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Abstract 

The SU(2) Higgs model with a scalar doublet field is studied by Monte Carlo 
calculations on 124 and 164 lattices. The gauge coupling is chosen to be similar 
in magnitude to the physical value in the standard model. The numerical results 
at large scalar self-coupling imply an upper limit mn /mw :oe 9 for the ratio of the 
Higgs boson mass to theW-mass. 

1 Introduction 

Some time ago Dashen and Neuberger [1] suggested to determine the non-perturbative upper 
limit for the Higgs boson mass within the Higgs sector of the standard model by Monte Carlo 
calculations. One way to obtain this upper limit is to perform the numerical calculation in 
the broken symmetry phase of the four-component pure scalar theory and use perturbation 
theory in order to incorporate the effect of the weak SU(2) gauge coupling. The difficulty one 
has to face in this way is the presence of infrared singularities due to the zero mass Goldstone 
bosons. Another possibility is to introduce the weakly coupled gauge field in the Monte Carlo 
calmlation which ads, via the Higgs mechanism, as an infrared regulator. As it was shown 
recently [2], numerical Monte Carlo calculations are possible also in the physically interesting 
range of the SU(2) gauge coupling. 

The reason for the existence of an upper limit for the Higgs mass is that, as it was 
assumed also in Ref. [1], the standard Higgs sector is most likely an effective field theory 
with a necessarily finite cut-off (its continuum limit is trivial [3]). The qualitative behaviour 
of the renormalization group trajectories (or "curves of constant physics") can be determined 
for small gauge couplings from the weak gauge coupling expansion (WGCE) [4] around the 
critical line of the scalar ¢4 model. The result is [5] that the curves of constant physics go, 
for increasing cut-off, in the direction of increasing bare scalar self couplings (,\).Every such 
curve has an endpoint in the ,\ = oo plane for some finite cut-off. In other words, the points 
with maximal cut-off, where "new physics" has to come, are to be found in the ,\ = oo plane. 
In addition, WGCE also tells that the ratio Rnw = mn /mw is a monotonously decreasing 
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function of the maximal cut-off. Therefore, in those points of the .\ = oo plane where the 
Higgs mass in lattice units is of the order 1 (i. e. the cut-off is of the same order as the Higgs 
mass), one can obtain an absolute upper limit for the ratio of the Higgs mass toW-mass. 

In the present paper we report on a detailed exploratory study of the standard Higgs 
model in the weak gauge coupling region. The main emphasis is on the investigation of 
the qualitative behaviour of some physical observa.bles as a function of the bare coupling 
parameters for weak gauge coupling and large scalar self-coupling. The comparison of the 
results on 1:?4 and 164 lattices gives also a first insight into the finite lattice size dependence. 
For the upper limit of the ratio RHw = mH /mw we can only obtain a. first crude estimate. 
A more precise determination of its value has to await future Monte Carlo calculations. The 
present work is a straightforward continuation of the numerical calculation in Ref. [2] at 
(,\ ~ 1,1l = 8). In fact, we shall include the 124 point obtained there also in the present 
analysis. In the next Section the numerical results on the Wilson-loop expectation values 
will be given and the value of the renormalized gauge coupling will be determined from the 
Yukawa potential between external SU(2) charges. In Section 3 the correlation functions in 
the Higgs- and IV -channels will be summarized and the difficulties of the extraction of the 
corresponding masses will be discussed. The last Section contains a. short summary and the 
ron c l usions. 

2 The renormalized gauge coupling 

Tlw notations used in this paper are identical to those of Ref. [2]. We only repeat here the 
ddiuition of the lattice a<"tion for convenience of the reader. At finite .\ we have 

5 :-.;3." = (3 ~ ( 1 - ~ Tr Up) 

3logp" + ,\(p!- 1)
2

- "L Px-+PP"Tr ( 1 ) 
/J >0 

lu t lw limit of infinitely stronf!; bare scalar self-coupling ( ,\ = oo) the length of the Higgs 
scah.r field is fr01.cn top,. c 1 and only the angular Higgs variable o, E 5U(2) remains: 

5 A.=·"·' = .d 2.., ( 1 - ~ Tr Up) - " L Tr ( o ;:-+ ,o U ( .r, p )o,) 
P ..... x.p ·0 

Tlw static cn<-rgv l"(nR) of an external SU(2) charge pair (the "potential") is obtained at 
lattice distaucc R from tlw expectatimr value of rectangular Wilson-loops T¥R.T, as usual: 

nF(aR) = - lim ~-log(WR.T) 
T-= T 

(3) 

