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Abstract 

Plasma fluid instabilities of a beam collision in a linear collider are studied. A disper­

sion relation for the instability of arbitrary order is derived from both the fluid equation 

and the kinetic equation. The analysis shows that for a single collision these instabilities 

are negligible even for a large disruption parameter (e.g., ~ 10). However, in the multiple­

bunch collision case, the cumulative effect of small growth of instability may reduce the 

luminosity in spite of the small disruption parameter for each bunch. 

1 Introduction 

\Vhen two beams collide in a linear collider, the intense electromagnetic fields of each beam 

can deflect the particle trajectories of the other beam, causing a mutual pinch of the two 

beams[1,2]. If the beams are sufficiently dense, particles would execute plasma oscillations 

during beam passage where plasma instabilities may occur. The simulation results, however, 

show that the growth of instabilities is negligible for the disruption parameter D less than 32. 

The theoretical study has been done by Fawley and Lee[3] for the transverse dipole instability 

(kink instability), which occurs when the centers of mass of the two beams do not coincide. 

Fawley and Lee show that for a small disruption parameter and a small transverse offset, this 

instability does not cause significant reduction of luminosity. This growth of instability is 

limited by two natures of a beam collision: the short duration of the interaction and the single 

collision. The second nature, however, will be broken for the proposed scheme of collision 

to use trains of closely-spaced bunchlets instead of single pair of e+- e- bunches[4]. In this 

multiple-hunch collision case, an instability would be allowed to grow successively at each 

collision. and may reduce ·the luminosity in spite of a small disruption parameter for each 

hunch. 

The purpose of this paper is a theoretical investigation of the transverse (plasma) fluid 

instabilities due to beam-beam interaction. We consider two idealized models for beam 

streams. The first model is a so-called "two-string model'' [5] in which beams are treated 

as fluids and are represented by two elliptical cylinders with a uniform charge distribution 

across the cross section. Fawley and Lee us_e this model. The dispersion relation for the dipole 

instability is derived in Sec.2. The second model is a "ribbon beam model"[6] in which beams 

have a flat distribution like a ribbon in the real space, and have a uniform distribution in 

phase space. The dispersion relation for instability of any order is derived starting with the 
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kinetic equation for a Vlasov plasma. This is done in Sec.3. Comparison of the two dispersion 
relation shows that the result does not depend on the model very much. In both models, 
the evolution of the beam cross section during the interaction is not taken into account. The 
condition for this assumption is discussed in Appendices A and B in terms of the strong-weak 
beam picture. In the final section, we briefly discuss the cumulative growth of instability in 
the multiple-bunch collision case. 

2 Kink instability 

Suppose that two elliptically cylindrical beams moving towards one another collide with a 
relative vertical displacement Y in their centers of mass. See Fig.l. This displacement 
induces surface charges which generate an electromagnetic field inside the beams. Each 
beam is assumed to have the same number of particles N per unit length of the beam, with 
each beam having opposite charges. The equations of motion for the two beams follow from 
the two relativistic fluid equations: 

Ot'y OVy 
m1N(- +t•-) at az (1) 

OWy OWy 
m1N(~-v~) at az (2) 

where"" and wy are the vertical velocities of the electron and the positron beams, respectively, 
m is the mass of a particle, 1 is the Lorentz factor, v ( ~ c, the velocity of light) is the 
longitudinal velocity of beams, and Fy is the Lorentz force produced by the surface charge. 
We study cold beams, i.e., zero emittance beams, so that the term of plasma pressure vanishes 
from the fluid equations. If we assume that the beams have a uniform charge distribution 
across the cross section, and that no redistribution of charges occurs during the collision, the 
Lorentz force is given by[7] 

F" = 
8Ne2 Y 

47re0 ry(r. + ry)' 
(3) 

where e is the elementary charge, e0 is the dielectric constant of vacuum, and r. and ry are 
the semi axes of the beams in the x and y directions. In terms of the displacements, y1 and 
y 2 , of the center of mass of the electron and positron beams from the beam axis, Eqs.(1) and 
(2) are written as 

{) {) 2 
(- +v-) Y1 at oz. 

