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Abstract:
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show that two dimensional nonabelian gauge theories with chiral coupling to mass-

less fermions are free of ancmalies.
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L. _Introducticn

In the last year there arose a new development concerning anomalous gauge thecries
/1=k/. Tt has been observed that integration over all gauge field configurations
(also those which are related by gauge transformations) in the path integral auto-
matically leads to a gauge invariant, anomaly free quantum theory /2-L4/, This p;e—
scription is justified by the fact that gauge fixing does not make sense in a theory
without gauge invariance. The procedure results in a theory which contains, compared
to the 0ld inconsistent treatment, additional boscnic degrees of freedom besides
fermions and "transverse' gauge fields. These boson fields cancel the anomelies of
the fermionic sector. This opens up the possibility to investigate a gauge theory
with chiral coupling to fermions without encountering mortal defects from the very

beginning.

There is a formal proof of gauge inveriance for the general case /b/, up to now,
however, there 1s not much progress in showing this feature for specific models
explieitly. Only the chiral Schwinger model has been investigated in detail /L—?3/.
In the present work we want to extend this to the case of a nonabelian theory where
the absence of anomalies is not assimple as in the abelian case /T, 8/. However, we
stick to 2 dimensions where the fermions can be integrated out explicitly. In this
way we hope to gain scme experience with the mechanism of anomaly cancellation
without being forced ﬁo enter perturbation theory. (This would be necessary in four
dimensions where also renormalization problems have to be faced.)} The nonabelian
chiral gauge theory in 2 dimensions has also been treated in refs. /T, 14/, however,
in ref. /7/ the analysis was not completed and ref. /14/, which has also been ecri-

n

ticised in /T7/, used the so-called "anomalous" formulation /8/.
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I}, Monabelian Chiral Cauge Theory in 2 Dimengions

a)__ Bffective Action

We consider an SU(N)} gauge theory with chiral coupling to massless fermiocns

TR TS s FATRE IR 1Y SN

where /:.—Aﬁ T with 'T,'a being the generators of the gauge group, normalized

a ab . . .
sccording to b T TBZ%S . Our notation is o= ¢ Yaafd s Moo~ Maa = 1 s

EM=—E‘H = — . Tn the following we shall often use the light cone repre-
Lati o +- ~+__1 ;
- + - - =— N . -
sentation X, = X, tx, , M =9 =73 , £ £ = T - In this represen

tation the interaction reads {due to id\fﬂ'}fs = E/uuz}fv )

2
Sd X ~ ¥ YA (2
i.e. only A_ couples to the fermion fields. In 2 dimensions bthe fermions can be

integrated out explicitly, the result for QCD, (pure vector coupling) reads /15, 16/

{ we ignore topologically nontrivial gauge configurations /117

oco‘[A] I, 7+1LT +¢i fa!,vﬁrAA (3)

wherc ?JQCD[ A} is defined according to

.~ - . e . ]
oo (W, 04]) = (d¥d¥ eq[ifd's FpCig g ANY] .
The gauge field is represenled as
3 -
Aiz—}‘— (‘)_tT;)T; (5)
snd I is defined by { br = 5 dzx t'r')

I(T]= _Er[(a DT T T

4
£ - - -1 (6)
+W7:rf:zt[(9£T)T (2. TT O, 17 Je )

T,{x,t} is an interpclation between ¥ and Tulx): T,_(X,O)::i T (x, 1) = T, €x).
In eq. {3), the rcgularization ambiguity has been resolved by requiring gauge in-

variance with respect to

T — 7.0 =5T, : (n
s +

In the case of the chiral coupling as in egs. (1) and {2), only T, couples such
that I[ T_J does not cccur. Due to the regularization, however, the mass term has
to be kept even though it contains alse T_ /18/. In sddition, since there is no
symmetry principle to fix the relative strength of the local polynomial, there is

an arbitrary parameter associated with the mass term. This leads for the chiral

case to the effective action
a4 a :
WIAl - ILT, 1+ A A (s)

This result, which is already indicatedin ref, /19/, can also be achieved by
simply adding an arbitrary mass term bo the light cone gauge result of QCI, /20/.
Another approach to derive the effective action is the direct evaluation of the fermion

determinant using an appropriate regularization prescription /21,

Following now the procedure for quantizing chiral gauge thecries as ocutlined
~— -1
in /2-4/, it has to be recognized that the relevant action is w{AG' ] rather than

