U).

}~# has to be included, see equation (5}, due to the

Proof: Consider the integral ([9] p.772):

/Dood;z: Ki:(a)Kiz(b)cosh|(m — ¢)z] = Ko(+/a? + b% — 2ab cos @). (31)

Differentiation with respect to ¢ gives on the left hand side:

dz Kiz(a)K;.(b) cosh[(r — ¢)z] = fo dz z sinh|(7 — ¢)z) K, (a) K., (b),
(32)

- 0¢



while the right hand side yields:

0
_ Ry (W bt - cd)=
34 o(+/a® + b2 — 2abcos ¢)

absin ¢

\a? + b% — 2abcos

K](\/aT—F b2 — 2abcos ¢).

(33)
Here we have used some properties of the K, -function (see e.g. [9], p.510). Therefore
we have in the limit ¢ —0 and for y' # ¢

f dp psinh 7p Kip(lkly’)K,-pUHy") = 0. (34)
0

It remains to consider the case v’ =~ y'". Let us set y=y', ¥’ = y+ & with [§] <1 and
cosd~1— @2/2 for 1¢| < 1. Using Ko >~ —In(2/2) (z — 0) we get for the right hand
side of equation (31):

0 k
Eifi'o(!"fslx/y’2 + 9" — 2y'y" cos §) = g 1n%+%1n(52+y2¢52) (16),191 < 1) (35)

from which we get in the limit ¢ — 0:

o0 2

. - ™ !
/ dppsmhﬂpKip(Ikly')f&z'p(lkly"):7 y'y" 8y —y'") (36)
A0

Together with the well-known equation = ffooo dke*(=" =) — §(z" ~ z') the com-

pleteness relation (30) is proven.

The same technique as for the path integral on the Poincaré upper half plane 1s
also applicable to Liouville quantum mechanics. Let us consider the Hamiltonian of
Liouville quantum mechanics (z € R} (see [5], [11}):

1 42V
H= ———— + _0

eeT. 37
2m dr?  2m (37)

The path integral reads (T = ¢ —t'}):

v m V.2
K(z",2"yT) = /Drz:(t)exp [1/ (W;i".2 B e“) df}. (38)
¢ 2 2m ‘

In order to make the path integral manageable, we perform a space-time transforma-

tion. Following the general theory of section IV in reference (6] we have to start with
the Legendre transformed Hamiltonian Hg: "

1 & V2
Hp= ———o_ L 022 _E 39
E= 5 it amt (39)

We consider the transformation ¢ = €® and get a transformed Hamiltonian H E(diq, q)-

With H(£.9) = (1/¢)HE(4;, q) we obtain

- d 1 (& 14 V@ E
G Y (O I It 4
H(dq’Q) 2m (dq2 i qdq) i 2m  q° (40)
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The relevant expressions for calculating the quantum correction AV are:

1 1/d 1
I" — - — P JUT— . AV = . 4:1
. Pe= (dq + 2q) : (q) S’ (41)
Thus we arrive at the effective Hamiltonian:
1 Vi 2mE+1/4
H L. - 42

Notice, that in this case one has a non-vanishing quantum correction. The path
integral for Liouville quantum mechanics can now be calculated via the equations:

1

Zm

K(z",2';T) = / e TFG(2", 2" EIE (43)

where .
G(z",z; E 7 ”/ K(q",q, "Yds" (44)
and

AR I ST —ia"VE/om m s .
K(g",q';s") = e Yo /2 /DQ(S)#i«/__sz[Q]eXP (7/ - qzdS)- (45)
0

The functional measure is given by (15). With equation (17) for radsal path integrals
we can write down the solution of (45) immediately, yielding

oo 1oy T Mmoo "2 Vz " | _Elr "
K(g',q:s") = —/4'q" exp{z 2or\ @ Te ) =i —IL 50 (7;5"” ) (46)
For G(E) we get
G(z",2" s E) = 2ml, ss—x(Voe* VK, sm(Voe® ) (47)

where we have used the integral ([9] p.719):
g )

/:0 emi7b2, (ca‘:)**:E [\/Za\/m b)} [\/zamMJ (48)

We have assumed without loss of generality that z" > z'. Otherwise one has to
interchange 2" and z'. We now use the integrals (20a) and (see [12] p.194):

1 oo a2 +b2 +t2
I, K, (bz) = dtQ, 1| ——mr—— t
(az)K, (bz) W\/E/; Q. ;( 523 )cosz )
T o0 a2+b2+t2
K, K, (bz) = atpP,_ .| —— t
(az) K (be) zm/o Py ( 2ab )
to obtain o poo -
G(z" 2" E) = = / dp o Kip(Voe™ ) Kip(Voe™). (50)
T Jo 2?_m —F
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The resolvent kernel (50) has a cut on the positive real axis in the complex E-plane,
and we immediately can read off the wave functions and the energy spectrum:

1
Yplz) = 7—r«/Zpsi.nh'.'rp}’{,-‘,,(T/'Ue“”) (p >0,z € R)

(51)

p?
E, = — > 0).