Tlw potcutial is distorted on the lattice by scale breaking lattice artifacts and by finite size 
dkct>. Iu our case. du~ to the weakness of the SU(2) gauge coupling, these can be corrected 
f,r. to a large extent. by comparing the numerical results directly to the lattice potential 
',J,t ai!H··d from a single VV-exchange in !attire perturbation theory. The necessary formulas 
".,.,.,. gn·eu iu ':?": t]Jc reiJonualized SU(:?) gauge coupling <>su( 2 ) at. lattice distance R can be 

a[F(nR)- V(aR- a)] 
"-'~"t'I(R) co- ~--- ··--------- ---------

3.,.[.T(p.,R 1,L) .J(fl,R.L)] 
( 4) 



Here J(/1-, R, L) is given on an L3 lattice by 

J( R L)- 2_" IL' ' - L 3 L, --::,-+--c:"::---4---:-. _.,,,p::c-, 
p,'O IL L-i sm 2 

(5) 

The numerical value of J(!L,R- 1,L)- J(/1-,R,L) can be easily calculated. In Ref. [2] a 
few representative examples were given. Unfortunately, there is a small mistake in Table 
4 of [2]: the mass in columns 2 and 3 should be read /1- = 0.20 instead of /1- = 0.19. The 
expressions in Eqs. ( 4-5) do not take into account the finite time (T) extension of the lattice: 
it is assumed that in Eq. (3) the limiting value forT--> oo can be obtained numerically to a 
good approximation. (This point will be discussed below.) 

The numerical Monte Carlo calculations were performed partly on the CYBER 205 at the 
Karlsruhe University and partly on the Fujitsu VP-200 at IABG, Ottobrunn. The updating 
was done by the Metropolis method with 6 hits per variable (including the Higgs variables 
a.,px as well as the SU(2) link-variable U(x,!L)). The effect of the bare self-coupling>. on 
the physical observables was investigated for approximately constant. expectation value of the 
gauge invariant link variable L (keeping at the same time the bare gauge coupling f3 fixed). 
The definition of L is, together with some other average quantities: 

L = GTr(a;+PU(x,/1-)o:x)) 

P = ( 1- ~Tr Up) P = (Px) (6) 

It is known from. previous Monte Carlo studies [6] that. keeping L constant. for fixed f3 min
imizes the effect of changing >.. (Actually it would be possible to tune the value of L to a 
better precision than we did, but we did not want to have grotesque hopping parameter values 
with many digits.) At >. = oo and f3 = 8 we have chosen 3 points to look for the dependence 
on the hopping parameter ( K ). The point at ~~: = 0.42 was repeated also at f3 = 10, in order 
to have an idea about the dependence on the bare gauge coupling ({3 = 4/ g2 ). The num
ber of Monte Carlo sweeps was between 60000 and 200000 per point.. The correlations were 
measured after every sweep. On the 164 lattice the Wilson-loops were calculated only after 
every 20'th sweep. On the 124 lattice separate runs were done, due to some technical reasons, 
for the correlations and for the Wilson-loops (roughly ~ to ~ of the sweeps was devoted to 
the Wilson-loops). An estimate of the statistical errors was obtained by binning the data 
sequences into bins of length 2k, ( k = 0, 1, 2, ... ) and estimating the standard deviations from 
the fluctuations of bin averages. For a summary of the measured points see Table I, where 
also the values of the average quantities in Eq. (6) are included. The number of points in 
the 3-dimensional parameter space is not too large, but smaller lattices or less statistics per 
point would not be appropriate for the questions we are interested in. 

A convenient definition of the renormalized gauge coupling in the Monte Carlo calculations 
is based on the static potential between external charges. In order to obtain the potential, 
one has to determine the expectation value of Wilson-loops. Our results for the 164 points 
are collected in Table IIIA-D, together with the Creutz-ratios 

(7) 
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The results on the 124 lattice look similar but the errors are about a factor of 3 larger. As 

an example, the point at(>.= oo,/3 = 8,~~: = 0.37) is shown in Table IV. For the other 124 

points see Ref. [7]. 
The physical quantities of interest, like the potential or the "force" (=potential difference) 

are functions of several Wilson-loops. In order to obtain an estimate of the statistical error 

of such quantities, one possibility is to calculate them in data bins and estimate the standard 

deviations from the fluctuations. The errors of the Creutz-ratios in Table IliA-D were deter

mined in this way. Another way of estimating the errors is to measure the correlation matrix 

of the Wilson-loops 

(8) 

If these numbers are available to a reasonable precision, one can estimate the error of any 

gentle function of an arbitrary subset WR,T,, ... , WR,T, of the Wilson-loops by assuming 

a correlated multi-dimensional Gaussian distribution for WR,T,, ... , WR,T,· The simplest 

procedure is to diagonalize the correlation matrix C(W) and produce a random sequence of 

W R,T,, ... , W R,T, values by Gaussians in the direction of the eigenvectors. An arbitrary func

tion of the Wilson-loops can be calculated on the sequence and the standard deviation gives 

the desired error estimate. In this way the higher order correlations among WR,T,, ... , WR,T, 

are neglected, but these are usually unimportant for an error estimate. In fact, applying this 

method to the Creutz-ratios in Table IliA-D, the statistical errors can be recovered almost 

exactly. The correlation matrix C(W) could be determined in our 164 runs to a good precision. 

