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Abstract 

The behaviour of the lattice-regularized SU(2) Higgs model with a scalar dou
blet field is investigated near the critical line at vanishing gauge coupling. By the 
use of the expansion in the gauge coupling the determination of the renormaliza
tion group trajectories is reduced to a similar problem in the pure ¢>4 model. The 
shape of the critical surface separating the confining- and the Higgs-phase can 
also be obtained by the weak gauge coupling expansion from the shape of the </>4 

critical line. 

1 Introduction 

The large cut-off behavio;,.r of a gauge theory with scalar matter fields is in general quite 
different from a theory. with spin-~ fermion matter fields. The scalar fields can have renor
malizable self-couplings, in contrary to the fermion fields, but these couplings are typically not 
asymptotically free, therefore the question of the large cut-off behaviour is a non-perturbative 
problem. In the simplest case of the O(n)-symmetric n-component scalar ¢>4 model (without 
gauge fields) information about the large cut-off behaviour can be obtained by combining the 
hopping parameter expansion ("high temperature expansion" in the terminology of statistical 
physics) and Callan-Symanzik renormalization group equations [1]. This procedure is partic
ularly succesful in the symmetric phase, where the high order hopping parameter expansion 
has, for intermediate cut-off's, a similar (or even better) precision than a good Monte Carlo 
calculation [2]. The renormalized scalar ¢> 4 coupling vanishes logarithmically with the cut-off 
near the critical line. As a consequence, for very high cut-off's the possible values of the 
physical parameters are severely constrained. In particular, in the limit of an infinite cut-off 
("continuum limit") the only possibility is a free (trivial, non-interacting) theory. In the case 
of the single component ¢>4 model the triviality of the continuum limit is also supported by 
several important exact results (for an incomplete list of references see [3]). Of course, the 
triviality of the continuum limit does not necessarily mean that such theories are physically 
uninteresting, since probably every quantum field theory is physically valid only up to some 
high but finite cut-off. 

It is an interesting question, how does the inclusion of an asymptotically free non-abelian 
gauge ooupling change the large cut-off behaviour. In the present paper this question is 
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investigated in the simple and important case of the SU(2) Higgs model with a scalar doublet 
(in terms of real field components this is equivalent to the gauging of an 0(3) subgroup of 
the 0(4) symmetric 4-component t/>4 model). The technical tool which will be used is the 
weak gauge coupling expansion (WGCE) [4] in the vicinity of the critical line at vanishing 
gauge coupling. 

In the next Section first the lattice action will be defined with the lattice version of the 
covariant gauge fixing and then the WGCE master formula for connected Green's functions 
will be derived. In Section 3 the general procedure of deriving differential equations for the 
curves of constant physics will be discussed and applied to the standard Higgs model at 
arbitrary scalar self-coupling and small gauge coupling. In Section 4 the phase transition 
surface separating the confining phase and the Higgs phase will be investigated. Section 5 
contains the discussion. 

2 Weak gauge coupling expansion with gauge fixing 

In Ref. [4] WGCE was derived in a gauge invariant formalism for gauge invariant Green's 
functions of composite fields. For the discussion of renormalization it is, however, more 
convenient to consider the gauge dependent Green's functions in the renormalizable .'t Hooft 
gauges [5]. In this Section first the gauge fixed lattice action will be considered and then the 
master formula of WGCE for connected Green's functions will be derived. 

2.1 Lattice action with covariant gauge fixing 

Let us first consider the gauge action. The SU(2) gauge variable U(x,Jl) on the link (x,x+ji) 
from the point x to the neighbouring point x + fi will be described by 3 real components a,,., 
(r = 1,2,3; J1 = 1,2,3,4) in the same way as in [4]: 

(1) 

Here r, (r = 1,2,3) are isospin Pauli matrices (over repeated ·isospin indices r,s, ... an 
automatic summation is understood). The real variable a," is given in general by 

where z,., = ±1 is an Ising variable. In perturbation theory it is assumed that U(x,Jl) ~ 1 
dominates, therefore one can put z,., = 1. In this case we have 

For the gauge part of the lattice action 59 we take the Wilson action: 

(4) 

where f3 = 4/ g 2 gives the bare gauge coupling, l:P stands for a summation over positively 
oriented plaquettes and Up is the product of the link variables around the plaquette. 
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The gauge field propagator and vertices can be obtained by substituting Eq. (1) into 
Eq. ( 4) and collecting terms according to the powers of arz~: 

The second order term 5~2 ) will be discussed later together with the propagators. The third 
and fourth order vertices can be simply expressed in terms of the Fourier-transformed vari

ables iirk~: 

(6) 

Here N = N 1N 2N 3 N 4 is the number of lattice points and Lk means a su=ation over the 
Brillouin zone (we always assume periodic boundary conditions). The scalar product of 
momentum and position is defined as 

(7) 

where v1 , ••• , v4 are the integers characterizing lattice momenta. 
Eq. (6) the three-point gauge vertex is given by 

In terms of the variables in 

The momentum sums. are always taken over momenta which sum up to zero. 
four point gauge vertex is: 

(8) 

Similarly, the 

[ (klv + k2v) (klv- k2v)] [ (k3~ + k•~) (k3~- k•~)] . cos - cos cos - cos 
2 2 2 2 

-2iirk 1 ~iirk2 ~ii,k,vii,k,v 2 sin ( k~~) 2 sin ( k3v + k;v)} (9) 

This expression 1s somewhat simpler than the general formula for SU(n) with the usual 
exponential parametrization of U(x,JL) [6]. 

