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Abstract 

Jet production processes responsible for scale-breaking effects in 
the F2 nucleon structure function are analysed in leading log 
approximation. Resumming soft and virtual gluons to all orders in 
as introduces exponential Sudakov type form factors in all multijet 
cross sections. Allowing for a confinement threshold in jet prodnction 
gives a steeper Q2 dependence between Q2 = 10 and 100 (GeV/c) 2 

than that previously predicted. As Q2 ->cO the number of gluon jets 
becomes Poisson distributed. 
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The Q2 evolution of structure functions has been calculated in 
leading log {LL) approximation in several different ways: by use of 
the Op~rator Product Expansion and Renormalisation Group Equations 
(OPE-RGE) [1,2], solution of coupled integra-differential equations 

[3], or by summing, to all orders in as , certain classes of Feynman 
diagrams [4, 5, 6]. The corresponding jet production has been 
calculated to O(as) [7, B) and also to all orders in initial state 
parton shower models [9, 10, 1D or by use of a 'Jet~Calculus' 
algorithm [ 12 J. 
The aim of the work reported here is to derive predictions for jet 
production, within the LL approximation, directly from the 'classical' 
QCD structure function evolution prediction [ 1 - 6J with the minimum 
number of additional assumptions or parameters. It turns out that 
this is possible by introducing a suitable jet-resolution parameter: 

-";'L~ c - 1 -z - s · (Q -r s .. ) 
G - MAl< - 'J 'J 

A 
(where s~· is the effective mass of two partons i, j) and resumming 
the perturbation series in a,s for the evolved quark density q(x, Q2) 

to give the all orders contribution to an ·observable jet production 
process. The parameter e is analogous to the y parameter used to 
define jets in O(as2) calculations of the process e+e--> qqNg 
(N = 0, L 2)[13]. It plays exactly the same rOle as kH,:~x/E in 
discussions of radiatively corrected cross-sections in QED. The result 
found gives, in the Bjorken limit Q2 ->cO, x = const. or as~-.-> 0, 
the QCD analogue of the Bloch-Nordsieck theorem of QED [14~] 

Only the non-singlet part of the F2 structure function of the nucleon 
in LL approximation is considered here. With the usual definition of 
quark density functions: 

~(:x)Q') == L e~x[ '1fx//J+ '£(:tJQ\] (1) 

't 
the LL result for q(x, Q2 ) is the solution of the Bethe-Salpeter 
equation [ 4, 5, 6]: _1 Q l-

'tb:J</)::: c(xJQ~) + j J: \cite~ycjjfJt")~[z) (2) 

X )(/~ 
If q, P, p and p' are the 4 momenta of the virtual photon, target 
nucleon, interacting quark in the nucleon (assumed on-shell, with 
vanishing transverse momentum) and the interacting (space-like) quark 
at the qqy vertex, then the variables in (2) are defined as: 

·L; 0 ·l/. · ( /)L 
X =: (; (2, '!) Z =' c: /' 2, · \ t = - f 

The choice of t as the~ argument of a is justified in [ 4]. 
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Eqn (2) may be solved formally [15]. or by iteration, to give: 

'1--- = 'J,-o + ~o® ~'\- + {ci,<&~'})ie~'l- + 
where ® denotes the double convolution (including the factor 
as(t)/21T) in (2) and q0 = q(x, Q02). Taking Mellin moments to 
decouple the z integrals: (' 1 fl. _

1 

"l.Jn,Q1
) ~ Jq.l:rJQ•):x olx 

0 
and evaluating the multiple t integrals analytically, gives: 

00 

1_c,,Q'\ = 
l) 

9)n,Q,\ L 
Nc=u 

[k> ~c~h) l] N 

Nl 
b = 6/25 for 4 quark flavours and ~ 

L ~ ln[lniO'/A"l/I,IQ~/Nl] 
where 

(3) 

The non-singlet splitting function P,'i- contains contributions both 
from virtual plus soft gluons P ;~ and from hard gluons P '1-;.. . 