W[ AJ since the generating functional has the form

(dAdG J(f) LAl exp(:WIAST) (9)

where

WAl =-3Tr B P + WA e



In eq. (9), 4 (£(A)) is the gauge fixing § function, Af[A] the associated
Faddeev-Popov determinant and dG the inveriant group measure. In passing, we

-4
note that WA® ] is gauge invariant with respect to A-u—;AS, & —5 G, hence

we have a gauge invariant theory in spite of chiral fermions /4, 7, 8/. This gauge

invariance is a formal hint for the absence of genuine anomalies, because the anomaly,

wvhich is defined as the covariant divergence of the current, is nothing else but

the gauge variation of the effective action. Now we have to calculate

-1

o &’ -4 g:tl ' &
WIAT J=T[6"'TI+ ;2 Tr A, A :
The mass term gives

AT A A T [, TOT T OT,  60,6706(2.67)

HG(8,67 VO THT 46 (673, THT " ]

and the Wess-Zumino action I changes according to

TI67T,0= IL67 T+ TIT,]+ oW 603,67 9Ca. )T, .

Altogether we find:

WLAS T =TT, 1% BT " (aT)T,"
oy 9 £ N G(I67)
77 rf7 (1-a) 63,670 606
H(1-3)6(,6") A THT, - 560673, 7T

Hat #76(3,6796 (.66 (3,67) |

{11}

(12}

(14}

b) Currents and 2 Point Tunctions

In order tc study possible anomalies, we have to consbruct currents. We are only
interested in those rurrents which couple to the gauge field, these are delined
as

. -

<j': et 3 op(i W4% 1) (15)
Y 3A w0
¥

where < > denotes an "average' over fermion fields only, the indices u and v
specify elements of the SU(N) matrices. In order to perform the functional deriva-
tive, we replace ( 3;_7:) 71‘4 everywhere but in I[T,] by A, - Then _> cen

be calculated directly with the result:

= (;A;z(,a_c:‘)w(gﬁ?m‘f]) N

= [T )T 63,67 epcWLATTY

For ¢ j, > we need the derivative of I[T ] with respect to A_. To this aim we use

the formula

() [£3]
T =T+[A’ ] (1)

) +

€4} (o) (o~ ) to} [{-3]
T =TT A a T

+
which is Lemma h,2 of ref. /16/. The differential equation (5) for T, can be con-

verted to an integral eguatlon:

~
~
b,
—
I

T+0g {"UY D,,. (x~y) A_cy) T,(y) (18)

4

e = 9 D o (x)=0d (X) (19)
M T xT-le gmx” -t

=
~
Y
—
1



Applying 3. to eq. (18) thus leads to eq. {5). Eqs. {(17) and (18) can be combined

to give the first order variation of T  with respect to A_:

T{A+dA Ton =T, LA T ft i3 (d 2 1A TLA ] .

This means for the variation of I[T, ] :

TLT,(A+3A 1] = L{T,LAT-{4+0(3AD}

{21
¢ -

s T[T, LA +1[1+0GN]+ L Tr (3T T TA.
Since L[4+ 0tdA}] -——'D((QJA)z) this can be neglected and we find

IT[T.] _ ¢ S e (22)
IA % T?T [QTHT'] . =
With this the + component of the current is calculated to be

. ! 4 - -t i ¢
4oL ST (1-£)60,67 exp(iWLA 7). @

Note that this coincides, as expected, with the result for the pure vector case

/16/, if we set a = 2. Finally, we state the results for the time-ordered two-point

Moyt [
‘functions of currents, which are the second derivatives of u,v(t WA f) with respect

to the gauge fields, vithout explicit derivation.

