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1. INTRODUCTION AND CONCLUSIONS

In the esrly days of QCD it wes recognized f1/ that the existence of bound
states of gluons, or glueballs,is a natural consegquence of this non-Abelian gauge
theory. Since then the problem has been twofold: (i) to make reliable theoretical
predictions for the gluonium spectrum,end (ii) to look for clesr experimental
signstures that would unambiguously identify a gluebell. In spite of the im-

pressive progress achieved so far in both fronts these issues are still unsettled.

On the theoretical front, since an exact analytical sclution to the bound
state problem in QCD remains to be achieved, approximation schemes and model
calculations are at present unavoidebla. Attempts to estimete the gluanium spec;
trum along these lines include: (a) numerical simulstions of QCD on a latticé
]2/. (b) QCD-sum rules /3/, (c) bag models /4/, and a veriety of other models
/5/. There seems to be 8 consensus that the lowest lying glueball should be the
scalar (JPC = ++) followsd by the isoscalar (0'+) and the tensor (2+*). A notable
exception is a recent claim /6/ that the 0** should lie above the 2t Concerning
the messes, most estimates place the scalar glueball at M0++€£ 1.0~1.5 GeV and
the tensor at H2++:: 1.5-2.0 GeV. It should be pointed out, however, that depend-
ing on how one translates lattice QCD results into physical units one could find-
0" nmasses as 10# ag H0++t: 60C - 650 MeV /2.a/. A recent QCD-sum rule anralysis
/3.d/, to be described here, shows that such a low value for the scalar glueball
mass is likely an upper bound. A mass MO++:i 1~1.5 GeV appears in conflict with
the Operator Product Expansion (OPE) and low energy theorems in QCD. Our results
confirm an earlier claim by the ITEP group /3.a/ that scalar gluonium should
be abnormally light. The expected 0** total width is even more uncertain, as
some suthors find it small /7/ and others large /3.b%/, /5.d/. Our results indicate
that the light scalar glueball ié vary narrow. On the other hand, an analysis
of the 2** channel in the same QCD-sum rules framework /3.ef reveals at least

two resenances: M; 2 1,6-1.7 Gev, I"1 % 100~ 150 MeV, and "2': 2.0-2.1 Gev,



l"2 o 200 MeV,

A very brief {end oversimplified) summary of the experimental situation
for 0" and 2** gluonium mey be stated s follows. A 0% glueball candidate -
G(1590) - was seen through its 1 al decay at the CERN-SPS /8/; however, recent
CERN-ISR /9/ results ("ISH gluonium search experiment®™) show no sign of it.
According to an analysis of ¥ phase shift data up to KK threshold /10/, a
scalar glueball could be excluded unless it is very narrow ( 's 2-3 MeV) or
it is breosd and lies around 650 MeV where mixing with quark stetses would make
it appear very narrow. A more recent cbuplad channel anelysis f11/ of I = 0 §-
wave K and KK final stetes, which includes the latest CERN-ISR data /9/, re-
veals three rescnances in the 1 Gev region - 51 {991), 52 (98B), &(%00) - i.e.

one more than expected from the naive quark model. In view of its properties

the narrow 81(991) state appeers to be a serious scalsr gluebsll candidate /11/.

However, the existence of a lighter ot gluebell cannot be categoricelly ruled
out provided it is very nerrow. Notice that the experimental sweep of the LT

spectrum in the CERN-ISR experiment /3/ is of 10 MeV bins, while earlier high

statistics ® W data ./12/ have & bin width of 20 MeV. Turning to tensor gluonium

present candidetes are: {i) the © (1700) first seen in radistive J/AF decays

at SLAC /13/. The latest values of the © (1700) parameters are M - 1720% 7 MeV,

PC < 2** /13.b/. In eddition, the CERN-ISR gluonium

g = 132 2 15 Mev, and J
search experiment has now some evidence for the © {1700). {ii) The three ¢ /4]
resonances gT(ZOSO), gT(2300) and gT(2350), ( P= 200-300 MeV}, sasn in
'ﬂ'.'f - ﬁﬂ 7 at Brookhaven /14/. There is also some evidence for these

states fron T/ —» ¥ S @ measured st DCI /15/.

A discussion of the srguments which favour or disfavour a gluebsll inter-
pretation of all the above candidates is bayond the scope of this talk, The

interested reader should consult e.g. /16/ for recent reviews.
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In the remainder of this Section I wish to discuss the key results and con-
clusions of our QCD-sum rele estimate of the mass and width of scalar /3.d/ and
tensar gluonium /3.e/. A description of the method and technical details are

given in the following Sections.

The gluonium spectrum can be studied in QCD by considering the following

two-point function
1 R fgx
ﬂ(g' )= ‘gdux e T (T T oy, (0

where

a a
J_(x) - F,f oly G}a“)e}\,(\:h querk contributions  (2)
™

is the local current which creates 0** gluonium from the vacuum, and

[ %
T — 30 0 - 60 w0 6,5 (w0 +

e -
+L 5,00 & (w4 guerk contributions (3
4 3er‘°‘9 “w

has 2** gluyonium quantum numbers. The currenmt (2) is proportional to the trace

of the energy-momentum tensor Etfd () | and (3) is Jjust E;*J“) . The

key assumption behind the whole ITEP program /3.s/ is the validity of the OPE
even in the presence of non-perturbetive effects. These are parametrized by non-
vanishing vacuum expectation values of quark and gluon fields (vacuum condensates)
of increasing dimensionality which introduce power corrections to asymptotic
freedom. A relation between these vacuum condensates and resonence parameters
follows immediately from analyticity. Depending on the choice of weight in the
dispersion relation one may obtein e.g. Hilbert trensform -, laplace transform -,

Gaussian transform -, or Finite Energy - QCD sum rules, A comparative descrip-
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tion of these QCD sum rules may be found in Section 2. The following results,

however, are essentially independent of the type of sum rule used in the analysis.