{) {) 2 
(-- v-) Yz at az 

8Nr,c2 

--,---'----c-( Y1 - Yz), 
ry(r, + ry)f 

8Nr,c2 

--,----c-(Yz - y!), 
ry(r. + ry)f 

where r, ( = 
4 

e' 2 ) is the classical electron radius. 
7rf(ltnC 

( 4) 

(5) 

We consider the space-time variation ofy1 and Yz of the form exp(ikz-iwt). Then Eqs.(4) 
and ( 5) become algebraic equations, and from the condition for a non-trivial solution, one 
derives the dispersion relation 

w2 w2 
1= y + y ' 

(w+vk)' (w-vk)' 
(6) 
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where 

8Nr,c2 

(7) 

is the relativistic plasma frequency. The solutions for this quartic equation are given by 

(8) 

If the second term in RHS is larger than the first term in the square bracket, then w can be 
pure 1magmary. The criterion for the onset of instabilities is, therefore, 

lkl < hw", 
v 

(9) 

and the maximum growth rate is obtained when 

(10) 

and its value is 

(11) 

It follows that the initial displacement may have grown in the optimal c.ondition by a factor 
of 

(12) 

after the interaction time t = l /2v where l is the length of the bunch. 
It should be mentioned here that the exponent in Eq.(l2) is half that of Fawley and Lee, 

apart from the phase mixing damping term which is neglected in the present analysis. The 
reason is that their introduction of the longitudinal bunch coordinates takes the interaction 
time as l / v, not l /2v. Since the correct growth factor is the square root of theirs, the kink 
instability in fact is quite less severe than their estimation. 

For Gaussian beams, using D :;;c 10(~)2 [1], the growth factor (12) is expressed in terms 
of the disruption parameter by 

Vi5 
9max "" exp( 2 ). (13) 

The condition 9maxYo < O"y where O"y is the vertical rms beam size sets a tolerance on the 
initial displacement Yo of the beams as 

Yo Vf5 - < exp(--). 
O"y 2 

(14) 

For example, forD= 1, the fractional displacement is allowed up to 60%. 
In the above model, the evolution of the beam envelope due to the pinch effect is not 

taken into account. In fact, as shown in Appendix A with the strong-weak picture, the beam 
envelope rP (p = x, y) can schrink by an optimal factor of 713; where f3; is the beta function 
at the collision point. The simplification· of the steady envelope is justified in the regime 
where this factor is around unity. 
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3 Kinetic theory 

For the systematic investigation of the instability of arbitrary order, we use the Vlasov 
technique[8] in which the particle distribution around the equilibrium distribution is solved in 
a self-consistent manner. However, for simplicity, we restrict ourselves to the one-dimensional 
case in which the beam motion occurs only in one degree of freedom (vertical direction here­
after). A suitable beam profile for this purpose is the ribbon beam in which the beam is 
assumed to have a fiat distribution, and the vertical force does not depend on the horizontal 
position. The cross section of the beam is shown in Fig.2. 

The equation of motion for a particle in beam 1 is 

(15) 

where w is the horizontal half width of the ribbon beam at the collision point, A; 1s the 
distribution function of the beam i normalized sucl! as 

j j A;dydy = 1, (16) 

and the function SIGN means the sign of the argument. We have the same equation for a 
particle in beam 2 with the index 1 replaced with 2. We assume that A; can be decomposed 
into the common equilibrium distribution A 0 which does not change during the collision and 
a small nonequilibrium component llA;: 

A;= A0 (y,y) + llA;(y,y,z,t). (17) 

Here, we neglect the dependences of the distribution Ao on z and t for mathematical simplicity. 
The criterion for this assumption is shown in Appendix B. Then the equation of motion (15) 
can be written as 

d2y 
dt

2 
= -F(y)- llF(y, z, t), (18) 

where F and llF come from A0 and llA2 , respectively. The incoherent motion of particle is 
determined by F(y), and llF gives the coherent perturbation on it. Moreover, we aS"sume that 
the equilibrium part of the force is nearly linear in y. The effect of the small nonlinearity is 
approximated by the amplitude dependence of the oscillation frequency. It follows that the 
incoherent motion of a particle is expressed in terms of action-angle variables I, ,P by 

·y cos 1/>, 
y 

y -~sin,P, 

where wy = wy(I). The amplitude dependence of wy is derived later. 
The linearized Vlasov equations with respect to the perturbation terms are 

allA1 a!lA1 , a!lA1 , aAo -- + v-- + ,P --+I-at az a,;, ai 
allA 2 allA 2 ,allA2 I,aA 0 ---v--+1/!--+ -

at az a,;, ai 

4 

0, 

0. 