The integration measure for the gauge variables is originally the invariant SU(2) Haar 
measure d3 U ( x, JL). In terms of the real variables a.,~ this can be written as 

(10) 
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The second line is obtained from the first one by omitting an inessential constant factor and 
taking only zz,. = +1. The exponent will be included in the action by the "measure" term 

(11) 

Here Ecz,.) denotes a sum over positively oriented links. 
The Higgs field variables can be. chosen in several different ways. Here we shall use the 

real components IToz and 11"rr (r = 1,2,3) which are connected to the 2 X 2 matrices 'Pr and 
a, E SU(2) used, for instance, in [4] by 

(12) 

The connection to the SU(2) doublet field ¢>~ (a = 1, 2) is: 

IToz = ~(¢>; + ¢;') 

11"1z = ~( -<P! +<P! ') '( 2 2•) 
1l"Jz = 2 <Pz - <Pz (13) 

The IT-field IToz can have a non-zero vacuum expectation value, which will be denoted by v. 
The fluctuation part IT z is defined by 

Uz = O'oz- V (14) 

The pure Higgs scalar action Sh can be obtained in terms of ITz and 11"rz from the usual 
0( 4) symmetric form with four components IToz and 11"rz by shifting the IT-field according to 
Eq. (14): 

sh = 2v(1- 2.>.- 8t< + 2.>.,/) L ITz- 21< L(ITxiTz+P + 11"rz11"rz+P) 
:r (:r~) 

+ L { IT;(1- 2A + 6Av
2

) + 11"rz11"rz(1- 2), + 2Av 2
) + 4AVITz(IT; + 11"rz11"rz) +A( IT;+ 11"rz11"rr)

2
} 

z . 

(15) 
This is the lattice action of the linear IT-model [7], which is the limit of the standard SU(2) 
Higgs model for vanishing gauge coupling g2 = 0. The bare parameters ), and " stand, 
respectively, for the scalar self-coupling and hopping parameter. 

Besides the gauge term 5 9 , the measure term Sm and the IT-model term Sh, the whole 
action S contains also the gauge fixing term 591 , the Faddeev-Popov term S1P and the in
teraction term S; describing the interaction between the gauge field and the scalar matter 
fields: 

(16) 

The gauge fixing function frz is chosen in such a way that the mixed second order term in 
arzp and 11"rz be absent in S. This can be achieved by taking [5,6]: 

- "' at< 2 frz = L....t ( ar:r~-4 - arz-,U.p) - -g V1frz 
p>O 2 

(i7) 

Here a is the usual arbitrary gauge parameter. The resulting gauge fixing term in the action 
lS: 

(18) 
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The corresponding Faddeev-Popov term, involving the Grassmann variables Crz and c,, is: 

s,p = L C.,.;z:.l\tf[u, 7r' a].,.z,,yC.ty 
xy 

Qf> 
= L(crz- Crz+P.)(crr- Cr:r+;i) + 2g2v L {vC.,.;rCr;r + C.,.:z:(c5.,..u% + e.,..t1rtz)c.x} 

(x~) x 

- L {(~a,,~a,,~ + iiz~)(crz- Crz+;<)(c,z- Crz+;<) + < .. ,a,z,.(C,z + C•z+;<)(ctz- Ctx+i<l} (19) 
(xi') 

The interaction piece S; in the action is given by the hopping term Tr( <p~+i< U( x, fl )'Pz ). In 
terms of the variables a,z,. and ux, 7rrz it is: 

S; = 2~> L { v2a%!' + (~a"~ a""+ a,,.) [v(u, + Uz+i<l + UzUz+i< + 7rrz7rrx+i<l} 
(z~) 

- 2K L { CT;r:ar;z:JJ1rrr+[i, + 'Trrzarzp.(J'%+{1. + e.,..t11"r:z:a•z~-J1rtz+P} + KV
2 L a.,.%J.laf"XIJ. (20) 

(z~) (zl') 

The corresponding vertices in momentum space can be easily obtained from the above forms 
of Sm,···,i· Besides the variables in Eq. (6), the Fourier transformation for the scalar field u is 
defined as 

irk= L e-i(k,z)u, Uz = 2_ L ei(k,z);rk (21) 
X N k 

2.2 Propagators 

The propagator matrix is the inverse of the quadratic part of the action. For the scalar fields 
u and 1r we have the well known lattice propagators 

where 

6.~" = ~ L e-i(k,z-y) [2~~:(/l; + k2)] -1 

k 

6.;" = ~ L e-i(k,z-y) [2~~:(1'! + <>fliv + P)j -1 

k 

.2 2: 2 k" k=4 sin-- ? 
~1>0 """ 

. . k~ 
k" = 2sm-

2 

and the squared masses fl; ~ are given by 

1 - 2>. + 6>.v2 

fl! = - 8 
K 

1 - 2>. + 2>.v 2 

fl; = - 8 
I( 

The W-mass squared fl'iv will be given below. 
The quadratic part of the action in the gauge field a.," is 
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Here the n = 1 piece coming from the measure term Sm is not taken into account. It is left 
as a two-point interaction vertex, in the same way as in Ref. (6]. Because of the factors g- 2 , 

in the g 2 -> 0 limit the appropriate gauge variable is 

In terms of this let us write the quadratic gauge part as 

Going to the momentum space by 

we have 

K(")(k),f.','" = b,. { b1w[!Liv + k2
]- (1- ~ )k,Jv} 

According to Eq. (25) theW-mass squared is 

The inverse of Eq. ( 29) gives for the gauge propagator 

b e-i(k.z-y) [ k k ] 
~(a) = ~ b - 1- Q f.' v 

""·'Y" N L 2 k2 "" ( ) 2 k2 
k Jlw + <>!Lw + 

Finally, the propagator of the Faddeev-Popov ghost field is 

~FP = b,. "e-i(k,z-y) [ 2 + k']-l 
rx,$y N L.., O:Jlw 

k 

(26) 

( 27) 

(28) 

(29) 

(30) 

(31) 

(32) 

The squared masses !L;, !L; and J.Liv appearing in the propagators can be arbitrarily 
shifted according to }1

2 -> IL 2 + bJ12
• This corresponds to the freedom of splitting up the 

action differently into a free part and an interaction part. In order to compensate for the 
shift bJ-t 2 of the propagator mass, in perturbation theory one has to take into account also 
two-point vertices ("insertions") proportional to -b!L2

• The convergence properties of the 
bare perturbation theory do, of course, in general depend on the choice of bJ-t2

• The freedom 
of choosing the propagator mass was, in fact, already exploited in Eq. (30), where a negative 
piece coming from the measure term Sm was not included. Correspondingly, a non-zero gluon 
propagator mass can also be introduced in the confining phase where v = 0 or in pure gauge 
theory (at K = 0). It is possible that low order bare perturbation theory gives always a better 
approximation with some effective non-zero propagator mass. 
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2.3 WGCE for the generating function 

The aim of the weak gauge coupling expansion is to express the expectation values at an 
arbitrary point (.A,,B, ~~:) of the bare parameter space in terms of a series of expectation 
values at some point (>.,,8 = oo,Ko) with vanishing gauge coupling. This is achieved by 
performing the integration over the gauge field variables in perturbation theory, thereby 
explicitly displaying the dependence on the gauge field propagators and vertices. As an 
example, one can consider the generating function of connected Green's functions defined as 

(33) 

where 

I[h,i]~tlK =I [do-ozd3tr,.d3 U(x,JL)d3 c,.d3c,.J 

· exp {-sl':J.K + L(hozO"oz + h,ztr,.) + L i,.~a··~} 
z (z~) 

(34) 

Of course, more complicated generating functions can also be considered, for instance con
taining also external currents coupled to gauge invariant composite fields. Such a generating 
function was considered in [4] in the framework of a gauge invariant formalism. The general 
procedure is, however, always the same, therefore it is enough to consider here the above 
simple case. 