A. Scalar Gluonium

A simple relation between the mass of scalar gluonium and the vacuum conden-
sates, which approximately summerizes more refined expressions from Laplace and
Gaussian transform - as well as Finite Energy - OCD sum rules, mey be written

as

Hz ~ df. T

O+
ﬁ(o)

(Mow >2pe) (4

valid within a factor of 2. In (4) C6<06‘) is 8 short notation for the triple-gluon

condensate

2 3 abe a L e
dg<0£7 = 2 %" (2‘.1%) <{ol3, £ G’m, G-vr; Fen 107, (5

and II({0) is the 02 =.o velue of (1} with J{x) given by {2). The total width

is approximately given by

)
r -'Y. 3 MoM

o+t -

T W)

which is & very good approximstion (within 10 %)} to more refined results. Before

x (phase space), (6}

discussing numbers s few remerks on Eqs. (4) and -(6) are in order:

(i) Notice that the mass scale in this chsnnel is set by non-perturbative
effects rather than by asymptotic freedom as e.g. for ordinary vector mesons

er tensor gluonium (see below}. This fact wes first recognized by the ITEP group

-5 -
/3.a/. However, such s situation is not novel, viz,it is well known that the

nucleon mass scale is set by the quark vacuum condensate /17/

_ - '
MN N Qopst, x\(olualo?\ ~ 4 GeV, )

" The reason for such a behaviour of the 0'* channel is easy to see from the dia-

grammatic representation of the OPE shown in Fig. 1. Purely perturbative effects

Olail Ola3)

la}

as (a6 a:¢g°G%» ag{la,G3%

bl

(0} = (asGD
{c)

Fig. i

(Fig. 1-a) start at ordser 0(“’32) and thus are suppressed relative to a) the
non-perturbative gluon condensate contributions which are only of order U(D(s)

(Fig. 1-b), and relative to II(o) which is of order 0(1) (Fig. 1-c). Numerically,
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asymptotic freedom begins to become important at S0 »7 GeVz. Clearly, at such
high energies one could hardly invoke duality. In other words, a hadronic para-
metrization of the spectrel function valid up to such a threshold does not seem

feasible or even meaningful.

(ii) The simple formulss (4} end (6) are obtained from all the various ver-
sions of QCD-sum rules after neglecting perturbative and continuum contributions,
C4(04‘: relative to II{o), snd the remaining non-leading gluon condensates. Of
all these contributions the continuum is the most important; it may become
numerically comparable to CS{OS) and thus Eq. (4) is velid within a factor of

2. This approximation, though, has only s minor impact on the total width (6).

{iii) The epproximants (4) and (6) ere for pure gluondynamics in the QCD
sector. However, as first pointed out in /3;b/. quark contributions to this sector
do not play any important role in the determination of the mess and total width
of the glueball. Notice thet for q = u,d,s these effects are suppressed by fac-
tors of di aglﬂz. For heesvier flavors the lesding non-perturbative contributions
vanish on account of {cc? = {bb = ... = 0. Quark effects have been effective-
ly taken into sccount in the parametrization of the spectral function, where
we have includeq the sppropriste XK, KE, ‘“d'11 intermediate state contribu-
tions, Up to mod;rate widths (T'™ M/2), though, phase space effects tend to
caencel in the mass, and affect the width mostly for mass values very close to

the two-pseudoscalar-meson thresholds.

The crucial quantity having the biggest impact on the ot glueball mass and width
is II(0}. Using Werd identities end commutation relations for the energy-momentum

tensor the ITEP group derived the following low energy theorem /3.a/

_I[(O)=-1Q(51 <0lﬂ%e;, G;‘.:lt))- (8)
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A discussion of the numericel values of the gluon condensates may be found in
Section 3. Let me just point out now that after sllowing for very conservative
errors in these condensates, of up to factors of 10!, plus the factor of two

uncertainty in (4) one finds

MD++ & 300 ~650 MaV, (9}

P0++ 2 1-50 Mev, (10)
These results are confirmed by a more careful analysis based on the complete
expressions for M and [ which follow from the various versions of QCD-sum rules
(See Section 3). The uncertainties allowed in the gluon condensates to obtain
(9)-(10) have been grossly exaggerated. Using the best avesilable estimates one

would find instead

M_++ &2 350 ~ 550 MeV, (11)

0
l"0++ & 1 -10 MeV. (12)

My intention has been to show that even & gross exaggeration of the uncertainties
yields a o't mass well below 1 GeV. In fact, one can easily turn the problem
around and ask for the values of the condsnsates which would yield a 1- 1.5 GeV
scalar glueball. The problem is a bit mofe complicated than explained so far,

es one has to look also for the implications on the values of higher dimensional
condensates, chiefly Ca-(OB? (See Section 3), but the answer is well outside
reasonable limits. Additional non-perturbative effects not accounted for in the
OPE (direct instantons?) could, in principle, offer an escape route to evade

such 8 light scalar glueball. However, at the present time this possibility is
only a speculation. Let me reiterate in closing thet given the present experimen-
tal binning of the W spectrum it is not possible to rule out categorically

a light 07" glueball of & few MeV width.



B. Tensor Gluonium

In the language of the OPE the mass scale for tensor gluonium is expected
to be rather different from that for scalar gluonium /3.a/. This may be easily

seen from Fig. 2 which shows the lowest order perturbative contribution, of order

o1 1
: a. {{asG?)%

a) b}

Fig. 2

(1), and the leading non-perturbative term CS< Oé) (there are no corrections
of dimension 4 and B in this channel f3.a/). One expects then the scale to be
set by asymptotic freedom with small power corrections due ta the gluon conden-
sates of dimension 8, 10, etc. Notice that although the Wilson coefficient in
CB (087 is of order 0(1/0[3) the whole term is still numerically small. This
contrasts with the 0*% channel where asymptotic freedom played essentially no

role and the scale was set by the gluon condensates.

Using a finite-width parametrization of the spectral function, with tensor
gtueball couplings to WX, KK and 0{7, in the framework of the FESR we find

{See Section 4)

_ 9.
H2++ ~ 1.6 -2.0 GeVv, (13)
l"2++ 100 200 MeV, (14)

in line with earlier Laplace transform QCD-sum rule estimates in zero-width

‘ /3.8,c,f/. However, the eigenvalue problem posed by the FESR turns ocut to be

unstable signesling the need for additional resonances in the spectral function.
This is similar to what happens in the §>—channel /18/. Adding a second resonance,
even if done in the most economical fashion, clearly reduces the predictive power
of the sum rules. Nevertheless, our exﬁarienca from the ? -channel indicates

that in the process of stabilizing the eigenvalue problem one can meke a reason-
able semi-quantitative guess of the shape of the spectral function. Using this
example as guidance one may assume that the location of the 2t ground state

is not affected substantially by the addition of excitations and then search

for the resonance parameters which stabilize the eigenvalue problem. In this

way we find
M (2") 217 Gev, I"l(z"") ~ 150 MeV, {15)
Mz(ZH) ™ 2-2.2 GV, i"z(z“) ~ 200 MeV, , ' (16)

which shows that the © (1700) and st least one of the gT(ZUUO) glueball candi-

dates can be easily accounted for in QCD.
2. THEORETICAL FRAMEWORK: QCD-SUM RULES

In this Section I discuss the main ideas behind the QCD-sum rule programme
introduced by Shifman, Vainshtein and Zakharov f19/. The presentation is intended
for non-specialists in this field and thus rigor will be sacrificed for the sake

of clarity.
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2.A The various versions of QCD-sum rules

Let me begin by recelling the two well known realizations of QCD: (i) at
short distances one has the asymptotic freedom property of QCD which allows for
the performance of reliable perturbative calculations and, in principle, ta any
desired order in the strong interaction running coupling constant ofy (%),
s (82) ~ /5. aYA% . (ii) At the other end, i.e. at low energies, QCD is
realized through the non-linear @’-model, chiral Lagrangians, etc. Reliable cal-
culations are also possible here by means of chiral perturbation theory and,
again in principle, to sny number of loops. If QCD is the correct theory for
the strong interactions then there should exist an intermediste region where
both realizations overlap end coexist. The ITEP programme approaches this region
from the short distsnce demain introducing in the way power correcticns to asymp-
totic freedom which srise from non-perturbative effects. These power corrections
are expected to be more important than higher order radistive corrections as
illustrated by the following example /19/: The f —A1 mass splitting is zero %o

all orders in perturbation theory.

