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Abstract

The SU(2) Higgs model with a scalar doublet field is studied by Monte Carlo
calculations on 12* and 16* lattices. The gauge coupling is chosen to be similar
in magnitude to the physical value in the standard model. The numerical results
at large scalar self-coupling imply an upper limit mg/mw =~ 9 for the ratio of the
Higgs boson mass to the W-mass.

1 Introduction

Some time ago Dashen and Neuberger [1] suggested to determine the non-perturbative upper
limit for the Higgs boson mass within the Higgs sector of the standard model by Monte Carlo
calculations. One way to obtain this upper limit is to perform the numerical calculation in
the broken symmetry phase of the four-component pure scalar theory and use perturbation
theory in order to incorporate the effect of the weak SU(2) gauge coupling. The difficulty one
has to face in this way is the presence of infrared singularities due to the zero mass Goldstone
bosons. Another possibility is to introduce the weakly coupled gauge field in the Monte Carlo
calculation which acts, via the Higgs mechanism, as an infrared regulator. As it was shown
recently (2], numerical Monte Carlo calculations are possible also in the physically interesting
range of the SU(2) gauge coupling.

The reason for the existence of an upper limit for the Higgs mass 1s that, as 1t was
assumed also in Ref. [1], the standard Higgs sector is most likely an effective field theory
with a necessarily finite cut-off (its continuwm limit is trivial [3]). The qualitative behaviour
of the renormalization group trajectories (or "curves of constant physics”) can be determined
for small gauge couplings from the weak gauge coupling expansion (WGCE) [4] around the
critical line of the scalar ¢* model. The result is [5] that the curves of constant physics go,
for increasing cut-off, in the direction of increasing bare scalar self couplings (A).Every such
curve has an endpoint in the A = oo plane for some finite cut-off. In other words, the points
with maximal cut-off, where "new physics” has to come, are to be found in the A = oo plane.
In addition, WGCE also tells that the ratio Rgw = mpy/mw is a monotonously decreasing



function of the maximal cut-off. Therefore, in those points of the A = co plane where the
Higgs mass in lattice units is of the order 1 (i. e. the cut-off is of the same order as the Higgs
mass), one can obtain an absolute upper limit for the ratio of the Higgs mass to W-mass.

In the present paper we report on a detailed exploratory study of the standard Higgs
model in the weak gauge coupling region. The main emphasis is on the investigation of
the qualitative behaviour of some physical observables as a function of the bare coupling
parameters for weak gauge coupling and large scalar self-coupling. The comparison of the
results on 12¢ and 16* lattices gives also a first insight into the finite lattice size dependence.
For the upper limit of the ratio Rgw = mpyg/mw we can only obtain a first crude estimate.
A more precise determination of its value has to await future Monte Carlo calculations. The
present work 1s a straightforward continuation of the numerical calculation in Ref. [2] at
(A = 1,0 = 8). In fact, we shall include the 12* point obtained there also in the present
analysis. In the next Section the numerical results on the Wilson-loop expectation values
will be given and the value of the renormalized gauge coupling will be determined from the
Yukawa potential between external SU(2) charges. In Section 3 the correlation functions in
the Higgs- and W-channels will be summarized and the difficulties of the extraction of the
corresponding masses will be discussed. The last Section contains a short summary and the
conclusions.

2 The renormalized gauge coupling

The notations used in this paper are identical to those of Ref. [2]. We only repeat here the
definition of the lattice action for convenience of the reader. At finite A we have
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In the hunt of infinitely strong bare scalar self-coupling (A = o) the length of the Higgs
sealar field is frozen 1o p,. = 1 and only the angular Higgs variable a, ¢ SU(2) remains:
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The static energy 1{aR) of an external SU({2} charge pair (the "potential”) is obtained at
luttice distance R from the expectation value of rectangular Wilson-loops Wg.r, as usual:

aVi{aR) = - Tlim ;log(W’R‘T) (3)

The poteutial 1s distorted on the lattice by scale breaking lattice artifacts and by finite size
effects. In our case. due to the weakness of the SU(2) gauge coupling, these can be corrected
for. to a large extenut. by comparing the numerical results directly to the lattice potential
obtained from a single W-exchange in lattice perturbation theory. The necessary formulas
were given iu 120 the renoralized SU(2) gauge coupling a2y at lattice distance R can be
ohtained from
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Here J(u,R, L) is given on an L* lattice by

J(u, B L) = = e )
M, L3, - I3 550 “2 +E§4Sin2%

The numerical value of J(u,R — 1,L) — J(u, R, L) can be easily calculated. In Ref. (2] a
few representative examples were given. Unfortunately, there is a small mistake in Table
4 of [2]: the mass in columns 2 and 3 should be read x = 0.20 instead of 4 = 0.19. The
expressions in Egs. (4-5) do not take into account the finite time (T) extension of the lattice:
it is assumed that in Eq. (3) the limiting value for T — 0o can be obtained numerically to a
good approximation. (This point will be discussed below.)