Since the procedure to derive WGCE for W[h, i] is the same as the one applied in Ref. [4], 
it is enough to indicate the main steps of the derivation and to give the result. The relation 
between the action at the point ( >., ,8, K) and (.A, (3 = oo, "') is 

stJ,K = s~.tl=oo,.., + s!ai- (~~:- Ko) L s.~- K L[-s.~a·~ + iu,.~a,.~J (35) 
(•~) (z~) 

Here s~.tl=oo,Ko is the </>4 action at ,8 = 00 and the complet.e'gauge action sJa) is defined from 
the pieces in Eq. (16) as 

(36) 

The composite fields s.~ and u,.~ are the same as in Ref. [4]. In terms of the real field 
variables we have 

(37) 

Note that, for simplicity, the vacuum expectation value of the o--field is not displayed here. 
In most cases we shall treat the symmetric case with ·v = 0 and only discuss the changes 
(mainly of technical nature) which occur in the derivation if the broken phase is explicitly 
considered. 

Substituting the decomposition in Eq. (35) into Eq. (34), the gauge integral one has to 
perform t.urns out to be the following: 

I[jJ; =I [d3U(x,JL)d3 c"d3 c,.J'exp {-s!a) + L(j,~az~ + j,.~an~)} (38) 
(r~) 
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The composite fields ("currents") iz,. and j,z,. are defined as 

(39) 

Using the integration variables A,z,. in Eq. (26) and taking into account Eq. (3), this can be 
writ ten like 

l[jJ; = const. j[d3 A,z,.d3c,zd"c,z]· 

·exp {-s;a) + L [~j,.,,.A,z,. + g: (1 + iz,.)A,z,.A,z,.+ 
(zl') 

+ ~(A.z,.An,.t (~f c~ + iz,. (Z:;:)!!)]} (40) 

The last sum in the exponent is included here only for completeness. It contains higher 
dimensional vertices which are negligible in the large cut-off limit. 

The result of the gauge integration can be exponentiated by expressing it in terms of the 
connected expectation values of the gauge fields: 

{ 

m+~ } I[jJ; = canst. exp L L 2•!3n I I (i.)::;,,. ( 1 + n;v ( ( A.'l:.:,. (A •. A • .);v r + ... 
mn [r:rJL]m[yv]n m.n. ag 

(41) 
Here the higher dimensional terms are already neglected and a shorthand notation for index 
repetitions,. similar to the one used in [4], is introduced: 

(f.)~ = Jv,!.-, · • · fv. 

L(f.)~ = L fv,!.-, · · · fv. (42) 
[v]n V1••·V'" 

In the definition of the connected gauge field expectation values < ... >~9 the products in 
parentheses like (A,yvA,yv) have to be considered as a single entity. Replacing in Eq. (35) 
S~a) by the exponent in Eq. (41) one obtains the "effective </>4 action" as a power series in g 2

• 

In order to obtain the terms of this series, the connected gauge field expectation values have 
to be inserted as obtained from pure gauge field perturbation theory with the action S~"'l. 

It is now straightforward to obtain the master formula for W[h, i] in terms of the connected 
expedation values in the </>

4 model containing, in addition to the original fields cr0" 1r", also 
the composite fields Sz,. and u,z,. defined in Eq. (37). Let us first define the notations 

A(a)mn = ((A )m (A A )" )c [r:rJ..t.]m.[yv].,.. - · r:cp ~. $, yv og (43) 

The result for the generating function of connected Green's functions W is in this notation 
(applying the trick (42) twice): 

W[h, i]~il• = L L L 
LMN (X)L[RY)M(Z>.)N K {m)K[n)K [{"XI')~{yv)n)K K!L!M!N! 
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( m+2n A(o)mn)K /(!7 )L ( )M (s )N (C[']mn)K )c 
• 9 ·· [•z>')m[yv)n \ 0. X 1r, RY · Z). I .. [•z>')m[yv)n A"<J 

(44} 

Here in the connected ¢4 expectation value < · · · >).., the contents of the parentheses have 

to be considered as single entities for connectedness. By taking derivatives of W[h, i] with 

respect to h and i one can obtain the WGCE for individual Green's functions of the fields 

O'oz, 1T'r:r and arzp.• 

2.4 Graphical rules 

The content of the formula ( 44) can also be summarized by formulating graphical rules for 

the calculation of individual Green's functions. This has to be so, because in the limit 

A --+ 0 ordinary Feynman perturbation theory has to come out if the ¢4 Green's functions are 

expanded in powers of A. In short, in the WGCE formula for the connected Green's functions 

the gauge field dependent parts of the Feynman graphs (like gauge and ghost propagators and 

vertices) are displayed explicitly, whereas the remaining parts are lumped together into the ¢4 

expectation values < · · · >)..,. These latter can be denoted graphically by blobs connecting 

external scalar lines to the composite fields s,,. and u.,,.. 
Let us formulate the graphical rules in the simpler case with ~< = ~<o (i. e. the expansion 

done only in 92 , for constant A and ~< ): 

• draw all Feynman graphs up to the given order of 9 2 for the connected Green's function 

in question; 

• identify connected subgraphs consisting only of scalar lines and vertices and replace 

them by "scalar blobs" (Feynman graphs with identical gauge field parts and identical 

scalar blob structure belong to a single WGCE graph); 

• the sc.alar blobs are connected to each other and to the gauge parts by gauge field lines 

ending on the blobs either as a single gauge line or as a pair of gauge lines in the same 

point; the former belong to a factor u,2 ,. in the blob, the latter to a factor s,,. (see Fig. 

