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Abstract

We present seversl exact relations between classical and quantum mechanics in a
simple ergodic Hamiltonian system: a point particle sliding freely on a surface

of constant neéative curvature. The classical chaotic behaviour of the system is
well understood, and is completely determined by the exponentially proliferating
number of periodic geodesicson & compact Riemann surface with two or more handles.
The Selberg trace formula leads to a striking duality relation between the guantum
mechanical energy spectrum and the lengths of the classical periedic orbits; It

constitutés a deep connection between quantum chaos and geometry.

Talk given at the - XXVI. Internationale Universititswochen fiir Kernphysik "Recent
Developments in Mathematical Physies", Schladming 1987. To be published in the

Proceedings (Springer).
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1, Iptroduction

While we are éelebrating Professor W. Thirring's 60th birthday at this conference,

we should alsec commemorate the TOth birthday of the theory of quantum chaos. Most

of you are probably surprised about this 1a£ter anniversary, for this seems histori-
cally almost impossible, since quantum mechanics was not yet invented in 1917. There
only exigted the Bohr-Sommerfeld quentization condition. However, by a thorough study
of thesSe quantization conditions, Einstein /1/ realised the important role played by
what we call today invariant tori on the energy-surface in phase space. {"Man hat. sich
den Phasenraum Jeweilen in eine Anzsahl % Trakte < gespalten zu denken, ..." /1/.)
For systems which possess invariant tori, Einstein established the most general quanti-
zation conditicns. But he then made the crucial remark that for ergodic systems, i.e.
systems without invariant tori, the whole quantization method of Bohr and Sommerfeld
fails. Until its rediscovery by Keller, Gutzwiller and others more than LO years later,

Einstein's paper was totally ignored.

In this talk I shall consider a prototype-example of an ergodic system for which
one-can establish exact relations which are a substitute for the Bohr-Scmmerfeld-

Einstein gquantization rules. These relations have recently been derived in /2/.

The classical dynemics of our prototype example is a Hamiltonian system of two
degrees of freedom: a particle with mass m sliding freely on a surface of constant
negative curvature. This model was introduced by Hadamard (1898}, and is deseribed
by the Lagrangian‘L(x,i) = (m/2)(as/at)?, ds® = gijdxldxj, where 85 is the coordinate-
dependent metric tensor of a compact Riemann surface M of genus g2 2. The energy E = L
is the only constant of motion, and the dynamics is the geodesic flow on M,
ds = (EE/m)1/2dt. There are no invariant tori in phase space, the system has very
sensitive dependence on initial conditions {Hadamard), and almost all orbits are
dense (Artin /3/). The system has the Anosov property /L/: neighbouring trajectories
diverge with time at the rate exp W t, i.e. the trajectories are unstable, a typical pro-
perty of classical chaos. From Jacobi's equation for the geodesic deviation one. obtains for

the Lyapunov exponent b = (2E/m R2)1/2

, where X = -1/R? is the negative Gaussian
curvature on M. Pesin's equality /5/, h = &) , relates ) to the Kolmogorov-Sinai
entropy h /6/, which in turn determines the exponential proliferation of the closed
periodic geodesics on M: 4f {": THRYSET } ~ LKP(LT)/&T, T —»%0  where ¥y denctes
a primitive periodic orbit on M, and T(y ) its period. With R()wAT(YR = length
of periodic orbit Y with energy E and periocd T(Y ), we obtain Huber's law /7/:
VIO sH{rveM: ST~ (R/Q axp (XRY , 4 —» a0 - Thus the

length spectrum {2(3}} on M shows an exponential proliferation of long periodie orbits.
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The quantum mechanics of this model is governed by the Hamiltonian
E = (- #2/ouR?) A\, where f\ is the Laplacian on ¥ {Laplace-Beltrami operator)

Aﬂ A—4ﬂ-} (.ﬁ'llﬁ.al.a-;°§ )3—m(ec5)’

in un:l.ts of R. This model was first studied by Qutzwiller /8/,

L
3 $ . inverse of g.., x. measured
ijr i
wha discovered the
relation of his semiclassical trace formula /9/ to the rigorous Selberg trace formula
/10/. The latter formula is the methematical basis of our work /2/. It constitutes a

very deep connection between guantum chaos and geometry.