To see the appearance of these power corrections let us concentrate on the

two-point function (1) and consider the OPE

igd“x e;qx T(IW Teod) = CO‘LL + Z d,,(ﬁ) 6,.” (17)
N

where the Wilson coefficients CN(q) in this expansion depend on the Lorentz in-
dices and guantum numbers of J(x} and of the local gauge invariant operators

BN built from the quark and gluon fields of QCD. These operstors asre ordered

by increasing dimensionality and the Wilson coefficients fall off by correspond-
ing powers of q2. The unit operator in {17) has dimension d=0 snd C° ﬂL stands
for the purely perturbstive contributions., E£xemples of d=4 operstors are:

mq a9, qu G:q . In order to use the OPE (17} in (1) one needs to go beyond per-
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[
turbation theory as otherwise ¢ 0 ) ON\ 07 would venish identically. The key

assumption behind the ITEP programme is that the OPE continues to make sense

even in the presence of non-perturbetive effects, i.e. the state \0'> in (1)

is identified with the physical vacuum, At our present stage of understanding

of QCD it is not possible to compute these vacuum condensates from first principles.
They remain as phenomenclogicel paremeters to be fixed e.g. by relating them

to experiment through dispersion relsticns or by numerical simulations of QCD

on a lattice. The Wilson coefficients, though, obey renormalizeion group equa-

tions and are calculable in perturbation theory.

An intuitive picture of what has been stated sbove is provided by the follow-
ing example /3.a/. Consider & local currsnt built from light quark fields
J{x) o g{x)q(x), insert it in the two-point function (1), end look at the first
non-trivial graph, Fig. 3.a, in the limit of large incoming momentum Q. When
all internal momenta are also large this graph effectively reduces to a point
(Fig. 3b) and this contribution may be computed in perturbation thecry, However,
in performing the loop integrations one will inevitably hit a region where e.g.
k is small (soft gluan) and the quark momenta sre sll large. In such a region
one expects the gluon propagator to be modified by non-perturbetive effects and
the graph effectively reduces to the cne shown in Fig. 3.c. The non-perturbative
fluctuation in this case is nothing but the gluon condensate < O{ C-.':; G-)‘: loy
times a coefficient absorbing hard momenta and thus calculable in perturbation
theory. If, instead, the gluon is hard and some of the quark lines are soft one

gets e.g. the four-qusrk vacuum condensate. This factorization of short and long

distance effects is of course what the OPE is all about.

Once the validity of the OPE beyond perturbation theory is assumed the rest

follows immediately from analyticity, viz the two-point function (1) satisfies

2

the dispersion relation (Qzla -q , q2 space~-like)
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=0
-E (&1) = J: ds Lo (B¢ + subtracticns,
[ s+ &?_
°
p
_a__ ——
{a)
_____ ...._—..._—
p.k,.....large
{b)

(e}
Fig.3

defined up to a number n of subtraction constants, One may get rid of these sub-

(18)

tractions by taking an appropriate number of derivatives in (18), This yields

the power moments or Hilbert-transform sum rules

o)

Mata?) 2 £ (-4 Y Ta?) o 1 (ds Te T

" n'.(d’@}) &)““}—-: !
[« ]

s
(s+a)""!

(18}

with n = d+1, where d is the asymptotic behaviour in s of the spectral functicn

L e T0s). Up to the values of the vacuum condensates the 1.h,s. of (19)
T
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can be computed in QCD through the OPE (17), i.s.

\

Mated] = L Co L+ 2, £ G (g, _
\Qch nepoat ‘- p=2 @t *°f P7]

{20)
This result will of course make sense only for values of 02 such that the pawer
corrections remain as corrections. The spectral function appearing in the r.h.s.
of (19) may be extracted from experimental data, im which case one could estimate
the leading vacuum condensates, or it msy be parametrized at low energies by

some resocnance model; if the condensates are known this provides an estimate

of the messes and couplings entering the spectral function. Notice that the high
energy behavior of Im II(s) is calculable in QCD through perturbation theory.

The onset of asymptotic freedom is charscterized by some threshold SO and tiws

one can approximately writa

AT.1 = a~ - - .
m (8D -1{ T ms)l + B(s-Sa) L T El'a)\ (1)

™ ™
Res, A

The sum rules (19) mey be regarded as a global duality relation in the sense
that the weighted average of the hadronic spectral function for sufficiently
large 02 should match the theoretical QCD expression for Mn(Qz). One should keep
in mind, though, that in practice the amount of available QCD and hadronic infor-
mation is limited. The former is restricted to the first few leading power correc-
tions in the OPE, while the latter is usually limited to the ground state re-
sonance or at most its first excitation. This means that the Hilbert-transform
(19} may not be the ideal sum rule to carry out this programme. One optimization

is obtained by applying to both sides of (19) the operator /19%/
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F.3
W O L L
N -» oD fr” ‘) (d o) (22)

Bta o | g2 =

This procedure leeds to the Laplace-transform sum rules of SVWIZ /19/

Mie) = Ce e I, A— G (6.?76‘?1
a” p=2 (.P -0l

(23)

-y

-sG

=-L§ds e.s Tw. T(s).
w 2]

In this limiting process a transmutation of the variable 1/02 into G has occurred,

sa that now the non-perturbative effects appear as power corrections in the new
short distance veriable . The sum rules {23) may be regarded as an improvement
over the Hilbert-transform sum rules in the sense that because of the exponential
factor the r.h.s. of (23), at moderate values of 7, is now more sensitive to

the low energy behaviour of the spectral function. At the same time, higher dimen-

sional vacuum condensstes become factorielly suppressed, a welcomed feature.

