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Abstract 

Recently considerable Progress has been obtaind in understandin~ the nature of 

the algebrogeometrical superposition principles for the solutions of the non­

linear completely integrable evolution equations, mainly for the equations re-

lated with hyperelliptic Riemann surfaces. Here we find such a superposition 

formula for the particular real solutions of the KP and Boussinesque equation 

related with the non-hypereuiptic curve w":::.: (A-E1)(>.-E2.)(}.-t~)()..-Ett) 
it is shown below that associated Riemann theta-function may be decomposed into 

a sum containing two terms, each term being the product of the three one-dimen­

sional theta functions. The space and time variables of the KP and Boussinesque 

equation enters into the arguments of these one-dimensional theta functions in 

a linear way. 
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1. Introduction 

Up to the last time the simple examples of nonhyperelliptical solutions of the 

Boussinesque equation 

3 u \\'k ;. (\..(_X )(X ;. b U.U. X) = 0 
< (1) 

reducible to the one-dimensional theta-functions were unknown. The curve r 
w ~ = ( ~ - E,) ( ~- E, J ( \..- E.,) ( ~ - E~\ I, E ,._ = 0, wao disousoed in the 

work /1/ as ~n example of the Krichever's reduction of the KP equation to the 

Boussinesque equation via a Weierstrass points. But at that time only the Weier-

strass points coinciding with the branch points were explored. The possibility 

of the reduction of the associated three-dimensional theta-function to the one-

dimensional theta-functions also was not remarked. Such a possibility arises from 

the existence of the conformal automorphism t :(LV,~) ~(Lw, )..) inter-

changing the sheets of the associated Riemann surface- realized as a four-sheeted 

covering of the complex A -plane-. The way to explore this automorphism for 

reduce 3-dimensional Riemann theta-function goes back to the methods of the recent 

works /2, 3/ 1 -see also a review article /4/- although the application of the 

matrix version of Appel's theorem used below simplifies the calculations. As a 

main result we obtain some family of the genus 3 solutions of the KP and Boussinesque 

equations expressed by means of the elliptic theta-functions • 



- 2 -

2, The algebrogeometrical solutions of the KP and Boussinesgue equation 

The formula 

u.(x,~,-t )=z'd' t. 8()(U .. ~ v\ t: w- fIB) + c 
'dx< d 

121 

describes the solutions of the Kadomcev-Petviashvily equation 

3u.n +(u.xxx +buu.x-~u.t.\ =-0, 131 

generated by S.rbitrary compact Riemann surface r /5/. In (2) B means the matrix 

of b-periods of the surface r in some canonical basis of H
1
( r). 8 is g-dimen-

sional theta-function defined by the formula 

8(f1~) =8l~1(fl~\ I 4 I 

8( ~ 1( ~>I~)"'~ : xr {~r; ( B<~»·~), ~+d.l+lrr~<"'·~,p•f>} I 51 

m~~· ) 
g is the genus of the Riemann surface f1 . U, V, Ware the vectors of b-periodes 

of some normalized abelian integrals of the second kind with the poles at the marked 

point f! € ~ . In the case of the hyperelliptic curve P may coincide with one . . 0 

the branch points. In this case vector V turns to be equal to zero and formula (2) 

reduces to the solution of the KdV equation, given by Its-Matveev formula /1, 6, 7, 

8/o If ~ is some trigonal curve, i.e. their exists a meromorphic function on 

with the unique pole at the point P
0 

of the order 3 it turns out that W = 0. In 

this case the KP solution (2) is independent on t and satisfies the nonlinear 

Boussinesque equation (1). Trigonal curve 3 of the genus g ~ 3 cannot be hyper-

elliptic. The curve f' considered in this note is nonhyperelliptic of the genus 3. 
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It is of nondividing type. Its branch points are ~·"=(OJ Ej) • Let P
0 

coincide 

with one of branch points. It is possible to construct a local parameter K(P), pEr 
in such a way that under the action of the antiholomorphic involution t 

( UJ ) }. ) -:=, (LV J I) it transforms to k or -k. Let Yei (Y\1) is the path 

with the starting point at (O 1 E.!) and the end at (01 E:j), Q}t~ W{).)-:: ~h-1 
along the path. The canonical basis of the curve ~ now may be defined by the 

formula: 

o., = r (J.) 
"" 

\- 'f~) H.) I a.,='f~"(-'S) t-'f~,(:,) 

Let 

o.,='f1.,(2.) ~'f.,~(-2), 

g1-= f,~ (':.) "X:,, U.) + 'L, ('1) ~- 'f,'l. (-z) 

g'l. = b3~H.) +- 'f~,(-:,)+t,lo)+ft,l-2) 1 
-> 

g3 = r'l.1 (1.) + ~J!>) 
{ satisfies the condition !<e ! =fiRe. Bii 

.I 

) 

) 

Under the assumptions of this point we have the following main theorem. 