2, The relation between classical and guanbum mechanics in a chaotic system

A compact Riemann surface M of genus g% 2 can be identified with U/T" , the action
of a Puchsian group I7 on the upper half-plase U = {E= K-H‘a»l XeER, Y >O”

~Faxz+ay?).
model for hyperbolic geometry of constant negative curvature, K = -1,
subgroup of PSL{2,R) = SL(2,R)/{ ¥ I} s
KA =20t X =t (4—g), vhere A denotes the area
of ¥ and 7y its Euler characteristic, i.e. & = 4T(g-1).
Laplacian on M is given by A—na""(a’»/axlq.'b‘/bg?-) and the Schrédinger equation
reads _A%‘E"w {For a surface of arbitrary constant negative curvature,

K =-1/R®, the energy eigenvalues scale as Eh"’(‘k /2m‘R=‘) ﬁ\h , where My is
A4 , m and R. In the following we set A = 2m =R =

endowed with the {conformal) Poincaré metric ds? =y This is the classical
M is & discrets
the group of Mdbius transformations. From the
GauB-Bonnet theorem we infer

JIn-the Poincaré metric the

independent of 1). The wave-
functions on M have to satisfy periedic boundary conditions which are realized as
follows: one considers a fundamental region F€ U for the group I , i.e. a connected
subset of U ﬁhose images under T are a tiling of U. For genus g, F has the form of &
hyperbolic polygon of 4g sides. If the sides of F are identified in pairs accoriing

to the acticn of TV, we have s realization of M. For the wavefunctions, the boundary

condition implies Ay, (¥ o)=Maw(2) . VK &M {automorphic functions),Ap, ()€ L,_ (F-))

where the integration measure in F is dA = dxdy/y?. Mathematically, the problem is now
reduced to harmenic analysis of homogeneous spaces and discontinuous groups /10-13/.

0= Eo< B, £ g, £
the zerc mode (Eo = 0) belongs to a constent wavefunction. One has Weyl's law /1h/:

HOE CEY ~ (AluR)E

“ohaos on the pseudosphere”, see [15/.)

The spectrum of B = -\, on M is discrete and real, v+, Where

asymptotically. (For a comprehensive review of the

The basic relation of spectral geometry is the Selberg trace formuis on M /10-12/ -

(m2(xY)

(1
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(xtney sm&ﬂa—(ﬂ

h=o

which is the non-commutative asnalogue of the classical Polsson summation formula.

Here all series and the integral converge absolutely under the following conditicns
on the function h(p): i} h(
IIwpl 4+, 270 i) |h(plg

g(x) is the Fourier transform of h{p)

-p} = k(p), ii) h(p) is holomorphic in a strip
feY (4+‘P‘z>‘z—€) @ >0 -+ The function

o=
4060 = de Cos px /&(P) : (2)

Cn the left-hand side of (1)} the slm runs over the eigenvalues of H parametrized by
the momentum p: E = % + p with p, % 0 for B, )}, and P, purely imeginary for

0 ¢ E, < h. The ;E‘1rst term on the right-hand 51de of (1) is the "zero length contri-
butlon {free motion on U), and the last term is a sum over the length spectrum of M

(primitive conjugacy classes in [

The trace formula (1) is the only known exact substitute for the Bohr-Sommerfeld-
Einstein quantization rules for a chaotic system, It establishes a striking duality
relation between the quantum mechanical energy spectrum and the lengths of the classi-

cal closed periodic orbits.

Tge illustrate the physical significance of {1}, we calculate /2/ the trace of the
. -1
regularized resolvent of H on M, Tr{E-H) , (B = s(1-s))

- A 2'(s)
Z } ¥a+ 2(3-DWE6) i 20

Here the sum over the classical periodic orbits has been expressed in terms of the

T

Selberg zeta function on M
—(stw il
[4 - ( 8 ] (u)

26)= 'ns’: heo

{s) is the digsmma function, and denctes the generalized Euler constant of
o -
0.5722... = Euler's constant) '

2"
A= 2(a-DY -4 +1 211y e

Notice that the zero mode had to be treated separately (infrared problem), and that

the Laplacian on M (x =

the sum over the eigenvalues cannot be broken up, otherwise cohvergence 1s lost.
-, . . . . .
(H is not of trace class; ultraviclet problem. The relation given in /8/, /i1/ is

wrong.) The sum rule {3) extends meromorphically to all €€ ([, and we infer that Z(s)
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is an entire function of & of order 2 with "trivial® zeros st s = -k, kx & N_.