1 ); 

• write down the factors to the gauge field and ghost parts in the same way as in ordinary 

perturbation theory; the scalar blobs represent factors like < 170 ••• 1r ••• u ... s ... > ).,0 ; 

• in order to have all the constant factors (including the combinatorial ones) correctly, 

compare to the corresponding term in the master formula Eq. ( 44). 

Sometimes the more general expansion with ~<o # ~<is also useful, in particular if(~<- ~<o) 

is of the order g 2
• As it caH be seen from Eq. (44), the additional graphs are proportional to 

(~<- Ko)N and contain N external composite fields s,, ).1 ••• s,N).N entering some scalar blobs. 

With the help of WGCE the behaviour of the Higgs model at (A, 9 2
, K.) is given, for weak 

gauge coupling (9 2 small), in terms of the properties of the ¢ 4 model in the point (A, ~<0 ). 

The convergence of the 9 2-expansion will, in general, depend on the choice of K.0 • A good 

convergence of WGCE cannot be expected if the mass scales at (A, 9 2
, K) and (A, ~<o) are very 

different, or if one of the points is in the symmetric phase and the other in the broken phase. 

Of course, "-o has to be chosen in such a way. that the n<'cessary information about the </>
4 

· expectation values be available. For the study of the critical behaviour one has to choose the 
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expansion point()., ~<:0 ) near to the critical line of the ¢ 4 model. In the present paper we shall 
use the knowledge about the critical behaviour of the 0(4)-sy=etric ¢4 model in order to 
obtain a qualitative description of some aspects of the critical behaviour in the Higgs model. 

3 Curves of constant physics 

Both in numerical Monte Carlo studies and in analytical calculations an important step is to 
find the "curves of constant physics" (or "renormalization group trajectories"). By definition, 
along these curves the physics described by the lattice-regularized quantum field theory is 
constant, only the value of the cut-off (or lattice spacing) is changing. In this Section we 
discuss the differential equations determining the curves of constant physics (CCP's) in the 
standard SU(2) Higgs model for arbitrary scalar self-coupling and small gauge coupling. We 
shall assume that the behaviour of the 0( 4)-symmetric ¢ 4 model near the critical line at 
vanishing gauge coupling is known, in particular that the CCP's of ¢4 are known in both 
phases. 

3.1 General procedure and a simple example 

Before going to the Higgs model, let us first formulate the differential equations for the curves 
of constant physics in the general case. Let us consider a lattice quantum field theory with n 

bare couplings g1 , 92, ... , 9n· In order to define the CCP's one has to ke~p ( n -1) independent 
physical quantities F2, F3, ... , Fn constant (we are assuming here that the number of relevant 
couplings is n ): 

F;(g,, ... ,gn) = F;o = const. (j = 2, ... , n) (45) 

The CCP's are characterized by the constant values F;0 • The points of a singled out CCP 
can be parametrized, for instance, by the first bare coupling g1 : 9i = g;(g1 ) (j = 2, ... , n ). 
In this case we have 

dg;(g,) 

dg, 

det[I,j] (aF) 
_ n-1 8g 

- det[I,I] (aF) 
n-1 8g 

(46) 

Here det~~~ ( ~~) denotes the ( n -1) x ( n- 1) subdeterminant of the n x n derivative matrix 
~F belonging to the matrix element ~· . g 911: . 

Another possibility is to parametrize the points of a CCP by the value of some reference 
physical quantity F1 • (In practical cases F1 is usually some physical mass in lattice units.) 
In this case the differential equations for g;( F1 ) ( i = 1, ... , n) are: 

d [I,i] (aF) dg;(F1 ) _ etn-l eg 
dF1 - det (aF) 

n 8g 

where det" ( · · ·) is the n x n determinant of the derivative matrix. 

( 47) 

Sometimes it is also useful to consider curves in subspaces of the bare parameter space 
which belong to constant values of an appropriately smaller number of physical quantities. 
These "curves of partially constant physics" ( CPCP's) are defined by fixing ( n - k) physical 
quantities F2, ... ,Fn-k+I and (k -1) bare parameters 9n-k+2···· ,gn. The differential equa
tions for CPCP's have the same form as Eqs. ( 46-47). For simplicity, let us consider here 
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only the case with n = 3 bare parameters (as we have in the standard Higgs model) and look 

at the plane with constant bare coupling 93 • Keeping the value of some physical quantity 

F2(9t.92,93 ) = F,o fixed and parametrizing the points of the curve by the reference quantity 

F1 , the differential equation for the function 9 2 ( F1 ) is: 

(48) 

As an example in the standard Higgs model, one can take 91 = "'• 92 = A, 93 = 92 and 

F1 = p.w (the W -mass), F2 = RHw = Jl-H / p.w (the ratio of Higgs- to W-mass ). In this case 

Eq. (48) gives the curves with constant Higgs- toW-mass ratio in the 92 = const. planes. 

In order to illustrate how these equations work, let us consider, as an exercise, the well 

known case of the 0( N)-symmetric ¢4 model in ordinary perturbation theory (i. e. for small 

self-coupling A). In this case we haven= 2, and the CCP's can'be defined by keeping the 

renormalized ¢4 coupling A, fixed: F, =A,. The reference quantity can be the renormalized 

mass squared: F1 = p.~. (We consider the symmetric phase, where A, and p.~ can be defined 

in the usual way at vanishing four-momenta: see e. g. Ref. [8].) Up to 1-loop order we have 

p.; = p.~ + 4(N + 2)A0I1 (p.~) + o(A~) 

A, = Ao- 4(N + 8)A~I2(p.~) + o(A~) (49) 

Here we used the bare parameters (Ao, p.~) which are connected to (A, tt) in Eq. (15) (with 

v = 0) by 
2 1- 2A A 

P-o= - 8 Ao = - (50) 
"' 4tt2 

On a finite lattice the function I• is a finite sum, on an infinite lattice an integral: 

The differential equation corresponding to Eq. ( 4 7) for the function Ao(P.;) is, in leading order: 

Using the logarithmic scale variable 
I -1 

-r = og 1-', 

we have for large cut-off (small lattice spacing, i.e. IJ~ ~ 0): 

d>.o(-r) _ (N + 8) >.' + (>.' ') 
d-r - 2rr' 0 0 0>1-'r 

(52) 

(53) 

(54) 

On the right hand side the well known universal1-loop Callan-Symanzik ,8-function appears. 