As an example, a representative sample of the Wilson-loop correlations is included in Table 

V. (For similar other tables see Ref. [7].) The diagonalization of submatrices of C(W) shows 

that the largest eigenvalue is usually a factor 20-100 larger than the next one. This implies 

that the Gaussian fluctuations are almost an order of magnitude larger in the direction of 

the largest eigenvalue than in other directions. It is not a surprise that the largest eigenvalue 

belongs to an eigenvector with roughly equal positive components in the direction of every 

Wilson-loop, whereas the small eigenvalues have eigenvectors with opposite sign components. 

In other words, the Wilson loops fluctuate mainly coherently. The relative fluctuations are 

much smaller. 
This way of estimating the statistical errors is particularly convenient if, for instance, the 

question of the errors of some fit parameters arises. (The parameters of a fit can also be 

considered as functions of the input data.) The error estimate by binning the data sequence 

and performing the fit in the bins is, of course, possible also in this case, but the recording of 

all measured data during long runs is usually cumbersome. It costs less effort to measure and 

colleet during the run only the correlation matrix and to do the fits at the end on sequences 

which are distributed according to the measured Gaussian correlations. (For a more detailed 

description of this method and for an application to the two-point correlation functions see 

Ref. [8].) 
The errors of the \IVilson-loop expectation values are quite small, therefore a relatively 

precise determination of the Yukawa potential parameters is possible. The main difficulty .is, 

however, to extrapolate in Eq. (3) to T = oo. The simplest method of obtaining aVis to 

form ratios of two Wilson-loops with a given R and neighbouring T. The best estimate can 

be obtained from the maximum possible T-value (in our case Tma• = 6 or 8): 

V( R) I 
WR,T=_.-1 

a a ~ogW 
R,T=a:c 
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Taking this approximation for the potential difference in Eq. ( 4) gives the Creutz-ratio XR,T=••. 

The inspection of the logarithmic slopes or Creutz-ratios for increasing T shows, however, 
that Eq. (9) gives only an upper limit both for the potential and the potential difference, 
because for fixed R the subsequent values in T are still decreasing. A better extrapolation to 
T = oo can be obtained from two-exponential fits of the T-dependence by taking the lower 
exponent as the T = oo value. We tried fits in several T-intervals and performed consistency 
checks. On the 164 lattice a good T-extrapolation of the potential c.ould be achieved in 
this way for 1 ::; T ::; 4. Appart from a slight, barely significant, increase in the point 
(:\,{3,~<) = (oo,8,0.34), on the 164 lattice the renormalized SU(2) coupling asu(2) obtained 
from Eq. ( 4) turned out to be independent of the distance for 2 ::; R::; 4: 

( oo, 8, 0.34) : "'SU(2) 0.049 ± 0.001 

(oo,8,0.37): asu(2) 0.047 ± 0.001 

(oo,8,0.42): asu(2) 0.048 ± 0.001 

( oo, 10, 0.42) : "'SU(2) = 0.037 ± 0.001 (10) 

We consider the observed independence on R as a sign of the correctness ofT-extrapolation. 
The difference between the simplest estimate in Eq.(9) and the result of the two-exponential 
fits is illustrated by Figs. 1A-1D. On the 124 lattice the situation is still somewhat more 
difficult. In the points where both 124 and 164 were measured, the asu(2)-values turned out 
to be about 5% higher on 124

• Besides, on the 124 lattice there was still some increase also 
for 2 ::; R ::; 4. As a summary, we quote for 2 ::; R ::; 4: 

(0.1,8,0.177): asu(2) 0.049 ± 0.001 

(1.0,8,0.28): "'SU(2) ~ 0.050 ± 0.001 

( oo, 8, 0.37) : "'SU(2) 0.051 ± 0.002 

(oo,8,0.42): "'SU(2) 0.051 ± 0.002 ( 11) 

A precise definition of the renormalized gauge coupling has to specify the value of the 
distance R, too, where asu(2)(R) is taken. A possible choice is, for instance, R :o: (amw )-1 

which means in our case (as we shall see below) R :o: 4-7. Unfortunately, the time extension 
of our 164 lattice does not allow for a reliable determination of asu(2) for R > 4. On a 
somewhat formal level we can take in the definition of the renormalized gauge coupling, for 
instance, R :o: (2amw )- 1 and use the values in Eq. (10). Of course, in future Monte Carlo 
studies it would be interesting to check the R-dependence of asu(2) also in the range of 
R ~ (amw )- 1 