Apart from & finite number of zercs on the real line between 0 and | (corresponding
to eigenvalues Ens %), the "non—trivial" zeros of Z(s) are locsted at s = % lip
(corresponding to B> %), i.e. on the eritical line Res = %. Z'(s}/%(s) has a Laurent
expansion near s = 1 /2/ with a simple pole at s = 1 with residue 1. From this we can
deduce the asymptotic behaviour of the length spectrum E,E{x)} on M, i.e. Huber s law,

The latter ensures the convergence of (4) for Res’ 1,

From (3) we obtain for E >— (s=1+€_£PJP=“E'1’E>° the spectral density

SE—E“ =——'l:u&1i: 4{ Im '2I({+€"‘~P) ) (6)
d(e)Z( D P P eomo gtz(‘v‘us-w)

The first term (zero length contribution) gives the improved Weyl's law for the spectral

staircase €
N (e = g dE’ % ‘l:uuzl.('n: \IE'-{';)
Iy

~2mVE (7

A
(e-+ =

Unfortunately, the contribution from the periodic orbits in (6) requires an analytic
continuation of Z(s) to the line Res = %, Ims € 0, which at present we do not know

how to perform. To get an explicit relation, we define a smeared spectral density with

a real smearing parameter & > 4/2

Lo &

E(E)E ;"..t s

5 (e-e.Y +o?

(For a similar procedure, employed some time ago in nuclear physics and QCh, see /16/.)
- 1 1
We then obtain from (3} and (L) {(E T S>3

(8)

I(E).—.- %‘_c-,_]m Ap(Lre-Lp)

2 E enlly) (9)
N A 5 'Z 8_ Xy [P t.os(Pu L) +6 sin (?n%])]
YT (p462) {x1 haq SRR

(The first term has a simple expression for & = 0, — 2, 1, «e. o) Bg, (9) is an exact
representation of the smesred spectral density as a sum over all the periodic orbits

of the classical system. The last term of (9) can be rewritten in the suggestive form

(p»e)

- 5 -
> £_§
dosc (E):r. % Z A e "
R==N0
~&|nj i) —_ {10}

s P Ape L= (PR -
P Bre(prest)  sowd ML ’ (P ) ""‘F

The number n counts the multiple traversals, where n«< O corresponds to traverssls

backwards in time, The amplitudes Tf\:l decrease exponentially with R({%) which is
typical for a chaotic system {in contrast to an integrable one, where one has a.
power-law). This exponential decrease is crucial for the finiteness of (10), because
it compensates the exponential proliferation of very long orbits according to Huber's
law. Notice that this compensation breaks down for d( 1 ! To our knowledge, this is
the first time that an exact periodic orbit sum for a chao‘tlc system has been derived
and for which the abscissa of convergence is exactly known, The beautiful semiclassical
pericdic orbit sums discussed recently (see e.g. Berry /17/) correspond to the limit |

&= O in (9} or (10), and therefore are in general not expected to be convergent.

3. Can one hear the shape of a compact Riemann surface?

This is a variation of the famous question posed by M. Kac /18/. To answer it, we need

the trace of the heat kernel on M, One finds /2/

T e—- -ﬁ_ H _ i —‘\t- AR (zmktSh.

he=O

Y
e Z.H: Tt

dx
Silll(';__‘i ()

2 AV 11

4 (M Pl gt — i (u0) - T E

wht) §q o W:D)

where OAVE 'L'\ /gh\R is a gquantum correction which naturally arises also in an
exact path integral treatment /19/ of the frees motion on the Poincars upper half-plane.
Since the clesed orbit contribution in (11} vanishes exponentially for {-—s0+, the
small-t behaviour is completely determined by the "zero length term”, and is expli-

citly given by the asymptotic expension as t —w0

oo _ EBug 2 N "

% m. AR "t N
2 e = 2
h=o 2kt weo b ?-MR’) + O
281

(12)

by=4, b= ('4) [4+2Z (,g,_)( —4)182&\]”\(__]\]

where B?k are the Bernou111 numbers. Thus one can hear the area and the Euler charac-
teristic of M (see also /20/).
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L, Summary -6 -

As illustrative examples, some exact relations between the quantum mechanical energy
spectrum and the lengths of the classical periodie orbits have been vresented for s
sigple chactic Hemiltonian system. {More relations can be found in /2/.) Relations

a8 eq. {3) are of & non-perturbative nature and can be compared with e.g. the well-
known K#1lén-Lehmann representation in quantum field theory. The "elosed-orbit sums"
(as eq. {9)) instead have the character of a perturbation expansion {"loop expansion”)
and are in general only convergent in a finite regicn. (Compare e.g. with the QCD-ex-
ample discussed by Poggio, Quinn and Weinberg /16/.} In this telk we have concentrated
on the energy spectrum..For a discussion of the wavefunchions we refer to the work of

Pignataro and Wightman /21/.
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