VS H 
Expressions for P

1
; , P'l1.- at O(aS') have been derived in various 

infra-red regularisation schemes and for a fixed value of as by 
Humpert and van Neerven [16]. Factorising the quark mass singularity 
at ·scale Q0

2 , and renormalising as in the 1-loop approximation 
with 4 quark flavours: 

c<s((/l = 12rr/['2'5/..,(C//(I'l] 
gives: 

VJ 

eJ(z) =' $'cl-2)_±_[21flz>3l (4a) n 3 2 
H 

f ( z) = 4- [I +z'] 
1"ir 3 I -z 7 C::: L MAX 

(4b) 

0 7 > z_I"AX 

where: "'/'L"') E; =Su (Q+Sv J 7 MA\< = I - c 
In (4) only the LL terms (which are independent of the method used 
to regularise the infra-red divergences), are retained. ~ is the 
effective· mass of the 'current jet' quark and radiated gluon. The 
gluon is 'soft' if: 

A A 

S "'-.. So 
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and is 'hard' if: '""' /\ 
S > S 0 

Taking the Mellin moment of (4b): 

0 H l- rL r+' 1\. J. ~ z,"" 
I __ ( n J ~ !!:_ ~ -2__-22_ 7 -Z/~{1-;:) (5a) 

~l 3 vc fl+l J='j _ 
0 

If I- z.M,,C::.::: 1 then: 
Y\. 

H 

f (n) 
't'J.. 

V;> 
Adding P (n), 

"Vr 

4 [--J~ -LL ~ -l/nfl. 1 n(n-rl) j"'i] j 

H 
P"L']. (n) using (4a), (5b) gives: 

e (n) 
'\'], 

- 4- [3 I 3 2 _,_ nln-t 1J 
-2I -1 

-] ~ J;l 
]~I J 6 

(5b) 

(6) 

VJ H 
The resolution parameter l: cancels in the sum of Pi- (n), Pl'l- (n) 
and (3), (6) give the familiar result [1 - 6 ,17] 'J, d n 

't(n 1 0ll = ~(n,Ci!v') [oiJoNd/Q'Jl 'VJ.. (?) 

The step from (3) to (7) via (6) can be made alternatively by the 
introduction of singular functions in the definition of P~~(z) [3] 
If this is done, however, the resolution parameter e, essential to 
define physically meaningful jet- cross sections, disappears from the 
formalism. 

Eqn (2) is a perturbation series in powers of as. For real gluon 
radiation the Nth term corr·esponds to the radiation of N gluons. 
Taking into account the virtual and soft contributions at O(aS") 
the zeroth order quark density is modified by a 'K-factor': 

(I) '1. 2Jtt ' l<''l [-
Ci ( n, <.,)) :=:: 9Cn,Q,l "'q(n) I +_]_(2/nf+l)Ll 
f' r ~o 2-'> z. 

(8) 

(I) 

q ' 
(<) 

K indtcate that q, K are evaluated up to O(a s ). 
hard gluon radiation gives the contribution: 

From (3), 
(5b) 
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't ( Yl, 

"~ -5- n 

o-'et [' Q~J~'](n)b' ~_1_ ___ -22::~ -2/nz] 
vo l'> l'lln+l) j=' J (9) 

Eqns (8, 9) correspond to the observation of 2, 3 jets in the final 
state when £ is used as a resolution parameter. Since q is positive 
(it is proportional to F2 which, in turn, is proportional to the 
total virtual 'l proton scattering cross section) both (8) and {9), 
which give different observed final states, must be positive. This 
is always true for (9), but not always for (8). Choosing physically 
sensible values of Q2 , Q0

2 , So and A (in GeV units): 

Q2 = 200, Q0
2 = 2.0, S'o = 4.0, A = 0.2 

gives: 
Ill 

f( ~ -0-57 
so in this case (8) violates unitarily. In the Bjorken 
Q2 -> 00 , n = canst. or as ~ -> 0 the O(a5 ) '2 jet' 

oC -Ji /, Q' In/,!)'-
1S' 

section is: 

while the '3 jet' cross section is: 

. .r- 11 I '1 IJ 1. /, /, 0 L 
-"- "s 

limit 
cross 

No meaningful jet cross section can therefore be defined at high Qz 
if the perturbation series in (3) is truncated at O(cxs). 

