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Abstract 

We present several exact relations between classical and quantum mechanics in a 

simple ergodic Hamiltonian system: a point particle sliding freely on a surface 

of constant negative curvature. The classical chaotic behaviour of the system is 

well understood, and is completely determined by the exponentially proliferatin~ 

number of periodic geodesics on a compact Riemann surface with two or more handles. 

The Selberg trace formula leads to a striking duality relation between the quantum 

mechanical energy spectrum and the lengths of the classical periodic orbits. It 

constitutes a deep connection between quantum chaos and geometry. 

Talk given at the· XXVI. Internationale Universit8:tswochen fiir Kernphysik "Recent 

Developments in Mathematical Physics", Schla~ming 1987. To be published in the 

Proceedings (Springer). 
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1, Introduction 

While we are celebrating Professor W. Thirring's 60th birthday at this conference, 

we should also commemorate the 70th birthday of the theory of quantum chaos. Most 

of you are probably surprised about this latter anniversary, for this seems histori­

cally almost impossible, since quantum mechanics was not yet invented in 1917. There 

only existed the Bohr-Sommerfeld quantization condition. However, by a thorough study 

of theSe quantization conditions, Einstein /1/ realised the important role playeq by 

what we call today invariant tori on the energy-surface in phase space. ("Man hat. sich 

den Phasenraum jeweilen in eine Anzahl "> Trakte << gespalten zu denken, ••• " /1/.) 

For systems which possess invariant tori, Einstein established the most general quanti­

zation conditions. But he then made the crucial remark that for ergodic systems, i.e. 

systems without invariant tori, the whole quantization method of Bohr and Sommerfeld 

fails. Until its rediscovery by Keller, Gutzwiller and others more than 40 years later_, 

Einstein's paper was totally ignored. 

In this talk I shall consider a prototype--example of an ergodic system for which 

one-can establish exact relations which are a substitute for the Bohr-Sommerfeld­

Einstein quantization rules. These relations have recently been derived in /2/. 

The classical dynamics of our prototype example is a Hamiltonian system of two 

degrees of freedom: a particle with mass m sliding freely on a surface of constant 

negative curvature. This model was introduced by Hadamard (1898), and is described 

by the Lagrangian L(x,!) ~ (m/2)(ds/dt) 2 , ds 2 ~g. -dxidxj, where g .. is the coordinate-
lJ lJ 

dependent metric tensor of a compact Riemann surface M of genus g ~ 2. The energy E ~ L 

is the only constant of motion, and the dynamics is the geodesic flow on M, 

ds ~ (2E/m)
112

dt. There are no invariant tori in phase space, the system has very 

sensitive dependence on initial conditions (Hadamard), and almost all orbits are 

dense (Artin /3/). The system has the Anosov property /4/: neighbouring trajectories 

diverge with time at the rate exp c.l t, i'.e, the trajectories are nnstable, a typical pro-· 

perty of classical chaos. From Jacobi's equation forth& geodesic ·deviation one obtains for 

the Lyapunov exponent ~ = (2E/m R2 ) l/2 , where K ~ -1/R 2 is the negative Gaussian 

curvature on M. Pesin's equality /5/, h ~ W , relates W to the Kolmogorov-Sinai 

entropy h /6/, which in turn determines the exponential proliferation of the closed 

periodic geodesics on M: 1f' { ~; T(¥) ' T J ""'-' c.)l.p(..t... 1)/-lTJ T-1!10 J where '( denotes 

a primitive periodic orbit on M, and T( lf) its period. With RllS)•.t_. T{l{)'R. "' length 

of periodic orbit If with energy E and period T( "(), we obtain Huber 1 s law f7j, 

v(.tl•HH ~E:-M: .R.(~):U.} "-' (V..t) .o.><p (..t/R) 1 ..t~"' Thus the 

length spectrum ~R<l;}}on M shows an exponential proliferation of long periodic orbits. 
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The quantum mechanics of this model is governed by the Hamiltonian 

H"' (- -H2 /2mR 2 ) /:::,. , where~ is the Laplacian on M (Laplace-Beltrami operator) 

·-•I• (_'''' 'a~ ) ~ '~ ,. '3 A'=~ li " S ·~ 1 ,~ tU.t.. \.Cfli) 1 3 = inverse of gij, xi measured 

in units of R. This model was first studied by Gutzwiller /8/, who discovered the 

relation or his sernicl_assical trace formula /9/ to the rigorous Selberg trace formula 

/10/. The latter formula is the mathematical basis of our work /2/. It constitutes a 

very deep connection between quantum chaos and geometry. 