The numerical Monte Carlo calculations were performed partly on the CYBER. 205 at the
Karlsruhe University and partly on the Fujitsu VP-200 at IABG, Ottobrunn. The updating
was done by the Metropolis method with 6 hits per variable (including the Higgs variables
Gz, px as well as the SU(2} link-variable U(z, )). The effect of the bare self-coupling A on
the physical observables was investigated for approximately constant expectation value of the
gauge invariant link variable L (keeping at the same time the bare gauge coupling 3 fixed).
The definition of L is, together with some other average quantities:

L= <%TT (ef,; U(%#)ar)>

P= <1 - %Tr Up> p = (ps) | (6)

It is known from.previous Monte Carlo studies [6] that keeping L constant for fixed 8 min-
imizes the effect of changing A. (Actually it would be possible to tune the value of L to a
better precision than we did, but we did not want to have grotesque hopping parameter values
with many digits.) At A = oc and 8 = 8 we have chosen 3 points to look for the dependence
on the hopping parameter (x). The point at x = 0.42 was repeated also at # = 10, in order
to have an idea about the dependence on the bare gauge coupling (8 = 4/¢?). The num-
ber of Monte Carlo sweeps was between 60000 and 200000 per point. The correlatious were
measured after every sweep. On the 16* lattice the Wilson-loops were calculated only after
every 20’th sweep. On the 12* lattice separate runs were done, due to some technical reasons,
for the correlations and for the Wilson-loops (roughly 1 to i of the sweeps was devoted to
the Wilson-loops). An estimate of the statistical errors was obtained by binning the data
sequences into bins of length 2*, (k = 0,1,2,...) and estimating the standard deviations from
the fluctuations of bin averages. For a summary of the measured points see Table I, where
also the values of the average quantities in Eq. (6) are included. The number of points in
the 3-dimensional parameter space is not too large, but smaller lattices or less statistics per
point would not be appropriate for the questions we are interested in. |

A convenient definition of the renormalized gauge coupling in the Monte Carlo calculations
is based on the static potential between external charges. In order to obtain the potential,
one has to determine the expectation value of Wilson-loops. Our results for the 16* points
are collected in Table IIIA-D, together with the Creutz-ratios

Yrr = —log (Wrr)(Wr1,7-1)
o (We-11)(Wr 1)

(7)



The results on the 12* lattice look similar but the errors are about a factor of 3 larger. As
an example, the point at (A = 0,8 = 8,k = 0.37) is shown in Table IV. For the other 12¢
points see Ref. [7}.

The physical quantities of interest, like the potential or the "force” (=potential difference)
are functions of several Wilson-loops. In order to obtain an estimate of the statistical error
of such quantities, one possibility is to calculate them in data bins and estimate the standard
deviations from the fluctuations. The errors of the Creutz-ratios in Table IIIA-D were deter-
mined in this way. Another way of estimating the errors is to measure the correlation matrix
of the Wilson-loops

w
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If these numbers are available to a reasonable precision, one can estimate the error of any
gentle function of an arbitrary subset Wg,r,,...,Wg,, of the Wilson-loops by assuming
a correlated multi-dimensional Gaussian distribution for Wg,r,,...,Wg,7,. The simplest
procedure is to diagonalize the correlation matrix C™) and produce a random sequence of
Wr,7,5- - Wa,r, values by Gaussians in the direction of the eigenvectors. An arbitrary func-
tion of the Wilson-loops can be calculated on the sequence and the standard deviation gives
the desired error estimate. In this way the higher order correlations among Wg,1,,..., Wa,r,
are neglected, but these are usually unimportant for an error estimate. In fact, applying this
method to the Creutz-ratios in Table IIIA-D, the statistical errors can be recovered almost
exactly. The correlation matrix CW} could be determined in our 16* runs to a good precision.
As an example, a representative sample of the Wilson-loop correlations is included in Table
V. (For similar other tables see Ref. [7].) The diagonalization of submatrices of C") shows
that the largest eigenvalue is usually a factor 20-100 larger than the next one. This implies
that the Gaussian fluctuations are almost an order of magnitude larger in the direction of
the largest eigenvalue than in other directions. It is not a surprise that the largest eigenvalue
belongs to an eigenvector with roughly equal positive components in the direction of every
Wilson-loop, whereas the small eigenvalues have eigenvectors with opposite sign components.
In other words, the Wilson loops fluctuate mainly coherently. The relative fluctuations are
much smaller. _