The K-factor can however be calculated to all orders in a
5 

by 
summing to infinity the terms in (2) that contain N powers of 
P 1; and no powers of P ;"!,. This gives : 

f("' -== ex f I:_L (z In f + .'2_) l] l-'2 s 2. 
( 10) 

Similarly summing to infinity over M all terms in (2) that contain M 
powers of P~~ and N powers of P'"~'i- exactly the same K-factor (10) 
is found also for the N + 2 jet contribution. Unresolved soft and 
virtual gluons are now included in the multijet contributions to 
q(n, QZ) to all orders in as in LL approximation. 

Taking into account confinement effects, it is however clear that 
the jet resolution parameter e (which corresponds to the total 
effective mass of all partons produced or scattered in the hard 
quark phcton collision) must depend on the jet multiplicity. Roughly 
speaking, if a '3 jet' event is resolved from '2 jets' for ·s > So 
then a '4 jet' event will be distinguishable from a '3 jet' event 
only for s""o' > 3'o, say for S6 = 2 8'0 . This implies that larger 
values of e are needed to define meaningful jet cross sections as 
N, the number of hard final state gluons, increases 
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The definition of a multijet final state is arbitrary. Here a simple 
'minimal' definition is used that permits an analytical solution to 
be .given for the 'M-jet' contribution to q(n, Q2). Choosing: 

[
1

N
1 :: rJ1jcQ'"-r iJs0 ) 

then (7) may be re-written as a series in 'resolved M-jet' 
contributions: i.A 2.. 

o0 ,, u n . J,.,-
~ (1'1-il - J2 )[ IM-l) cy!n)Q~) === )-c~)[Krt ;[d4~,-3-EinE jL 111) 

H='L (N-2)! 
Notice that M here includes the current quark and target diquark 
jets, so that M = N + 2. Eqn (11) is the main result of this 
letter. 

(M-J} (M-2) (I) 
If e e are replaced in (11) by e then (11) 
becomes formally identical to (3). Eqns (3), {11) also have a 
common asymptotic limit when lnQ2/S0 >> lnM. When Q2 -> Ql 
(i.e. L ~> 0) (3), (II) also give the same <ftl (n, Q'). 

For non asymptotic QZ values (11) will predict a somewhat different 
Qz evolution of the moments than (7). This is because the N 
dependence of e takes into account threshold effects in jet 
production related to confinement. The evolution of the n 1, 4, 8 
moments as predicted by (11) for Q0z = 2 (GeV/c)Z, 
~0 ,;, 4 (GeV/c) 2 and A = 100 MeV/c is shown in Fig. 1a, b, c. 
The 'asymptotic' prediction given by (7) with the same values of 
Q0z, A is shown for comparison. It can be seen that from 
Q2 = 10 to 100 (GeV/c)2 (11) predicts a somewhat steeper decrease 
with Q2 of the higher n moments than (7). The '22 jet' curve E is 
already asymptotic in M, the number of jets, for Qz < 10"'-
( GeV / c )2 , while (7), ( 11) give essentially identical predictions, 
for Q2 > 100 (GeV /c) 2 , for all the moments shown in Fig. 1. 

It should be remarked that the curves in Fig. 1 showing the 
contributions of .:;;; M jets should not be interpreted directly in 
lerms of observable exclusive jet cross sections. This is because 
the simple effective mass cuts given by e(H} do not take into 
account final state configurations that are irresolvable because 
two final state jets are almost parallel. Using a realistic 
resolution criterion such as [13]: 

-"" /\ 

s 'J > s G L.., J L' J = I' 2 ~ M 
will increase the relative contributions of smaller jet 
multiplicities as compared to the curves shown in Fig. 1. Using the 
analytical expression (11) as a starting point such a 
re-assignment of events into 'truly observable' jet classes can 
most conveniently be done by Monte·-Carlo methods 
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-:,.-_:tdtTing the limit ln Q2/~ >> ln M, ln n of (11) 
d In n for large n values [ 1]) the M-jet distribution 

becomes independent of n. In this limit: 

u--r~r-'>X+Iv'J i (\,. exp(-FJJ rNJN 
Nl 

(12) 

The number of gluon jets obeys a Poisson distribution with mean 
value: 

N = 1£ In Q2 
/"1 [I~(QJt\')j/,{Qo'll\')] (13) 

2':> 'S, 
For the case N = 0 the RHS of (12) reduces to the square of the 
asymptotic Sudakov form factor of a quark in QCD as derived by 
Mueller [18]. From (12), the same Sudakov factor appears also in 
the N gluon-jet cross section. Coquereaux and De Rafael showed, 
by solution of a renormalisation group equation, that the same 
asymptotic form factor occurs in the quark-quark elastic 
scattering amplitude in LL approximation [19]. 

