DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY

DESY 87-004 January 1987 87-4-229 高工研図書室

CHIRAL ANOMALY FROM THE FOKKER-PLANCK FORMALISM

by.

J.A. Magpantay, M. Reuter

Deutsches Elektronen-Synchrotron DESY, Hamburg

ISSN 0418-9833

NOTKESTRASSE 85 · 2 HAMBURG 52

DESY behält sie	ch alle Rechte für den Verwertung der in die		· ·	und für die wirtschaftliche mationen vor.
DESY reserves a	all rights for commerc	ial use of i	nformation included	in this report, especially in
	case of filing a	application	n for or grant of pate	nts.

To be sure that your preprints are promptly included in the HIGH ENERGY PHYSICS INDEX, send them to the following address (if possible by air mail):

DESY Bibliothek Notkestrasse 85 2 Hamburg 52 Germany DESY 87-004 January 1987

ISSN 0418-9833

Chiral Anomaly from the Fokker-Planck Formalism

J.A. Magpantay [†] and M. Reuter

Deutsches Elektronen-Synchrotron DESY, Hamburg

Abstract

We show how chiral anomalies arise in the Fokker-Planck formulation of stochastic quantization. Starting from a noise correlation function which is non-local in real space-time, a gauge invariantly regularized Fokker-Planck Hamiltonian is derived and used to compute the anomaly.

I. Introduction

Recently various authors /1/ treated the problem of anomalous symmetry breaking in the framework of stochastic quantization /2,3,4,5/. All these derivations of the chiral anomaly, for instance, have been done using the Langevin formulation. In this letter we look at the same problem from the Fokker-Planck point of view. At first glance, it might seem that this can be done trivially because the relationship between the Fokker-Planck and the Langevin formulation is wellestablished. However, actually this is not the case. The reason is that, to regulate the quantum field theory, one uses the Breit-Gupta-Zaks /3/ regularized noise which basically makes the process non-Markov. Thus, it is not evident if there is a Fokker-Planck formulation at all because the equivalence between the two formulations is defined by a single-"time" equation /4/. To circumvent this problem we propose to use the following different regularization scheme: instead of smearing out the noise correlation in the ? -direction, we replace the spacetime δ -function by a smooth, Lorentz-invariant regulator function. This leads to a Fokker-Planck Hamiltonian which is a non-local, second order functional operator. Calculating the anomaly in this scheme turns out to be basically equivalent to the well-known point-splitting method /6,7/.

II. The Gauge-Invariant, Regularized Fokker-Planck Hamiltonian

In this section we will derive the gauge-invariant, regularized Fokker-Planck Hamiltonian using the canonical procedure.

For illustrative purposes consider the Euclideanized action of massless $\mathsf{QED}_\mathtt{A}$

[†] Alexander von Humboldt fellow. On leave of absence from the University of the Philippines.

$$S = -\int d^4x \ \overline{+} (i\mathcal{B}) \ 4 \ , \tag{1}$$

where $\mathcal{J}=\mathcal{J}+i\mathcal{A}$ and we follow the convention $g_{\mu\nu}=-\delta_{\mu\nu}$, $\gamma_{\mu}^{+}=-\gamma_{\mu}$. The Langevin equations are then

$$\frac{\partial \Psi}{\partial \tau} = -\mathcal{P}^2 \Psi + i \mathcal{P} \eta \qquad (2a)$$

$$\frac{34}{23} = -4\pi^2 + \eta$$
 (2b)

where $\overline{\mathcal{H}}=\overline{\mathcal{H}}-\lambda\mathcal{H}$. The Langevin equations (2a,b) are gauge invariant provided the noise terms γ and $\overline{\gamma}$ transform like Ψ and $\overline{\Psi}$, respectively.