This way of estimating the statistical errors is particularly convenient if, for instance, the
question of the errors of some fit parameters arises. (The parameters of a fit can also be
considered as functions of the input data.) The error estimate by binning the data sequence
and performing the fit in the bins is, of course, possible also in this case, but the recording of
all measured data during long runs is usually cumbersome. It costs less effort to measure and
collect during the run only the correlation matrix and to do the fits at the end on sequences
which are distributed according to the measured Gaussian correlations. (For a more detailed
description of this method and for an application to the two-point correlation functions see
Ref. [8}.)

The errors of the Wilson-loop expectation values are quite small, therefore a relatively
precise determination of the Yukawa potential parameters is possible. The main difficulty is,
however, to extrapolate in Eq. (3) to T = co. The simplest method of obtaining aV is to
form ratios of two Wilson-loops with a given R and neighbouring T'. The best estimate can
be obtained from the maximum possible T-value (in our case T,,,, = 6 or 8):

War...
aV(aR) ~ log —Tme==1 (9)



Taking this approximation for the potential difference in Eq. (4) gives the Creutz-ratio xg1....-
The inspection of the logarithmic slopes or Creutz-ratios for increasing T shows, however,
that Eq. (9) gives only an upper limit both for the potential and the potential difference,
because for fixed R the subsequent values in T are still decreasing. A better extrapolation to
T = oo can be obtained from two-exponential fits of the T-dependence by taking the lower
exponent as the T = oo value. We tried fits in several T-intervals and performed consistency
checks. On the 16* lattice a good T-extrapolation of the potential could be achieved in
this way for 1 < T < 4. Appart from a slight, barely significant, increase in the point
(X, 8,K) = (00,8,0.34), on the 16* lattice the renormalized SU(2) coupling agyz) obtained
from Eq. (4) turned out to be independent of the distance for 2 < R < 4:

(00,8,0.34) 1 agye = 0.049 £ 0.001
(00,8,0.37):  asp = 0.047+ 0.001
(00,8,0.42) 1 agyp = 0.048+0.001
(00,10,0.42) 1 agp = 0.037+ 0.001 {10)

We consider the observed independence on R as a sign of the correctness of T-extrapolation.
The difference between the simplest estimate in Eq.(9) and the result of the two-exponential
fits is illustrated by Figs. 1A-1D. On the 12* lattice the situation is still somewhat more
difficult. In the points where both 12* and 16* were measured, the agy(s)-values turned out
to be about 5% higher on 12%. Besides, on the 12 lattice there was still some increase also
for 2 < R < 4. As a summary, we quote for 2 < R < 4:

(01, 8,0177) : Gsgrr(zy = 0.049 £ 0.002

(OO’ 8,037) : aSU(Z) = (L051 £ 0.002
(00,8,0.42):  asp) = 0.05140.002 (11)

A precise definition of the renormalized gauge coupling has to specify the value of the
distance R, too, where asy(a)(R) is taken. A possible choice is, for instance, R = (amw )™}
which means in our case (as we shall see below} R ~ 4 — 7. Unfortunately, the time extension
of our 16* lattice does not allow for a reliable determination of asy(y) for B > 4. On a
somewhat formal level we can take in the definition of the renormalized gauge coupling, for
instance, R =~ {2amw )”! and use the values in Eq. (10). Of course, in future Monte Carlo
studies it would be interesting to check the R-dependence of agy(y also in the range of
R~ (amw )N

The renormalized SU(2) coupling 1s usually defined by the W-exchange between fermions
and not by the Yukawa potential. Since in our case the lattice scale is of the order of
mw, the best we can do is to compare to the usual coupling at the scale my. Taking
Cem(mw) = (128)7 [9] and sin® @y (mw) = 0.226 [10] one has for the usual renormalized
SU(2) coupling:

aqa(mw) =~ 0.035 {12)

Among the values in Eq. (10) the last one, in the point (A, 3, k) = (00, 10,0.42), is closest to
this. '
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3 The mass of the W-boson and Higgs boson

The masses were determined from the same two-point correlations as in Ref. [2]. For A < oo
we considered in the W-channel, with V(z,u) = a:_,_ﬁU(a:,p)az:

wm =Tr(r.V(z r=1,2,3
Beru = { wg-i = P:t:+ume(r (’:'))( ) EF’ = 1,2, 3)) (13)
and in the H-channel:
R =p
he=1{ R =TrV(zu) (14)

h'('.t3) = peipPTr Viz, u) (JU' =1,2,3,4)

In the case of A = o the Higgs field length is frozen to p, = 1, therefore in Eq. (13) only the
first line and in Eq. (14) only the second one remain.