(19) 

(20) 

(21) 

(22) 



If we substitute ,P' and I' given by Hamilton's equations, Eqs.(21) and (22) become 

8f1A,,z 8f1A,,z ( ) 8f1A,,z 2tr N r ec2 f!;I . ,,, 
±v +wi - -sm'P 

8t 8z y 87/J W"'f Wy 

j oo joo . -dA0 
x -oo -oo SIGN(y- ()f1A1 , 2 ((,(,z,t)d~d( di = 0, (23) 

where we have replac.ed the partial derivative of A0 by· the total derivative, using the fact 

that the unperturbed Hamiltonian is a function only of I. Although A 0 should be decided so 

as to satisfy the Vlasov equation for A0 , we here use a water-bag model of A 0 : 
1 

{ 

1 
A 

-- for I<:: Io, 
o = 2tri0 

0 for I> [0 • 

(24) 

It is obvious at a glance that the solution of Eq.(23) has the form 

00 

/i(I- Io) L fmei=.P eikz-iwt' (25) 
m=-oo 

00 

f1Az = /i(I- Io) L gnein,P eikz-iwt. (26) 
n=-oo 

Substituting Eqs.(25) and (26) into Eq.(23), multiplying it by e-im'f or cin'f, and integrating 

both sides over I and '</•, we obtain 

where 

( -iw + ivk + iinwy(lo))fm 

( -iw- ivk + inwy(Io))gn -

wz 
yO 

00 

Wyo "' - L., Mmn9n = 0, 
81r n=-oo 

(27) 

(28) 

(29) 

with the half height of the beam h = J2I0 /wy, and we have defined the matrix M whose 

elements are given by 

{ 

-32im 
for n + m = even. 

Mmn= [(n+m)2-1][(n-m)2-1] · 
· 0 for n + m = odd. 

(30) 

Defining new coefficients J;,. = fm + f-m and g~ = 9n + 9-n• then the properties of the matrix 

M: 

-Mm,n' 

Mrn,n 

1 Some disadvantages arising from the use of water-bag model are listed up in Ref.9 
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lead to the combined form of the m'h and ( -m )'h modes 

(32) 

(33) 

The condition for a non-trivial solution for f~ and g~ yields the dispersion relation 

( 
I -M- ) 

dd -M+ I = 0, (34) 

where I is the unit matrix, and M± are the matrices with elements ( m, n 2: 1) 

(35) 

At last, we give the unperturbed Hamiltonian calculated from the equilibrium distribution 
function ( 24) 

(36) 

where K(x) and E(x) are the complete elliptic integrals of the first and the second kinds, 
respectively. The dynamic tune is 

8H0 4 I If I If wy(I) = - = -wyo[(1 + - )E( -) + (1 - - )K( - )], 
8I 371" Io I 0 Io Io 

( 37) 

from which we find that Wyo is the plasma frequency at the zero amplitude, and 

(38) 

Since the system is determined only by a single frequency at the edge of the distribution, 
wy(Io) will be written merely as wy hereafter for simpler notation. 

The structure of the matrix M suggests the following two things; 

1. There is no coupling between modes of different polarity: e.g., the dipole mode cannot 
couple to the quadrupole mode. 

2. The coupling between different modes with the same polarity decreases sharply as the 
distance from the principal diagonal increases. 

Accordingly, if we disregard all the non-diagonal terms of the matrix M, the dispersion 
relation becomes 

(39) 

with 

(40) 
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which has a form similar to Eq.( 6 ). The condition for the onset of instabilities has, hence, a 

form similar to Eq. ( 9): 

Wy J O'm Wy J O':m 
m- (1- -. ) < lkl < m- (1 + -), 

v m v m 
(41) 

and an instability with the maximum growth rate 

( 42) 

occurs at the wave number 

(43) 

Substituting the actual values of <>m(<> 1 = 1,<>2 = ~' ... ) into Eq.(42), we find for a dipole 

instability ( m = 1) 

(44) 

which agrees with Wmax obtained in Sec. 2 with the two-string model, and for a quadrupole 

instability ( m = 2) 

' (45) 

Let us examine the limit. on D determined by the quadrupole instability for a Gaussian 

beam. If one requires that the maximum beam size should not be larger than twice the initial 

size at any rate, one gets 

where f) is the quadrupole displacement of the beam envelope from the equilibrium one. For 

example, for b/ (J'Y = 37%, D must be less than 25. 

4 Discussion 

The growth of (plasma) fluid instability of a beam collision is negligible for the disruption 

parameter of the order of 10. This is, as pointed out somewhere[1], due to the fact that the 

two beams pass through one another before plasma instabilities grow up amply, which takes 

several plasma oscillations of particles. However, if another beam comes in to collide, the 

instabilities may have another chance to build up their amplitudes. Since the force exerted on 

the beam is the restoring force, the coherent motion of the beam traversing the sequence of 

incoming beams and drift spaces is the pseudo harmonic oscillation with a growing amplitude. 