161 

Theorem I The solution of the Boussinesque equation defined by the curve ~ is 

real-valued and may be reduced to the following form: 

u~2"d~ qel0

v,h,\B,)tJ(p,\B,) 8 (f, \~,) ;. 

Ell ~J (p,\B,)8l ;J (p,i\?1,)8l ~~l (f,\~,)1+( - 2n~ ~·:, 
) 

171 
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_-\ 

B1 == ~ B,.,_ +-B.,,- B.,, 
-1 

+2., B, =- B,.., 

p,='><W~,_u2) -~-~Cv,.-v,) + C+t.,_) 

f'--= x(u-1-U2-U,) ~-~ (v,-v,-V,)t-t 1-f 2 -t,- ±, 

p.., -\ 
= B,., (X U, -\- 1 v, + L) . 

3. Proof of the main theorem 

181 

The reality of the solution (7) of the Boussinesque equation follo1-.•s directly from 

the recent results of B.A. Dubrovin /9/. The crucial step of the proof of the 

formula (7) is to demonstrate the associated decomposition formula for the Riemann 

theta-function of the curve r. For produce su2h a decomposition formula we start 

from specifying the structure of the Hatrix B tuking into account the symmetry 

properties of the curve r 
Lemma 1. Let L ' be a holomorphic automorphism of some compact Riemann surface r 

' 
of the genus 3 which acts on basis of H1( r) in a following way: 

.... 
tia. 'tJ=(MTff I 91 Ld. N--'1 

= Q + 

Then B matrix satisfies the relation: 

e, =MTBM- MTL I 101 
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Proof of Lemma 1 follows directly from the general law - see /4/ - of transformation 

of the B matrix under the change of canonical basis of H1( r). 

In the conditions of the Lemma 1 we can find a matrix T, T · E J , in \ lt., c... 
such a way that the condition 

B I =G B'G 
_, 

G- =T MT I II) 

B' = TT ( B-A)T 
) 

I 121 

- where A is some symmetric matrix with a rational matrix elements satisfying the 

same relation (10) as B-matrix- leads to a block diagonal structure of the matrix 

B'. 

Let the condition ( 11) is satisfied and the elements of the matrix A1 -D defined 

by 11 1=TTAT . b =J~._a[n.-J are entries. 

Now it is easy Lo prove the following 

Theorem 2. Under the condition of this point g-dimensional theta-function generated 

by the B-matrix may be represented in the fo"rm: 

Bi.l1(r\ e,) "'L e. x~{-7rL((R~b).L(S)Jl~I>}G[!lc;Jfr\ e,'+:D). I 13) 

f SE."Z~(T) 
.Summing over Z ~ (T) means that S €: { 3 runs over all v~ctors constrained 

by the inequality 0 ~ (T-1s ). <i, 
-~ J T 

J.Cs) ~T (S+J..) , ~ "'(11 1-b) J(s) +\ f 
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Taking into account that B' is of the block structure and D is diagonal 

. n r .L (5) 1( T I I \ matrix it is evident that r:J Lp.(s) T ~ B +I)) may be 

form a product of the theta-functions of the lower dimensions. 

represented in a 

Proof of the theorem 2 consists simply to go from summing over 1'>1 E 2 ~ to 

summing over n and s 

the terms in the sum 

related with m by the 

taken over l. ~(T) is 

equality m = Tn + s. The number of 

equal to \ cJ. e._ t T \ because delT 

is the jacobian determinant of the transformation from m-lattice to n-lattice. 

The theorem 2 is related with 'fheorem 1 in a following way. Let us introduce 

a ne•,; canonical basisinH 1{r): /'-./ 
N ~ ~ n D 
ct, ~-&.,) g> =Q_, ) Ql< ~ QK I OK'= 01< I k: i 2. 