The W-mass could be determined with good precision in all the points, except for the
16* point at (A, 53,%) = (00,8,0.34). For an example of the time-slice correlations see Table
VI (otherwise Ref. [7]). The W-correlations can be fitted very well with a single cosh
(corresponding to a single state) for d > 3. The point (o0,8,0.34) is in this respect an
exception, because the W-correlation for d > 3 is rather flat (sée Fig. 2) and we could not
find a stable cosh fit. The dominance of a single W-state is well demonstrated also by Figs.
3B - 3D, where the W-mass obtained from a single cosh between pairs of time-slices is shown.
In contrast, on Fig. 3A for (oo, 8,0.34) a clear decrease of the mass is observed for increasing
time distances. On the 12 lattice the dominance of a single W-state is illustrated in the
point (0.1,8,0.177) by Fig. 4A. The summary of all W-mass values is contained in Table II.

The correlation in the H-channels is more difficult to determine, because the H-mass
is much larger than the W-mass. Therefore, the value of the correlation at larger time
separations is very small. Another, more subtle, problem is that for Rgw = mg/mw > 2 the
Higgs boson is not stable: it is a resonance in the multi-W channels. This later problem can
only be considered at a later stage, when the large distance H-correlation will be calculated
to a good precision. The reason is that the multi-W states couple only weakly to the local
variables in Eq. (14), therefore their contribution is negligible for small distances (they will,
however, dominate at some very large distances because of the smaller mass). In most cases we
could determine the H-correlations with reasonable errors only for d < 3 (see, for instance,
Table VI). In the points where amy is less than 1 the situation is better, but still worse
than for the W-channels: see Fig. 4B for the H-mass obtained from the time-slice pairs at
(A =101, =8,k = 0.177). The best estimates we could obtain for the H-boson masses are
given in Table II.

The summary of the masses in Table Il shows that

o The W-masses on the 16 lattice are both at (A, 3,x) = (00,8,0.37) and (o0, 8,0.42)
about 10% smaller than on 12%.

o In the 12* points with approximately constant link expectation value L (see Table I)
the W-mass is, within errors, independent of A. For constant 3 and L the mass ratio
BRpw is increasing with A (see also Fig. 5). The upper limit of Ryw at 3 = 8 is about
~ 7 on the 12* and about ~ 8 on the 16* lattice. The mass ratio at A = co and 8 = 8
is not very sensitive to k.



e The upper limit of RHW; at 8 = 10, which from the point of view of the renormalized
SU(2) gauge coupling corresponds quite well to the phenomenological situation in the
standard model, is about R ~ 9.

4 Conclusion

The aim of the present numerical calculation in the standard SU(2) Higgs model was to ex-
plore the qualitative behaviour of the dependence of physical variables on the bare parameters
in a region of weak gauge coupling and strongest possible scalar self-coupling. The obtained
upper limit for the Higgs boson mass myg < 9mw is only a first crude estimate which can be
improved considerably in future Monte Carlo studies. Since the renormalized gauge coupling
turned out to be near to its physical value in our 8 = 10 point. future numerical calculations
should be concentrated near 3 = 10, Of course, even a ore precise value obtained in the
Higgs sector is still approximate, because the coupling to fermions and the electromagnetic
U(1) coupling are neglected.

Staying within the standard SU(2) Higgs model, there are three main sources of errors
coming from the small lattice size and from the limited statistical accuracy:

(a) Due to the limited statistics at § = 10 the Higgs mass was determined from the
correlations at distances d < 3. This presumably implies that ampg is actually
smaller than the value in Table II, because of the contributions of excited states
at short distances.

(b) The W-mass on a larger lattice is probably smaller. (This is the trend we saw by
comparing 12* and 16* lattices in the same points.)