2. The relation between classical and quantum mechanics in a chaotic system 

A compact Riemann surface 

of a Fuchsian group r on 

M of genus g ).. 2 can 

the upper half-plane 

be identified with u/r , the action 

'U..= {.,_=><+i'<!-'lKe,R,~;.o} 
endowed with the (conformal) Poincare metric ds 2 = y-

2 (dx 2 +dy 2 ). This is the classical 

model for hyperbolic geometry of constant negative curvature, K = -1. r is a discrete 

subgroup of PSL(2,R) = SL(2,R)/{ ± 1} , the group of MObius transformations. From the 

GauB-Bonnet theorem we infer K •-A = '1-lt 'X :::.It "'t' (-1-~) , where A denotes the area 

of M and )(..its Euler characteristic, i.e. A "' 4'1&(g-1), .rn·the Poincare metric the 

Laplacian on Misgiven by ~~"a"&..(ll-/C)x..-'1-+'b'l./)CJZ.), and the SchrOdinger equation 

reads -&~...:.E'k~1i (For a surface of arbitrary constant negative curvature, 

K =-1/R 2
, the energy eigenvalues scale as E.,~(~'\../2.M'R.1)""-. , where~"' is 

iridependent of -1!' , m and R. In the following we set .-!1' = 2m = R = 1 ) , The wave­

functions on M have to satisfy periodic botmdary conditions which are realized as 

follows: one considers a fUIJ.datnental region F C. U for the group r , i.e. a connected 

subset of U whose images under r are a tiling of U. For genus g, F has the form of a 

hyperbolic polygon of 4g sides. If the sides of F are identified in pairs accor.iing 

to the action of f1 , we have a realization of M. For the wavefunctions, the boundary 

condition implies rt"' (~1:}=-1\fl\o\l~) V lf & r (automorphic runctionsl. ~-l-t:) e; L1. (1=)} 

where the integration measure in F is dA = dxdy/y 2 • Mathematically, the problem is now 

reduced to harmonic analysis of homogeneous spaces and discontinuous groups /10-13/. 

The spectrum of H = - Q. on M is discrete and real, 0 = E
0 

( E 
1 
~ E

2 
~ ••• , where 

the zero mode (E0 = 0) belongs to a constant wavefunction. One has WPyl's law /14/: 

-#") &"~ ~ E y "" (A /4-,.;) E asymptotically. (For a comprehensive review of the 

"chaos on the pseudosphere", see /15/.) 

The basic relatiOn of spectral geometry is the Selberg trace formula on M /10-12/ 

1)0 Oo ""' 

L...t.Cp .. )""' A- \'*i'r 'hl~h-p.t.cr)+ L.. L. ..<l~) g.(d(\1) ( 1) 

":o 2-.c o ~ • T "•I 2. s;,..(. .. ~~11 
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which is the non-commutative analogue of the classical Poisson summation formula. 