The renormalized SU(2) coupling is usually defined by theW-exchange between fermions 
and not by the Yukawa potential. Since in our case the lattice scale is of the order of 
mw, the best we can do is to compare to the usual coupling at the scale mw. Taking 
aem(mw) = (128)- 1 [9] and sin2 Ow(mw) = 0.226 [10] one has for the usual renormalized 
SU(2) coupling: 

a 2 ( mw) :o: 0.035 (12) 

Among the values in Eq. (10) the last one, in the point (>.,{3,~<) = (oo,10,0.42), is closest to 
this. 
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3 The mass of the W-boson and Higgs boson 

The masses were deternlined from the same two-point correlations as in Ref. [2]. For A< oo 
we considered in theW-channel, with V(x,J.L) = o:;+;;U(x,J.L)o:x: 

and in the H-channel: 

wi!r = Tr (rrV(x,J.L)) 
wi;" = Px+;.pSr(rrV(x,J.L)) 

hx = h12
) = Tr V(x, J.L) 

(r=1,2,3) 
(J.L = 1,2,3) 

{ 

h1l) = Px 

h13
) = Px+;;pSr V(x,J.L) (J.L = 1,2,3,4) 

(13) 

(14) 

In the case of A = oo the Higgs field length is frozen to Px = 1, therefore in Eq. (13) only the 
first line and in Eq. (14) only the second one remain. 

The W-mass could be determined with good precision in all the points, except for the 
164 point at (A,j3,K) = (oo,8,0.34). For an example of the time-slice correlations see Table 
VI (otherwise Ref. [7]). The W-correlations can be fitted very well with a single cosh 
(corresponding to a single state) for d ::0: 3. The point (oo,8,0.34) is in this respect an 
exception, because the W-correlation for d > 3 is rather flat (see Fig. 2) and we could not 
find a stable cosh fit. The donlinance of a single W -state is well demonstrated also by Figs. 
3B- 3D, where theW-mass obtained from a single cosh between pairs of time-slices is shown. 
In contrast, on Fig. 3A for ( oo, 8, 0.34) a clear decrease of the mass is observed for increasing 
time distances. On the 124 lattice the dominance of a single W-state is illustrated in the 
point ( 0.1, 8, 0.177) by Fig. 4A. The summary of all W-mass values is contained in Table II. 

The correlation in the H-channels is more difficult to deternline, because the H-mass 
is much larger than the W -mass. Therefore, the value of the correlation at larger time 
separations is very small. Another, more subtle, problem is that for Ruw = mu /mw > 2 the 
Higgs boson is not stable: it io a resonance in the multi-W channels. This later problem can 
only be considered at a later stage, when the large diotance H,correlation will be calc.ulated 
to a good precision. The reason is that the multi-W &tates couple only weakly to the local 
variables in Eq. (14), therefore their contribution is negligible for small distances (they will, 
however, dominate at some very large distances because of the smaller mass). In most cases we 
could deternline the H-correlations with reasonable errors only for d :S: 3 (see, for instance, 
Table VI). In the points where amu is less than 1 the situation is better, but still worse 
than for the W-channels: see Fig. 4B for the H-mass obtained from the time-slice pairs at 
(.\ = 0.1, j3 = 8,'"' = 0.177). The best estimates we could obtain for the H-boson masses are 
given in Table II. 

The summary of the masses in Table II shows that 

• TheW-masses on the 164 lattice are both at (A,j3,r;;) 
about 10% smaller than on 124 • 

( oo, 8, 0.37) and ( oo, 8, 0.42) 

• In the 124 points with approximately constant link expectation value L (see Table I) 
the W-mass is, within errors, independent of A. For constant j3 and L the mass ratio 
Ruw is increasing with A (see also Fig. 5 ). The upper limit of Ruw .at j3 = 8 is about 
"' 7 on the 124 and about "' 8 on the 164 lattice. The mass ratio at A = oo and j3 = 8 
is not very sensitive to K. 
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• The upper limit of RHw at (3 = 10, which from the point of view of the renormalized 

SU(2) gauge coupling corresponds quite well to the phenomenological situation in the 

standard model, is about R'Jlw ~ 9. 