Since for -r --+ oo >.0 ( -r) is growing, at some point the higher order terms on the right hand 

side become important, therefore Eq. (54) is not suitable for the infinite cut-off limit. 

The other equation in ( 4 7) is: 
' 

(55) 
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Since I 2(JL2
) is logarithmically divergent for 11- 2 -+ 0, this equation is not as useful as Eq. (52). 

If besides .X0 ( T) one is also interested in I'~( T ), the better way to obtain it is to solve the 
first of Eq. (49) for 11-~ in terms of 11-~ and the solution -Xo(l'~) of Eq. (52). (In fact, for this 
one has first to shift the propagator mass 11-~ to (I'~- I';,). Here 1-'!.(-Xo) is the critical line 
obtained from the condition 11-~ = 0.) In WGCE we shall only consider in this paper the 
equations analogous to Eq. (5~) and leave the behaviour of JL~ (or ~<) implicit. Equations 
like Eq. ( 46) will not be considered either. This will, however, be enough to determine the 
qualitative behaviour for large cut-off's, if the lowest order terms of WGCE give a reliable 
approximation. 

3.2 Renormalization at non-zero constant a--field 

In order to determine the CCP's in perturbation theory or in WGCE one has to find suitable 
physical quantities to be kept constant. For instance, the renormalized t/>4 coupling at zero 
four-momentum is, in principle, a possibility also in the Higgs model, but one has to be careful 
in the definition to avoid infrared singularities. It will be necessary to define renormalized 
quantities in both the symmetric and spontaneously broken phase of the 0(4) t/>4 model and 
in both ·the confining and Higgs-phase of the Higgs model. Infrared singularities at zero four
momenta certainly occur in the spontaneously broken phase of the t/>4 model because of the 
Goldstone bosons. In the confining phase infrared singularities are produced by the zero mass 
gluons. Perturbative infrared singularities can appear also in the Higgs phase,for instance in 
the Landau gauge (a = 0), where the propagator mass in ~;"in Eq. (22) is zero, because 
11-~ vanishes at the tree level. In principle, one could use in the different phases different 
renormalization schemes, but it is simpler to choose a unique scheme which is appropriate 
everywhere. Such a universal possibility is to define the renormalized quantities at zero four 
momenta but at some non-zero constant value 1-'u of the a-field (see, for instance, [9]). A 
non-zero constant a-field acts as an infrared regulator in both the scalar and gauge field 
propagators. The scale introduced by 1-'u plays in the renormalization scheme a similar role 
as the momentum scale would play if the renormalized quantities would be defined at non-zero 
momentum. 

In the Higgs model we need two dimensionless renormalized quantities. These can be 
chosen as the renormalized t/>4 coupling !AR) and the renormalized gauge coupling squared 
(gh)· For the dimensionful (reference) quantity one can take either the renormalized W
mass (JLwR) or Riggs-mass (11-HR)· In the 11-u-scheme all of these quantities are defined by 
appropriate derivatives of the effective action r[a, ,., a] at a X = J.lu, ,. .. = a,,~ = 0. In order 
to see in more detail how things work out, let us briefly consider the well known case of 
>.R(I'u) in ordinary perturbation theory. The 1-loop effective action is given by 

r[a,or,a] = S[a,or,a] + ~Trlog(D[a,or,a]~)- Trlog(M[a,or,a]~FP) (56) 

Here D is the second derivative matrix of the action with respect to the bosonic (scalar 
and gauge field) variables and ~ is the bosonic propagator matrix. The last term is the 
contribution of the Faddeev-Popov ghost loop. The 1-loop effective a-field potential V.!f( a) 
in the Landau gauge (a= 0) is easy to obtain with the Feynman rules in Section 2: 

V.f!(a) = ~r[a, =a, or= O,a =OJ= (1- 2),- 8te)a(<7 + 2<•) +.X[( a+ v) 4
- v4

] 
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1 "'{ll [ 6.A<T(<T+2v)] 3 1 [ 2.A<T(<T+2v)] 9 1 [ K9
2
<T(<T+2v)]} 

+-L...-ogl+ • +-og1+ . +-og1+ • 
N k 2 K(J.L~ + P) 2 K(J.L! + k2) 2 2(1'iv + k2) 

(57) 
The vacuum expectation value vis determined by the requirement that dV.ft(<T)jd<TI~=o = 0. 

Using, instead of v, the more natural variable 

Wo =vi¥ (58) 

with Eqs. (50-51) the above condition gives 

0 = Wo {w~ + J.L~ + 12.Aoit(J.L~ + 3w~) + 12.A0I1 (1'~ + w~) + ~92I1 (w~ < )} (59) 
4 16A0 

The solution is either w 0 = 0 or otherwise w~ f' 0 is such that the content of the curly 

brackets vanishes. The first solution is relevant to the confining phase, the second one to the 

Higgs-phase. The phase transition occurs on the surface, where the two solutions belong to 

equally deep minima of the effective potential. 
The explicit form of >.R(I'~) is the same in both phases if one takes the constant value of 

<T~ such that <To, = <T,- v = ~t~- Let us consider here explicitly only the confining phase with 

v = 0, and let us introduce a suitable normalization factor in front of the constant <T-field by 

defining I'~ to be the value of VZK<T~- The definition of the renormalized ¢-mass squared and 

renormalized ¢ 4-coupling is in this case: 

1 d2V.ff I 
2K d<T2 ~¥2<=~• 

(60) 

It is straightforward to obtain the one-loop expressions from Eq. (57), but we shall not con

sider them explicitly here. The wave function renormalization factor ZR(I'~) can be obtained 

from the small momentum behaviour of the function 

(61) 

The definition is 

ZR(~t.) = {l~K ~ 8k~~kJ _ Z(<T,k)} 
k-0 u~=~v 

(62) 

The derivation of the differential equations for the CCP's in the ~t~ renormalization scheme 

is, in principle, quite similar to the case considered before. One has only to take into account 

the additional variable I'• introduced by the renormalization. In the specific case of the 

standard Higgs model the choice of the bare and physical parameters can be as follows: 

2 2 \ 
91 = 1'~, 92 = 1'0, 93 = Ao, 

2 
F - I'R 
2--2, 

1'. 
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This means that on the CCP's, besides AR and g~, one has to keep constant also the ratio of 
the renormalized mass J.IR to J.L~. In this case we have, for instance, 

d>.o(J.LR) ( 8 8 ) 3 2 2 • s J.IR d = - J.Lo-
8 

+ J.L~-8 >.R(J.L~) + o(>.0 , A0g , >.0g ,g ) 
J.l R JLo J.l~ 

(64) 

It is straightforward to work out the one-loop expression for >.R(J.I") from the above definitions 
and Eqs. (56-57). We do not include here the somewhat lengthy result, but the industrious 
reader can verify that in the large cut-off limit, with T = log J.L//, we have 

dg 2(T) 43 4 
-'-d,.-'T-'- = - -48_7r_2 g + • .. (65) 

The second line is the analogous result for the bare gauge coupling. The right hand sides are 
again the one-loop universal Callan-Symanzik ,8-functions. 