Another upt;‘mization is abtained by applying to both sides of {23) the

operator 20/

A
) _yN
L = sz Q’“, (U"')” o
q'-no\ \ (-0 (dg)¥
W e 18721 (24)
KT

yielding the Gauss-Weierstrass sum rules of Bertlmann, Launer and de Rafael /20/
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G(3T) = 4 " O d,,[e’gl/“
®

+ 2 L E— sz <6zf> e-g/zét
pea B0V EEYe

)
s

D (-3
?-.

n

o

-~

f‘—- 45 exp [- L9 L Tw T,

(25)
where D.J(z) is the parsbolic cylinder function, and the new short distance ex-

pansion parameter is proportional to ‘/J'-E . The transform G(g,'c) is just

the convolution of the spectral function with a Gaussian centered at en arbitrary
point 8 with a finite-width .resolution \ﬁl-? . The Gauss-Weierstrass transform
calculated via QCD is dusl to the hadronic spectral function in the sense that

the more one knows about QCD the sharper one cen take the Gaussians (i.e. "¢ smaller)
and the more accurately ths calculated G(%,%¥ ) should approximate the physical
spectrum. If the QCD bound state problem would be completely solved then one

could take T = 0. In this hypothetical case

G(3,0) = L Tu @ (3)) (26)

™

and one would have strict local duslity. In practice, however, due to the iimited

amount of QCD information "C must be kept finite, typically T = 0.5 - 1 GeVz.

There is a very interesting and useful enalogy between Gaussian sum rules
and the theory of the heat equation which allows for & quantitative definition
of duality in QCD /20/. This enelogy is based on the observetion that G(§,<T.)

cbeys the partial differential equation
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2
SEBD  _ easD
(3s) at @

which is_tha one-dimensional heat equation if one reinterprets s as a "position”
veriable and © as & "time" variable. In this analogy the hadronic spectral func-
tion 1Lt1u. Ti{s) represents the initial heat distribution in & semi-infinite

rod 04 § £ of and G(s,T )} measures the evolution in "time" of the heat
distribution in this rod. This provides s very convenient framework to check

the consistency between a given phenomenologicel snsatz (or dsta) for the spectral
function and a specific choice of vacuum condensates, In fact, after a time T
sufficiently large so that the uncalculsted QCD corrections become relatively
small, the predicted QCD heat distribution should match the evolution of the
phenomenclogical ansatz (or data). This is the heat evolution test proposed by
BLR /20/, and which serves as a quantitative formulation of the idea of local
duality. In Fig. 4 we show schematically the evolution in "time" of an initial
heat distribution {21) when ('/&L) jr SV IE($)]RE; is approximated by a delta
function and (V) Te T \Afgconstant (solid lines). The broken
curves in Fig. 4 show the evolution of the QCD heat distribution. In this case
there is duslity between the low anergy parameters and the values of the conden-
sates used to coﬁpute the two-point function in QCD. Chenging the values of these
condensates could destroy dvality; this will be signaled by & mismatch between
the GCD and the hadronic heat evolutions after a reasonable long "time" has

elapsed.

It is possible to obtain still another‘type of QCO sum rules by writing
Hermite moments of the Gauss-Weierstrass transforms. This leads to the so called
Finite Energy sum rules (FESR) which e.g. for the current (2) appropriate for

scalar gluonium read /3.d/
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uw»
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(28)

(29)

(30)
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and so on. In these equations C0 is 8 perturbative coefficient from the gluonic
loop Fig. 1.a, CN( DN)'are releted to the gluon condensates, Fig. 1.b, and II{a)
is 8 subtraction constent, Fig. 1.c. The intagral cutoff SO is the threshold

for esymptotic freedom which can be predicted as a solution to the above eigen-
value problem. An advantage of the FESR is that the vacwum condensates obey un-
coupled eigenvalue equations, in contrast to the Hilbert, Laplace and Gaussian
trensforms where they appear correlsted. However, since S0 is expected to lie

at the border of the resuonance regicn the FESR weigh more the high energy domain
and this may call for a more accurete hadronic perametrization. This is not
necessarily a handicap, though, as FESR may provide valuable information on ex-

cited stetes.

2.B From QCD-sum rules to predictions

Let us consider any of the QCD-sum rules discussed so far and say we wish
to estimate the mass and width of a resonance knowing beforehand the values of
the relevant leading vacuum condensates. The first step is to write the spectral
~ function (21); The second term in Eq. (21) offers no problem, at least in prin-
cipla, as it may be computed in perturbative QCD. As for the resonance piece,
the most trivial procedure is to pesrametrize it by a delta fynction (zero-width
resonance modali. However, this two-parameter ansatz (mass and coupling constant)
is too crude snd may lead to troubles._A more realistic finite-width parametriza-
tion can be achieved in some cases by using the information praovided by the
effective chiral lLagrengisn realization of GCD at long distances. For applica-
tions of this ides to UCD-sum rules see /21/, {/3.d,e/. In any cése, a mere serious
patentisl problem is that the resonance parameters entering the spectral function
depend on the short distance variasbles: 1/02 in the Hilbert transform (21), <
in the Laplece transform {23), or ',4{?5 in the Gaussian transform {25). Alsao,
these resonance paremeters depend on the threshold for asymptotic freedom, 50,

in all sum rules including FESA. Obviously these functicnal dependences are
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spurious and, therefore, some criteria are needed before making predictions.
Concentrating on the Laplace transform (23) and the FESR s&.g. (28)-(30) these

criteria are as follows. (a) Laplace transforms: These sum rules do not fix the

threshald Sc| which must be guessed e.g. by assuming it to lie somewhere after

the ground state and the first excitation (or beyond). To this extent the Laplace
sum rules do not p?ovide by themselves & quantitative formulation of local duality.
In any case, cnce S0 is fixed, predictions for resonance parameters expected to

be dual to a given QCD information follow from the criteriom thet there should
exist some region or "window" in <" such that ordinary perturbative QCD remains
valid and, at the same fime, only the ieading power corrections are required
/19/. Lecking a guantitative formulation of locsl duslity, & complementary con-
sistency check of the expectation that the resonance paremeters so determined

are in fact dusl to the input QCD information should be performed e.g. by using
the hest evolution test of BLR /20/. Experience indicates that this check may

lead to surprises /18/, f20/. {b) Finite Energy Sum Rules: The FESR, e.q. (28)-(30)

pose a well defined eigenvalue problem whose solutions are the resonance pera-
meters in Im 1I(s} s well as So‘ This may not be enough, however, as this eigen-
value problem may be unstable in the sense that small changes in SD could induce
large variations in the resonance parameters; clearly an undesirable situation.
Such an instability is ususlly due to en inaccurate psrametrization of the spec-
tral function. The following principle die to Pich and de Rafael /21.d/ should

be implemented: "Trust FESRA only if they are stable in So' only then there exists

duality". To be more specific let us consider the ratio of the FESR (28) and

(29)
Se
e 2 4L<Os> gds Tee T(S)
dco s\s —— —3— ° . M
- 2&0) Se
(v 2 LE0)-Cucog) & 48 T T(s)
3

