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1. INTRODUCTION AND CONCLUSIONS 

In the early days of QCO it was recognized /1/ that the existence of bound 

states of gluans, or gluebells,., is a natural consequence of this non-Abelian gauge 

theory. Since then the problem has been twofold: (i) to make reliable theoretical 

predictions for the gluonium spectrum, and (ii) to look for clear experimental 

signatures that would unambiguously identify a glueball. In spite of the im-

pressive progress achieved eo far in both fronts these issues are still unsettled. 

On the theoretical front, since an exact analytical solution to the bound 

state problem in QCO remains to be achieved, approximation schemes and model 

calculations are at present unavoidable. Attempts to estimate the gluonium spec-

trum along these lines ·include: (a) m.merical simulations of QCD on a lattice 

/2/, (b) QCO-sum rules /3/, (c) bag models /4/, and a variety of other models 

/5/. There seems to be a consensus that the lowest lying glueball should be the 

scalar (JPC = o++) followed by the isoscalar (0-+) and the tensor (2++). A notable 

exception is a recent claim /6/ that the o++ should lie above the 2++. Concerning 

the masses, mast estimates place the scalar glueball at Ha++ ~ 1. 0 -1.5 GeV and 

the tensor at M2++:! 1. 5 - 2. 0 GeV. It should be pointed out, however 1 that depend­

ing on how one translates lattice QCO results into physical units one could find· 

a-++ masses as low as M0++ ~ 600 - 650 MeV /2.a/. A recent QCO-sum rule analysis 

/3.d/, to be described here, shows that such a low value for the scalar glueball 

mass is likely an upper bound. A mass M0++ ~ 1- 1. 5 GeV appears in conflict with 

the Operator Product Expansion (OPE) and low energy theorems in QCD. Our results 

confirm an earlier claim by the ITEP group /3.a/ that scalar gluonium should 

be abnormally light. The expected o++ total width is even more uncertain, as 

some authors find it small /7/ and others large /3.b/, /5.d/. Our results indicate 

that the light scalar glueball is very narrow. On the other hand, an analysis 

of the 2++ channel in the same QCO-sum rules framework /3.e/ reveals at least 

two resonances: M1 ~ 1. 6- 1. 7 GeV. r 1 ~ 100- 150 MeV I and M2 ~ 2. 0- 2.1 GeV' 
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r
2 
~ 200 MeV. 

A very brief {end oversimplified) summary of the experimental situation 

for o++ and 2++ gluonium may be stated as follows. A o++ glueball candidate -

G(1590) -was seen through its "l -z. decay at the CERN-SPS /8/i however, recent 

CERN-ISR /9/ results ("ISR gluonium search experiment") show no sign of it. 

According to an analysis of "'C. "C. phase shift data up to KR threshold /10/, a 

scalar glueball could be excluded unless it is very narrow { r!!! 2-3 MeV) or 

it is broad and lies around 650 MeV where mixing with quark states would make 

it appear very narrow. A more recent coupled channel analysis /11/ of I = 0 S­

wave 1t 1t and KR final states, which includes the latest CERN-ISR data /9/, re-

veals three resonances in the 1 Gev region- s1 (991), s2 (988), 1(900) -i.e. 

one more than expected from the naive quark model. In view of its properties 

the narrow s1(991) state appears to be s serious scalar glueball candidate /11/. 

However, the existence of a lighter o++ gluebell cannot be categorically ruled 

out provided it is very narrow. Notice that the experimental sweep of the lt~ 

spectrum in the CERN-ISR experiment /9/ is of 10 MeV bins, while earlier high 

statistics 'It 'X. data . /12/ have a· bin width of 20 MeV. Turning to tensor gluonium, 

present candidates are: (i) the e (1700) first seen in radiative J/~ decays 

at SLAC /13/. T~e latest values of the 9 (1700) parameters a.re M 
9 

= 1720~ 7 MeV, 

r & = 132 ~ 15 MeV, and fC = 2++ /13.b/. In addition, the CERN-ISR gluonium 

search experiment has now some evidence for the 9 (1700). (ii) The three (/> ¢ 

resonances gT(2050), gT(2300) and gT(2350) 1 ( r.!:' 200-300 MeV) 1 seen in 

"tt- f _,. ~ ~ , at Brookhaven /14/. There is also some evidence for these 

states from :T/'f -. "( ;., ¢ measured at DCI /15/. 

A discussion of the arguments which favour or disfavour a glueball inter-

pretation of ell the above candidates is beyond the scope of this talk. The 

interested reader should consult e.g. /16/ for recent reviews. 
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In the remainder of this Section I wish to discuss the key results and con-

elusions of our QCD-sum rule estimate of the mass and width of scalar /3.d/ and 

tensor gluonium j3.ej. A description of the method and technical details are 

given in the following Sections. 

The gluonium spectrum can be studied in QCD by considering the following 

two-point function 

1I \f)= i ~~q" ~~"<o\ T (:rex) :rto)) \o)', 

where 

::rex) = ~ 
. ... 

~~'<) ~V (xh quark contributions f>f 
1i: 

is the local current which creates o++ gluonium from the vacuum, end 

:r t><) - ::r,...., (><) = 

.. ... 
+ L ~ ~~'I.) q (ld + quark contributions 

"' drv c o~,. 

... ... 
~ ol (><) (i->'II ( ?<) +-

(1) 

(2) 

(3) 

has 2++ gluonium quantum numbers. The current (2) is proportional to the trace 

of the energy-momentum tensor e.tl( tx> • and (3) is just B h<) . The 
.,..~ 

key assumption behind the whole ITEP program /3.a/ is the validity of the OPE 

even in the presence of non-perturbative effects. These are parametrized by non­

vanishing vacuum expectation values of quark and gluon fields (vacuum condensates) 

of increasing dimensionality which introduce power corrections to asymptotic 

freedom. A relation between these vacuum condensates and resonance parameters 

follows immediately from analyticity. Depending on the choice of weight in the 

dispersion relation one may obtain e.g. Hilbert transform -, laplace transform 

Gaussian transform -, or Finite Energy - QCO sum rules. A comparative descrip-
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tion of these QCD sum rules may be found in Section 2. The following results, 

however, are essentially independent of the type of sum rule used in the analysis. 

A. Scalar Gluonium 

A simple relation between the mess of scalar gluonium and the vacuum conden­

sates, which approximately summarizes more refined expressions from laplace and 

Gaussian transform- as well as Finite Energy - QCO sum rules, may be written 

as 

.:1. 
Mo • .,. 

,., <!, (01,) 

TI (o) 
~l-lo•• > ~r"') (4) 

valid within a factor of 2. In (4) c6 .(o6) is a short notation for the triple-gluon 

condensate 

c!, <O{,') '!! ~ ~ 
1t' 

l ... ~.. I. c 

\.,(!) <ol ~' ~ ')."'.. c:;..,f' a.,.,,... 1 o)-' (5> 

and ll{o) is the 02 = o value of (1) with J(x) given by {2). The total width 

is approximately given by 

r "' 3 o++--
.:I 'it 

5 
tv\ or+ 

\Ito) 
x (phase space), (6) 

which is a very good approximation (within 10 %) to more refined results. Before 

discussing numbers a few remarks on Eqs. (4) and -(6) are in order: 

(i) Notice that the mass scale in this channel is set by non-perturbative 

effects rather than by asymptotic freedom as e.g. for ordinary vector mesons 

or tensor gluonium (see below). This fact was first recognized by the ITEP group 

5 -

/3.a/. However, such a situation is not novel, viz. it is well known that the 

nucleon ma~s scale is set by the quark vacuum condensate /17/ 

Mo~ N 
\13 

eo.,~{. x \<otiiu.lo>\ - ~ ~ .. v. (7) 

The reason for such a behaviour of the o++ channel is easy to see from the dia­

grammatic representation of the OPE shown in Fig. 1. Purely perturbative effects 

0 
0 (a~ l 

n • 

a, <asc;2> 

• CD· 
O!all 

Ia I 

m·ml 
a,<glGJ) 

(bl 

(() 
U(OI• <a,G2> 

lc I 

Fi~. i 

a,<la,G2)2) 

{Fig . 1-a) start at order 0 ( « s 2) and thus are suppressed relative to a) the 

non-perturbative gluon condensate contributions which are only of order 0(~ 5 ) 

(Fig. 1-b), and relative to ll(o) which is of order 0(1) (Fig. 1-c). Numerically, 
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asymptotic freedom begins to become important at S
0

) 7 GeV2. Clearly, at such 

high energies one could hardly invoke duality. In other words, a hadronic para-

metrizetion of the spectral function valid up to such a threshold does not seem 

feasible or even meaningful. 