3.3 The curves of constant physics in WGCE 

In order to obtain differential equations for the CCP's in the weak gauge coupling expansion, 
one has to proceed very similarly to ordinary perturbation theory. As discussed in Section 
2, the expectation values at a point (>.,g 2

, ~e) with weak bare gauge coupling and arbitrary 
bare scalar self-coupling are given in WGCE by explicit gauge propagators and vertices and 
by scalar blobs representing expectation values in the pure ¢>4 model at g 2 = 0 and (>.,~e0 ). 
Let us now assume that the continuum limit in the pure ¢>4 model is trivial [3]. Then, if the 
point(>., ~<o) is close to the critical line, the renormalized ¢>4 coupling>., in the pure </>4 model 
is small and the renormalized </> 4 Green's functions can be well approximated by a low order 
perturbative expansion in >.,. In WGCE we need unrenormalized·y' = 0 expectation values, 
which are schematically connected to the renormalized ones by 

Z ···z···z··· . . renor-molized < Uo ... 7r ... U • .. S ... > A.oto = r u .tJ < Uo ... 7r. •. U ... S ... > AKo ( 66) 

Here Z, denotes the (identieal) wave function renormalization factor for the scalar fields a0 

and 1r, z. and Z, are the multiplieative renormalization factors belonging to the composite 
fields u"" and sx,., respectively. In· a leading order calculation the renormalized truncated 
one-partic.le irreducible vertex functions of the a 0 , 1r, u and s fields can be obtained from the 
lowest order </>4 Feynman graphs belonging to the vertex function in question. In this way 
the low order terms in WGCE are easily obtained in terms of g 2 , >., and the wave function 
renormalization factors Z,,.,,. 

Since the g 2 = 0 expectation values in WGCE are giYen in terms of the pure </>4 renor
malized coupling >." it is natural to parametrize the points of the bare parameter space, 
instead of (>.,g 2 ,~e), by (>."g 2 ,~e). (In this case the ¢>4 Z-factors have to be considered also 
as functions of >., and ~e: Z,,,,u = Z,,,,u( >." IC ). ) In tllis way the problem of determining the 
CCP's for small bare gauge coupling is reduced to the problem of finding the CCP's, with 
>., = const., in the </>4 model at. g2 = 0. The renormalization is also decomposed in two 
steps: after going to the renormalized variables at g2 = 0, >., is considered as one of the bare 
parameters for WGCE in the Higgs model. The renormalized quantities of the Higgs model 
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are introduced in WGCE in the same way as in ordinary perturbation theory. The CCP's 

in the Higgs model can be defined by the requirement that the renormalized ¢4 coupling 

>.R and renormalized gauge coupling squared 9h be constant. (Note that capital R denotes 

renormalized quantities in the Higgs model, whereas small r is reserved for the renormalized 

quantities at 9 2 = 0.) As a parameter along the CCP's, one can take the renormalized ¢-mass 

squared J.!~ (or 'T = log JL// ). Our aim is to find the differential equations for >..( 'T) and 9 2( 'T ). 

The relevant leading order WGCE graphs are depicted in Fig. 2. The graphs for 9h 
without scalar blobs are the same as in pure gauge theory, therefore their contribution need 

not be recalculated. The differential equations corresponding to Eq. ( 47) are, in the leading 

order approximation, in the large cut-off (small p~) limit: 

d>..('T) _ __ 9_>. 2 z-2 _9_ 4 ••• 

d'T - 1611"2 •9 + ' 51211"2 9 + 

d92('T) 43 4 

d'T = - 4811"29 + ... (67) 

The absence of the>.; term, as compared to Eq. (65), is due to the fact that, instead of >.0 , 

>.. is considered to be the bare parameter. The multiplicative renormalization factor z. for 

the conserved current Urz~ was put equal in Eq. (67) to z. = 1. This follows from the Ward

Takahashi identities for the vertex functions containing Urzw It is clear from Eq. (67) that 

under rather mild assumptions about the behaviour of z,- 2 near the 9 2 = 0 line, both >..(T) 

and 92 ( 'T) tend to zero for 'T _. 0. It is, for instance, enough to assume that Z; 2 is bounded. 

In fact, the assumption of triviality and scaling in the 0( 4) symmetric ¢4 model implies that 

Z; 2 :_, C,,>.. for >.fixed and:" .... ~<cr(>.) (with some >.-dependent constant C,,). This can be 

easily deduced from a Callan-Symanzik equation following Refs. [1,8]. Therefore, the term 

proportional to Z; 2 in Eq. ( 67) is negligible for 'T _. oo, and the asymptotic solution is: 

. [ 43 ]-I 
9 2('T) = 9.;-2 + --('T _To) 

481!"2 

[ 
4395 ] -H 

Ar ( T) = Aro 1 + --2 ( T - To) 
4811" 

(68) 

Here 95 and >..0 are the initial values at T = T 0 • A better approximation, which takes into 

account non-leading terms, can be obtained numerically once C ,;. is known. The >.-dependence 

of C,;. can be determined, for instance, by the strong self-coupling expansion [10]. 

According to Eq. (68), for 'T _. oo both g 2(T) and >..(T) tend to zero. Therefore, if 

the leading order approximation is qualitatively correct, the WGCE is an a•ymptotically 

free expansion. The question is, whether the higher order graphs can indeed be neglected? 