¢, st A (31)
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The QCD 1.h.s. of (31) is shown schematically in Fig. 5 (vertical lines) at some

(a)

(b}

So

Fig.5

values of So: the error bars reflect uncertainties in the vacuum condensate para-
meters. The solid curve {3) shows the schematic behaviour of the hadronic r.h.s.
of (21) in & case where the eigenvalue problem is stable, i.e. there is a wide
"duality region” within which the resonance parameters in Im II{s) are dual to
QCO. In contrast, the solid curve (b) would correspond to an unstaple eigenvalue
problem, Additional information wuuld.be required in the spectral function in

order to stabilize the ratio (31). N
3. SCALAR GLUONIUM

3.A The two-point function II(sz in QCD

The two-point functicn (1) with J{x) given by (2) reads /3.a/

_ 21 -

Twy= G o (-% - & %{ + 2 )+ Cycon

Q* T ah ’

where

. T
Cukouy = 4 ¢ (Z)<% &l ey,

d.n,(()(,?: & K%) <3s fate G‘:,, C‘,,; ij* >,

Co oy = o (&Y o [t <(haue 6l 65 )

—_ < ('gc.bc. G\"}_:‘ dep )1 > ,

{(32)

(33}

(34)

(35)

(36)

and we have neglected small quark contributions /3.b/. To leading order in ol

the perturbative QCD asymptotic behaviour of the spectral function is

2

i A,

(37)

implying that three subtractions will be required in the dispersion relation.
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Subtracting at 02 = 0 one may write
/ "
Tele)= T @) -~ Tte) - & Wio) -1 &° (o). (38)
2

Since II{a) is known from the low energy theorem /3.a/

a
Do) = —teps <& & &5 Y, (39)

one can make use of this information by writing a dispersion relation for the

second derivative of IIR(QZ)/QZ.

I discuss next the numericel values of the QCD parameters (33}-{36) and
{39). Since perturbative contributions will turn out to play a negligible role
in this channel we work to leading order in ol s and neglect the Qz-dependence

of the rumning coupling constant. With Fi = - 11/2 + nf/3 we freeze & s(02)

at its value at 02 =1 GeV2, i.e,

o{
25~ ool 4 (40
w

in which case

C = 0.04. (41)

The so called "standard value" of the gluon condensate, as first estimated by

SvZ 19/, is

1;. £ oy Gﬁ)\s 2 b.ol C:w'j (42)
vi

leading to

_ 73 -

4
C,4 0y % 0.0985 Gev®, (43)
TI(0) ¥ 0.875 Gev®. (44)

However, a recent determination of the gluon condensate shows that (42) is an
underestimate by a factor of two to five /18.a,b/. Details of this determinstion,
and a complete list of references to earlier releted work, are given in my second
contribution to this Workshop /1B.c/. In view of this we shall salso consider

the value

Y -~ 2 ~ 4
T & 2 0z aw] -

with C4( D#} and II(o) increased accordingly. Concerning the dimension-six triple-
gluon condensate, its value is rather uncertain, to wit. A dilute instanton gas

{OIGA} calculetion gives /3.a/

3 -2
{3 7\ = 1_52. £ <G> 2 o.0n Gw®

DiGA

where ogfm o.4 f’c: (200 MeV]_l, and (42} have been used. The estimate

[46) implies

d'o <0‘>\bmgi 0.019 er"’ . (47)

On the other hand, a value of the infrared cutoff chf(EOO—GOO Me\.f)_1 has been

advocated in /22/. This implies

Cs{ 0y ¥ (0.12 - 0.17) Gev®. (48)

While in agreement with some phenomenological] determinations /23/, (48) disagrees
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in sign and magnitude with the result of a modified DIGA {MDIGA} calculation

1247, viz

<&V = - 0.07 Gey®

HDIiG A (49)

which implies

Ce<oy| = - oad Gant
HDICA (50)

Finally, lattice calculations give /25/

<%$ G3>1 2 {6l % 1 4) <di§ @.73/1’

Lablice {51)
which yields
~ 6
Cs<06> = 8.01 GeV™, (52)
if the "standard value" (42) is used, or
Cg< 0> X 0.05 Gev®, (53)
if the value (45) is assumed, To remain on the safe side we have carried out
the analysis allowing CS( OB) to vary in the generous range
- 0.02 6av® % ¢y ¢0,>'2 0.2 6aVP, (54}

A rough order of magnitude estimate of Cg (Oé? may be obtained by sssuming vacuum
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saturation /3.af, i.e,

<lep @)y 2 & <aty,

(55)
_ 2 2
£ (Gw Gu) > & &1; ceryt (56)
which yields
Ca40gy % (0.01-0.1) Gev8, (57)

depending on which value of <els G is used. Vacuum saturstion, however,
is not supported by any 1/Nc argument /28/ nor by specific instenton models /22/.
Therefore, throughout our arialysis we shall allow 08(08) to depart from the

value {57) by a generous order of magnitude.

3.B QCD-Sum Bules

Working with the second derivative of the function IIR(QZ)/QZ’. where IIR(Qz}
is given by (38), one easily finds the following Laplace-transform QCD-sum tule

/3.a/
o0

Lig) = Sd'-' €7 1 T (S
i s

!
o

- -]

2+ Tio) - &, <oy - d;(owﬁ'—‘i R

o

(58)

To estimate the resonance mass it is useful to comsider the ratic
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ol
gds e:w- In TCs)
Lo S

L' (s) _ 0
0

(o) g,g_i e % Tu T(s)

-9

-]

ﬂd"/c-s + CLdoed + Ce0z>GT 4 -

"

{59)

g% + Wto) - daq(Ou)‘dg(Os)G“l-
a ,

The Gaussian transform, needed to perform the heat evolution tests, is given

by
]
G(&,1) = ds aepTo (5-3)07 ( T DLy
Yant FI 4 < lTu s
v
-4t
= o > - -
doﬁ ‘- -}-'_: + :—1 Hy (X) tr&-c (-x)}
o - ¢ R
+ 000 - (<o & My %)
-1 Z VKT
- A2
+ d\; {06y e ™ e (2D
4w
AL
L Cglogy e Wa(R) & -
> ek e
where ;2 = g/zJ'E , Hn{®) are Hermite polynomials, and
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d'a e — A - -Q.r{- (’() ¥ (51]

finally, the FESR in this channel sre given by (28)-{30).