(ii) The simple formulas (4) and (6) are obtained from all the various ver-

sions of QCD-sum rules after neglecting perturbative and continuum contributions, 

c4 <o4)relative to II(o), and the remaining non-leading gluon condensates. Of 

all these contributions the continuum is the most important; it may become 

numerically comparable to C6 (o6)and thus Eq. (4) is valid within a factor of 

2. This approxi~tion, though, has only a minor impact on the total width (6). 

(iii) The approximant& (4) and (6) ere for pure gluondynamics in the QCO 

sector. Kowever, as first pointed out in /3.b/, quark contributions to this sector 

do not play any important role in the determination of the mess end total width 

of the glueball. Notice that for q = u,d,s these effects are suppressed by fac­

tors of Q ~ m~/Q2 . For hesvier flavors the leading non-perturbative contributions 

vanish on account of ( Cc) = < 6b) = ••• = 0. Quark effects have been effective-

ly taken into account in the parametrization of the spectral function, where 

we have include~, the appropriate "':'~. d., and 1 't intermediate state contribu­

tions. Up to moderate widths (t'~ H/2), though, phase space effects tend to 

cancel in the mess, and affect the width mostly for mass values very close to 

the two-pseudoscalar-meson thresholds. 

The crucial quantity having the biggest impact on the o++ glueball mass and width 

is ll(o). Using Ward identities and commutation relations for the energy-momentum 

tensor the ITEP group derived the following low energy theorem /3.a/ 

1I lo) -=- H. ~1 <ol .... 
<!! ~~ 
1t 

<}.~ l o) . (8) 
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A discussion of the numerical values of the gluon condensates may be found in 

Section 3. Let me just point out now that after allowing for very conservative 

errors in these condensates, of up to factors of 10!, plus the factor of two 

uncertainty in (_4) one finds 

(9) M
0

++ ~ 300 -650 MeV, 

r o++ ::! 1 .. 50 MeV. (10) 

These results are confirmed by a more careful analysis based on the complete 

expressions for M and r which follow from the various versions of QCO-sum rules 

(See Section 3). The uncertainties allowed in the gluon condensates to obtain 

(9)-(10) have been grossly exaggerated. Using the best available estimates one 

would find instead 

M0++ ~ 350- 550 MeV, (11) 

r o++ !:! 1 -10 MeV. (12) 

My intention has been to show that even a gross exaggeration of the uncertainties 

y1elds a o++ mass well below 1 GeV. In fact, one can easily turn the problem 

around and ask for the values of the condensates which would·yield a 1-1.5 GeV 

scalar glueball. The problem is a bit more complicated than explained so fer, 

as one has to look also for the implications on the values of higher dimensional 

condensates, chiefly c8 (o8) (See Section 3}, but the answer is well outside 

reasonable limits. Additional non-perturbative effects not accounted for in the 

OPE (direct instantons?) could, in principle, offer an escape route to evade 

such a light scalar glueball. However, at the present time th.is possibility is 

only a speculation. let me reiterate in closing that given the present experimen-

tal binning of the Ttt spectrum it is not possible to rule out categorically 

a light o++ glueball of a few MeV width. 
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B. Tensor Gluonium 

In the language of the OPE the mass scale for tensor gluonium is expected 

to be rather different from that for scalar gluonium /3.a/. This may be easily 

seen from Fig. 2 which shows the lowest order perturbative contribution, of order 

Q ...... + 

0 (1) 1 as (lasG2)2) 

a) b) 

f;~. :;_ 

0(1), and the leading non-perturbative term c8< o8~ (there are no corrections 

of dimension 4 and 6 in this channel /3.a/). One expects then the scale to be 

set by asymptotic freedom with small power corrections due to the gluon conden-

sates of dimension 8, 10, etc. Notice that although the Wilson coefficient in 

c8 (08) is of order 0(1/t:l s) the whole term is still numerically small. This 

contrasts with the a++ channel where asymptotic freedom played essentially no 

role and the scale was set by the gluon condensates. 

Using a finite-width parametriza~ion of the spectral function, with tensor 

glueball couplings to '1flt, KK and 1£• in the framework 6f the FESR we find 

(See Section 4) 
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M
2

H ~ 1.6-2.0 GeV, (13) 

r 
2

++ 100::! 200 MeV, (14) 

in line with earlier Laplace transform QCO-sum rule estimates in zero-width 

j3;a,c,f/. However, the eigenvalue problem posed by the FESR turns out to be 

unstable signaling the need for additional resonances in the spectral funCtiOn. 

This is similar to what happens in the £'-channel /18/. Adding a second resonance, 

even if done in the most economical fashion, clearly reduces the predictive power 

of the sum rules. Nevertheless, our experience from the ~-channel indicates 

that in the process of stabilizing the eigenvalue problem one can make a reason-

able semi-quantitative guess of the shape of the spectral function. Using this 

example as guidance one may assume that the location of the 2++ ground state 

is not affected substantially by the addition of excitations and then search 

for the resonance parameters which stabilize the eigenvalue problem. In this 

way we find 

..... r •• N M
1 

(2 ) -1.7 GeV, 1 (2 ) - 150 MeV, (15) 

M
2

(2++) ~ 2-2.2 GeV, r 
2

(2++) ~ 200 MeV, (16) 

which shows that the e (1700) and at least one of the gT(2000) glueball candi­

dates can be easily accounted for in aco. 

2. THEORETICAL FRAMEWORK: QCO-SUM RULES 

In this Section I discuss the main ideas behind the QCD-sum rule programme 

introduced by Shifman, Vainshtein and Zakharov /19/. The presentation is intended 

for non-specialists in this field and thus rigor will be sacrificed for the sake 

of clarity. 
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2.A The various versions of QCD-sum rules 

Let me begin by recalling the two well known realizations of QCO: (i) at 

short distances one has the asymptotic freedom property of QCO which allows for 

the performance of reliable perturbative calculations and, in principle, to any 

desired order in the strong interaction running coupling constant o($ (Q1) 1 

o/.5 (&1.) "" •/t... a'/Al. . (ii) At the other end, i.e. at low energies, QCD is 

realized through the non-linear ~-model, chiral Lagrangians, etc. Reliable cal­

culations are also possible here by means of chiral perturbation theory and, 

again in principle, to any number of loops. If QCD is the correct theory for 

the strong interactions then there should exist en intermediate region where 

both realizations overlap end coexist. The ITEP programme approaches this region 

from the short distance domain introducing in the way power corrections to asymp-

totic freedom which arise from non-perturbative effects. These power corrections 

are expected to be more important than higher order radiative corrections as 

illustrated by the following example /19/: The f -A1 mass splitting is zero to 

all orders in perturbation theory. 