It is readily seen that the oscillation amplitude of instability can be enhanced after b collisions 

by a factor of gb in the optimal condition for the growth where g is the growth factor for a 

single collision. This means that even if the disruption parameter is only 0.1 for each bunch, 

the amplitude of dipole instability may reach to the same level after 18 collisions as for the 

disruption limit D ;::o 32 of a single collision. Besides, since the luminosity enhancement 

due to the pinch effect is hardly expected for such a small D, the luminosity may drop off 

significantly as a bunch collides with one after another bunch of an incoming bunch-train. 
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The scaling of the growth factor with the collision number b depends on the case. Under 
the condition that the luminosity per bunch-train and the density of particles per bunch are 
kept constant 2

, the parameters scale as 

N ex 1/b, 

l ex 1/b, 

D ex 1/b, 

with the result that the growth factor becomes independent of b. Therefore, if the tolerance 
of the initial perturbation is satisfied for D of b = 1, we can assure that the instabilities are 
negligible. 

In the end, it should be mentioned that the growth factor for a Gaussian beam may 
be smaller than the estimation owing to Landau damping due to a spread in the plasma 
frequency. 
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Appendix A: Evolution of envelope 

In this appendix, we consider the evolution of the envelope of an elliptically cylindrical beam 
which travels through an incoming beam with the same c.ross section. We take a strong-weak 
picture, i.e., the incoming beam (the strong beam) is not perturbed by the beam of concern 
(the weak beam). The equation of motion for a particle in a we.ak beam is 

where 
k - Wy 
y-

c 

is the plasma wave number. The solution can be expressed in the well-known form: 

r;;-;-; r, d 7 

y=ayp\Z)exp(ij
0 

;), 

where (3 must satisfy 
2(3(3"- (3'2 + 4(32 k~ = 4. 

(47) 

(48) 

(49) 

(50) 

It is readily seen that the problem is identical to the propagation of the Twiss parameters in 
a transport line. Instead of an external guide field, the incoming beam here plays the role 

2 This holds almost for Montague's multiple-bunchlet collision scheme. 
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of a dynamic focussing quadrupole. Provided that (3' = 0 at the collision point, the Twiss 
parameters are given by 

(3 

-y = 

1 (k2(3•' 2 . 2 ") k2(3* y y COS rp + Sill '!' , 
y y 

sin 2r/> ( k2 (3*' _ 1) 
2k (3• y y ' 

y y 

;. ( k~f3;' sin2 rf> + cos 2 rf> ), 
y 

where (3= is the beta function at the collision point, and 

rf> = ky(z- zo). 

(51) 

(52) 

(53) 

(54) 

The point z0 where the particle of concern collides with the head of the incoming beam 
depends on the position of particle in the beam. If we take the coordinate such that the head 
of beam arrives at z = 0 at t = 0, then z0 = (z- vt)/2 where vis the velocity of the beam. 

The beam size oscillates according to ,f73. If k;f3;' is larger than 1, the beam is at first 
compressed, i.e., pinched. If l > ::, = ~' the beam size schrinks at maximum at z- z0 = ~ 
by a factor of k;f3;', and then expands. 

Appendix B: Pinch condition 

The pinch condition can be generalized to any axisymetric beam[lO]. In the steady state, the 
plasma pressure p of the beam must be balanced to the pinch force of the opposite beam: 

(55) 

where n and j, are the local charge density and the local current density of the beam at 
r, respectively, and Er and B9 are the electromagnetic fields created by the opposite beam. 
Since nEr = -j,B9, and B9 = ;:J(r) where J(r) = J; 2Trrjz(r)dr, Eq.(55) is written as 

dp . 
27rr-y dr = -2!-'ol(r)Jz(r), (56) 

where Jlo is the magnetic permeability. The plasma pressure is connected to the temperature 
T and the plasma density n by 

p = nkT, (57) 

where k is the Boltzmann constant. In general, T as well as n may be a function of r. 
However if one neglects this r-dependence, and integrates the both sides of Eq.(56), one 
obtains Benett 's pinch condition 

or, using 10 = N ev, 

-yNkTav = :;J~, 

Nr, = kTav"r. 
mv2 ' 
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where Tav is the average temperature of the beam, N is the number of particles per unit 
length, and J0 is the total current. The result, Eq.(59), is independent of the form of the 
charge distribution. If N is greater than the value given by Eq.(59), the beam is pinched. 

For example, for a cylindrical beam with an uniform charge distribution over the cross 
section, one has 

f 2 kTav = -mv 
3(3• 

y 

(60) 

with the emittance ,, which leads to 

fJ 
N_re = -. 

3(3; 
(61) 

In fact, this pinch condition agrees with k;f3;' = 1 obtained in Appendix A, except that 
the factor 3 in Eq.( 61) is replaced by 4. This is because the temperature has actually the 
following r-dependence 

(62) 

If one does the derivation again starting from Eq.(56) with the·explicit r-dependence, one 
obtains exactly the same condition. 
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Figure 1: Collision of two beams with a relative displacement Y of their centers of mass. 
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Figure 2: A ribbon beam. 
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