Here all series and the integral converge absolutely under the following conditions 

on the function h(p): i) h(-p) ~ h(p), ii) h(p) is holomorphic in a strip 

\"J,.p\ S \_+E, 'i..~o , iii) ]~(p)] ~a. (-1+\p\,_)2.-<, t:t :-o The function 

g(x) is the Fourier transform of h(p) 

~ (><-) = A 
-.c-

()Q 

) cl.p 
0 

c.os P" --t- Cp) . (2) 

On the left-hand side 
1 

the momentum p: E = -4 1 n 

of (1) the sUm runs over the eigenvalues of H parametrized by 

+ p 2 with p .,..., 0 for E '>... -J., and p purely imaginary for 
n n, n,.'l n 

0 ~ E0 ( 4• The first term on the right-hand side of (1) is the "zero length contri-

bution" (free motion on U), and the last term is a sum over the length spectrum of M 

(primitive conjugacy classes in r ). 
The trace formula (1) is the only known exact substitute for the Bohr-Sommerfeld­

Einstein quantization rules for a chaotic system. It establishes a striking duality 

relation between the quantum mechanical energy spectrum and the lengths of the classi­

cal closed periodic orbits. 

To illustrate the physical significance of (1), we calculate /2/ the trace of the 

regularized resolvent of H on M, Tr(E-H)-
1 

, (E = s(l-s)) 
reg 

" ~ r ~ ~ l ( -1 2.
1

(s) 
- + L- l -- +-;:- j= oA + 2. \-A)\1-'(s)-- -(- l3l 
E •~• E-E., "'" 2s-~ ~ s) 

Here the sum over the classical periodic orbits has been expressed in terms of the 

Selberg zeta function on M 

lf'(s) is the 

the Laplacian 

""' :Z(s): ITT\ (-1- e-(s+•>.t(~)] 
~~1 ~=o . 

(4) 

digamma function, and ~A denotes the generalized Euler constant of 

on M ( ~ = 0.5722.,. = Euler's constant) 

~A=: 2. (~-~) ~ - -j + A 
l 

'2''(A) 

2:'(4) 
I 5 l 

Notice that the zero mode had to be treated separately (infrared problem), and that 

the sum over the eigenvalues cannot be broken up, otherwise convergence is lost. 

(H-1is not of trace class; ultraviolet problem. The relation given" in /8/, /11/ is 

wrong.) The sum rule (3) extends meromorphically to all SE QC, and we infer that Z(s) 
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is an entire function of s of' order 2 with "trivial" zeros at s = 1-k, k E- N
0

. 
Apart frOm a finite number of zeros on the real line between 0 and 1 (corresponding 
to eigenvalues En-' t). the rrnon-trivial" zeros of Z(s) are located at s = ~! ipn 
{corresponding to En> il , i.e, on the critical line Res = ~ • Z' ( s) /Z( s) has a Laurent 
expansion nears= 1 /2/ with a simple pole at s = 1 with residue 1. From this we can 
deduce the asymptotic behaviour of the length spectrum ~J.l¥}} on M, i.e. Huber's law. 
The latter ensures the convergence of (4) for Res> 1, 

From (3) we obtain forE >t (s=!+£-tpJp={E-~,t>o)the spectral density 

cA(E)"EZ:b(e-E,.)~A tcu..e.1tp+i__ ~J"' JWi~L~'(tu-tp) l. l6l 
k"() lj.l(; 2trp £ ... 0 ~(t-+£-(p) J 

The first term (zero length contribution) gives the improved Weyl 1 s law for the speCtral 
staircase E 

<(tJ (E)'):\ !AE 1 A_ tu...t.(11:~E 1-~) 
"'l'f' 1+'1: 

A ~ A -2~-JE 
= - (E--)+- \IE e.. l+-11: 3 Zn;~ 

+O(e_,,..fE 
VE ) . 

17) 

Unfortunately, the contribution from 

continuation of Z(s) to the line Res 

the periodic orbits in (6) requires an analytic 
= ~. Ims ( 0, which at present we do not know 

how to perform. To get an explicit relation, we define a smeared spectral density with 
a real smearing parameter Cf > 1(~ 

Oo <5" 

d te.) "' t. ?; (e.-e.,. )"2. + ~2. 18) 

(For a similar procedure, employed some time ago in nuclear physics and QCD, see /16/.) 
we then obtain from (3) and (4) (E> i, 45"> ~) 