4 Conclusion 

The aim of the present numerical calculation in the standard SU(2) Higgs model was to ex

plore the ·qualitative behaviour of the dependence of physical variables on the bare parameters 

in a region of weak gauge coupling and strongest possible scalar self-coupling. The obtained 

upper limit for the Higgs boson mass mH ::; 9mw is only a first crude estimate which can be 

improved considerably in future Monte Carlo studies. Since the renormalized gauge coupling 

turned out to be near to its physical value in our .B = 10 point, future numerical calculations 

should be concentrated near (3 = 10. Of course, even a more precise value obtained in the 

Higgs sector is still approximate, because the coupling to fermions and the electromagnetic 

U ( 1) coupling are neglected. 
Staying within the standard SU(2) Higgs model, there are three main sources of errors 

coming from the small lattice size and from the limited statistical accuracy: 

(a) Due to the limited statistics at (3 = 10 the Higgs mass was determined from the 

correlations at distances d S 3. This presumably implies that amH is actually 

smaller than the value in Table II, because of the contributions of excited states 

at short distances. 

(b) TheW-mass on a larger lattice is probably smaller. (This is the trend we saw by 

comparing 124 and 164 lattices in the same points.) 

(c) Since the H-n{ass in lattice units in our (3 = 10 point is about 1.8, the upper limit 

for Rww· at K = 0.42 is almost certainly an overestimate, because the upper limit is 

most probably a monotonously decreasing function of the cut-off (and the cut-off 

is proportional to ( a.mH t 1 
). 

The points (a-b) have an opposite effect on the Higgs- to \V ·mass ratio and could together 

effect the upper limit only moderately. A much more important effect seems to be (c), whieh 

could easily reduce the upper limit by a factor of 2. Namely, in order to be able to talk about 

a quasi-continuum effective theory, one has to require something like a.mH S ~ (see the recent 

study of this question in the 1-component ¢>4 model [11 ]). The upper limit for the mass ratio 

at arnH = ~ can be substantially smaller than its value at amH ~ 1.8. For the numerical 

determination of a better upper limit one has to go, in the vicinity of (3 = 10, closer to the 

phase transition line, which means decreasing K (and L). On the technical side amH ~ ~ 

could require a lattice by a factor of 2 larger in linear size (i. e. 324
). 

In view of this, admittedly speculative, evaluation of possible systematic errors, the upper 

limit R'Jlw ~ 9 is surprisingly low. The real upper limit for the Higgs boson mass belonging 

to a cut-off, say, 1 TeV could be easily as low as~ 6mw. Note in this respect, that the use of 

the tree-level formula for the Higgs boson mass plus approximate block-spin transformation 

in the four-component ¢> 4 model seems to give somewhat higher upper limits [12]. Since the 

Higgs sector is the only unknown piece of the standard model, the improvement of the upper 
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limit for the Higgs mass certainly deserves further effort, especially as long as the Higgs boson 
is not yet found experimentally. 
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Table I 
Summary of the points where the Monte Carlo calculations were performed. The average 

quantities in Eq. (6) are also given. 

). (3 I< lattice sweeps L p p 
0.1 8.0 0.177 124 113000 0.38164(12) 0.09592(1) 1.47464(11) 
0.1 8.0 0.182 124 98000 0.46227(7) 0.09565(2) 1.55315(7) 
1.0 8.0 0.28 124 200000 0.36947(6) 0.09599(1) 1.15598(2) 
00 8.0 0.37 124 115000 0.36919(3) 0.09600(1) 1.0 
00 8.0 0.42 124 120000 0.46328(3) 0.09579(3) 1.0 
00 8.0 0.34 164 65000 0.28965(3) 0.096198(3) 1.0 
00 8.0 0.37 164 108000 0.36923(2) 0.096013(3) 1.0 
00 8.0 0.42 164 64000 0.463310(14) 0.095743(3) 1.0 
00 10.0 0.42 164 89000 0.469211(12) 0.076238(2) 1.0 

Table II 
Summary of the masses. The estimated errors in the last numerals are given in parenthesis. 

The last column is the H-mass to W-mass ratio. 

). (3 I< lattice amw amH RHw 
0.1 8.0 0.177 124 0.207(8) 0.73(5) 3.5 ± 0.4 
0.1 8.0 0.182 124 0.243(9) 0.98(7) 4.0 ± 0.4 
1.0 8.0 0.28 124 0.194(7) 1.1(1) 5.7 ± 0.7 
00 8.0 0.37 124 0.195(9) 1.3( 2) 6.7 ± 1.3 
00 8.0 0.42 124 0.244(6) 1.7(3) . 7.0 ± 1.4 
00 8.0 0.34 164 0.13(2) 0.8( 1) 6.2 ± 1.7 
00 8.0 0.37 164 0.172(7) 1.4(1) 8.1 ± 0.9 
00 8.0 0.42 164 0.217(5) 1.7(2) 7.8 ± 1.1 
00 10.0 0.42 164 0.198(7) 1.8( 2) 9.1 ± 1.3 
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Table IliA 
Expectation values of the 'Wilson-loops vVR.T = Wr,R on 164 lattice at (.X= oo,(3 = 8.0, K = 0.34). Entries below the main diagonal 

are the Creutz-rat.i,Js. Statistical errors in the last. numerals are given in parentheses. 