Unfortunately, the answer to this question is not <'asy. lwcause the internal momenta in 

the WGCE graphs like in Fig. 2a (or in more complicated graphs) are integrated over 

all momenta. The renormalized ¢4 perturbation theory is expected to be reliable for low 

momenta about the mass scale, but non-reliable for momenta near the cut-off if the cut-off is 

much larger than the mass. This could perhaps imply that the high momentum behaviour of 

the correct. 1/>4 expect.ation values is such, that their contribution to the higher order WGCE 

graphs is not negligible even at small g2 and >. •. In the rest of this paper it will be assumed 

that. this docs not actually happen. Nevertheless. one has to keep in mind that the conclusions 

rely on this assumption. Th" question of the higher orders is obviously interesting and has 

to be investigated in the future. 
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4 Critical surface in WGCE 
In the standard Higgs model there is a critical surface separating the Higgs phase and the 
confining phase. The g 2 = 0 edge of this surface is the second order critical line of the 0( 4) 
¢>4 model. For finite g2 recent Monte Carlo calculations suggest a first order phase transition 
(11,12]. Irrespective of the order, the shape of the critical surface can be questioned in 
perturbation theory. Before going to WGCE, which gives the perturbation of the r/>4 critical 
line by a small gauge coupling, let us recall how the position of the critical surface can be 
obtained for small couplings in ordinary perturbation theory. 

Starting from the Higgs phase with non-zero <r-field vacuum expectation value, the critical 
surface can be localized in the large cut-off region up to one-loop by requiring that the non
trivial solution (w5 > 0) of Eq. (59) should tend to zero. In the Higgs phase we have at tree 
level JL~ = -w5 < 0, therefore in the vicinity of w~ = 0 we have to shift the scalar propagator 
mass squared according to Jt5-+ Jt5- Jl~,· Here Jt?:r := p 2 (>.o,g 2 )cr is the critical value of Jt5 
we are going to determine now. In this case the one-loop equation for w~ is: 

The solution for w~ -+ 0 is: 

(70) 

Going over to the variables(>.,~<) by Eq. (50) and taking the infinite lattice value I 1(0)-
0.1549 ... , the result for the critical hopping parameter "-cr is (13]: 

~<( >., g' )cr = ~ + >.0.6796 ... + g 20.00544 7 ... + · · • (71) 

An identical result can also be obtained by starting from the confining phase. For instance, 
the second derivative of the effective potential at <T = 0 with " = 0 is the renormalized <r-mass 
squared 11h in the confining phase at zero four-momentum. Requi.ring Jth· = 0 leads again to 
Eq. (70). 

The coincidence of the perturbative result for the critical surface as found by starting 
from the two phases may seem at the first sight surprising in view of the known fact that the 
one-loop effective potential implies a first order phase transition (9,14). The expectation for 
a first order phase transition is illustrated by Fig. 3. According to this ~<cr should be slightly 
larger if defined from the confining phase (from below the critical surface) rather than from 
the Riggs-phase (from above the critical surface). As we have seen, tlus difference turns out 
to be zero in perturbation theory. In other words, the difference is an exponentially small 
non-perturbative effect. 

After this preparation let us consider the critical surface in leading order WGCE for small 
bare gauge coupling and any scalar self-coupling. As usual in WGCE, we assume that the 
critical line ~<c,(>.,g 2 = 0) at g 2 = 0 is known. In this case we need the option of expanding 
at different hopping parameter: ~<o i= ~<:. The shift ( 1< - ~<o) in the master formula ( 44) is 
assumed to be of the order g'. The condition for the critical surface is that the renormalized 
mass squared Jl·~ should be zero. This requires that the sum of the two WGCE graphs in Fig. 
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4 has to vanish at zero external four-momentum. From this condition a simple calculation 

gtves 

2) ( ( 992 { 2 
Kcr(>.,9 =Kcr >.,O)+Kcr >.,0) 32 I,(O)+···=~<or(>.,O) 1+9 0.04358 ... +··-} (72) 

The question of the higher order contributions remains to be sattled also here (see the dis

cussion at the end of the last Section). 

5 Discussion 

In the previous Sections the leading order WGCE predictions for the curves of constant 

physics and for the shape of the phase transition surface were derived. Let us now proceed 

under the assumption that the leading order approximation is qualitatively correct in the high 

cut-off region. The behaviour of the curves of constant physics for large cut-off's near the 

9 2 = 0 critical line is determined by the asymptotic behaviour (68) of 92 and>.. as a function 

of the logarithmic scale parameter T =log J.LJi1
• (See Fig. 5.) Since both 92

( r) and >.,( r) tend 

to zero for r -+ oo, WGCE is an a•ymptotically free expansion. This does not, however, mean 

that for r -+ oo a non-trivial continuum limit exists. The reason is that on the ( r, >..) plane 

not every point is possible. The triviality of the continuum limit of ¢4 implies that the CCP's 

in ¢4 with>.,= const. are ending at >. = oo near the critical point Kcr(>. = oo) for some finite 

cut-off. This means that on the ( r, >.,) plane there is a limiting curve and the allowed points 

are below this (at smaller values of r and >., ). To obtain the exact shape of the limiting 

curve is a non-perturbative problem in the four-component 0(4)-symmetric ¢4 model. In the 

1-component ¢4 model the limiting curve was determined from high order hopping parameter 

expansion and the Callan'Symanzik equation [1]. This method can also be extended to the 

0( 4) model, but at present the only non-perturbative information about the limiting curve 

in the four-component model comes from an approximate block-spin transformation scheme 

[15]. In order to have a rough qualitative estimate, one can take the limiting curve for large 

r from the position of the "Landau-pole" in one-loop perturbation theory: 

(73) 

The intersection of the curve >.,(r) in Eq. (68) with >.,(r)maz determines the maximal cut-off 

Tmaz which belongs to the Higgs model CCP given by (l( T ), >.,( T )). If the maximal cut-off is 

required to be the Planck mass ( r ~ 20), t.his crude estimate for a CCP with gauge coupling 

9h = 0.5, roughly equal to the physical value in the standard electroweak model, gives >.R 

about a factor of 2 larger than a one-loop perturbative calculation [16] would give. 

According to Eq. (68) >.,(r) goes to zero slower than r-', therefore every CCP with a 

finite >.R and 9h has a finite maximal cut-off Tmaz < oo. The only possibility to reach an 

infinite cut-off is to put >.R = 9h = 0. In other words, the continuum limit in the standard 

Higgs model at the 9 2 = 0 critical line is trivial in both the confining- and the Riggs-phase. 