At this point, we specify how the noise is regularized. It is a common practice to regularize the noise in the Υ direction. As pointed out already in the introduction, this makes the stochastic process non-Markov. As an alternative, we propose to regulate the noise in the χ_{μ} direction. Because of the gauge transformation properties of γ and $\overline{\gamma}$, we propose the following correlation

$$\langle \eta_{\alpha}(q_{3}) \overline{\eta}_{\beta}(x',s') \rangle = \lambda \delta_{\alpha\beta} \delta(s-s') \beta_{\beta}(x-x') \phi(x,x'),$$
 (3)

where $\beta_{\Lambda}(x'x')$ is a Lorentz-invariant smearing function which approaches the Dirac delta as Λ (which has the dimensionality of a mass) approaches ∞ . We also assume that $\int \beta_{\Lambda}(x-x') \ d^{\frac{n}{4}}x' = 1$. The phase factor

$$\Phi(x,x') = e^{i\int_{x}^{x'} A \cdot dy}$$
(4)

is necessary because of the gauge transformation properties of the noises. The correlation (3) implies that the noise have the distribution

To derive the Fokker-Planck Hamiltonian, we consider the Wiener integral corresponding to the Langevin process given by (2a,b).

$$\langle f_{j} T = T_{j} | i_{j} T = 0 \rangle = \int [d \overline{g} (y_{j} \xi)] [d \eta (y_{j} y_{j})] e^{-\frac{1}{2} \int d \tau d x_{j} d x_{j} \tau_{j} (y_{j} \tau_{j}) \beta_{j} (x_{j} - x_{j})} \phi(x_{j} x_{j}) \eta(x_{j} x_{j})} + \int d \tau d x_{j} d x$$

Using the Langevin equations, we transform this into integrals over 4 and $\bar{4}$.

$$\langle f, s = \overline{y} | i, t = \sigma \rangle = \int \frac{\left[d\overline{y}_{i,s} \right] \left[d\psi(x,s) \right]}{\left[d\psi(x,s) \right] \left[\left(\frac{\eta_{i}}{\sqrt{T}} \right) \exp \left(\frac{1}{2} - \frac{1}{R} \right) d\tau d^{2}x d^{2}x^{2}} \right]}$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\phi(x, x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right) + \overline{\partial}^{2} \right) + \left[\frac{1}{2} \left(\frac{3}{2} + \overline{\partial}^{2} \right) + \overline{\partial}^{2} \right] \right]$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\phi(x, x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right) + \overline{\partial}^{2} \right) + \left[\frac{1}{2} + \overline{\partial}^{2} \right]$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\phi(x, x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right) + \overline{\partial}^{2} \right) + \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\phi(x, x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right) + \overline{\partial}^{2} \right) \right]$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right) + \overline{\partial}^{2} \right]$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right] \beta_{\Lambda}(x - x^{2}) \left(\frac{1}{2} + \overline{\partial}^{2} \right)$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{2} \right]$$

$$= \exp \left[\frac{1}{2} + \overline{\partial}^{$$

and the Jacobian of transformation is

$$J = dit \left[\frac{3t + 2x^{2}}{3t + 2x^{2}} \right) \delta(t-t^{2})$$

$$\int dt \left[\frac{3t}{3t + 2x^{2}} \right) \delta(t-t^{2})$$

$$\int dt \left[\frac{3t}{3t + 2x^{2}} \right) \delta(t-t^{2})$$

$$\int dt \left[\frac{3t}{3t + 2x^{2}} \right) \delta(t-t^{2})$$

In (7), g(x-x') is the Greens function of $\lambda \mathcal{N}$. Factoring out

$$J_0 = \det \begin{bmatrix} \frac{3(x-x')\frac{2}{25}}{\frac{2}{5}} \delta(5-5') & 0 \\ 0 & \frac{2}{21} \delta(x-x')\delta(5-5') \end{bmatrix}$$

and using the midpoint rule $\,\Theta(\mathfrak{d})\,\mathfrak{z}\,\,\mathcal{V}_{\!\!\boldsymbol{\lambda}}$, we find

From (8) and the exponential term in (6) we read-off the Fokker-Planck Lagrangian /5/

$$L_{FP} = \frac{1}{2} \int d^{3}x \, d^{3}x' \left[\frac{\partial Y}{\partial Y} + \overline{Y} + \overline{P}^{2} \right]_{X} \beta_{2}(x-x') \phi(y,x') \left[\frac{1}{2} \overline{P} \left(\frac{\partial Y}{\partial Y} + \overline{P}^{2} Y \right) \right]_{X}$$

$$- \frac{1}{2} \delta^{4}(0) \int d^{3}x \left[\overline{Q}^{2} + \overline{P}^{2}_{X} \right]. \tag{9}$$