(T*}'_“(x);'_bcy»: <'¢'_acx)><;'_bcy)> ﬂf(“tlﬁd/[AG"]) (24)
*.a b . a b L~ ¢
(T oy Jappe {g 00 { v exp(-c Wl A 7)

‘& ovab d ~ 67
- L2 (x- ‘wilA” ]
- d (x-y) @(F(L )

<T*}':(x)}'+5cr)>= <j':(x)><f:cy:> exp(-¢ wra® 1)
. (26)
# b fIT, 0T, T Do LT A0 T T enf ep(c WEATD)

where 2% = 2 T are generalized Gell-Mann matrices and D} = D, . Formally,

aqs. (29) and (26) have to coincide with the result of ref. /16/, if we set'a = 2,

since the A-dependence of J_ is the same as in this ref. .

¢) Absence of Anomalies

. . .5 . -1,
The currents transform under gauge transformations according teo (}) = S (}} 5'

hence the covariant derivative of J reads
®,u<}v>:é“<jv> ”?E<}v>’Af*] , (27)

For a consistent dynamical theory of gauge fields it is necessary that the current

which couples to the gauge field is covariantly conserved, i.e.

3ﬂ<j'/“>=—;—(9+<7({'_>+3*<;'4>) =0 (28)

The left hand side can be calculated to give

i;l<}"“>=;—” fo,lc-DATIT -5 62.67"]
1L~ TIT 4 (1-2)69,67']
-2 62,67, (3. T)NT,7" ]

216067, (3, TOT T} ep(cWiA® 1) (29)

where we used
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(€, 77, (. TOT, " ]=3,((aTHT, )= 0.((3,THT") . {30)

Experience with the abelian case where the additional boson field enforces current
conservation /8/ suggests to tvry whether the equation of motion for G has conse-—

quences for DIJ- < J“> . To this alm we write the effective action as

WEAST= 1167 T+ 2T f- 5 600,670 6(2.67)

"‘(’f"'%) G(Q,;C-“') (9,7;) T;""'_% 6'(9_6"—4)(3“7__) T__.._,f}
+ terms independent of G.

For the variation of I[ 677 we write {6+ JG-)—4= G_4Cﬂ —-abr -6-—4)

and use the same proceédure as that leading to eg. (22), this yields

JIL6 ]

1 o e Y
JG-uv(XJ :Z;r[G' 3—(6'91&6’ )] tx) {32}

.

Furthermore we need

ST 6.6 X
J Guv(x)

_ I L v T
=(67") cx)[gu)ff[cq(;;“c; LY oo, oy
valid for any X . With these results we can derive the equation of motion for G:

0=£$___’f_—j - 417} (G;')v'.'{% [c1-QTHT-%$ 667"
200, TOT " (4-2)6-9,¢67"]
-6 (3,67 ATIT, " ]
gl e, oI

a-2 (G«“‘)M(@/uq"ﬁ)m'exf (- A%T) T

Hence we learn that it is the dynamices of the G Tield which enforces current con-
servation and thus makes the theory consistent. This also ensures a canonical

{jo,jo_—} equal time commutator, i.e. the absence of Schwinger terms. The proof

for this, being valid for arbitrary dimension n, goes as follows. Let A? be the

anomaly, i.e. the covariant divergence of the current and define

. a v, ab n b .
L'J—;,_‘"‘ 4 =T & exey) + TP FTex-ys (35)
B'Ap(y,u Vol

Then the o—o-component of the equal time current current commutator can be expressed

in terms of Iuo,ab and Io,ab /227

abe foc

‘oa o b o n-q 2 2
C<J, >, <t Cy)>]Ew—¢; } (R

+(Io,a£_- fQCdA/: I/uo,db) a—u”(?’- ?)

: _odad -1
+(I o,aﬁ_ Iot,ﬂ- ) 9,_' 5”‘ (7 -);P) ) {26)

This means that there are no Schwinger terms in [jo,jc} if the current j is

ETC

. . : 0,ab 0,ab .
conserved, since in this case Iu ? and I°° vanish.
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III. Conclusion

In the present work we have explicitly shown that the chiral nonabelian gauge
theory in two dimensions is gauge invariant, free of anomalies and that there
are no Schwinger terms in the jofjo commutator, The consistency of the model
(at least up to this level) is dynamically ensureﬁ by the boscn fields which
stem from Lhe appropriate quantization procedure for the gauge field. In this
way the Lheory seems to rescue itszelf: as soon as there arise anomalies in the
fermion sector, these boson fields become nontrivally coupled and cancel the

fermionic anomalies, leaving behind a theory which appears to be consistent.
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