3.C Hadronic Spectral function

Quark contributions, neglected in the QCD expression for II(QZ), can be

effectively taken into account in the spectral fumction by computing the scaler

glueball coupling to WX, KK, -lﬂl ,... intermediate states. Up to S22 1 Beve
the T®™ contribution is expected to dominate; a simple calculation gives
L T
- 3 2
2 : 2
TR ag (62)
where
F(s) = i_ 0} T wlkd ),
(63)

O v k) = s,

and we have set h“ = © . Using the chirsl Lagrangian reslization of QCD at

long distances it is possible to obtain the following low energy theorem /27/

F(s) —~o i) (64)
540

valid in the chiral SU(2) x SU{2) limit. Using this result to normalize a finite-



_ 28 -
width parametrization of the spectrail function we can write

-~

._:: T E(S)) = 3 51 Hq ({“' P?/Hq‘)

z

(65)

TR AW (s-m)% m2 p?

In order to probe energy regions above 1 GeV we can improve (65) by adding the
KK and T’\ intermediate state contributions. From the flavour independence of
J(x%) one may safely assume that the transition form factor analogous to {63}

remains the same, in which case one has

Tit-:_...ms) = 3 st M4 M)

2 2z
A (s-uV)% mip?

+§> \]4-‘1]«‘/5 9(_s—q}-'t)];

\: O (s)
(66)

where we have taken into account kinematicel corrections to the chiral limit

in the KK and 111 threshold for which we use the average value

ap’ ™ 1.09 Geve. (67)

It is possible to check that dynamical corrections to F(s), which are of the

form /27/: (1 + uzls), have a small impact on the results of our analysis.

3.0 Approximate Results

Before discussing detsiled predictions for the o** glueball mass and width
I wish to justify at this point the approximate results (4) and (6) quoted in
Section 1. If the glueball mess lies below the threshold (67) and its width is
small then to & good approximation ene can neglect KK and 011 intermediate states

and work with the spectral function (65). In nerrow width (65) reduces to
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i (2 2 b
i T Tes) \ ~ 3 & W o 2
- — r— S" ﬂ .
T e 2 o ) (68)

i

Using this approximate spectral function in the ratio of FESR (31) one obtains

v 2 ~ do S:/% + d(. <06>
Co 8 4 TWio)~ & <Ou>

(69)

An inspection of the numericsl values of the various terms in the r.h.s, of (69)
(see (41), {43), (44), (45) and (54)) shows that II(o)d> 04{04)and that, for

Se @ 1-3 GeV2 where we expect duality to hold, the perturbative piece can

be safely neglected in the denominator of {69). Its contribution in the numerator

of (69) can be comparable to CS('06> and thus Eq. (4) is valid within a factor

of two. The approximate formula for the total width {6) follows after substituting
(68) in the first FESR (28) and neglecting 04( 04? and the perturbative term

in comparison to II(o). Alternatively, using the ratio of Laplace transforms

{59) and the same approximations as above one finds again Eq. {4) provided the
continuum is neglected and O 2 0.5-1 gev 2. Although this continuum is
suppressed relative to the resonance piece by s factor e™ %3 T tines the width

r‘, its contribution may be important and the derivation of Eq. {4) may not be

as transparent as with FESR. However, the complete analysis (see 3.6 below) shows
that the eigenvalue solutions to the FESR are also solutions to the Laplace trans-

form sum rules,

3.E figenvalue solutions to the FESR

The approximate estimates given in (4} and (6) and justified above may not
be enaugh ss they da not exclude possible 0 excitations. The FESR (28)-(30)

are the ideal tool to study this possibility as they weigh high energies, Sta-
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bility tests based on e.g. the ratio (31) will tell us in the end whether or

not the single resonance spectral function (66) saturates the hadronic integrals.

Tables 1 and 2 show some of the eigenvalue solutions to the FESR (28)-(30)
corresponding to the standard value of the gluon condensate (42) and to the value
(45), respectively. For a given value of C5<'05) one could find eigenvalue solu-
tions with larger masses and widths but they would imply unreasonable high values
of C9 (087. Notice that the last entry in each group is already implying a
CB(US} which exceeds the factorization estimate (57) by roughly a factor of

20 - 30 in Table 1, and by a factor of 10 - 20 in Table 2.

TABLE 1
Co 00> r M 5 Cod )
1Gev™) {MeV) {Me¥) 1GeYh 1GeV™
1 82 188 012
-0.02
5 392 23 0.26
t 280 1.52 0.05
0019 5 1 210 016
10 452 242 0.27
5 a3 1.2} 0.0
ot 10 “1 1.87 o
20 519 243 021
2 08 1.2 -0.05
02 k)] 35¢ 215 0.04
50 630 292 o0

Typical results for the ratio (31) are shown in Figs. 6 and 7. The solid
curve corresponds to the hadronic r.h.s, of (31) computed with the spectral func-
tion {66) using M and T eigenvalue solutions to the FESR. The vertical lines
are the QCD l.h.s. of (31) for c4£047 and II(o) as in Egs. (43)-(44), and
Cs <0 = - 0.0016 Gev® (crosses), 0.018 Gev® (dots), and 0.2 Gev® (rorizontal

bars). It should be clear from these figures that the eigenvalue problem is re-

- 31 -

TABLE 2
Co (0 r M 1 Co0y)
1Ge¥™h) {Me¥) {MeV) (Ge¥) (Ge¥")
t 350 304 0.81
—0.06
5 488 182 146
i 349 264 045
0.06
5 488 357 1.37
5 483 190 050
03
0 559 160 1.19
10 553 157 008
113
pai] 543 wn 1.04

markably stable, i.e. there is a wide "duality region" for 1 GeVE?E Se :2 3 Ge\!2

which leaves no room for additicnal resonances.

w- I8 Me¥ o - 10 Mav
W =380 ev W48 May
e ; .
Ex
nSos - o8-
- ] ~ .
- M 4 T N ; T T - -
3 | . 'Y
M 1 L A &
- - - . R e — o ul 4
® 1s 7y ) i ™ » w Yy )
a, Qav' [
Fig. B Flg 7

At this point it is possible to turn the problem around and ask for the
implications of & heavy, M~ 1 - 1.5 GeV, and broad, " X M/2 | scalar glue-
ball. The behaviour of the r.h.s. of (31) computed with the spectral function

(68} using M = 1 GeV, M- M2 as input is shown in Fig. 8 ({curve a). Such a
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heavy glueball would require CB(OS) and C8<08‘, to be 60 times and -100 times
bigger than the standard values, respectively. This is clearly well cutside
reasonable limits. Figure 8 alsc shows the behaviour of a "non-resonant® spectral

function (curve b) obtained by simple extrapelation of the low energy behaviour,

formally equivalent to the M = o8& limit in {686).