T = 1,2 T = 2,3 T = 3,4 T = 4,5 T = 5,6 T = 6, 7 T = 7,8 T=8 
R = 1 0.903802( 3) 0.838542( 6) 0.'181564(10) 0.729164( 13) 0.680457( 15) 0.635063( 18) 0.592718( 22) 0.553211(24) 
R = 2 0.031716(6) 0. 753707( 11) 0.086877(14) 0.628028( 18) 0.574792(21) 0.526267(25) 0.481918(27) 0.441357(29) 
R = 3 0.022481(7) 0.011535(9) O.G18794( 20) 0.560938( 24) 0.509506(27) 0.463163(31) 0.421192(33) 0.383123(36) 
R=4 0.020172( 6) 0.008592( 9) 0.0()_5346(10) f 0.505781(?~9) 0.457491(33) 0.414352( 37) 0.375526(39) 0.340486( 42) 
R=5 0.019442(7) i 0.007592(9) 0.004177(10) I 0.002921110) 0.412604( 40) 0.372822( 44) 0.337199( 47) 0.305188(50) 
R = 6 0.019161(9) i 0.007163(14) 0.003676(9) • 0.002349(10) 0.001742(20) 0.336288( 49) 0.303739( 52) 0.274597(55) 
R=7 0.019027( 8) .~ 0.006955( 15) o.oo3402(10) I o.oo2o37(13) 0.001374(11) 0.000954( 29) . _C!..2! 4078( 55) 0.247614(58) 
R = 8 o.o1894o(8) 1 o.oo6814(10) O.Otl3217(15) lo.001795(i i) 0.001117(20) 0.000679(21) 0.000362(31) 0.223624( 61) 

Table IIIB 
Expectation values oft he \'Vilson-loops vV R,T = Wr,R on 164 latti,·e at (.X = ex:., f3 = 8.0, K = 0.37). Entries below the main diagonal 

are the Creut.z-ratios. Statistical errors in 1 he last numerals are given in parentheses. 

T-12 + T-23 T = 3,4 T= 4,5 T = 5,6 T = 6, 7 T = 7,8 T =8 
R=1 0.90;98~(3) 0.83;91~(6) 0.782099(8) 0. 729836( 11) 0.681249(14) 0.635953(18) 0.593693(20) 0.554252(23) 
R=2 0.031472(7) 0.754406(11) 0.681'840(16) 0.629207(1!))_ 0.576142(22) 0.527739(26) 0.483499(29) 0.443004(31) 
R = 3 o.o22247(6J I o.o11318(1o) 0.620089(21) 0.562503(2(>) 0.511278(29) 0.465068(33) 0.423212(36) 0.385208(38) 
R = 4 0.019935(8) 0.008370(7) 0.005123(13) 0.507658(30 J 0.459590(34) 0.416591(38) 0.377877( 41) 0.342902( 43) 
R=5 0.019215(5) 0.007378( 6) 0.003990( 8) 0.002756(12) 0.414927( 40) 0.375282( 44) 0.339769( 46) 0.307805( 48) 
R=6 0.018948( 6) 0.006977(8) 0.003500( 16) 0.002197(10) . 0.00160?_(26) 0.338881(50) 0.306436(52) 0.277327( 53) 
R = 7 0.018791(6) 0.006758(12) 0.003226(8) 0.001873(8) 0.001232(19) 0.000861(29) 0.276858(56) 0.250413(58) 
R = 8 0.018728(8) 0.006619(14) 0.003033(10) 0.001679(16) 0.001009(11) 0.000581(19) 0.000320(35) 0.226422( 61) 
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Table IIIC 
Expectation values of the Wilson-loops WR,T = Wr,R on 164 lattice at (A= oo,(3 = 8.0, K = 0.42). Entries below the main diagonal 

are the Creutz-ratios. Statistical errors in the last numerals are given in parentheses. 