To see the appearance of these power corrections let us concentrate on the 

two-point function (1) and consider the OPE 

• l 4 i ,>< _. AI 
'1. j d x e T l :r t><) -:r co>) = -. 0 ..., -t L: ~,.,w 

11 

"' o,." (17) 

where the Wilson coefficients CN(q) in this expansion depend on the Lorentz in­

dices and quantum numbers of J(x) and of the local gauge invariant operators 

' ON built from the quark and gluon fields of QCD. These operators are ordered 

by increasing dimensionality and the Wilson coefficients fall off by correspond­

ing powers of q2. The unit operator in (17) has dimension d=O and C
0 
~stands 

for the purely perturbative contributions. Examples of d=4 operators are: 

mq qq, G~~ G~~ . In order to use the OPE (17) in (1) one needs to go beyond per-
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' turbation theory as otherwise < 0 I ON\ 0 "'1. would vanish identically. The key 

assumption behind the ITEP programme is that the OPE continues to make sense 

even in the presence of non-perturbative effects, i.e. the state\ 0) in (1) 

is identified with the physical vacuum. At our present stage of understanding 

of QCD it is not possible to compute these vacuum condensates from first principles. 

They remain as phenomenological parameters to be fixed e.g. by relating them 

to experiment through dispersion relations or by numerical simulations of QCO 

on a lattice. The Wilson coefficients, though, obey renormalizeion group equa-

tions and are calculable in perturbation theory. 

An intuitive picture of what has been stated above is provided by the follow­

lng example /3.a/. Consider a local current built from light quark fields 

J(x)tc Q(x)q(x), insert it in the two-point function (1), and look at the first 

non-trivial graph, Fig. J.a, in the limit of large incoming momentum Q, When 

all internal momenta are also large this graph effectively reduces to a point 

(Fig. 3b) and this contribution may be computed in perturbation theory. However, 

in performing the loop integrations one will inevitably hit a region where e.g. 

k is small (soft gluan) and the quark momenta are all large. In such a region 

one expects the gluon propagator to be modified by non-perturbative effects and 

the graph effectively reduces to the one shown in Fig. 3.c. The non-perturbetive 

fluctuation in this case is nothing but the gluon condensate (O( ~~ G-)'o= l O'J 
times a coefficient absorbing hard momenta and thus calculable in perturbation 

theory. If, instead, the gluon is hard and some of the quark lines are soft one 

gets e.g. the four-quark vacuum condensate. This factorization of short and long 

distance effects is of course what the OPE is all about. 

Once the validity of the OPE beyond perturbation theory is assumed the rest 

follows immediately from analyticity, 

the dispersion relation (Q2 ~ -q2, q2 

viz the two-point function (1) satisfies 

space-like) 
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""' 
1I (&1) = ~ ~~· I .... (l( ') 

" s + G.~ 
0 

_Q __ (D---
Ia I 

-----·-----
p,k, ..... large 

lbl 

__ rt_ __ 
k-0, p, ... large 

lei 

Fig.3 

+ subtractions, (18) 

defined up to a number~ of subtraction constants. One may get rid of these sub-

tractions by taking an appropriate number of derivatives in (18). This yields 

the power moments or Hilbert-transform sum rules 

M, (QZ) 
rt 

-!.. (_ 4.\ IT!&') 
n'.\c!.s.'J 

_L 
-;;:: 

