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I. Introduction 

In the last year there arose a new development concerning anomalous gauge theories 

/1-h/. It has been observed that integration over all gauge field configurations 

(also those which arc related by gauge transformations) in the path integral auto-

matically leads to a gauge invariant, anomaly free quantum theory /2-4/. This pre-

scription is justified by the fact that gauge fixing does not make sense in a theory 

without gauge invariance. The procedure results in a theory which contains, compared 

to the old inconsistent treatment, additional bosonic degrees of freedom besides 

fermions and "transverse" gauge fields. 'l'hese boson fields cancel the anomalies of 

the fermionic sector. This opens up the possibility to investigate a gauge theory 

with chiral coupling to fermions without encountering mortal defects from the very 

beginning. 

There is a formal proof of gauge invariance for the general case /4/, up to now, 

however, there is not much progress in showing this feature for specific models 

explicitly. Only the chiral Schwinger model has been investigated in detail /4-13/. 

In the present work we want to extend this to the case of a nonabelian theory where 

the absence of anomalies is not as simple as in the abelian case /7, 8/. However, we 

stick to 2 dimensions where the fermions can be integrated out explicitly. In this 

way we hope to gain some experience with the mechanism of anomaly cancellation 

without being forced to enter perturbation theory. (This would be necessary in four 

dimensions where also renormalization problems have to be faced.) The non~belian 

chiral gauge theory in 2 dimensions has also been treated in refs. /7, 14/, however, 

in ref. /7/ the analysis was not completed and ref. /lh/, which has also been cri-

ticised in /7/, used the so-called "anomalous" formulation /8/. 
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IJ. Nonabelian Chiral Gauge Theory in 2 Dimensions 

~l ___ ~f£~~~!~~-~~~i2~ 

We consider an SU(N) r,auge theory with chiral coupling to massless fermions 

S ~ ) cL 'x H tr ~J"'" +if y~'[id,. + t-4;< ( 1+i Ys J] '1-} I 1) 

. . . 
where y."' AI'" T with T being the generators of the gauge grou!l, normalized 
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Sr =)d.\ t 'f- Y+ A_ '1- 121 

i.e. only A couples to the fermion fields. In 2 dimensions the fermions can be 

integrated out explicitly, the result for QCD
2 

(pure vector cou-pling) reads /15, 16/ 

( we ignore tOpologicaUy nontrivial gauge configurations /17/) 

~~0 [A] ~ I [ T.,_] +I [ T..l + 

where WQCD[ A) is defined according to 

~· HT)ci\-trAA + -

""!' ( i WociAJ) = ~ d 1f d if ev[i (d',.- if y~'(' ~+~A,-) 'I] 

'l'he gauge field is represented as 

A =-.1.(dT)T-~ 
+ 1 !. + += 

and I is defined by { 1/r =- 5 d =tx fir) 

r [T] = ~~ Tr [o. n r< (d_ Tl r"] en 

,.,., 1 

+LTrfdt{0tT)r 1 (~ T)T-'c&vTJT- 1 )o-,i), 
,.,,. 0 

(3) 

( lJ) 

I 5 I 

161 

- 3 -

'r±(x,L) is an interpolation between jj_ and T±(x): T'!.(X,O)"'f 1 Tt. (X,1) =- T± (X). 

In eq. (3), the regularization ambiguity has been resolved by requiring gauge in-

variance with respect to 

s 
= sA, :;-< - i ( 'J, s J s-' A±-'> A! - 1- -

L- T_s = S T_ 171 

+ • + 

In the case of the chiral coupling as in eqs. ( 1) and (2), only T+ couples such 

that I[T_] does not occur. Due to the regularization, however, the mass term has 

to be kept even though it contains also T /18/. In addition, since there is no 

symmetry principle to fix the relative strength of the local polynomial, there is 

an arbitrary parameter associated with the mass term. This leads for the chiral 

case to the effective action 

~ 

IN [A] I[T,.J+ ' !:1_ 17- A.,_ A_ 
nr 

181 

This result, which is already indicated in ref, /19/, can also be achieved by 

simply adding an arbitrary mass term to the light cone gauge result of QCI'
2 

/20/. 

Another approach to derive the effective action is the direct evaluation of the fermion 

determinant using an appropriate regulari·zation prescription /21/. 

Following now the procedure for quantizing chiral gauge theories as outlined 

in /2-4/, it has to be recognized that the relevant action is W [ A Go ·•] rather than 

W ( A] since the generating frmctional has the form 

:l = l clA dG J({(AJ) L1f[A] e>(,p{i 'w'[AG-'J) 191 

where 

IN [A] 
1 
il/r 

f'V ~ fj.J + W [A] 
I 101 
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In eq. (9), d (f(A)) is the gauge fixing J function, ArCAJ the associated 