T = 1,2 T = 2,3 T = 3,4 T=4,5 T = 5,6 T = 6, 7 T = 7,8 T = 8 
R= 1 0.904257(3) 0.839442( 5) 0.782850(8) 0.730783(10) 0.682355(13) 0.637195(17) 0.595046(18) 0.555699(21) 
R = 2 0.031108(7) 0.755405(10) 0.689217(13) 0.630886(17) 0.578052(20) 0.529840(22) 0.485731(25) 0.445344(28) 
R = 3 0.021902(6) 0.011003(7) 0.621947(19) 0.564726(23) 0.513763(27) 0.467762(29) 0.426035(32) 0.388127(34) 
R =4 0.019606(7) 0.008084(6) 0.004879(9) 0.510274(28) 0.462485(32) 0.419702(35) 0.381115( 40) 0.346216( 41) 
R = 5 0.018896(3) 0.007116(6) 0.003753(11) 0.002548(15) 0.418106(38) 0.378666( 41) 0.343258( 44) 0.311351( 46) 
R=6 0.018615(10) 0.006714(7) 0.003269(13) 0.002010(14) 0.001409(16) 0.342463( 48) 0.310099( 49) 0.281037(50) 
R = 7 0.018483(11) 0.006518(6) 0.003006(13) 0.001728(13) 0.001101(10) 0.000753(20) 0.280582(52) 0.254156(53) 
R =8 0.018396(7) 0.006381(8) 0.002850(13) 0.001524(15) 0.000844(14) 0.000510(16) 0.000260(35) 0.230160(55) 

--

Table IIID 
Expectation values of the Wilson-loops WR,T = Wr,R on 164 lattice at (A= oo,(3 = 10.0, K = 0.42). Entries below the main 

diagonal are the Creutz-ratios. Statistical errors in the last numerals are given in parentheses. 

T = 1,2 T = 2,3 T = 3,4 T = 4,5 T = 5,6 T = 6, 7 T = 7,8 T=8 
R= 1 0.923762(2) 0.871411(3) 0.824989(5) 0.781627(7) 0.740694(10) 0.701955(12) 0.665263(15) 0.630501(18) 
R=2 0.024138( 4) 0.802423(7) 0.746878(10) o:696930(12) 0.650806( 15) 0.607907(19) 0.567911(22) 0.530591(24) 
R=3 0.016990( 4) 0.008547( 4) 0.689261(14) 0.639129(17) 0.593531(20) 0.551513(23) 0.512613(26) 0.476546(28) 
R=4 0.015225( 4) 0.006297(4) 0.003821(8) 0.590383(21) 0.546644(25) 0.506640(28) 0.469788(31) 0.435755(33) 

R=5 0.014683(6) 0.005544(3) 0.002956(5) 0.002010(7) 0.505130(29) 0.467425(33) 0.432841(36) 0.401 004( 39) 
R=6 0.0144'72(7) 0.005236( 4) 0.002573(6) 0.001580(5) 0.001137(11) 0.432042(38) 0.399722( 42) 0.370058( 45) 
R=7 0.014370(5) 0.005086(5) 0.002376(5) 0.001350(6) 0.000884(10) 0.000603(12) 0.369598( 46) 0.342026(49) 
R = 8 0.014307(7) L_0.004983(6) 0.002244(8) 0.001196(10) 0.000712(12) 0.000418(14) 0.000202(20) 0.316447(551 
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Table IV 
Expectation values of the Wilson-loops W R,T = Wr,R on 124 lattice at ( .\ = oo, fJ = 8.0, K = 0.37). Entries below the main diagonal 

are the Creutz-ratios. Statistical errors in the last numerals are given in parentheses. The errors of the Creutz-ratios are 
calculated from the errors of the largest Wilson-loop only. 

T = 1,2 T = 2,3 T = 3,4 T = 4,5 I T = 5,6 T=6 
R = 1 0.90400(1) 0.83892(1) 0.78209(2) 0.72982(3) 0.68121( 4) 0.63591(5) 
R = 2 0.03146( 4) 0.75443(3) 0.68786( 4) 0.62924(5) 0.57618(7) 0.52783(8) 
R=3 0.02222(6) 0.01123(10) 0.62017( 6) 0.56264(8) 0.51148(9) 0 .46542 ( 11) 
R=4 0.01990(8) 0.00827(14) 0.00498(20) 0.50792(10) 0.46001(12) 0.41729(13) 
R = 5 0.01917(12) 0.00724(18) 0.00373( 26) 0.00241(34) 0.41562(14) 0.37638( 15) 
R= 6 0.01882(15) 0.00674(24) 0.00311(31) 0.001 70( 40) 0.00090(50) 0.34053( 17) 

Table V 
The correlation of the Wilson-loops on the 164 lattice at. (.\ = oo, ;3 = 10.0, K = 0.42). Above the main diagonal the first length is 

fixed to 1, below the main diagonal to 8. Statistical errors were obtained by binning the data sequence. 