o() 

~~~ 
0 

I~ III') 

( ~+ a,1)o•• I 19) 

w1th n = d~l, where d is the asymptotic behaviour in s of the spectral function 

i.. I u..... Iif S). Up to the values of the vacuum condensates the 1. h. s. of ( 19) 
'R 
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can be computed in QCD through the OPE (17), i.e. 

M.., (Ql) I " 
~eb 

.L 
n~ 
~ 
&'-

l_i.+L 
-\'•'-

_£_ 
(C.\') I" <!~r <'o.r 11· (20) 

This result will of course make sense only for values of a2 such that the power 

corrections remain as corrections. The spectral function appearing in the r.h.s. 

'-

of (19) may be extracted from experimental data, in which case one could estimate 

the leading vacuum condensates, or it may be parametrized at low energies by 

some resonance model; if the condensates are known this provides an estimate 

of the masses and couplings entering the spectral function. Notice that the high 

energy behavior of,Im li(s) is calculable in QCO through perturbation theory. 

The onset of asymptotic freedom is characterized by some threshold S0 and ti1us 

one can approximately write 

.i I,.. 1i.(s") = 
1i:. 

.L :t. .... Uls) \ + 
1\. Re\. 

ec~-So):i;,_ 'I. ... 1lt~J\ · 121 ) 

A.<. 

The sum rules (19) may be regarded as a global duality relation in the sense 

that the weighted average of the hadronic spectral function for sufficiently 

large a2 should match the theoretical QCO expression for Mn(Q2). One should keep 

in mind, though, that in practice the amount of available QCO and hadronic infer-

mation is limited. The former is restricted to the first few leading power correc-

tions in the OPE, while the latter is usually limited to the ground state re-

sonance or at most its first excitation. This means that the Hilbert-transform 

(19) may not be the ideal sum rule to carry out this programme. One optimization 

is obtained by applying to both sides of (19) the operator /19/ 
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" L s 2..:.... t-)oJ ( .. .I 

w ... .o l ~·. &.~) L 
G.' .. ell "IQ• : cr ( J Q' )~ 

(22) 

This procedure leeds to the laplace-transform sum rules of SVZ /19/ 

K t <r) '!II <1_ l i + 2: ...!.__ ~ .. 1'<!3.,, cr-f1 
O'n l;>=l. tp-<)! 

j_ ~--:s - s (j :r...._ 1I ( s) • 
(23) 

~ e 
1{. 

0 

In this limiting process a transmutation of the variable 1/Q2 into G1 has occurred, 

so that now the non-perturbetive effects appear as power corrections in the new 

short distance variable cr. The sum rules (23) may be regarded as an improvement 

over the Hilbert-transform sum rules in the sense that because of the exponential 

factor the r.h.s. of (23), at moderate values of Ci, is now more sensitive to 

the low energy behaviour of the spectral function. At the same time, higher dimen­

sional vacuum condensates become factorially suppressed, a welcomed feature. 

Another optimization is obtained by applying to both sides of {23) the 

operator /20/ 

A 

(-/ ot.: J..:,... (cr•)'" cl,.} 
~ 

c:r'-+<Cl (ol-1)~ 
(&cr')rJ 

.., ... oO \cr~,.l. 
"' 'C 

(24) 

yielding the Gauss-Weierstrass sum rules of Bertlmann, Launer and de Rafael /20/ 

15 -

"• G; ( ~. 't) = "/1 t~-w1 c! l-a/i A ..L :l. 't o e t-c 'J?.}·%n-) .fit 

• •• +t. _j__ C,r<o·r> ;_%r 
]) (-~/JR)1 

t='- (to -•)'. (.Jli:)l' 1'-" 

oO 

-::: _I_ 

V4n 't' 
)Js ""'~ (- t s- s-) ·, 

"i'C .l 
L I,.. U(s), 
1t 

0 

(25) 

where 0 (z) is the parabolic cylinder function, and the new short distance ex­
v 

pansion parameter is proportional to 4./..r:t. The transform G(S',"C) is just 

the convolution of the spectral function with a Gaussian centered at en arbitrary 

point S with a finite-width resolution ~ . The Gauss-Weierstrass transform 

calculated via QCD is dual to the hadronic spectral function in the sense that 

the more one knows about QCD the sharper one can take the Gaussians (i.e. "'C smaller) 

and the more accurately the calculated G(!, "C) should approximate the physical 

spectrum. If the QCD bound state problem would be completely solved then one 

could take "'C. = D. In this hypothetical case 

C.t~,o) = ..L 
1C 

1:- II t~), (26) 

and one would have strict local duality. In practice, however, due to the limited 

amount of QCD information 'C must be kept finite, typically 'C = 0.5 - 1 GeV2 . 

There is a very interesting and useful analogy between Gaussian sum rules 

and the theory of the heat equation which allows for a quantitative definition 

of duality in QCO /20/. This analogy is based on the observation that G(§.~) 

obeys the partial differential equation 

r 



'd?.G, (S,T) 

(d~)'-
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Ql G;( S, T) 

~1; 
(27) 

which is the one-dimensional heat equation if one reinterprets ~ as a "position-" 

variable and "t. as a "time" variable. In this analogy the hadronic spectral func-

tion J.. ~ n ts) represents the initial heat distribution in a semi-infinite 
'I< 

rod 0 ~ 'S .t:. oe::. and G(s,1:) measures the evolution in "time" of the heat 

distribution in this rod. This provides a very convenient framework to check 

the consistency between a given phenomenological ansatz (or data) for the spectral 

function and a specific choice of vacuum condensates. In fact, after a time 1: 

sufficiently large so that the uncelculated QCO corrections become relatively 

small, the predicted QCD heat distribution should match the evolution of the 

phenomenological ansetz (or data). This is the heat evolution test proposed by 

BLR /20/, and which serves as a quantitative formulation of the idea of local 

duality. In Fig. 4 we show schematically the evolution in "time" of an initial 

heat distribution (21) when ( tf'Tt) :t. ...... U:.l") \au is approximated by a delta 

function and (Y11:) :t:""""' 11£~)\Af~constant (solid lines}. The broken 

curves in Fig. 4 show the evolution of the QCO heat distribution. In this case 

there is duality between the low energy parameters and the values of the conden-

sates used to compute the two-point function in QCD. Changing the values of these 

condensates could destroy duality; this will be signaled by a mismatch between 

the QCO and the hadronic heat evolutions after a reasonabfe long "time" has 

elapsed. 

It is possible to obtain still another type of QCO sum rules by writing 

Hermite moments of the Gauss-Weierstr~ss transforms. This leads to the so called 

Finite Energy sum rules (FESR} which e.g. for the current· (2) appropriate for 

scalar gluonium read /3.d/ 

.!. C c'-
"- 0 ""' 

t ~0 ~ 
~ 

i. c. ~~ 
4 

+ 
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--- s --

So 

TI.to)- (."<04) ~!...C<t~ 
n j 

:I."""' !lC-,) 

s 
0 

~. 

I ~ :: \ ~~.. I.- ll <•), + ~ b ( 0") 
IC 

0 

~. 

-

(28) 

(29) 

~ f <oo = .1.. ~ ""'"' -.r.- G<1) 
1t. 0 I (30) 
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end so on. In these equations C
0 

is a perturbative coefficient from the gluonic 

loop Fig. l.a, CN( ON)ere related to the gluon condensates, Fig. l.b, and II(o) 

is a subtraction constant, Fig. l.c. The integral cutoff S
0 

is the threshold 

for asymptotic freedom which can be predicted as a solution to the above eigen­

value problem. An advantage of the FESR is that the vacuum condensates obey un-

coupled eigenvalue equations, in contrast to the Hilbert, Laplace and Gaussian 

transforms where they appear correlated, However, since S
0 

is expected to lie 

at the border of the resonance region the FESR weigh more the high energy domain 

and this may call for a more accurate hadronic parametrization. This is not 

necessarily a handicap, though, as FESR may provide valuable information on ex-

cited states. 

2.8 From QCO-sum rules to predictions 

let us consider any of the QCO-sum rules discussed so far and say we wish 

to estimate the mass and width of a resonance knowing beforehand the values of 

the relevant leading vacuum condensates. The first step is to write the spectral 

function (21). The second term in Eq. (21) offers no problem, at least in prin­

ciple, as it may be computed in perturbative QCD. As for the resonance piece, 

the most trivial procedure is to parametrize it by a delta function (zero-width 

resonance model~. However, this two-parameter ansatz (mass and coupling constant) 

is too crude and may lead to troubles. A more realistic finite-width parametriza­

tion can be achieved in some cases by using the information provided by the 

effective chiral lagrangian realization of QCD at long distances. For applica­

tions of this idea to QCO-sum rules see /21/, /3.d,e/. In any case, a more serious 

potential problem is that the resonance parameters entering the spectral function 

depend on the short distance variables: 1102 in the Hilbert transform (21), ~ 

in the Laplace transform (23), or t /-Fe in the Gaussian transform {25). Also, 

these resonance parameters depend on the threshold for asymptotic freedom, s , 
0 

in all sum rules including FESR. Obviously these functional dependences are 
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spurious and, therefore, some criteria are. needed before making predictions. 

Concentrating on the Laplace transform (23) and the FESR e.g. (28)-(30) these 

criteria are as follows. (a) Laplace transforms: These sum rules do not fix the 

threshold 50 which must be guessed e.g. by assuming it to lie somewhere after 

the ground state and the first excitation (or beyond). To this extent the Laplace 

sum rules do not provide by themselves a quantitative formulation of local duality. 

In any case, once S
0 

is fixed1 predictions for resonance parameters expected to 

be dual to a given QCD information follow from the criterion that there should 

exist some region or nwindown in (( such that ordinary perturbative aco remains 

valid and, at the same time, only the leading power corrections are required 

/19/. Lacking a quantitative formulation of local duality, a complementary con-

sistency check of the expectation that the resonance parameters so determined 

are in fact dual to the input QCD information should be performed e.g. by using 

the heat evolution test of BLR /20/. Experience indicates that this check may 

lead to surprises /18/, /20/. (b) Finite Energy Sum Rules: The FESR, e.g. (28)-{30} 

pose a well defined eigenvalue problem whose solutions are the resonance para-

meters in Im II(s} as well as S
0

. This may not be enough, however, as this eigen­

value problem may be unstable in the sense that small changes in S
0 

could induce 

large variations in the resonance parameters; clearly an undesirable situation. 

Such an instability is usually due to an inaccurate parametrization of the spec-

tral function. The following principle dUe to Pich and de Rafael /21.d/ should 

be implemented: nrrust FESR only if they are stable in 5
0

, only -~hen there exists 

duality". To be more specific let us consider the ratio of the FESR {28} and 

(29) 

'i.o 

I+ 0 ~~ (0,) ~ ih :t. ... ii.C~) 
Coo<;.,> -=-(_l_)_o 

2\o \o 

1 + ~ l. II!o)-Co<o~>J ~ ~ :r. .... Ul\) 

~. ~~ 0 (31) 
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The QCD l.h.s. of (31) is shown schematically in Fig. 5 (vertical lines) at some 

ja) 

lbl 

So 

Fig.5 

values of S0 ; the error bars reflect uncertainties in the vacuum condensate para­

meters. The solid curve (a) shows the schematic behaviour of the hadronic r.h.s. 

of (31) in a case where the eigenvalue problem is stable, i.e. there 1s a w1de 

"duality region" within which the resonance parameters in Im II(s) are dual to 

QCO. In contrast, the solid curve (b) would correspond to an unstable e1genvalue 

problem. Additional information would be required in the spectral function ln 

order to stabilize the ratio (31). 

3. SCALAR GLUONIUM 

3.A The two-point function II(a2·) in QCD 

The two-point function (1) with J(x) given by (2) reads /3.a/ 

1i: lG?) :: 

where 

c.. 

1-

&" \- ~ 

c~. (o, > 
G. ... 

+ 
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~ ~l 
v• + ~ ) .j. c!~ (0<.,) 

Cf (De) 

G" 
+ •.• 

~0 :: , ( ~ y :l ~ y J 

( 4 (0u):: 4 ~~ \ ~)<~ ~. ~") 1 

A '.,(,' r "b ~"'> '"''"<o~ 'l = g~, \ ~) <~s > .. ~ .. ~ .. c:-.,e e!orr / ' 

C~ ('0€) :: h: \ ~ Y o(.,
3 L \4 < (~ .. '-c ~~ (::;ot~ )') 

.... - < u .. ~." <)..J b '\1. c-,.f' ) I , 

(32) 

(33) 

(34) 

(35) 

(36) 

and we have neglected small quark contributions /3.b/. To leading order in o<s 

the perturbative aco asymptotic behaviour of the spectral function is 

~I ... 
i'C 

li ( ~) l ~ 

"'·"· 
C:o ~l 

J (37) 

implying that three subtractions will be required in the dispersion relation. 
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Subtr~cting at a2 = 0 one may write 

1lv_ \Q') = ll !G') - 1l (o) -
2./ '411 

IS( 1l(o) -l & II IO) • (38) 
2. 

Since II(o) is known from the low energy theorem {3.a/ 

TI. (o} = - I(,~\ <cis 
"' 

0. 

~- ~: ), (39) 

one can make use of this information by writing a dispersion relation for the 

second derivative of IIR(Q2){Q2 

I discuss next the numerical values of the QCD parameters (33)-(36) and 

(39). Since perturbative contributions will turn out to play a negligible role 

in this channel we work to leading order in~ sand neglect the a2-dependence 

of the running coupling constant. With ~ 1 = - 11/2 + nf/3 we freeze~ 5(Q
2) 

at its value at a2 = 1 GeV2 , i.e. 

in which case 

co~ 0.04. 

o<s 
'11:. 

- O . .i., (40) 

(41) 

The so called "standard value" of the gluon condensate, as first estimated by 

SVZ /19/, is 

leading to 

'JS.. 
~ 

< e<~ Gt~>\ "" 
~-1. 

o.o 4 G;v.J 4 
J 

(42) 
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c4 ~o4)::: 0.0985 Gev4 , (43) 

II(o)'.::! 0.875 GeV4 . (44) 

However, a recent determination of the gluon condensate shows that (42) is an 

underestimate by a factor of two to five /18.a,b/. Details of this determination, 

and a complete list of references to earlier related work, are given in my second 

contribution to this Workshop /18.c/. In view of this we shall also consider 

the value 

"' < IIi. "'.) "' 
~ 

~ 0·12. G.vl J (45) 

with c4 < 04) and II(o) increased accordingly. Concerning the dimension-six triple­

gluon condensate, its value is rather uncertain, to wit. A dilute instanton gas 

(OlGA) calculation gives /3.a/ 

<~s~~7\ = 
btGo.A 

H -~ 
-s ro: < G;' > N o.on c;;w~ (46) 

where cl.<!:./tt ~0·1 , feZ (200 MeV)- 1 , and (42) have been used. The estimate 

(46) implies 

~lo (0~) \ ~ o. 01 'I G;v,J(, 
biG.A 

(47) 

On the other hand, a value of the infrared cutoff ~ ~ (500-600 MeV) - 1 has been 
e 

advocated in /22/ . This implies 

c
6

.(o
6
) ~(0.12- 0.17) GeVB (48) 

While in agreement with some phenomenological} determinations /23/, (46) disagrees 
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in sign and magnitude with the result of a modified OlGA (MOIGA) calculation 

/24/, viz 

<~~ G;~) \ ~ - o.o; G.w" 
M'DI~A (49) 

which implies 

Cr.<O~) \ ~ - o.11 G:w'. 
HblooA (50) 

Finally, lattice calculations give /25/ 

<~s Gr 3
) \ ~ (t..~ :1: 1·l,) < ol~ ~~}! .. , 

L•""~ (51) 

which yields 

c6 < 06) ::" o. 01 Gev6, (52) 

if the "standarq value" {42) is used, or 

c6 ~o6)::" 0.05 Gev6 , (53) 

if the value (45) is assumed. To remain on the safe side we have carried out 

the analysis allowing c6 (' o6) to vary in the generous range 

6,.., ... 6 
- 0.02 GeV ,(, c6 (06> ,(, 0.2 GeV , (54) 

A rough order of magnitude estimate of c8 (08') may be obtained by assuming vacuum 
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saturation /3.a/, i.e. 

< t G;-r• Gc.r.l' )' / ~ 

~ t t;;r« t:c .. "') ~ > "' 

which yields 

c
8

<0
8
) ~(0.01-0.1) Gev.8 , 

~ <a.•>~, 
11o 

~ 
j_ (£!;~) I 

11, 

(55) 

(56) 

(57) 

depending on which value of <«a 4'-) is used. Vacw .. m saturation, however, 

is not supported by any 1/Nc argument /26/ nor by specific instenton models /22/. 

Therefore, throughout our analysis we shall allow c
8

(o
8

) to depart from the 

value (57) by a generous order of magnitude. 

3.8 QCD-Sum Rules 

Working with the second derivative of the function IIR(Q2)t02 , where IIR(Q2) 

is given by (38), one easily finds the following Laplace-transform QCD-sum rule 

/3. a/ 

LLcr") 

-: ~0 
()"-