We now use the canonical procedure. The conjugate momenta are

$$\Pi_{\Psi} = \frac{S L_{EP}}{S(2, \Psi)} = \frac{1}{2} \int d^{3}x d^{3}x_{2} \left[\frac{\partial \Psi}{\partial T} + \overline{\Psi} \hat{F}^{3} \right]_{X_{1}} \beta_{\Lambda}(x_{1}, x_{2}) \phi(x_{1}, x_{2}) g(x_{2} - x), \quad (10a)$$

$$\Pi_{\vec{q}} = \frac{\delta L_{\text{FP}}}{\delta (\partial_{\vec{q}} \vec{q})} = \frac{1}{a} \int d^{4}x_{1} d^{4}x_{2} \beta_{\Lambda}(x-x_{1}) \phi(x_{1}x_{2}) \frac{\partial (x_{1}-x_{2})}{\partial x_{1}} \frac{\partial (x_{1}-x_{2})}{\partial x_{2}} \frac{\partial$$

To solve for the velocities, we use

$$\int d^{1}x_{1} \, \beta_{\Lambda}(x-x_{1}) \, \phi(x_{1}x_{1}) \, \beta_{\Lambda}^{-1}(x_{1}-y_{2}) \, \phi(x_{1},x_{2}) \; = \; S^{4}(x-x_{2}) \; .$$

The "Hamiltonian" is given by the Legendre transformation

$$H_{FP} = \int d^4x \left[\Pi_{\Psi_n} \frac{\partial \Psi_n}{\partial r} + \overline{\Pi}_{\overline{\Psi}_n} \frac{\partial \overline{\Psi}_n}{\partial r} \right] - L_{FP}$$
(11)

and after operator ordering gives

$$\hat{H}_{FP} = \int d^{4}x \, d^{4}x' \left\{ \frac{S}{S + ix} \right\} \, i \mathcal{P}_{x} \left(\beta_{n}^{-1}(x - x') \phi(x, x') \right) \frac{S}{S + ix'}$$

$$- \frac{S}{S + ix} \left(\phi^{-1}(x, x') \beta_{n}^{-1}(x - x') \right) i \hat{\mathcal{P}}_{x} \, \frac{S}{S + ix'}$$

$$+ \int d^{4}x \left\{ \frac{S}{S + ix} \right\} \mathcal{P}_{x}^{2} \, \mathcal{H}(x) + \frac{S}{S + ix'} \left(\hat{\mathcal{F}}(x) \hat{\mathcal{F}}_{x}^{A} \right) \right\}. \tag{12}$$

Equation (12) is the gauge-invariant, regularized Fokker-Planck Hamiltonian. By doing a similarity transformation

$$\hat{H}_{FP} = \chi^{\hat{A}} \hat{H}_{FP} L^{\hat{A}}$$
(13a)

$$\hat{A} = \int d^{\prime}x \, d^{\prime}x' \frac{\delta}{\delta \psi(x)} \, \vartheta(x-x') \, \beta_{\Lambda}^{-1}(x-x') \, \hat{\varphi}(x,x') \, \frac{\delta}{\delta \psi(x')} \qquad (13b)$$

we find

$$\hat{H}_{FP} = \int d^4x \left\{ \frac{5}{5 \Psi x} \mathcal{B}_x^2 \Psi x \right\} + \frac{5}{5 \overline{\Psi}_{\alpha}} (\overline{\Psi}_{\alpha}, \widehat{\mathcal{B}}_x^2) \right\}. \tag{14}$$

Note that \hat{H}_{FP}^{I} does not depend on the regulator and thus its spectrum is independent of Λ . Sakita had shown that \hat{H}_{FP}^{I} is a positive-definite operator and thus it is also true that the point-splitted, gauge-invariant Fokker-Planck Hamiltonian (12) is also positive definite. Another prerequisite is the existence of a mass gap between the zero mode and the non-zero modes. Making the usual assumption that \hat{H}_{FP}^{I} has a mass gap then \hat{H}_{FP} also has a mass gap.