T2 = 1 T2 = 2 T, = 3 T2 = 4 T2 = 5 T, = 6 T2 = 7 T2 = 8 
R, = 1 1.90(5)E-8 3.12(8)E-8 4.10(11)E-8 4.95(13)E-8 5.72(18)E-8 6.38(20)E-8 6.94(25)E-8 7.44(28)E-8 
R 2 = 1,2 1.19(3)E6 6.36(15)E-8 8.93(23)E-8 1.12(3)E-7 1.32( 4)E-7 ~.50( 4)E-7 1.65(5)E-7 1.79(5)E-7 
R 2 = 2,3 1.35(3)E-6 2.27(5)E-6 1.40(3)E-7 1.84( 4)E- 7 2.23( 5 )E-7 2.58( 6)E-7 2.89(7)E-7 3.17(8)E-7 
R 2 = 3,4 1.40( 4)E-6 2.45( 6)E-6 3.23(8)E-6 2.58(6)E-7 3.24(7)E-7 3.82(9)E-7 4.33(10)E-7 4. 79( 11 )E- 7 
R 2 = 4,5 1.45( 4)E-6 2.60(7)E-6 3.45(8)E-6 4.22(9)E6 4.23(10)E-7 5.11(11)E-7 5.88(13)E-7 6.57(14)E-7 
R 2 = 5,6 1.51{5)E-6 2.73(7)E-6 3.66(9)E-6 4.49(10)E-6 5.21(12)E-6 6.35(13)E-7 7.43(15)E-7 8.40(18)E-7 
R 2 = 6, 7 1.58(5)E-6 2.89(8)E-6 3.87(10)E-6 4.76(11 )E-6 5.53(12)E-6 6.26(14)E-6 8.89(18)E-7 1.02(2)E-6 
R 2 = 7,8 1.64(5)E-6 3.00(8)E-6 4.05(10)E-6 5.00(12)E-6 5.82(13)E-6 6.59(15)E-6 7.30(16)E-6 1.19(2)E-6 
R 2 = 8 1.69( 6)E-6 3.09(9)E-6 4.18(11)E-6 5.18(12)E-6 6.05(14)E-6 6.87(15)E-6 7 .64( 1 7)E-6 8.34(18)E-6 
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Table VI 
The zero momentum correlations as a function of the time-slice distance Ton the 164 lattice at (.\ = oo,(3 = 8.0, 1< = 0.37). 

T =0 T=1 T = 2 T = 3 T =4 T=5 T =6 T = 7 T =8 
H-channel 7.35E-05 9.23E-06 2.09E-06 5.09E-07 1.67E-07 1.67E-07 2.40E-08 3.13E-08 9.20E-08 

±8.0E-08 ±6.5E-08 ±6.0E-08 ±5.7E-08 ±6.1E-08 ±5.7E-08 ±5.5E-08 ±6.2E-08 ±8.2E-08 
W-channel 4.78E-05 8.36E-06 5.86E-06 4.98E-06 4.44E-06 4.04E-06 3.77E-06 3.60E-06 3.58E-06 

±l.lE-07 ±l.lE-07 ±l.lE-07 ±l.OE-07 ±l.OE-07 ±l.OE-07 ±l.OE-07 ±l.lE-07 ±l.lE-07 
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Figure captions 

Fig. lA. The Yukawa potential obtained at (.A= oo,/3 = 8,11: = 0.34) on a 164 lattice. 

The circles show the values given by Eq. (9). The line connects the extrapolated T = oo 

values obtained by the two-exponential fits. The statistical errors are in most cases smaller 

than the circles. 

Fig. lB. The same as Fig. 1A, for (.A= oo,/3 = 8,~~: = 0.37). 

Fig. IC. The same as Fig. 1A, for (.A= oo,/3 = 8,110 = 0.42). 

Fig. ID. The same as Fig. 1A, for(.\= oo,/3 = 10,11: = 0.42). 

Fig. 2. The W-c.orrelation as a function of the time-slice distance on 164 lattice at 

(.\ = oo,/3 = 8,11: = 0.34). 

Fig. 3A. The W-mass determined from a single cosh between time-slice pairs on 164 

lattice at(.\= oo,/3 = 8,11: = 0.34). Identical symbols belong to the same time-slice distance. 

The dotted horizontal line is the mass given in Table II. 

Fig. 3B. The same as Fig. 3A, for (>. = oo, f3 = 8,110 = 0.37). 

Fig. 3C. The same as Fig. 3A, for ( >. = oo, f3 = 8, 11: = 0.42). 

Fig. 3D. The same as Fig. 3A, for ( >. = oo, f3 = 10, 11: = 0.42). 

Fig. 4A. The same as Fig. 3A for theW-mass on. 124 lattice at (.\ = 0.1,/3 = 8,11: = 

0.177). 

Fig. 4B. The same as Fig. 3A for the Higgs mass on 124 lattic.e at(.\= 0.1,/3 = 8,11: = 

0.177). 

Fig. 5. The ratio of the Higgs mass to W-mass for f3 = 8 and nearly constant link 

expectation value ( L) on 124 lattice as a function of .\ -l. 
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