~~~ 
0 

- .. 0" 
e. .L 

11: 
I- tJ.(~) 

~ 

-1- 1l (o) - C., <o.,)- Cb<O&><l-.!. ~;>(O,?)CI~ 
l. 

(58) 

To estimate the resonance mass it is useful to consider the ratio 
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oO 

l -·G" tis. e I. .. JI($) 
0 

-
"" ~~ 

_,.,. 
T- rr cs) e 

0 

.a.<:!•!cr-~ + c.~ (o~ > + Ct <o~>cr ~··· 

c. + TI.to) _ C.4 <o")- c~ (o~> cr + ... 
<!1 

(59) 

The Gaussian transform, needed to perform the heat evolution tests, is given 

oO 

• ....L- \ d.~. L,cr L- ( s- ~ l • 1 -!: "L- u ( ~> <?;lE>, t) = 

where 

-~~ 4 "C \\, s. 
0 

At 

Co J=C l -">( 

+ ~ 1-\•(,;)Ertd-;)~ -= s._ 
-r.<. 

+ Llllo) - ~4 <o~> 1 
A' ->< 
~ 
2~ 

~ (;_) 

+ C.~ (0!.) - ~ 2. e IJ.~ ( -x ") 
~~"'"' 

Ci (Og) 
At. 

-x 
\\2.(~) -\- ... !.. !L.-

;J.. ll ,,. ,(,; 
T ~ 

A A 
I)( =: S/2. ~ , Hn{X:) are Hermite polynomials, and 

(60) 

Er ~c:C -x) = ..B... 
fi 

C() 

)~ 
"' 
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i '<, ~ = ~- .-s-f l><). 

Finally, the FESR in this channel are given by (28)-(30) . 

3.C Hadronic Spectral Function 

Quark contributions, neglected in the QCD expression for II(Q2), can be 

(61) 

effectively taken into account in the spectral function by computing the scalar 

glueball coupling to '"I "It, KR, 11. , ... intermediate states. Up to S ~ 1 Gel 

the tflt contribution is expected to dominate; a simple calculation gives 

where 

..!.. 
"1\. 

:r.,... lil>) \ ... 