(¢} Since the H-mass in lattice units in our 8 = 10 point is about 1.8, the upper limit
for Ryw at » = 0.42 is almost certainly an overestimate, because the upper limnit is
most probably a monotonously decreasing function of the cut-off (and the cut-off
is proportional to {(ampy)~').

The points (a-b) have an opposite effect on the Higgs- to W-mass ratio and could together
effect the upper limit only moderately. A much more important effect seems to be (¢}, which
could easily reduce the upper limit by a factor of 2. Namely, in order to be able to talk about
a quasi-continuum effective theory, one has to require something like ampy < % (see the recent
study of this question in the 1-component ¢* model [11]). The upper limit for the mass ratio
at amyg = 1 can be substantially smaller than its value at ampy ~ 1.8. For the numerical

2
determination of a better upper limit one has to go, in the vicinity of = 10, closer to the

phase transition line, which means decreasing < (and L}. On the technical side amy =~ :
could require a lattice by a factor of 2 larger in linear size (1. e. 32*).

In view of this, admittedly speculative, evaluation of possible systematic errors, the upper
limit R ~ 9 is surprisingly low. The real upper limit for the Higgs boson mass belonging
to a cut-off, say, 1 TeV could be easily as low as 2z 6mw. Note in this respect, that the use of
the tree-level formula for the Higgs boson mass plus approximate block-spin transformation
in the four-component ¢* model seems to give somewhat higher upper limits [12]. Since the

Higgs sector is the only unknown piece of the standard model, the improvement of the upper



limit for the Higgs mass certainly deserves further effort, especially as long as the Higgs boson
is not yet found experimentally.
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Table 1

Summary of the points where the Monte Carlo calculations were performed. The average
quantities in Eq. (6) are also given.

A A K lattice | sweeps L P p
0.1 [8.0 | 0177 | 12° | 113000 0.38164(12) | 0.09592(1) | 1.47464(11)
0.1]80 [0.182] 12° | 98000 | 0.46227(7) | 0.09565(2) | 1.55315(7)
1.0 [80 |0.28 | 12* | 200000 | 0.36947(6) | 0.09599(1) | 1.15598(2)
8.0 | 0.37 124 115000 | 0.36919(3) 0.09600(1) | 1.0

(3)

(3)

0

oo | 8.0 |0.42 12 | 120000 | 0.46328(3 0.09579(3) | 1.0
oo | 8.0 |0.34 16* 65000 | 0.28965(3 0.096198(3) | 1.0
c | 8.0 |0.37 16* | 108000 | 0.36923(2) | 0.096013(3) | 1.0
oo | 8.0 |0.42 16* 64000 | 0.463310(14) | 0.095743(3) | 1.0
oo | 10.0 | 0.42 164 89000 | 0.469211(12) | 0.076238(2) | 1.0

Table 11

Summary of the masses. The estimated errors in the last numerals are given in parenthesis.
The last column is the H-mass to W-mass ratio.

A 3 K lattice amw amg Ryw
0.1 80 [0.177| 12* |0.207(8)|0.73(5) | 3.5 + 0.4
0.1 8.0 |0.182 | 12* :0.243(9) | 0.98(7) [ 4.0 + 0.4
1.0(8.0 |0.28 12 | 0.194(7) | 1.1(1) | 5.7 £ 0.7
)
)

8.0 |0.37 12 | 6.195(9) | 1.3(2) |6.7 + 1.3

80 |0.42 124 0.244(6) | 1.7(3) [ 7.0+ 1.4

oG

oo

o |80 (034 | 16* [013(2) |08(1) |62+ 1.7
oo [8.0 [0.37 | 16* 10.172(7)  1.4(1) |81 + 0.9
o0
o0

8.0 |0.42 16* | 0.217(5) ' 1.7(2) | 7.8 £+ 1.1
10.0 | 0.42 16* | 0.198(7) | 1.8(2) |9.1 £ 1.3
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Table IITA
Expectation values of the Wilson-loops Wt = Wy g on 16* lattice at (A = 00,3 = 8.0,x = 0.34). Entries below the main diagonal
are the Creutz-ratios. Statistical errors in the last numerals are given in parentheses.