The Poisson distribution (12) is just that found by Bloch and 
Nordsieck [14] for the distribution of N soft photons radiated 
in potential scattering of an electron. In this case 
N ~ ln(w/w0 ) where w is the total energy of the N photons 
and w0 is an infra-red cut-off energy. In (12) as Q2 -> d:;) 

or 'So -> 0 the contribution of any finite number of gluons to 
the multigluon cross section vanishes. In [14] the N photon 
radiation probability was found to vanish as w0 -> 0. The 
divergences encountered above, in the limit Q2 ->oO, in 
the terms in the perturbation series in powers of as (3) 
are analogous to those encountered in the w0 - > 0 limit 
when radiative corrections are evaluated using an 
expansion in powers of a [14]. The parameter S'o defines 
the total effective energy radiated in gluons (regardless 
of their number) just as w in [14] defines the total 
radiated energy (regardless of the number of photons). 
The suppression of low multiplicity jet contributions with 
increasing Q2 is evident in Fig. 1. This is due to the 
increased probability of multi-gluon radiation as Q2 becomes 
larger. 

If the limit ~0 ~ Q2 is considered, i.e. very hard jet 
production, the K factors all tend to unity and there is no 
Sudakov suppression. This limit is however of little 
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experimental interest because of vanishingly small cross 
sections near to purely kinematical boundaries. 

The 3 jet contribution to the RHS of (11): 

3Jo~ «> [ 1 n ~ 
~( n)q') ~1f"\kCc11 ') d1'V--rs-~~lnc

1

"/L ( 15) 

may be compared with that given by the prescription of Ref. C7]. 
where the 'Q2 -evolved' quark density is multiplied by the hard 
scattering process cross section a( );~1,--...::;.. 51) 

Cj ( n Q2 j3Ttf- q ('I J Q' l[cf-Jl-Jl/n /'] L (16) 
V J v '1'1 25' '2S 

The hard gluon region is defined in the same way in (15) and (16). 
Comparing (15), (16) it can be seen that replacing the scale 
invariant quark density q(n, Q0

2) by the 'evolved' one 
q(n, Q2 ) does not properly take into account soft and virtual 
gluon interference effects. 

Considering the n = 1 moment where q(1, Q2 ) = q(1, Q0
2

) 

(Adler sum rule) (16) gives a divergent contribution 
oC lnQ2 lnlnQz as Q2 -> o() inconsistent with the total 
struclure function evolution given by (7). On the other hand 
(15) gives a vanishing contribution in the same limit (see 
Fig. 1a) consistent with the Bloch-Nordsieck theorem. 

In su,nmary. the effects of soft and virtual gluon interference on 
observed jet cross sections in deep inelastic scattering may be 
taken into account by multiplying the relevant hard scattering 
cross section by a factor Koe defined in (10). This is a 
generalisation of the square of the Sudakov form factor for a 
quar}; [18) for the case of a 2 jet cross section. The same or 
similar factors are expected in all jet production cross sections 
when soft and virtual gluon radiation effects are properly taken 
into account. The ansatz of estimating jet production by 
multiplying a hard scattering cross section by Q2 -evolved quark 
densities does not predict correctly observable jet cross 
sections in the case considered here. With the p~rticular choice 
of jet resolution parameter used in (11) the Q2 evolution of the 
high n moments of the nucleon structure function is predicted 
to be steeper in the range Q2 = 10 to 100 (GeV/c)2 than for the 
asymptotic result (7). 
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Figure Caption 

. Fig. 1 a, b, c: 
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Q2 evolution of the n = 1, 4, 8 moments 
of F2 for the nucleon (non singlet part 
only) between Q' ~ 2 and 10• (GeV/c)'. 
A, B, C, D, E show the contributions of 
2, ,; 3, 4, 5, 22 jets (as defined in Eqn (11)) 
to the moments. ASYM is the asymptotic 
prediction given by Eqn (7). 
Q,' ~ 2 (GeV/c)', ~0 ~ 4 (GeV/c')', 
A ~ 0.1 GeV/c. 
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