) 

Now the holomorphic automorphism appearing in Lemma I may be realized like so 

't 
1 

E l( --~ E 5" _ K ) W -'> LW . Then we find that the matrices A and T 

may be choosen in the form 

T = (-~ 
-1 

1 
-1 
0 ~~) (

0 0 i) 
11 = 0 0 0 

1 0 \. I 14 I 

N01,· the direct application of the Theorem 2 leads to the representation {7) for 

the solutions of the Boussinesque nonlinear equation. 

Remark. If the point P
0 is not coincide with one of the Weierstrass points we 

get from decomposition {13) the solutions of KP equation represented in terms of 

the one dimensional theta-ftmctions. 
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h Weierstrass points of the curve \ , which are not branch points 

Weierstrass points of the curve f1 were studied in the work /10/ in which the 

complete description of the Weierstrass points of the genus 3 curves was presented. 

However, the variety of the Weierstrass points of the curve r pointed out in /10/ 

seems to be wrong because it is not invariant with respect to the action of some 

conformial automorphisms. That's why we recalculate theW-points of the curve \ 

This calculation may be performed out in a standard way looking at the behaviour 

of the wronskian of normalized abelian differentials. Here we give only the final 

answer, formulated for the curve 

" " ( 2 2 ~ -=X - m +1.)x "t"- tl'Y12i!-" I 15 I 

'rhis curve, given by the polynomial equation { 15), were x,y,z are homogenous co­

ordinates, is birationaly equivalent to the curve r . So it is sufficient to 

describe all Weierstrass points in this realization of r . There are two possi-

bilities: m2 - 1, m2 f- 1 which are essentially different in study of W-points. 

Let at first m2 1. In this case number of 1\'eierstrass points is 12. Their positions 

are (0 1 L\ ~xp(clf/~)), (1.\0,1.\(/1 1.,0), k:i1 2 1 ~ 1 'J. 
Meromorphic functions with the unique singulartiy-pole of the third order at these 

points are 

x·he.~ ~"~r\ ~(x-<.l<.t)>cx-'-\Y" 
I 

I 16) 

respectively. 

In the case m2 f - 1 we have 20 Weierstrass points. These W-points may be 

·divided in two Groups. First group contains all the branch points and the mero-

morphic functions with a third order pole as a unique sin~ularity may be constructed 
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as above. The second group contains 16 points with the positions (X, .. Lt i \ 
... Jdl!<)) 

defined from the system 

~ :" = X: - ( \'v\2•1. l X~ + 1-v\~ 

2lr...'l.H)x: -1-(ro~-i0"'2 ~1.)X~t2.m"-(ro"-*1.)-=0 I 171 

The related meromorphic functions are of the 
"'-' I -1. 

form()(-'<'._)(~-~;. -'(\Lk (x-x.) ) 
stays for the differentiation on x and 

~ 

x,=x1<1- I 1,l I ~ l-!. 
~(x~-'6;k(~<.J Ll~c<)-ij. 

6. The reduction of the basis abelian integrals of the first kind to the 

elliptic integrals 

(.4L and\~ 
.) w" j w'l> 

may be reduced to the linear combination of the integrals 

r, ,2: 

- \_r!-cl-'-f.:.___---== 
l, = 'J'i._(r2-~'J(r'--r-.'-f1~,., 

I 
I-~ 

e.____:i_t 
= 'J~(t~-1.)(!1'--r,?)f 

by some fractiOn-linear transformation. 
-1 

I
2 

may be reduced to I
1 

by the change of variables t = "')) 
r 1 may be reduced by the transformation 

~ 
2 

~ 

l1- r...~) 
\{ (ft<_ 1') (fl<- tn') 

to'the elliptic integral: 

I -, 
lc)K 

= 
~2. (1-~Y>') \ J.'i 

~~(H'*s'-) 
where the choice of k depends on the path of integration. The third basis integral 

\~ J ll) '!. 
is just elliptic and needs no further reduction. 

~ ~ v 
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Conlcuding remarks . 

This note is a part of a program /2, 3, 4/ of studies in theta-functions of 

Riemann surfaces with non-trivial automorphisms and their applications to soliton 

equations. Such a surfaces and their theta-functions are also of interest for the 

recent developpments of the quantum strings theories. Particularly such a s.urfaces 

appear in the description of the interactions on obrifolds involving the emission 

of twisted states /11/. For example the famous Klein curve 
) 

with a simple group of birational automorphisms of the extremal order 168 - see 

/2/ for the study of its B-matrix and particular properties of its theta-function,-

is also encountered in the classification of obrifolds with SU( 3) holonomy /12/. 
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