(As discussed in Section 3, in the J.La renonnalization scheme at non-zero constant <T-field the 

derivation of Eq. ( 67) is the same in both phases.) The triviality of the 92 = 0 continuum limit 

in the Higgs phase was recently conduded 8lso in Ref. [13] on the basis of perturbation theory 

near the Gaussian fixed point (>. = 0,9 2 = 0, K = 1/8). Perturbation theory is, however, not 
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applicable for large bare self-coupling >., therefore Ref. [13] did not exclude the possibility of 
a non-trivial fixed point in the combined gauge-scalar system at 9 2 = 0 and large >.. 

In order to determine the two parameter family of CCP's quantitatively, the dependence 
on the third bare parameter ( K or JL~) has to be considered, too. (See the discussion in 
Section 3.) For this, and for the transformation of variables (>., 9 2

, K) --< (>., 9\~<), a detailed 
knowledge of the CCP's in the 0( 4)-symmetric ¢>4 model {in particular, their ~<-dependence) 
is needed. This non-perturbative problem in ¢>4 can be solved by the methods developped in 
Ref. [1]. Since the ~<-dependence in Eqs. {67-68) is implicit, the problem of the order of the 
confinement-Higgs phase transition is avoided. The question of the order can be translated 
into a question about the allowed set of initial values (95, >.,0). Alternatively, one can ask, what 
is the allowed set of the physical parameters (>.n,91)? If the phase transition is first order, 
some (>.n,9h) values belong to metastable situations. (Note in this respect that, because of 
the scale breaking lattice artifacts, the phase transition surface itself does not coincide exactly 
with a one-parameter subset of CCP's.) In principle, a more detailed ~<-dependent treatment 
with WGCE can also give non-trivial information concerning the small 9 2 behaviour of the 
phase transition, too. 

According to Fig. 5 the behaviour of CCP's near /3 = oo is qualitatively different from 
the conjectured picture in Ref. [17]. The WGCE implies that the non-trivial >.-independent 
continuum limit suggested there is not possible. The only open possibility for a search of a 
non-trivial continuum limit in the standard Higgs model is to go inside the bare parameter 
space, to points where also the gauge coupling is non-perturbative. However, even if such 
a fixed point would exist, it would not necessarily be adequate for the description of the 
standard electroweak physics. The absence of a >.-independent continuum limit at the g' = 0 
critical line also implies that a really strongly interacting standard Higgs sector is impossible. 
The reason is that once the cut-off is required to be reasonably high (say, > 10mw), the 
upper limit for the renormalized ¢>4 self-coupling (or for the Higgs boson mass to W-boson 
mass ratio) becomes relatively low. For a numerical study of the upper limit in the standard 
Higgs model see [19]. 

The framework of WGCE is obviously more general than the specific case of the standard 
SU(2) Higgs model. It would certainly be interesting to consider in the future more general 
Higgs models, too. In particular, as one can see from Eq. {68), there is ~n interesting class 
of models, where the Callan-Symanzik /3-function coefficients are such that the power of the 
squared brackets in >., ( T) is, instead of -.;'. equal to -1. In this case the leading asymptotic 
behaviour of >.,(T) coincides with the asymptotics of the limiting curve in Eq. (73). The 
question of a possible non-trivial continuum limit at >. = oo is then decided on the next
to-leading order level. In any case, even if the strict continuum limit would turn out to be 
trivial, such models are interesting, because they can easily allow for very large cut-off's in 
a wide range of physical situations. A simple example of a model with a T-

1 leading >.,
behaviour is an SU(2) Higgs model with I scalar doublet and 4 vector-like spin-~ fertnion 
doublets. Namely, in this case the coefficient of the 9 4 term in Eq. ( 67) is equal to -27 /( 487r2 ). 
Because of the vector-like fennions, Yukawa-couplings are forbidden. In cases with Yukawa
couplings and chiral fermions (as in the standard model) the appropriate lattice formulation 
has to be constructed first, and similar questions can be askedonly afterwards. 

The Monte Carlo calculations are complementary to the perturbative information obtained 
from \'VGCE. The shape of the regions where Monte Carlo calculations are interesting and 
where WGCE can give a good apprmcimation is schematically shown in Fig. 6, on a>. = const. 
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plane. The figure is optimistic in the sense that the MC and WGCE regions touch. In reality 
there might be some no-man's-land inbetween, where the correlation lengths are too large 
for a numerical investigation but not large enough to make the couplings small enough for 
a low order WGCE. In this sense the situation could be similar to the relationship between 
asymptotically free perturbation theory and the Monte Carlo calculations in QCD. 
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Figure captions 

Fig. 1. The gauge field lines end on the scalar blobs either as a single line (Fig. la) 

or as a pair of lines in the same point (Fig. lb). 

Fig. 2. The WGCE graphs for lPI vertex functions which have to be calculated for 

the leading order equations of CCP's. Wavy lines denote gauge fields, full lines the scalar 

field. 

Fig. 3. The critical structure corresponding to a first order phase transition. On the 

left the qualitative' behaviour of the effective potential is shown. Coming from either phase 

1 or from phase 2, metastable states occur in the regions where t-he arrows are hatched. At 

the phase transition the two minima of the effective potential are equal. At the limits of the 

metastability the second derivative at one of the local minima becomes zero. 

Fig. 4. The lowest order WGCE graphs for the determination of the critical surface. 

The second graph has an external composite field s.,. and is proportional to ( K - K 0 ). (It 

corresponds toN= 1 in the master formula (44).) 

Fig. 5. The qualitative picture of CCP's in the standard Higgs model projected 

on the (g 2
, A) plane. The small g2 behaviour is the result of WGCE. The extension to 

larger l is a guess supported by some approximate numerical Monte Carlo calculations at 

A = oo, f3 = 2- 3 t17,18]. Note that in reality there is a two-parameter family of CCP's, but 

here only a one-parameter subset is shown for simplicity. 

Fig. 6. The schet;natic lay-out of the regions where interesting Monte Carlo calculations 

can be done (MC) and where WGCE can be expected to give a good approximation (WGCE). 

The uninteresting region of dominant lattice artifacts is denoted by LA. The confining-Riggs 

phase transition is at the dashed line. The whole picture is for A = const .. 
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