T=1,2 T=23 T =3,4 T =45 T =56 T =6,7 T =78 T =38
R =1 0.903802(3) | 0.838542(6) | 0.781564(10) | 0.729164(13) | 0.680457(15) | 0.635063(18) | 0.592718(22) | 0.553211(24)
R =2 |0.031716(6) | 0.753707(11) | 0.686877(14) | 0.628028(18) | 0.574792(21) | 0.526267(25) | 0.481918(27) | 0.441357(29)
R =3 0.022481(7) | 0.011535(9) | 0.618794(20) | 0.560938(24) | 0.509506(27) | 0.463163(31) | 0.421192(33) | 0.383123(36)
R = 4 0.020172(6) | 0.008592(9) | 0.G05346(10) ; 0.505781(29) | 0.457491(33) | 0.414352(37) | 0.375526(39) | 0.340486(42)
R =5]0.019442(7) | 0.007592(9) | 0.004177(10) | 0.002921/10) | 0.412604(40) | 0.372822(44) | 0.337199(47) | 0.305188(50)
R =6 0.019161(9) { 0.007163(14) | 0.003676(9) , 0.002349(10) | 0.001742(20) | 0.336288(49) | 0.303739(52) | 0.274597(55)
R =170.019027(8) | 0.006955(15) | 0.003402(10) | 0.002037(13) | 0.001374(11) | 0.000954(29) | 0.274078(55) | 0.247614(58)
R =8 0.018940(8) | 0.006814(10) | 0.003217(15) | 0.001795(17) | 0.001117(20) | 0.000679(21) | 0.000362(31) | 0.223624(61)

Table ITIB
Expectation values of the Wilson-loops Wgrr = Wr g on 16* lattice at (A = o, 3 = 8.0,k = 0. 37). Entries below the main diagonal
are the Creutz-ratios. Statlstlca] errors in the last numerals are given in parentheses.

T=1,2 T =2,3 T =3,4 T =4,5 T = 5,6 T = 6,7 T=1,8 T=28
R =10.903987(3) | 0.838915(6) | 0.782099(8) | 0.729836(11) | 0.681249(14) | 0.635953(18) | 0.593693(20) | 0.554252(23)
R = 2 0.031472(7) | 0.754406(11) | 0.687840(16) | 0.629207(10) | 0.576142(22) | 0.527739(26) | 0.483499(29) | 0.443004(31)
R =3 0.022247(6) | 0.011318(10) | 0.620089(21) | 0.562503(26) | 0.511278(29) | 0.465068(33) | 0.423212(36) | 0.385203(38)
R =40.019935(8) | 0.008370(7) | 0.005123(13) | 0. 00;608(30) 0.459590(34) | 0.416591(38) | 0.377877(41) | 0.342902(43)
R =50.019215(5) | 0.007378(6) | 0.003990(8) | 0.002756(12) | 0.414927(40) | 0.375282(44) | 0.339769(46) | 0.307805(48)
R =6 0.018948(6) | 0.006977(8) | 0.003500(16) [ 0.002197(10) | 0.001602(26) | 0.338881(50) | 0.306436(52) | 0.277327(53)
R =170.018791(6) | 0.008758(12) | 0.003226(8) | 0.001873(8) | 0.001232(19) | 0.000861(29) | 0.276858(56) | 0.250413(58)
R =8| 0.018728(8) | 0.006619(14) | 0.003033(10) | 0.001679(16) | 0.001009(11) | 0.000581(19) | 0.000320(35) | 0.226422(61)
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Table ITIC

Expectation values of the Wilson-loops Wi r = Wr g on 16* lattice at (A = 00,3 = 8.0,k = 0.42). Entries below the main diagonal
are the Creutz-ratios. Statistical errors in the last numerals are given in parentheses.

T-1,2 T =23 T =34 T =45 T =56 T =6,7 T=17,8 T-8
R =10.904257(3) | 0.839442(5) | 0.782850(8) | 0.730783(10) | 0.682355(13) | 0.637195(17) | 0.595046(18) | 0.555699(21)
R =2 0.031108(7) | 0.755405(10) | 0.689217(13) | 0.630886(17) | 0.578052(20) | 0.520840(22) | 0.485731(25) | 0.445344(28)
R =3 | 0.021902(6) | 0.011003(7) | 0.621947(19) | 0.564726(23) | 0.513763(27) | 0.467762(29) | 0.426035(32) | 0.388127(34)
R =4 | 0.019606(7) 0.008084(6) 0.004879(9) 0.510274(28) 0.462485(32) 0.419702(35) | 0.381115(40) | 0.346216(41)
R =5 | 0.018896(3) | 0.007116(6) | 0.003753(11) | 0.002548(15) | 0.418106(38) | 0.378666(41) | 0.343258(44) | 0.311351(46)

