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Abstract

This work deals with the applications of the Darboux transformation method to
study of the reduced Maxwell-Bloch system (RMB) and of the self-induced trans-
parency (SIT) equations. Both system describe in some reasonable approximation
the propagation of the ultrashort optical pulses in the two-level medium. Main
result of the present work is a construction of the multisoliton solutions on
the arbitrary background for BMB and SIT equations. Particular cases of those

solutions are discussed in some details,

1. Introduction

Darboux transformation as a method of construction of infinite families of exactly

solvable linear Schrddinger equations was proposed at the end of the last entury

" by Gaston Darboux (1882). The renewal of interest in the method and its essential

generalization, applicable to partial differential and difference problem and
numerous applications to soliton problems is due %o the works of the first suthor
{1979). For further developpments see Bobenko (1982), Salle {1982}, Bobenko,
Matveev, Salle {1982), Babich, Matveev, Salle {1985), Leble, Salle {1985), Rybin,
Salle (1985). For an extension of the Darboux method to the multidimensional
stationary problems and applicstions to supersymmetrical quantum mechanics see

Borisov, Andrianov, Joffe (1984}, (1986).

In applications to sclitons theory generalized Darboux transformation method
- which we shall eall shortly DT method - 1is the simplesf way to produce sc called
multisoliton solutions on the arbitrary background, rational solutions, solutions
depending on the functional parameters for the X—P and 2-dimensional Toda-like
equations, without requiring full implementation of the inverse problem method.
In additioen the obtained expressions can be helpful for describing the asymptotic
behavior at large times since they enable one to take into account automatically
the interaction of the soliton part of the solution with the continucus spectrum,
Below we apply DT method to some well kacwn in acnlinear optics completely inte-
grable systems namely reduced Maxwell-Bloch equatlions and self-induced transpa-
rency equations. The reduced Maxwell-Bloch system is written
Ty =- W, ) "Cz,t:w’r,,\ ‘\‘%‘E—E’l%
/

13t=~%\’f‘—Enz) cE, +E, ==21p Ly (1.1)

In (1.1) r; are the following linear combinations of the matrix elements ‘?
Li



of the density matrix:

ATl YR O ,’“Lz“(ﬁ’u"&ﬂ ) M=%y, “Cu,

n is the concentration of the atoms, p-matrix element of the dipole-momentum
operator. All the guantities entering in (1.1} are realvalued. f means the

average with some density g1(uJ)

5y = § Sw)gio)du

Associated term in (1.1) takes into account so—called nonuniform broadening of

the lines. Case 31(w) = O!N(LU - Wo) corresponds to infinitely narrow line.

The described model was introduced by Eilbeck (1972) and discussed in the
works of Eilbeck et al. (1973}, Ablowitz et al. (197k}, Bullough et al, [1979).
In those works partuclarly multisolitons solutions and breather-1ike solutions

were explicitly constructed.

Self induced transparency equations (SIT} are of the form

6§=<g> , gt‘+2Ly&§=/V6
/Vt ="‘%A ((S *g + ég*) }
=2':%24QXP{(K" +Cw°t}) 2=%:&u_,_,_ )
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C
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0

being the complex enveloppe of the electric field, N and ? depend on fz

stays for the integral:
(9 > ¥ gra Sy
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In the case of infinitely narrow line - ?; (2) = SJ(?_) -, 6 real valued and
1

A/: Cord ¢ 5 S) =4ih ¢ , the zystem (1.2) reduces to the sine-Gordon

equation

¢tt -, = M

The detailed discussion of the physical origine of the SIT equations and the

list of known exact solutions may be found in the book of Dodd et al. {1982).

The application of the DT method gives a possibility to censtruct the multi-
soliton solutions on the arbitrary background in & very simple way both for RME
and SIT equations and to isolate scme new particular interesting cases of those

solutions, which seems to be previcusly unknown.

2. Darboux transformations for Zakharcov-Shabat spectral problem

Here we recall and put in the convenient form some general formulae related with
Darboux transformations for the first-order linear systems. Those formulae were
firstly obtained by Bobenko {1982) and Selle (1982) and used by Salle {1982} for
solving NS equation. Somewhat later those results were rediscovered by Neugebauer

and Meinel (1984}, Consider the system
\'}’x :‘L)‘k{/'lr LC{L?
fo ZLXLE ¥ LrLd( (2.1)

and the related equation for the fundemental matrix solution:
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9 , k=1, 2 form a solution of (2.1} with = M) - The direct

substitution proves that the equation {2.2) 1s covariant with respect to the

transformation:

\Q-__,l![ﬂ LINE YA - ’\Q‘/\’U{ ’q{ (2.3)

’14;; being a Tixed solution of (2.2} with j& =_[\ y The induced transformation

of the matrix-potential U U[T] is given by the formula

-1
- (2.k)
Ultl=U + 3, ¥ AN ]
N-times repeated Darboux transformation is evidently of the form:

W[N]_;WAJV; Si-\y‘AV—ir..af SMD{_"‘}\%—SMU_{) (5.9)

U[N:\:U *‘:34,3]) (2.6}

and the coefficients Sj may be defined by the conditions

.LP[N}\ : "O, 1«.:&’__ .)A/ (2.7a)
A=h, Y=, ’
rl\jk being a fixed solution of the system (2 2) with ,A_ A . The equations

(2.7a) may be rewritten in the form
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{2.7b}) represents the system of (2N} scalar linear eguations which can be easily

gelved by the Kramer.rule. In this way we get particularly for S
g A An Au
tooa bas A
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_From (2.6), {2.8) we have the following expressicns for 0,[1‘{1, '“Li/(/] :

A«z

(2.9)
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3. Hultisoliton soluticns on an arbitrary backeround for RMB system

The equation (3.2) is covariant with respect to Darboux transformaticn (2.3} -
For simplify the final expressions we consider RMB system in T variables:
4 (2.5) under the complementary restrictions on and A_ : ,\‘ = = X
L¥ i 1,
tl" = = in (2.3) and = k.l; - 4,
B lP‘H lP"- 4 k?-K >*a.<-4, ').K‘LP?J:-‘{ )Lpz,ﬁ k-1
in the formulae for the N-times iterated Darboux transformation. Consequently

r(.'?,? ‘-:--*6'?_.2 ) Gt :—< rt‘(‘g ? . {3.1) the formulae (2.9} make it possible to find G [/‘V] . For obtain t’k [A/I it

is nesserary to check the covariance of the equation (3.3) with respect to the

K¢ -—LU"L,_] ",

= 2w, + b,

J

?

same Darbowx-transformation. The proof of this covariance is based on the use of

Equaticns (3.1) may be considered as a condition of compatibility of the following the identities:
linear svstem: A
P,

\l)’g =IWA J"U‘\Ig ) {32}

\-\j't =<M1WP1 + 1\4.11\f P1>’

f
v
=

I
i

+
&
v

AP1=P1[\=T_- %PZ (3.7)

The induced Lransformation of tme M1 Efmatrices 1s described by the formulae
»

. . . . w -4
I 18 obtained from U under the reduction constraint M i] - = .._(_:J' w
1 = —_— -
é 1[ 2 M‘l 2 < )
Ci =N ==
2

)
=
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N
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For N-times repeated D-transformation the corresponding expressions are:

‘ 0 | Milvl=a, M e
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.
P\: A« 2 ) . P L"\* _“2_.)_ )O
0 1 A (3.8 Miwvl=e -1
e )y 0 D e w 1I 1 leéz ,

2 F . (3.9)
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J=o J; _ i = 5"\ 4h } =

e [(%BH— \i—i ltPa, m2),572, .., M

- d
4 =0 ; -
3.10 .
¥
4y A, B, ;e
Sj are defined by (2.7), SO = I, The sumg in {32.10) may be converted into more S""\h = )\M‘k . 2 k—,
=K =
W L?‘\ H } i? “TTy A/

simple and convenient expressions:

V-3 T it }-A
) (u-%(/v-z) (o gm) M [(—1—3 -\, &Lh) a2, 12,5, W

1 ?
6)1 = (%) ? 5(24\ J(n) (3.11)

) N-v
22 \‘h 4’»‘ "‘”Q""l,hi,l,... N
0 g ( ) ) )
)

are: " = v
M | [\i/— (‘-’-"i) -kk?“ ’ ™=

G. 1Y

5 0k (55 e N TR S V)

N N o
E \h _ (\:_Ui} 1\3{" W =4 In {3.11) the restrietion 3‘1\( =)"lk-1 )\l}lk_ =LP'MC-1 ) L{),_y_ 2'4'2':-1 )
}

k=1, ..., § must be imposed. The formulae for (‘_—!.1 are obtained from d“ by

A is defined by (2.8) and

(W)

= N-k
™h }‘h L{)\q . H:QM) I<='\).._J/V

R G N (T

the change wk» - w.
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Remark, Another dressing formulae for '\L,‘[IV] mey be deduced from the equations

(3.1);

V1= L L T - 60 ]