Faddeev-Popov determinant and dG the invariant group measure. In passing, we 

note that W[Ac;.-•J is gauge invariant with respect to A___,A8, 6----'---)SG, hence 

we have a gauge invariant theory in spite of chiral fermions /4, 1, 8/. This gauge 

invariance is a formal hint for the absence of genuine anomalies, because the anomaly, 

which is defined as the covariant divergence of the current, is nothing else but 

the gauge variation of the effective action. Now we have to calculate 

wLA~-·1 ~I rc.-·n~ ~·Iff 
fTT 

(j.-" (j.- 1 

A+ A (111 

The mass term gives 

f{Tn- A:-A~-:, ,-;h[(;t+ r:.n:.-'(J_ r.>r;'+ G-CJ,c.-'!GoO_r;.-') 

+G(a,c.-')(J_T+)T+-'+(r(J_r;.-•)0, T_)T_-•} 
( 121 

and the Wess-Zumino action I changes according to 

I[r;.-·r J~ I[r']+ I[T]+i-r;... Go(;) r;.-')(ii T n-• + l1' .,_ 4-TT + - + .,_ 
( 131 

Altogether we find: 

w[AG--·1 ~ r cr,1 -,";, Trra+r:.>r:.-'o_r,>T,-' 

+ '11rr -cr[I (4-a l r; r;v;.-') c;. (;t_c.-'> 

•(4-~)G(d r;.-')(;) T )T-'-~GO c;.-')(ii T )T- 4 
2. + -+.,. l. - +--
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~l---~~~~~~1~--~~3-~-~~i0!_f~~~tions 

In order to study possible anomalies, '..re have to construct currents, We are only 

interested in those currents which couple to the gauge field, these are defined 

"' 
uv 

<jt>(x) ' J = -- vu. 
} J A (X) 

:;: 

exp(t'W[A~-·1) ( 15 I 

where < > denotes an "average" over fermion fields only, the indices u and v 

specify elements of the SU(N) matrices. In order to perform the functional deriva-

tive, '"e replace ( d _ ~) T. _, 
~ -

everywhere but in l[T+J by A±. Then ( L> can 

be calculated di1·ectly '"ith the resulL: 

a 
< /--> ~ J'Tr ( 1 A_- G. ;}_r;.-') e.x..p (, W [ AG--'1) 

( 161 

~ ~,; [ UJ~)T.-'+ r;. 'd_c.-'] exr(,.W[Ac;.-•1) . 

For ( j+) we n<"ed the derivative of l[T+7 '"ith respect to A_. 'l'o this aim we use 

the formula 

-· T"':T'"·T[r"' ("~A'") -+ + + + A_ -
(0)1 

T, 
tiJ 

r. T+[A~''j ( 171 

which is Lemma !1,;; of ref'. /16/. The differential equation (5) forT+ can be con-

verted Lo an inLegral equation: 

-r.(XJ~ 1+<" 1 r c1.'y ])+ (X-Y) A_(y) ~(y) 

where 

D+ (KJ ; 
-t 

'ITT 

4 
+ . 

X - t. €. 
~ Ci_J!,cxJ 

1 
~ J (X) 

o/'-X 

( 181 

( 191 
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Applying a to eq. ( 18) thus leads to eq. (5), Eqs. ( 17) and ( 18) can be combined 

to give the first order variation of T+ with respect to A_: 

T,[A_+cA.Jc,, = T,[AJcr>[1+ '1 fd'r P.cx-rJ(r;'[A_J JA_ T,_[AJ)iY>] I 201 

This means for the variation of I[T+J 

I [T,[A_+JA_)] = I[T,_[A)·[1+ OiJA_l} 

121 I 

=I [ T+[A_J] +I[ 1+0(JAJ] + :·; h ( d+ T+)'r.-• J A_ 

' Since I[1+ otJA)] = ·Q((dJA) ) this can be neglected and we find 

'I<V 

SI[T.,] ; .i.J. [(;; T )T"'} on 
v« ~ 7T + + + J A_ (X) 

1221 

With this the + component of the current is calculated to be 

<j, > = ~~[ o;r.n:;'- I O;r .. I T..-'+(1- r )G. d+G. -'} e"f(,· W [ l;."l) I 231 

Note that this coincides, as expected, with the result for the pure vector case 

/16/, if we set a= 2. Finally, we state the results for the time~ordered two~point 

~ G-4 

·functions of currents, which are the second derivatives of exp{< W [A J) with respect, 

to the gauge fields, without explicit derivation, 

(T~ . • . ' . • . I ( . w~ r c;··J) 
J_IXlJ_<Y>>= <j_ (X))(j_Cy>> €Xf _, A 

(T"j;cx> i>Y>>= <f:CxJ>( ~~(y)) V<f{-t'(;/[ Ac;-•1) 

- (a J"b Jl(X-Y) 

4-TT 
exp( ( W [A~-·J) 

1241 

I 25 I 

- T -

<T"'j:c•,j/cr>>= <j.,"u>><j:Cr>> q(-i W[A&-'1) 
I 26l 

+ -~ tr [f T,-•;_" T,] en ]);cx-Y! [ T, __ ,). b T+] Cy)} F!Xf(i ~ [ AV'J) 

where A a 2 1: a are generalized Gell-Mann matrices and D~ = d+ :D+ . Formally, 

eqs. (25) and (26) have to coincide with the result of ref. /16/, if we set a= 2, 

since the A-dependence of j+ is the same as in this ref •. 

sl ___ ~E~~~~~-2f_~~2~~!i~§ 
. s s . ,-1 

The currents transform under gauge transformations according to ( J > = <J> S 

hence the covariant derivallve of j reads 

'J)I' < i v > = ~ <: / v ) + /1 [ < i v > • A I' ] 127) 

For a consistent dynamical theory of gauge fields it is necessary that the current 

which couples to the gauge field is covariantly conserved, i.e. 