_ R =6 0.018615(10) 0.006714(7) 0.003269(13) | 0.002010(14) | 0.001409(16) | 0.342463(48) | 0.310099(49) | 0.281037(50)
R =7 |0.018483(11) | 0.006518(6) | 0.003006(13) | 0.001728(13) | 0.001101(10) | 0.000753(20) | 0.280582(52) | 0.254156(53)
R =8|0.018396(7) | 0.006381(8) | 0.002850(13) | 0.001524(15) | 0.000844(14) | 0.000510(16) | 0.000260(35) | 0.230160(55)

Table IIID
Expectation values of the Wilson- loops Wgrr = Wr g on 16* lattice at (A = 00, = 10.0,x = 0.42). Entries below the main
diagonal are the Creutz-ratios. Statistical errors in the last numerals are given in parentheses.

T=1,2 T=2,3 T =34 T =4,5 T =15,6 T=86,7 T=1,8 T =28
R=10.923762(2) | 0.871411(3) | 0.824989(5) | 0.781627(7) | 0.740694(10) | 0.701955(12) | 0.665263(15) | 0.630501(18)
R =2 | 0.024138(4) | 0.802423(7) | 0.746878(10) | 0.696930(12) | 0.650806(15) | 0.607907(19) | 0.567911(22) | 0.530591(24)
R =3 0.016990(4) | 0.008547(4) | 0.689261(14) 0.639129(17) 0.593531(20) 0.551513(23) 0.512613(26) 0.476546(28)
R =4 0.015225(4) | 0.006297(4) | 0.003821(8) | 0.590383(21) | 0.546644(25) | 0.506640(28) | 0.469788(31) | 0.435755(33)
R =5 | 0.014683(6) | 0.005544(3) | 0.002956(5) | 0.002010(7) | 0.505130(29) | 0.467425(33) | 0.432841(36) | 0.401004(39)
R =6 0.014472(7) | 0.005236(4) | 0.002573(6) | 0.001580(5) | 0.001137(11) | 0.432042(38) | 0.399722(42) | 0.370058(45)
R =71 0.014370(5) | 0.005086(5) | 0.002376(5) | 0.001350(6) | 0.000884(10) | 0.000603(12) | 0.369598(46) | 0.342026(49)
R — 8 | 0.014307(7) | 0.004983(6) | 0.002244(8) | 0.001196(10) | 0.000712(12) | 0.000418(14) | 0.000202(20) | 0.316447(55)
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Table IV
Expectation values of the Wilson-loops Wi = Wr g on 12¢ lattice at (A = 00,8 = 8.0,k = 0.37). Entries below the main diagonal
are the Creutz-ratios. Statistical errors in the last numerals are given in pa.rentheses The errors of the Creutz-ratios are

The correlation of the Wilson-loops on the 16" lattice at (A = 00,3 = 10.0,x = 0.42}. Above the main diagonal the first length is

calculated from the errors of the largest Wilson-loop only.

0.41562(14)

0.37638(15)

T=1,2 T=23 T =3,4 T = 4,5 T =5,6 T=6
R =1]0.90400(1) [0.83892(1) |0.78209(2) | 0.72982(3) | 0.68121(4) | 0.63591(5)
R =12]0.03146(4) |0.75443(3) | 0.68786(4) | 0.62924(5) | 0.57618(7) | 0.52783(8)
R =30.02222(6) | 0.01123(10) | 0.62017(6) | 0.56264(8) | 0.51148(9) | 0.46542(11)
R =40.01990(8) |0.00827(14) | 0.00498(20) | 0.50792(10) | 0.46001(12) | 0.41729(13)
R =5 0.01917(12) | 0.00724(18) ( 0.00241(34)
R=6 ( (24) (

il

)
0.01882(15)

0.00674(24

)
0.00373(26)
0.00311(31)

0.00170(40)

0.00090(50)

0.34053(17)

Table V

fixed to 1, below the main diagonal to 8. Statistical errors were obtained by binning the data sequence.