Introducing M by the formula

"

Wit 4!
M’Mq_‘Ler‘% P

- ?11 - .:(13 . (3.12)
we have
Mial=M-a, MIv1=me Sin
)
)

8, being defi:ned by (2.8). Particularly fer I1-time Darbowux dressing we have

MY, P

Glnl=6 - 8§ 2t
2 )
l-|" - (3.13)

L=, - 3 :l;.;h
- TQ (3.14)
1 1 ,

~

3{'\1 LIRS 4o dy 4'11{"&?11

w "hﬁ - LPf' (3.15)

- %1 -

4., Particular solutions of the RMB system

Simplest soluticén may be obtained if we put "Ll='o ; 'L'l , g ; h a be

the constants related by the conditicn

L
Then for x1= - we have

-L(z-%—)
z=g—§° N < é 2 >_£ (4.2)

In this case (3.13) - {3.15) describe rational socliton of the RMB system. In the

case X% ':—iel- we obtain the solution depending on 2 ,

1233 K ‘/A’ ot >£ (h.3)

¥ * «
4 \_])2 '
-LV
2 1 2 (v -V
( \{;1 ( ) e + .QLA_v) C. e (h. k)
[ —5°
& )
2, &1 . :
V= + >~ , the branch of the square roct may be chosen in arbitrary way. For
' Y
the case QE]HO » we obtain the well known ch-soliton. Ir the case ‘h\ v=0
- we have some elementary periocdic solution. Formulae for the multiple DT produces

a large family of solutions of the RMB system in assumtion that the solutions of

associated starting linear system are of the form (4.2} - (L,L), By the same method
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we can easy obtain the follewing soluticn of the RMB system:

T, =g(w) CM‘KE , < g(m)>=0)

kLW .
bt‘l" T Avn \c‘g , 'L%:qc_ 52_2_()1_\51)(‘,%2165

&=-wl({-5) 22
¢ L0 (1 ey

w

5. Multisoliton solutions on arbitrary background for SIT equations

The equetions (1.2) admit the following zero-curvabure representation:

\l);'#%\]fl\ *ULL\’ ) (5.1)

= XMt P,

. . . . . . L
U2 is obtained from U by imposing the reduction constraint C‘:’l :\.%_
H

0

i

.

[V P
M3=“‘q( SN\ p=| Tm
7

?-‘r ——N } 4]

- 13 -

Covariance of the eguation {5.2) with respect to Darboux transformation (2.3) may

be easily proved by uée of the identity
PA=AP =—_—\_-*"2_P. (5.3)

The induced law of transformation of the coefficient M reads:

M,J{il: M%’rcix = (PF'%BM%(Q'%Y& (5.4)
S =W AY™ CMwl= M -8,

S1 defined by the formula (2.8) The reduction constraints on /\ and Y take the

form |

* *®

X'2.\c=\9,,'.¢-'| ) \Pl\czdrmf-"i ) \%1[:—?:1—1
\(:&_),.. N L.ﬂ |

; ;
A O \{, - ¥
A " = LO \T‘X q‘vl: k ) :
. ) ko \{/K ' (5.5)

~ In (5.5) we have redefined. the indices B\g_\‘_,‘ '——?Xk)q}lk-‘l — \-lJK .
The simplest dressing formulse for the solutions of the SIT equation corresponding
to 1-time Darboux transformation is of the form:
* ¥
g0 On-30 )Y
é[‘l*é 1N Y
k3 2 }
(S ATL SRR




/\/[112/\/ Hh lqﬂ\l + \"Pa\q x 15.7)

NEAAN
=0+ 4U N 5.8
sL-¢ -4 o) i) o

(5.7) provides a conservation of the real valuedness of N because we can rewrite
{5.7) as follows:

* 2 2

N AN

N[’ﬂ""‘A/_ L’ R 2 1

- IEAN 1o

¥

The physical derivation of the SIT equation is based on the assumption of the
absence of nonpure states. This fact is taken into account by the condition
2 ) —

N 2 + \8\1:1 . In terms of M, this condition reads M'B ‘—“j"‘é’

Those restrictions are conserved by the action of the Darboux transformation.
We can however forget the origine of the SIT equations and consider them as
% 1
some equaticns for the density matrix omitting the condition W 4-\5)\ =4 , i.e.

admiting the exisltence of nonpure states.

Associated solutions are of the interesting mathematical structure and probably
mey be interpreted in a reasonable way from the experimental view-point. That's

why we discuss below in a few words some of those solutions.