P o (p )
This is the correct result - see [5], [11]. From equations (24) and (30} we infer that the
wave functions have the correct normalization and form a complete set. The Feynman

kernel K(T') is given by

2 oo . 2 + i
K(z",2;T) = F_/ dPPSinhwpeﬂTf_mKip(Voem VHip(Voe® ). (52)
0

In this letter we have presented a complete path integral treatment of free motion
on the entire Poincaré upper half plane. The calculation was based on the canonical
method for calculating the quantum correction AV to the classical Lagrangian and a
time transformation in the Lagrangian path integral.

The canonical method also works for Liouville quantum mechanics, where the
path integral could be calculated via a space-time transformation.

 In a forthcoming paper we shall present a path integral treatment for the pseudo-
sphere A%, the Poincaré disc D and the hyperbolic strip 5. Of special importance is
also the d-dimensional pseudosphere A?~1. where again the canonical method works
very well; yielding the energyspectrum

1 (d — 2)*
E;f” = o [pz 4 = y ] (p > 0) (53)
with largest lower bound
(d—2)°
B = i (54

A recent path integral formulation due to Bohm and Junker {13] for the d-dimensional
pseudosphere gives unfortunately a wrong result, because these authors missed the
quantum correction AV, which is crucial and which is caused by the curvilinear
nature of A9~!. In our forthcoming paper we shall also show that the "mysterious

phase factors” in Gutzwiller’s semiclassical calculation [2] arise very naturally.

These new examples in path integral techniques show very clearly the great ad-
vantage of the canonical method [6] over other approaches, giving in a simple way the
correct quantum corrections and thereby the correct path integrals.



Appendix

We want to prove that with the short time kernel of equation (7):

.4 m im (£ —2)* + (n—y)?
K(Gze) = (27rif) °xP [E; Y7 (A1)

and the time evolution equation:

T ae [T B s auis
¢(c,t+e)—/_wdj0 S K(C () (A2)

the Schrodinger equation follows:

(43)

OGN [321/.»(4,0 . azw(q,t)}
ot T 2m -

2m | 8¢z an?

(We have used the abbreviations z = z(;, { = i+, wWith e =z 4y, ( =€+in, 2 =
z(j)s €= T(+1)s ¥ = Yy and 7 = y(j+1;.) One has to perform a Taylor expansion in
(A2). Weget ((1=¢, (2 =n):

89(0,1) _ WYy
ll/)(C‘Jt) TE 3t - (2'}1—36) |: C t BO + JZIZ 64} (BCJ CJBO)

1 (¢, 1) _
. > 8¢:0¢; S a (B Gy — CBC; CJ'BC,' *CiCjBO)J (A4)
=12 TN
t23
with
o0 oo '- _ . 1/2 .
By = f d:r/ d_:;"eieg‘,"(C«:) _ 9 (Z‘ME) Em/“K—l(m‘/ie) _ (2mf)
- o ¥ m z : m

=
oc Y (45)
oG o0 d A
BE"? = / :l'-d;I‘f ﬁ}‘ie“c ($iz) fT?Bo
—oco 0 Y
o0 oo .
B :/ zidr d—geich(c’:) = (62 4 Eni’) B,
—oo o Y ‘ m
an :/ d:c/ dyeief,N(C z) — 1 (1 - )Bo
— o0 0 J
Here : ,
m (€ —z) +(n—y)
M(¢,2) = m i F (A6)

2¢? yn

denotes the Lagrangian on the lattice. We shall only calculate the integral By. The
remaining integrals are similar. We get:



= = (hj ; m (£ P {1 — 1 ]l“:
BU = / / - elp ] N ._\_‘__ ,_,A;___’f J . :

- € yn ]
2mie) o " m mn 1
= ( ) \/nfm/“/ y ™ exp (ﬁ,,, y—-;rﬂ)dy
m " 2ien 2i€ y
. 1/2 .
2mrie - . 2re
=2 ( ) ™Ry (m/ie) = . (AT)
™ ? m

In the last step we have used the integral {{9] p.340):

~
¥
i

PR S A\ .
f T e *dr = 2 ( ) K,(24/87) (A8}
o

and the expression A _1(z) = \,"éf_ *. Inserting the expressions (A5} in (A4) yield
=1 : .

the Schrodinger equation (A3).
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