11"1t 

j_ 

:l.i\1 
\f'Cs)\ 1 Sl s) 

F (~) "' .!. < 0 I "I\ "ttllt,) tt(\O.,J) I 
4 

llo.~lt .. )1 = s' 

(62) 

(63) 

and we have set t'R~: () . Using the chiral lagrangian realization of QCO at 

long distances it is possible to obtain the following low energy theorem /27/ 

F( s) ..-..... 
~. .. o 

s (64) 

valid in the chiral SU(2) x SU(2) limit. Using this result to normalize a finite-
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width parametrization of the spectral function we can write 

_L I ... 
1i: 

ilCs)) = 
1\n. 

~ 

.'ln' 

s"- l-\4 ( 1+ ry~'-"') 

(s- .... ')'+ .... ~ p"-

• ~-

(65) 

In order to probe energy regions above 1 GeV we can improve (65) by adding· the 

KK and l "\ intermediate state contributions. From the flavour independence of 

J(x) one may safely assume that the transition form factor analogous to (63) 

remains the same, in which case one has 

< 
R 

J:.... ]l (S) ,. ~ 
.:1.\12-

s'- 1-\~ ( ~'" r'; .... •) 
(~-11')'+ .... 1 r"-

L B (s) 

- ' 
+ ~ .J ~- ~rYs 

~ 
e (s- ~ /'l) l 

where we have taken into account kinematical corrections to the chiral limit 

in the KK and 7.1: threshold for which we use the average value 

4~2 ~ 1.09 GeV2 . 

It is possible to check that dynamical corrections to F(s), which are of the 

form /27/: (1 + ~ 2 /s), have a small impact on the results of our analysis. 

3.0 Approximate Results 

(66) 

(67) 

Before discussing detailed predictions. for the o++ Qlueball mass and width 

I wish to justify at this point the approximate results (4) and (6) quoted in 

Section 1. If the glueball mass lies below the threshold (67} and its width is 

small then to a good approximation one can neglect KR and 

and work with the spectral function (65). In narrow width 

,, intermediate 

{65) reduces to 

states 

'.!.. :r-
11:. 

(OJ 

Ills) \ 

""' 
~ 
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"' .:llt 

'5~ H~ d(!'.- K'-) • 
i' 

(68) 

Using this approximate spectral function in the ratio of FESA {31) one obtains 

1-\:z 
tH 

"-' d. S:/t, 
d ~~ 
0-.. 

+ d .. (0&/' 

+ ll(o)- C~ <O";> (69) 

An inspection of the numerical values of the various terms in the r.h.s. of (69) 

(see (41), (43), (44), (45) and (54)) shows that II(o))) c
4

<o
4

)and that, for 

So ~ 1 - 3 GeV
2 

where we expect duality to hold, the perturbative piece can 

be safely neglected in the denominator of (69). Its contribution in the numerator 

of (69) can be comparable to c6 (06) and thus Eq. (4) is valid within a factor 

of two. The approximate formula for the total width (6) follows after substituting 

(68) in the first FESR (28) and neglecting c4( 04)' and the perturbative term 

in comparison to II(o). Alternatively, using the ratio of Laplace transforms 

{59) and the same approximations as above one finds again Eq. (4) provided the 

continuum is neglected and G"::! 0. 5 - 1 Gev-2. Although this continuun is 

1 , h , f -So cr . . h suppressed re at1ve to t a resonance p1ece by a actor e tl.mes the wl..dt 

r'
1 

its contribution may be important and the derivation of Eq. {4) may not be 

as transparent as with FESR. However, the complete analysis (see 3.G below) shows 

that the eigenvalue solutions to the FESR are also solutions to the Laplace trans-

form sum rules. 

3.E Eigenvalue solutions to the FESR 

The approximate estimates given in {4) end {6) and justified above may not 

be enough as they do not exclude possible a•• excitations. The FESR {28)-(30) 

are the ideal tool to study this possibility as they weigh high energies. Sta-
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bility tests based on e.g. the ratio (31) will tell us in the end whether or 

not the single resonance spectral function (66) saturates the hadronic 1ntegrals. 

Tables 1 and 2 show some of the eigenvalue solutions to the FESR (28)-(30) 

corresponding to the standard value of the gluon condensate (42) and to the value 

(45), respectively. For a given value of c6 <o
6) one could find eigenvalue solu­

tions with larger masses and widths but they would imply unreasonable h1gh values 

of c
9 

{0
8
). Notice that the last entry in each group is already implpng a 

c8 < 08) which exceeds the factorization estimate (57) by roughly a factor of 

20 - 30 in Table 1, and by a factor of 10 - 20 in Table 2. 

TABLE 1 
-----

c.<o.> r M .. (',(0,) 

tGcV'l !MeV) (MeV) tGc¥ 1) tGeV'l 

1 "' 1.11 0_1! 
-0.02 

392 2.33 0.2fl 

1 280 U2 om 
0.019 ' '" 2.10 016 

10 ., 2.42 0.27 

' '" 1.23 OJWH 
0.1 10 ,., 1.87 om 

"' '" 2.43 0.21 

"' 
,.. 1.~ -O.OS 

02 lO '" 2.13 0.0< 
lO ,,. 2.92 0.2!1. 

Typical results for the ratio (31) are shown 1n Figs. 6 and 7. The sol1d 

curve corresponds to the hadronic r,h,s. of (31) computed with the spectral func­

tion {66) using M and r eigenvalue solutions to the FESR. The vert1cal l1nes 

are the QCO l.h.s. of (31) for c
4 <o4) and II(o) as in Eqs. (43)-(44), and 

c6 (. o6) = 0. 0016 Gev6 (crosses) , 0, 019 Gev6 (dots) , and 0 2 Gev6 ( hor1zonta 1 

bars). It should be clear from these figures that the eigenvalue problem 1s re-

~ 
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TABLE 2 

c .<o.> r M •• C1 (01 ) 
c<XV"l !MeV) CMeV) (GeVl) tGcV') 

llO l .. 0.11 
~0.06 ... ).82 116 

'" >64 0.45 
0.06 ... 3.57 1.37 .. , 190 .,. 
O.l 

10 "' ).60 1.19 

10 "' >!7 "'" 0.6 
lO .. , J.n 1 ... 

markably stable, i.e. there is a wide "duality region" for 1 Gev2 ~ So~ 3 GeV2 

which leaves no room for additional resonances. 

w 

.. £o.s 

~ "' 

r • s Me\1 
M-310-

T • . . ' • • . - - ' ___ ._j 
u lD u :10 

•• a.v' 

Fig. 6 
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,• 

r . Kl .... .,. 
M -•~oMev 

• • 0.0 l.,g u II) is _____ sil___j 
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Fig. 7 

At this point 1t is possible to turn the problem around ~nd ask for the 

implications of a heavy, M ~ 1 - 1.5 GeV, and broad, P ~ K{2. , scalar glue-

ball. The behav1our of the r.h.s. of (31) computed with the spectral funct1on 

(66) USlng M = 1 GeV, r = M/2 as input is shown in Fig. 8 (curve a). Such a 
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heavy glue ball would require c6 l. o6) and c8 < 08) to be 50 times and -100 times 

bigger than the standard values, respectively. This is clearly well outside 

reasonable limits. Figure 8 also shows the behaviour of a "non-resonant" spectral 

function (curve b) obtained by simple extrapolation of the low energy behaviour, 

formally equivalent to the M .. o6 limit in (66). 

,~?-~·' 
~~ I ~ 
~i4]J 

-~ " .. " 
---,.,~ 

' 
j • • 

... o .... •. 

Fig. 8 

3.F Heat evolution tests 

The next step is to check quantitatively whether or not there is duality 

between the input values of the gluon condensates and the resonance parameters 

obtained as eigenvalue solutions to the FESA. This may be performed through the 

heat evolution test of BLR /20/ described in Section 2. It will also be useful 

to compare these results with those for a heavy and broad glueball. 