:vi' <r> ~ 1 ('iJ+ <J_> + J)_ <: j,>) =a 1281 

The left hand side can be calculated to give 

V <j."'>=j_ [a [c~-~)c<l_ T+lT+··-~ c.J c.·'J 
,- frr + • -

+ 'd_ [- i o, T.. J T.. _, ~ ( 1-£ J c. J .. c:' J 

+(1-!)[C.(~ C.- 1
) ('J T )T-"] 

2-. 1-++ 

-I£c;.(;)_c,-•), (J, T_)r_-"J} exJ(,W[Ac;.-'1) I 291 

where we used 
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[ ( JJ+i T+-',( d_ T) T+-'] • d+(( i!J+) T+-')- 'd_((;J, T+) T+_,) I 3D I 

Experience with the abelian case where the additional boson field enforces current 

conservation /8/ suggests to try whether the equation of motion for G has conse-

quences forD ( jiJ. > , To this aim we write the effective action as 

" 
W[A~-·1= I [I;.-'] ·frr-z;;.[-i (,.(d+c;.-•)c;.(d_c.-') 

+( 1- ~ J c. o+ c.- 'J o_ r+ n: _,_I c. O_r;.- 'J r a. T__ J r_-'] 

+ terms independent of G. 

-1 _, ,-<( _,) 
For the variation of I[G ] we write (&+J&) ""lJ' 1L-J(r·6 

and use the same procedure as that leading to eq. (22), this yields 

JI[G.-'J ' [ _ _, tr't< 
= ~TT (;. J_ ((;. d+(;.-')] (X) 

J c. uv," 
Furthermore we need 

n:;- c. q,, c. -• > )( 
J c.'UV(X) 

"(G- 1f;x>{~Jt [c;.,r?uc;.-'), :nt"cx>, 

I 31 I 

I 321 

I 33 I 

valid for any)( • With these resuJts '.le can derive the equation of motion for G: 

O= JW[Ac.-'J 
J c."'"'" 

= 
4 

~7T 

<7¥[ (r;.-') · <l)u-~J{d_ r, Jr.-'-t c;, 'd_c.-· J 

+<1_[-iC;)+ T_lC 1
+ (1-fJC.d+c.-'] 

+(1-~)[C.O c.-') (:iT )T- 4
] 

2. - ~ J - + + 

i [c.O_ c.-'> ,o+ T__! C'J (" 

.f '()".y 'Tti ( "-' c.-~ ) 
=-2:cc.-) c'JJ~'-<{">) 'E'Xf -<'w'[A 1 I 34 I 
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Hence '..Je learn that it is the dynamics of the G field which enforces current con-

servaLion and thus makes the theory consistent. This also ensures a canonical 

[j 0 ,j 0 J equal time commutator, i.e. the absence of Schwinger terms. The proof 

_for Lh.is, being valid for arbitrary dimension n, goes as follows. Let AP· be the 

anomaly, i.e. the covariant divergence of the current and define 

~ 

J .A ex> 
t J Av'<y> 

)'v,"bd ;((Y-Y) 
"I /"' 

v, a..b J"' + r ex- y > • I 3o I 

'l'hen the a-a-component of the equal time current current commutator can be expressed 

in terms of I~o,ab and Io,ab /22/: 

[ 
.,. .,b ] << Cx>>,<J Cy!) " 

J' ETt! 

a b' .. ' 
J 

\ M-.., -,t 

a Ci!-rJ 'I 
oab a.cclAc: 

+(I'-~ !'- r~'o,db) J'"-'cx-ii'J 

+ (I;c)a.b O(.·,a.~) d ;r-n.-.., ...,. ~ (36l -I < Cx-Y) 

'This means that there are no Schwinger terms in [ j
0 
,j

0
JETC if the current j is 

conserved, since in this case If-!O,ab and Io,ab vanish. 
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III. Conclusion 

In the present work we have explicitly shown that the chiral nonabelian gauge 

theory in two dimensions is gauge invariant, free of anomalies and that there 

are no Schwinger terms in the j 0 -j 0 commutator. The consistency of the model 

(at least up to this level) is dynamically ensured by the boson fields which 

stem from l:.he appropriate quantization procedure for the gauge field. In this 

way the theory seems to rescue itself: as soon as there arise anomalies in the 

fermion sector, these boson fields become nontrivally coupled and cancel the 

fermionic anomalies, leaving behind a theory which appears to be consistent. 
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