T, = 1 Ty = 2 T, =3 T, =4 T,=5 T, = 6 T, =7 T, =8
Ry = 1 11.90(5)E-8|3.12(8)E-8 | 4.10(11)E-8 | 4.95(13)E-8 | 5.72(18)E-8 | 6.38(20)E-8 | 6.94(25)E 8 7.44(28 )ES
R, =1,2 | 1.19(3)E-6 | 6.36(15 ) 8.93(23)E-8 | 1.12(3)E-7 | 1.32(4)E-7 | 1.50(4)E-7 | 1.65(5)E-7 | 1.79(5)E-
R, =23 1.35(3)E 6| 2.27(5)E-6 | 1.40(3)E-7 | 1.84(4)E-7 |2.23(5)E-7 | 2.58(6)E-7 |2.89(7)E7 | 3.17(8)E-
R, =3,4 | L40(4)E-6 | 2.45(6)E-6 | 3.23(8)E-6 | 2.58(6)E-7 | 3.24(7)E-7 | 3.82(9)E-7 | 4.33(10 )E 7 4.79(11)E 7
R, = 4,5 | 1.45(4)E-6 2.60(7)E 6 | 3.45(8)E-6 | 4. 22(9)E 6 | 4.23(10)E-7 | 5.11(11)E-7 | 5.88(13)E-7 | 6.57(14)E-7
Ry = 5,6 | 1.51(5)E-6 | 2.73(7)E-6 | 3.66(9)E-6 | 4.49(10)E-6 | 5.21(12)E-6 | 6.35(13)E-7 | 7.43(15)E- 7 8.40(18)E-7
R, = 6,7 | 1.58(5)E-6 | 2.89(8)E-6 | 3.87(10)E-6 | 4.76(11)E-6 | 5.53(12)E-6 | 6.26(14)E-6 | 8.89(18)E 7 | 1.02(2)E-6
R; = 7,8 | 1.64(5)E-6 | 3.00(8)E-6 | 4.05(10)E-6 | 5.00(12)E-6 | 5.82(13)E-6 | 6.59(15)E-6 7.30(16)E 6 | 1.19(2)E-6
R, =8 | 1.69(6)E-6 | 3.09(9)E-6 | 4.18(11)E-6 | 5.18(12)E- 6 6.05(14)E-6 | 6.87(15)E-6 | 7.64(17)E-6 | 8.34(18)E-6
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T=0

Tr=1

T=2

Table VI

T=3

T -4

T=5

T=6

T=17

The zero momentum correlations as a function of the time-slice distance T on the 16* lattice at (A = oo, 3 = 8.0,k = 0.37).

T=38

H-chanmnel

7.35E-05
+8.0E-08

9.23E-06
+6.5E-08

2.09E-06
+6.0E-08

5.09E-07
+£5.7E-08

1.67E-07
+6.1E-08

1.67E-07
15.7E-08

2.40E-08
15.5E-08

3.13E-08
+6.2E-08

9.20E-08
+8.2E-08

W-channel

4.78E-05
+1.1E-07

8.36E-06
+1.1E-07

5.86E-06
+1.1E-07

4.98E-06

+1.0E-07

4.44E-06
+1.0E-07

4.04E-06
+1.0E-07

3.77E-06
+1.0E-07

3.60E-06
+1.1E-07

3.58E-06
+1.1E-07
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Figure captions

Fig. 1A. The Yukawa potential obtained at (A = oo, = 8,k = 0.34) on a 16* lattice.
The circles show the values given by Eq. (9). The line connects the extrapolated T = oo
values obtained by the two-exponential fits. The statistical errors are in most cases smaller
than the arcles.

Fig. 1B. The same as Fig. 14, for (A = 00,3 = 8,x = 0.37).

Fig. 1C. The same as Fig. 14, for (A = 00,3 = 8,k = 0.42).

Fig. 1D. The same as Fig. 14, for (A = 0,3 = 10,x = 0.42).

Fig. 2. The W-correlation as a function of the time-slice distance on 16* lattice at
(A= 00,8 = 8,k = 0.34).

Fig. 3A. The W-mass determined from a single cosh between time-slice pairs on 16*
lattice at (A = 00,8 = 8,k = 0.34). Identical symbols belong to the same time-slice distance.
The dotted horizontal line is the mass given in Table II.

.Fig. 3B. The same as Fig. 34, for (A = 00,5 = 8,k = 0.37).

Fig. 3C. The same as Fig. 3A, for (A = 00,3 = 8,k = 0.42).

Fig. 3D. The same as Fig. 34, for (A = 00,3 = 10,k = 0.42).

Fig. 4A. The same as Fig. 3A for the W-mass on. 12* lattice at (A = 0.1,3 = 8,x =
0.177).

Fig. 4B. The same as Fig. 3A for the Higgs mass on 12* lattice at (A = 0.1,3 = 8,k =
0.177).

Fig. 5. The ratio of the Higgs mass to W-mass for 3 = 8 and nearly constant link
expectation value (L) on 12% lattice as a function of A71.
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