ItE)=- A-... j-..Aj-'(1_+~-l.p) 
21C 

0o - 6"~~('11') I 9) 
-1. ""...,- ,t(~)e [pto~(p•~llll)tE>sik(p•f~ll] + L_ L - • "<.t~) 

lf!C(p•~•) ~ll ·~~ S\k,._, ~ 
(The first term has a simple expression for~ = 0, ~' 1, •••• ) Eq. (9) is an exact 
representation of the smeared spectral density as a sum over all the periodic orbits 
of the classical system. The last term of (9) can be rewritten in the suggestive form 

(p>)cl) 
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- "" d.o•~ ( S)- L L_
1 

~~ •~-oo 

p 
Ak- 1ltr lp"'"+~·) 

.R.\\) e -~ l•t.fl~rl 
s.:11-t, 1111-fl~ 

2. 

A • S'., 
" e 

s =1'1 (p!(¥)- §.._ ) . 
~ '"' r 

I 10) 

The number n counts the multiple traversals, 
backwards in time. The amplitudes ir decrease 

n 

where n < 0 corresponds to traversals 

exponentially with .tl'c,) which is 
typical for a chaotic system (in contrast to an integrable one, where one has a. 
power-law). This exponential decrease is crucial for the finiteness of (10), because 
it compensates the exponential proliferation of very long orbits according to Huber's 
law. Notice that this compensation breaks down for d~ 1l ! To our knowledge, this is 
the first time that an exact periodic orbit sum for a chaotic system has been derived 
and for which the abscissa of convergence is exactly known. The beautiful semiclassical 
periodic orbit sums discussed recently (see e.g. Berry /17/) correspond to the limit 
Ei-t-0 in (9) or (10), and therefore are in general not expected to be convergent. 

3. Can one hear the shape of a compact Riemann surface? 

This is a variation of the famous question posed by M. Kac /18/. To answer it, we need 
the trace of the heat kernel on M. One finds /2/ 

"" ""' 2. - ~ H "" -lbt ( ..._ ~it. (' >< - z.~tll. -
Tl"e" =Le- .._ =A"R ~t) )d~ --!,(.l!...)e 

kG() 'Z.1t 0 su, a.«. 

t.Vt 
1; 

"" AV 
.... i (~\"l.L.. r £.t-s) e-~t( ... ~)- "iit-

2 ui<t) ~ ~' •~~ s 1k-t.(" .Uv)) 

111) 

2. J.R 
where b.Vs'k;.'1./8t¥.'R is a quantum correction which naturally arises also in an 
exact path integral treatment /19/ of the free motion on the Poincare upper half-plane. 
Since the closed orbit contribution in (11) vanishes exponentially for t~O+, the 
small-t behaviour is completely determined by the "zero length term", and is expli­
citly given by the asymptotic expansion as t -toO 

"" :Le 
k.-o 

lbt 

" + O(tN) 
2. .., " 

"""AR L b (-l;:t ) = z.n::i:; t k"CC n 2.* R~ 

"' " " z. f<-1 J bo=~' b.= e:-.~) [-"+2 L.. eft) (2. --1) IB .. f. \ 2.:""\ k:i 
' h t- N 

I 12J 

where B2k are the Bernoulli numbers. Thus one can hear the area and the Euler charac­
teristic of M (sec also /20/). 
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As illustrative examples, some exact relations between the quantum mechanical energy 

spectrum and the lengths of the classical periodic orbits have been presented for a 

siniple ChS:otic Hamiltonian system. (More relations can be found in /2/.) Relations 

as eq. (3) are of a non-perturbative nature and can be compared with e.g. the well­

known Kiill"(m-Lehmann representation in quantum field theory. The "closed-orbit sums" 

(as eq. (9)) instead have the character of a perturbation expansion ("loop expansion") 

and are in general only convergent in a finite region. (Compare e.g. with the QCD-ex­

ample discussed by Poggio, Quinn and Weinberg /16/.) In this talk we-have C?ncentrated 

on the energy spectrum. For a discussion of the wavefunctions we refer to the work of 

Pignataro and Wightman /21/. 
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