N :
~if* :
o i
T T T T N
- .
by L & *
v '} wn Ei) EH]
By \o-v"
fig. 8

3.F Heat evolution tests

The next step is to check quantitatively whether or not there is duality
between the input values of the gluon condensates and the rescnance parameters
obtained as eigenvalue solutions to the FESR. This may be performed through the
heat evolution test of BLR /20/ described in Section 2. It will also be useful

to compare these results with those for a heavy and broac glueball.

Figures 9 - 11 show the "time" evolution of the heat distribution (25) com-
puted with (B6) using a typical eigenvalue solution from Table 1, viz M = 452 MeV,

M = 10 Mev (dashed curves) and computed in GCD using the'corresponding values

A
of the condensates {solid curves). For "times" T > 1 Gevd there is nice agreement

-]
-

’ LS
-

b T

by, Gewh
-
4

e

Fig. 9 Fig. 10
i
n:r v <18 0¥
) n:}
% t
e
o o%
ae] ) 1 o 1 ] ]
tiow"
Fig. 11

between the hadronic and the QCD heat distributions in the semiinfinite rod
0% & <o , lndicating that duality is well satisfied. Such is not the
case, though, far the M = 1 GeV, [" = 700 MeV glueball found in /3.8/ from a
taplace transform analysis. In fact, Fig. 12 shows the heat distributions at
“C = 1 GeV' computed with the same spectral function and for the same values
of the condensates used in /3.b/. The rather pronounced disagreement between
QCD and phencmenology observed in Fig. 12 is found to persist even for larger
values of T, and to become even more proncunced with increasing glueball mass.

This is a good example illustrating that solutions tc Laplace sum rules do not

necessarily obey duality,
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Y

and M = 350 MeV (curve c). The vertical lines are the Laplace transforms of the

QCD expression, the r.h.s. of (58}, for the same values of the condensates as

in Figs. 6 - 7. Notice the remarkable agreement between both sides of (58), within

2

the very wide window 0.2 Ge\n'_2 20 % 1.5Gev , for the true eigenvalue solution

to the FESR {curve b). In contrast, as shown in Fig. 14, the hadronic 1.h.s.

3.G Laplace transform analysis

As shown above, the heavy and broad scalar glueball found in /3.b/ from

Laplace sum rules does not show up in the FESR and cdoes not pass the heat evolu-

tion tests. In order to try to understand the reascn we have computed the Laplace

Fig. 14

transform (58) using our spectral function {66). The behaviour of L{<) versus @

of (58) for M = 1 GeV, " = 500 MeV coincides with the QCD r.h.s. only in a very

is shown in Fig. 13 for M = 10 MeV and M = 500 MeV (curve a), M = 452 MeV {curve b), _2
narrow regicn around T = 0.5 GeV ° where continuum effects are important. Since

FESR are much more sensitive to Su' and thus more selective, this "lLaplace-un-

stable" solution does not appear in FESR; it is simply not dual to QCD.

4. TENSOR GLUGNIUM

4.A The two-point function II(Qz) in {CD

Using the current (3) in {1) we can write

2 . Vqx T
KNM(’ () =4 g‘“" e Yo (8,00 8102) 10

Fig. 13 = Ntr\’;o((s T (Ql)i

(70)
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where is the spin-2 projector

3

= 2
P'(.)N;dp Vlrl 1"‘5 N ‘T'rf‘ r[_v,( - -% ’(rg "L,(F. (:1)

“Uposap

with

ﬂ(pv =“‘3,.o ety (72)
2
3
The QCD expression for T(Qz) to lowest order in ﬂ(s and including the leading

power corrections is given by /3.a/

T(8) = O @ Q. VWar + GG GolOu> , .

8" ) (73)
whera
Co = t /(2 ), (74)
= 5
de(09> = _.E':-a(s { 20¢- 027, (75)
and
0‘ = abe . b c tR
(£ Guu Gon ), (76)
O - abe ﬁ'o “o. [ '}
2 ({‘ C/.v -C-,(P ) . (77)

Although the dimension - 10 gluon condensste in (73) is unknown we have included

it for reasons that will become clear later., As in the case of scalar gluonium,

an order of magnitude estimate of Cg {0g7 may be obtained by invoking vacuum
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satyration. In such a case one finds

) 8
ca<08‘>\ N - D.0046 GeV®, (78)

FACT

if the standard valve (42) of <ofs G*3» is used, or

CgdO>) 2 - 0.0816a° (79)
FACT

for the value (45). Notice the asymptotic behaviour

LT T(Ql) ~ do Ql\

L
g
% oo

(80)

which calls for three subtractions in the dispersion relation,
4.8 QCD-sum rules

Working with the third derivative of T(Qz) in order to get rid of the three
unknown subtraction constants one easily finds the following Laplace transfarm

sum rules

> (81

) = ,R_Q_: 4 de(O&’? G'-daown?Qi-
Ly

The Gauss-Weierstrass transform needed for the heat evolution tests is

GAD - dotll wy . | eren
\an PE T e v L Fre )
L
” twouznug(;ﬂ} - Qg 2y e
4tin (82)

Al
+ d|1o<040> H‘Q‘ LQ) e:x *
15T ¢
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Finally, the FESR in this channel read

S0
3
do So _ 845 LT Ty
3 o (83)
Se
4}
Go S . docogy = 8&5 s L Tk TG,
4 [ (84)
g So
do S_g. A d‘c <0‘g> - Sds Sz -_L_ IM T(s)- (85)
oy (%
-]

4.C Hadronic spectral function

The lowest intermediate state contribution to the spectral function is again

the T ™ state. We must consider then the matrix element

Tf,\, = < (ko T (p2) V By 107

= A Wy * 63}}\, + d‘éf.o +D(0.9,+ M 4h) s
where r = p1 - p2 and q = p1 + p2. The functions A,B,C,0 camn be related to each
other by working in the chiral limit pl2 = p22 = IM;,: 0 and imposing on {86)
the following constraints: (a} transversality: arT),\, = 3,“'['/_\, =0 ;

{b) tracelessness (to order ds): (’W“\ﬁ; \o0y = O(a(s) >~ 0

{¢) crossed channel behaviour:

-39 -

4‘?:‘?

where ec‘_ has been interpreted /27/ as the share of the pion momentum by the
gluons (eﬁ € 1) . Notice that in the scalar glueball case €z = 1 . In the present
case, though, edf must be considered as a free normalization parameter subject

to the constraint eG £t ; its value will have to be obtained from the sum
rules together with the 2+t glueball mass and width. Using the constraints (a)-{c)

above in (B86) and computing the spectral function we obtein in the chiral limit

2
;L T T(s)\ = .Qﬁ‘._ sz H“ (4% 0¥ /un) B
. TN qu“_l (s-ﬂi)l‘ﬁ- Hq_rl?_ (B?)