Figures 9 - 11 show the "time" evolution of the heat distribution (25) com­

puted with (66) using a typical eigenvalue solution from Table 1, viz M = 452 MeV, 

r = 10 MeV (dashed curves) and computed in QCD using the corresponding values 

of the condensates (solid curves). For "times" 1: ) 1 GeV4 there is nice agreement 

04f 

I 
.-"\ ~CLI 
;: ! 
• Q.lr 

/.'' 

/ -: . , ,, 

\ 
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Fig. 9 Fig. 10 
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Fig. 11 

•-1 0-'t 

·~'::,_,_ 
·' .• 

I 

between the hadronic and the aco heat distributions in the semiinfinite rod 

o~& <<><:> , indicating that duality is well satisfied. Such is not the 

case, though, for theM= 1 GeV, r = 700 MeV glueball found in /3.6/ from a 

laplace transform analysis. In fact, Fig. 12 shows the heat distributions at 

1C = 1 Gev4 computed with the same spectral function and for the same values 

of the condensates used in /3.b/. The rather pronounced disagreement between 

QCD and phenomenology observed in Fig. 12 is found to persist even for larger 

values of lC, and to become even more pronounced with increasing glueball mass. 

This is a good example illustrating that solutions to laplace sum rules do not 

necessarily obey duality. 
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J.G Laplace transform analysis 
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As shown above, the heavy and broad scalar glueball found in /3.b/ from 

Laplace sum rules does not show up in the FESR and does not pass the heat evolu-

tion tests. In order to try to understand the reason we have computed the La}lJce 

transform (58) using our spectral function (66). The behaviour of L(Cf) versus C) 

is shown in Fig. 13 for r = 10 MeV and M = 500 MeV (curve a), M = 452 MeV {curve b), 

.. ~~~~-
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T·IO...., 
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Fig. 13 
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and M = 350 MeV (curve c). The vertical lines are the Laplace transforms of the 

QCD expression, the r.h.s. of (58), for the same values of the condensates as 

in Figs. 6- 7. Notice the remarkable agreement between both s1des of (58), within 

-2 ~ ~ " -2 the very w1de wwdow 0.2 GeV "£ v 4 1.5 GeV , for the true eigenvalue solutwn 

to the FESR {curve b). In contrast, as shown in Fig. 14, the hadronic l.h.s. 
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Fig. 14 

of (58) forM= 1 GeV, r = 500 MeV coincides with the QCD r.h.s. only 1n a very 

narrow region around cr= 0.5 GeV- 2 where continuum effects are important. S1nce 

FESR are much more sensitive to 5
0

, and thus more selective, th1s "Laplace-un­

stable" solution does not appear in FESR; it is simply not dual to QCO. 

4. TENSOR GLUONIUM 

4 A The twa-point function II(Q2) in QCO 

Using the current (3) in (1) we can write 

1I 
to; ~r 

(il1
) = i ~~~X e'V <ol T( ~"lxl flo~~ to)) lo> 

"' lrv : o(f 1 ( & 1..) ' 

(70) 
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with 

"l ~~; o~p 
- 36 -

is the spin-2 projector 

J 

"l,.;~~" 1r, 1-~~ + 1rr 1vo( { \~ 1o~l' 

\r" .. - ~,..~ + +~ 
~l. 

(71} .. 

(72} 

The QCD expression for T(C2) to lowest order in o( and including the leading . s 

power corrections is given by /3.aj 

I !Q')- do Q~ Q_ '~(at -1- l!!,f (Di> + 
lSI" 

~. <o,.;:. + ·.. (73} 
~~ 

where 

and 

c., = 'I c.~ 11:") , 

d~ (Of/) = Sn: o<s < .:1.0 1 - Ot), 
0 

01 = ( r•l>e G;r~ c. )1. 
G;" ,.( ' 

D I <>I.e '-
:1.;;: \ f ~" .. ) .. 

Goo((' 

(74} 

(75} 

(76} 

(77} 

Although the dimension - 10 gluon condensate in (73) is unknown we have included 

it for reasons that will become clear later. As in the case of scalar gluonium, 

an order of magnitude estimate of c8 ( o8
) may be obtained by invoking vacuum 

- 37 -

saturation. In such a case one finds 

c8 <o8)\ ':!. -0.0046Gev8, 
FACT 

if the standard value (42) of (oc's Cr'l > is used, or 

c8 <o8)\ ::: - 0.041 Gev8 , 
FACT 

for the value (45). Notice the asymptotic behaviour 

!.. I.., T ( ri') 
1t.. 

~ 

Q 't.., 00 

c!. Q ~ 

which calls for three subtractions in the dispersion relation. 

4.8 QCO-sum rules 

(78} 

(79} 

' 

(80} 

Working ~ith the third derivative of T(Q2) in order to get rid of the three 

unknown subtraction constants one easily finds the following Laplace transform 

sum rules 

0() 

Ll(l') = ~ d!> 
-·0' 
e. J.. 

i\ 
I- 'i'(~) "'~~ + ~" (Oif/ <r- ~.<a,.) G'~ ... 

0 <J'l • ;:, (81} 

The Gauss-Weierstrass transform needed for the heat evolution tests is 

G;( 5,-r)\ -= ... 'CIJ... 
'<o l. ..r,;, 

O.C.!> 

'1.. t4w,tx)-~- u~ c ~)] S 

+ d..o < o •• ) ~:2. t~) 
11. ~ 1:¥~ 

A l, 

1-1 1 c,1.) e" + 1 Ertc. (- .<) 
:2. 

~g (0,?) 
., 

- 1-11 c~) e-x 

4·df.: 
•a. -x e + ... 

(82} 

' 



Finally, the FESR in this channel read 

~0 So
3 

~ 
= 

c: 'i.e~ 
0 - - Cg<Oil? = 

4 

~0 s..'" + 
~ 

c.,. ( o,. > 

4.C Hadronic spectral function 
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':.o 

~ o~. J.. I.-T!~) 
R J 

0 (83) 

s., 

~ &~ s .L T. ... T(~) 1 1t 
(84) • 

'>o 

= ~ &s 
• 

s 1. ~ 
IC 

I-T< s), (85) 

The lowest intermediate state contribution to the spectral function is again 

the lf ~ state. We must consider then the matrix element 

~" < 1l \ 1\'i) 11: \,f .. ) 1 er" \0) 

A rr r., .,. 5 ~ ~" + ~ d " + b ( r,.. 'tv + r, ~ r) , r 1 (86) 

where r = p
1 

- p
2 

and q = p
1 

+ p
2

. The functions A,8 1 C,D can be related to each 

other by working in the chiral limit p 1
2 

= p2
2 = ~~ = 0 and 1mposing on (86) 

the following constraints: (a) transversality: ~ l" T }"V .:: ~""' ~ = 0 ; 

(b) tracelessness (to order or!
5

): (lt'1t\~~ \0)-::::. Q{ols,) ~ 0 

(c) crossed channel behaviour: 
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<'1t\f<)l9t',~\"£lr,))-- -2-\'r'l'J e .. J 

r•'~'·'" 

where ~Q- has been interpreted /27 I as the share of the pion momentum by the 

gluons ( e~ ~ 1) . Notice that in the scalar glueball case f<a- :. 1 . In the present 

case 1 though 1 edr must be considered 8$ a free normalization parameter subject 

to the constraint e- ~ t ; its value will have to be obtained from the sum 

rules together with the 2++ glueball mass and width. Using the constraints {a)-(c) 

above in (86) and computing the spectral function we obtain in the chiral limit 

l. I"' T(~) \ 
li: 

l!n 
"' ~; 

b'lo11:1 

~~ M 4 ( ~ + ~·/1'1") 
ls-~o~'l'+ >-~' r'-

e t ~). (87) 

Including KK and'\ 1 intermediate state contributions, the simplest generaliza­

tion of (87) I which accounts for the flavour independence of the source e.r-.) 1 

may be written as 

!. r ... T£~) = 
it 

t t)5ft J .fu.::_ <;'K"(HI"}'t-~') le(~)+ ~~i-4..tj, B(Ht') '(88) 

~4off' (5-t<.')\ >~'1"1. 