- 15 -

6. Some particular solutions of the SIT equations

- - =4
Taking starting sclution of the system {1.2) in the form faé —'O) A/ - i_

we get for the solutions of the system (5.1 - 5.2}

\J( =Cyexp {-&X’c —L&x},

\P =Cyexp {th +L;9.x'1§ ,

{(6.1)

B?_::'!:%-< :‘Z—»\ >}

\:\R »L\l Cow=eoln

The dressed selution of the SIT system takes the form

é\l‘i\ --8), QXP {-2:: Art -ZQFERX v d.j
dﬁ{').\ﬁ( A‘Q&IY + F“}

2

Ml 5 I (6.2)
1 QL\Q(ZB\E{ P x +p)

The construction of "background multisolitons" from the exact formulae for

é&‘j—& R SB:A/] and the starting scluticns of the form (6.1} with different

values of \ is straightforward.
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1f we try Lo Icok at the solutions of the same system without the constraint

1
A/ ;‘Ig} i.e, nonpure states should alsc be admited, it would be possible to
take starting solution in the Torm é S—OJ A/ /1/( ) , or even in more

general form:

& - 6e¢%¢—»g<w+%‘>wk

V&,
g:_w{-Q?_ {"w{"“&< w+g,& >°l \
/\/:/V(m?)’

N being an arbitrary function on x and Z . In this case the constraint

/Vl + Ig]l ‘—=i is violated:

Wl (1 S

’ (6.3

Introducing the notation

X 4
0=k -0 <=5

LU+22 7

Xu

we find L{) and+ : _Q x /V
footuw e Toe), b Kmmmm s e

\
oy W S S
ua‘ L(XJ%,LBLL TD_

kN
U - &g ; W 6.5)
: = 5 U + ()\ + TSUL (6.5

_1?-

Last system defining u and Y has constant coefficients and its integration is
trivigl, Particularly in the case E’O ={) , we have solutions of SIT equations
partly similar to ccrsidered above but including a functicnal parameter. In the
case of infinitely narrow line 3 (2)-.—_. J(Z) we obtain for /V[‘f] the following

representation:

A/['f]=/\/ = QL_*___________,__--———— (6.6)
Wbt (21, bl gmgmm

Taking in (6.6) ¥D=]">=

/V(x)={ ¢ Yoo

we obtain

Y
Co L - y X ¥
( cjn('lx’csr‘ﬂv cx}\ °
M1l 2he

c,,“b_ IS .
A o2 (flxt+ \\1%*\\’ <0

= 1, then at £ % do

Let now ¢, = =~ 1, ¢

t 2

NIl ~ {

) , . 2
Such behaviour does not contradict with the constraint A/ + !\P{Zﬂ

-1 X >0

1 X 20

'I: —% ~oo we have two solitons propagabing in the opposite directions



So in the case e, = 1, €y = - 1 we have a solution describing annihilation of
solitons. The step structure of the N function is not essential: we can consider

in the same spirit the case of smooth function N with the same asymptotic behaviour
at infinities and arrive to the same conclusions. It is not difficult to consider

in a same spifit the generalization for the case 3 ;‘ Crzk‘)

Case (g, ?‘O is alse very initeresing bubt would not be discussed here by

the reason of limited volume of the paper.

It seems natural to say a few words about the behaviour of "normalized"
solutions on thelperiodic background. The simplest periodic solution of SIT

equations is of the form

& =4 exp {{zx + t'wf}:

AP HbG) o
f (uJ+22)1 + A2 QKF{L’”““"LJZ)

A/‘—‘- _ (u_)+22[/q HQ)
(lu+9.?_)l + A2

? {6.8)

ﬁ]9_

where

/A HG)
1€ = (w +22‘)z T >

Normalization condition lg\l L )VZE-_ &_ produces the restriction
2 2
H (»0___{ L (w29
A2

which may be rewritten in terms of k:

A

k= /\ \H.»-(Lu.}.ﬂz‘f" >

Starting solutions of the assoclated linear system are given by

\k/ :uaxro {{i (lLex 4.wa)}
L{:Uex?{_ii (ka +Lwt)7§/

vl 2 =— (;\ + %E W - é%_ LTS

v, o2 C(M'v_u_\
2 o) W+ ) Q}

a M |
225 { Cammygy (ny 2% boex

In the case of multiple zero eigenvalue DT of the periodic background solution

leads to the formula

E;_ ¥ Q
Eli= Aoty 20w
T H-ex|* % %—2 '

- S8imilar expressions for g} and N are omitted for economy of place - .

(6.9}
{5.12}
{6.10)
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