Including KK and ’(r] intermediate state contributions, the simplest generaliza-
tion of (87), which accounts for the flavour independence of the source Sf‘, ,

may be written as

2 X 54
.{ilm Tis) = EQ'_ € M (44 V) [6(5)-\- ) (i- (tf.‘z) %(S-qrf)l‘(as)
Gdo rc* (s-nv)'y u2pt ® ¢

2

where 4p2‘-'-' 1.09 GeV“ is the average KK and "'l threshold.

4.D Solutions to the FESR

In order to predict M and " e have at our disposal the three FESA (B83)-(85).
However, So ' eq_ and C10< 010? arealso part of the unknowns. Therefore, we
choose the following strategy: we tentatively set {210(010) = 0, input a value
for the width " and saolve the FESR to find M, So ang e& . Since PC.— increases
with increasing ' we stop the procedure whenever eﬁ' exceeds its bound PCT £ 1.

The eigenvalue solutions obtained in this way are shown in Tables 3 anc 4 for
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TABLE 3 S — : — - ,
£ 1MeV) M (MeV) 501GV PR
12~ " -
160 L6510 3422 0713 .
150 1624 1519 0927 e
200 1636 3592 .10
R Tl -
trf s T
as- T -
- I
TABLE 4 - - 1 I . . L
ao s a0 45 50 55
T (McV) M [MeV) 3g (GieV?) I 8, (Gev’)
100 2109 5.842 0.629
150 2,122 595 0191
200 2135 6070 0918 Fig. 15
250 2,148 6179 1.070

the choices (79) and {80), respectively. It may be seen from these results that
that more hadronic information is needed in the spectral function around

depending on the value of CS{Oa)one can easily accommcdate either the ©(1710) 2
S X 4 Gev.

or the gT(R.o.f‘o), two of the tensor glueball candidates. However, the eigenvalue
problem turns out to be unstable, as seen from Fig. 15 where we have plotted

An abvious solution to the abave instability problem may be to add a second
the ratio of FESR

resonance to (3 (s), Eq. (88). A simple, albeit not unique, generalization of

{ _ 4 dg<0?7 _ L) Ty (So,m,™ fq. (88) is
- - 2
Go oY 3%/ 1, (5,4, ) P = LIt = fa g X_ 8(s)
© buow?

(Facs x

= 4 o £5 LaTis) + g } 2\ 5/ Hq F? 2

_k—3—§0> .. . _3. Kd q%) Zeksﬁqu)‘kxl 1 (H—ln/H.)
g ds Ta Tig) 89) (s-# N ur

In fact, the QCD l.h.s. of (89) (solid curve) intercepts fhe hadronic r.h.s.

4
oo oMy (4 T‘f/_mf)

(90)
(s~ 4 w2 p?

{dashed curve) only at a single point. There is no "duality region”, indicating
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where A is a free parameter. In spite of Eg. (90) being the most economical
generalization of Eq. (88), the number of unknown hadronic parameters has become
too large. With only three FESR at our disposal it is clear that the analysis

is bound to be only semiquantitative. Nevertheless, we can study the consistency
between a given set of input values for the mass and width of the two resonances
and the resuiting values of eG.- . Cg¢ 08), and ClG(Ulo? obtained by solving
the FESR. By adjusting the parameter A we can see whether a reasonably wide
duality window now exists for the ratic (89} as well as for ﬁ&- , CS{ 08> and
810 <010}. These parameters should not only be stable against changes in o but
also their values should not differ much from those of the single resonance

analysis. Following this strategy we have found that using the © (1710 and

gT{2050} parameter it is indeed possible to achieve a remarkable cverall stability,

to wit. In Fig. 18 we show the ratio (89) as & function of s  for A= 0.5 The

Fig. 16

triangles cerrespond to the hadronic right-hand side of Eg. (89) with

M, = 1.7% GeV, i 1 = 150 Mev, M

circles correspond to the same M

5 = 2.15 GeV and r 5 = 200 MeV, while the closed

r ; but M, = 2 GeV, and r 5 = 200 Mev. The

1' 2
solid curve corresponds to the QCD-left-hand side of Eg. (89) waith

Cg <Oé7 = - 0.0115 GeV® and the broken curves {a) and (b) are calculated with
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the two extreme choices C8< UB) = - 0.041 GeVB and CB< Oé) = - 0.0046 GeVB, re-

spectively. Figures 17, 1B and 19 show theé predictions for e& . Cg¢ Qg 7and

0 =
)
0% -
0l —i B S, 1 N _.__J
g EL 10 L~ 55
5 G’
Fig. 17

r — 1 = 1 1 -

10

C10 (0107, respectively, obtained by solving the FESR (83}-(B%) with e(s) given
by Eq. (90) with k = 0.5 and the © (1710) and gT(ZUSO) parameters. For comparison
we also show in Figs. 17-19 the corresponding predictions using the single re-

sonance spectral function (BB) with the & (1710} mass and width.



[~
]
T

'C_ocou>GIV'°, .

. B
p—
-1

i
i
|

T T S ' a5 T s 55

A comparison of Fig. 16 with Fig. 15 shows quite clearly how the addition
of a second resonance to e (s) solves the stability problem. In fact, the twa-
resanance saturation of the spectral function leads to a wide duality window

2 to 3035.5 GeV?, Furthermore, as seen from Figs.

extending from 5, 3 GeV
17-19 the parameters e}, Cg (08) and C (0167 become remarkably more stable
after a second resonance is added to e (s). We wish to reiterate, however, that
given the spproximations contained in Eq. (90) and given the number of unknown
parameters, we cannot claim to have predicted the mass and width of the two glue-
balls. Qur analysis only shaws that if the 6 (1710) and the gT(EUSG) were to be esta-
blished experimentally as bonafide -tensor glueballs, then their masses and
widths would be compatible with QCD in a stable sense. However, our analysis
of the stability of the eigenvalue soclutions to the FESR has provided a strong
hint that in addition to a ground state glueball with M 2 1.6 - 1.7 GeV,

2100 - 200 MeV, there should exist at 1eést another resunance with
M2 2 Gev,"& 200 Mev. In spite of being qualitative, we find this conclusian

quite interesting by itself.
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4 .E Heat evolution tests

In order to check quantitatively whether or not there is duality between
the hadromic parameters in (90) and the GCO information obtained from the FESR
as described above, we have computed the Gaussian transforms (82) as a function

of & and for various "times™ T . In Figs. 20-21 we show e.g. the behaviour of

U™ (8,%) = G(8,t) + G(- 3, T) at T= 0.5 Gev? and T= 1.5 6ev?. The time

evolution of G(3,€T) or U(‘) (8,t) = G{&,t) - 6(- 5,¢) is equally good and

provides the final test of our results.
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