2..... 2 -where 41-1 - 1. 09 GeV is the average KK and \ 1 threshold. 

4.0 Solutions to the FESA 

In order to predict M and r we have at our disposal the three FESA (83)-(85). 

However, S 0 , e~ and c10 <: o10) are also part of the unknowns. Therefore, we 

choose the following strategy: we tentatively set c10 .( 010) = 0, input a value 

for the width P and solve the FESR to find H 1 So and ~C!; Since fe;- increases 

with increasing r we stop the procedure whenever eca- exceeds its bound p~ ~ 1 • 

The eigenvalue solutions obtained in this way are shown in Tables 3 and 4 for 
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TABLE 3 

Ti\leV) !tf(MeV) s0 (GeVl) ,, 
'"' 1.610 3.422 0.733 
I ~0 1.6~4 ).510 0.9~7 
~\Xl 1.6_16 l59l 1.10 

TABLE 4 

f(MeV) M(MeV) s0 KieV 1 1 I'<> 

100 2.109 H42 tlt>~9 

ISO 2,122 5.951> ll.791 

200 2,135 6.070 () "-'~ 
250 1,148 6.179 1.070 

the choices (79) and (80), respectively. It may be seen from these results that 

depending on the value of c8 < 08 ) one can easily accommodate either the 8(1710) 

or the gT(.~.oJ""o), two of the tensor glueball candidates. However, the eigenvalue 

problem turns out to be unstable, as seen from Fig. 15 where we have plotted 

the ratio of FESR 

I - 4 ~?<op 
~0 <;.. ~ - (~so) I 0 (';.,M,f') 

1.4 (So,H,("l) 

-l~so) 
s~~s > I~ Tl') 

rs· l d.s I- Tis) 
0 

In fact, the QCO l.h.s. of (89) (solid curve) intercepts the hadronlc r.h.s. 

(89) 

(dashed curve) only at a single point. There is no "duality region", wdicating 
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Fig. 15 

that more hadronic information is needed in the spectral function around 

$ 0 ~ 4 GeV
2

. 

An obvious solution to the above instability problem may be to add a second 

resonance to f (s), Eq. (88). A simple, albeit not unique, generalization of 

Eq. (8B) is 

f l >) " 

+ §:: 
0 

.L I~ T( <;) 
ll:. 

g;_ 
~40TI~ 

~· l 
v- ~-7.?../;, e ls- 4 r') }><. L 

e t "') 

H/'(H P, 1/M,') 
(~~M11.)\t-4i1. r4't.. 

t- '>. 4 ... >.) 
1-1,_ ( ~+ "· jf\,_ 
-------

( s-+~()"- ~ H.' r,'- 1 / (90) 
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where A is a free parameter. In spite of Eq. (90) being the most econom1cal 

generalization of Eq. (88), the number of unknown hadronic parameters has become 

too large. With only three FESR at our disposal it is clear that the analys1s 

is bound to be only semiquantitative. Nevertheless, we can study the cons1stency 

between a given set of input values for the mass and width of the two resonances 

and the resulting values of ~C., C
8
(o

8
), and c

10
(o

10
'?obtained by solving 

the FESR. By adjusting the parameter l we can see whether a reasonably w1de 

duality window now exists for the ratio (89} as well as for fa. , c
8 
~ 0

8
) and 

c10 < o10). These parameters should not only be stable against changes 1n s
0 

but 

also their values should not differ much from those of the single resonance 

analysis. Following this strategy we have found that using the 9 (1710) and 

g1 (2050) parameter it is indeed possible to achieve a remarkable overall stab1l1ty, 

to wit. In Fig. 16 we show the ratio (89) as a function of s
0 
for~= 0.5. The 

. ' 
', 

',, 

I -,-

12 ... ... ~~ ... ,~ ... (~) 

.. " ~---;---.-----------t;---cs.---, --.. -
------- o A __ J, __ ~ -.----------(•) ____ ----- . ,10-

..::..:: 

•.£ 
0.1 

l_;,l 
3.0 

I 

" •• 
~:o.v•) 

I 

••• 

Fig. 16 

• 

.. .. 

triangles correspond to the hadronic right-hand side of Eq. (89) with 

M1 = 1.71 GeV, r 1 = 150 MeV, M2 = 2.15 GeV and P 2 = 200 MeV, while the closed 

circles correspond to the same M1, r l but M2 = 2 GeV, and r 2 = 200 MeV. The 

solid curve corresponds to the QCO-left-hand side of Eq. (89) w1th 

c
8 

<o
8
) =- 0.0115 Gev8 and the broken curves (a) and (b) are calculated with 
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the two extreme choices ca< 08) =' 0. 041 GeV8 and C
8 
< 0

8
) 0.0046 Gev8, re-

spectively. Figures 17, 18 and 19 show th8 predictions for r~, c8 <o
8

>and 
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Fig. 18 

C10 (o10), respectively, obtained by solving the FESA (83)-(~5) w1th r(s) given 

by Eq. (90) with ~ = 0.5 and the S (1710) and g
1

(2050) parameters. For companson 

we also show in Figs. 17-19 the corresponding predict1ons us1ng the s1ngle re-

sonance spectral functior1 (88) with the 9 (1710) mass and width. 
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A comparison of Fig. 16 with Fig. 15 shows quite clearly how the add1t1on 

of a second resonance to e (s) solves the stability problem. In fact, the two­

resonance saturation of the spectral function leads to a wide dual1ty w1ndow 

extending from s
0 

':!:! 3 GeV2 to s
0 
~ 5.5 GeV2 . Furthermore, as seen from Figs. 

17-19 the parameters ~, c8 ~08) and c10 ~o10) become remarkably more stable 

after a secon~ resonance is added to~ (s). We wish to reiterate, however, that 

g.iven the approximations contained in Eq. (90) and given the number of unknown 

parameters, we cannot claim to have predicted the mass and width of the two glue­

balls. Our analysis only shows that if the 6 (1710) and the gT{2050) were to be esta­

blished experimentally as bonafid~ ·tensor glueballs, then their masses and 

widths would be compatible with QCO in a stable sense. However, our analysis 

of the stability of the eigenvalue solutions to the FESR has provided a strong 

hint that in addition to a ground state glueball with M = 1.6 - 1.7 GeV, 

~~100- 200 MeV, there should exist at least another resonance with 

M::: 2 GeV, f'l!:::!. 200 MeV. In spite of being qualitative, we find th1s conclusion 

quite 'interesting by itself. 
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4.E Heat evolution tests 

In order to check quantitatively whether or not there is duality between 

the hadronic parameters in (90) and the QCO information obtained from the FESR 

as described above, we have computed the Gaussian transforms (82) as a function 

of S and for various "times" & . In Figs. 20-21 we show e.g. the behaviour of 

u(+) (5,1:) = G(s,l:) + G(- s, 'C) at 'C= 0.5 Gev4 and 'C= 1.5 GeV4 The time 

evolution of G(S,"C) or u<-) (5,1:) = G(!,'C.)- G(- S,'C.) is equally good' and 

provides the final test of our results. 
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