III. Derivation of the anomaly

We determine the anomaly as the Jacobian $J[\alpha]$ associated with an infinitesimal chiral transformation

$$\psi(x) = e^{i\kappa(x)\delta_5} \psi(x) ,$$

$$\psi'(x) = \overline{\psi}(x) e^{i\alpha(x)Y_5} \tag{15}$$

For this Jacobian we make the ansatz

$$J[\alpha] = exp.(-i\int d^{4}x \; \alpha(x) \; d_{1}(x)). \tag{16}$$

Now one considers the normalization condition

$$\int [d\Psi] [d\overline{\Psi}] P[\Psi, \overline{\Psi}; \tau] = 1 , \qquad (17)$$

and changes the integration variables from ψ and $\bar{\psi}$ to ψ' and $\bar{\psi}'$ according to (15) for infinitesimal $\chi(x)$. This implies

where $\delta P(\psi,\tau) = P(\psi,\tau';\tau) - P(\psi,\tau';\tau)$. To make this equation more transparent, we introduce a complete set $\{F_n(\psi,\psi)\}$ of eigenfunctionals of the Fokker-Planck Hamiltonian: \hat{H}_{FP} $F_n = E_n$ F_n . In terms of the F_n 's the distribution function may be expanded as

$$P[4,\bar{4},r] = \sum_{n}^{\infty} C_n e^{-E_n t} F_n[4,4]$$
 (19)

The coefficients $\left\{ c_{n} \right\}$ are to be determined from the initial conditions. Thus we have

$$i\int d^3x \, \alpha(x) \, d(x) = \sum_{n} c_n e^{-E_n T} \int [d+7[d\bar{\psi}] \, \delta F_n \, [\psi, \bar{\psi}] \, . \tag{20}$$

This equation nicely exhibits the Υ -evolution of the anomaly. Since in general the eigenfunctionals F_n for $E_n \nearrow 0$ are not known explicitly, we can evaluate the RHS of (20) only in the limit $\Upsilon \rightarrow \infty$. In this case only the zero-mode $F_0 \equiv Z^{-1} \exp(-S_{\xi}) \text{ with the partition function } \vec{Z} \equiv \int \!\!\! \int \!\!\! d\psi \, \mathcal{V} \, d\vec{\Psi} \, \mathcal{V} \exp(-S_{\xi})$ contributes. Hence one obtains

$$i\int d^{4}x \, \alpha(x) \, dx \, |x| = - \frac{7}{2} \int [a47] \, d^{2}7 \, \delta S_{\epsilon} \, exp. \left(-S_{\epsilon}\right) = -\left(\delta S_{\epsilon}\right).$$
 (21)

Contrary to Fujikawa's /8/ approach, where A is evaluated directly from the definition of the Jacobian $\delta (\Psi, \bar{\Psi})/\delta (\Psi, \bar{\Psi})$, we here determine A by calculating $\langle \delta S_{\epsilon} \rangle$.

From the Hamiltonian (12) it is easy to see that $\mathcal{S}_{\mathbf{c}}$ is given by

Recalling that for $\Lambda \to \infty$, the Lorentz invariant function β_{Λ} approaches a δ -function, we may replace $\lim_{\Lambda \to \infty} \int_{0}^{d\xi} \beta_{\Lambda}^{(\xi)}(\dots)$ by $\lim_{\xi \to 0} \dots$ where an average over the directions of ξ^{n} according to $\frac{\xi^{n}\xi^{n}}{\xi^{n}} \to \frac{\xi^{n}}{\xi^{n}}$, etc. is understood. Expanding the bracket of (22) to first order in ξ , which is equivalent to the first order in $1/\Lambda$, one obtains

$$S_{\xi} = -\lim_{\xi \to 0} \int d^{4}x \, \bar{\psi}(x + \underline{\xi}) \left\{ i\partial_{\xi} - A + \bar{\xi}^{M} A_{m} \partial_{\xi} + i A_{\xi}^{M} A_{m} + i A_{\xi}^{M} \partial_{\xi} + i A_{\xi}^{M} \partial_{\xi} \partial_{\xi}$$

The change of (23) under an infinitesimal chiral rotation reads

$$SS_{\varepsilon} = -\int d^{4}x \, \overline{\Psi}(x + \frac{\varepsilon}{2}) \left\{ -(\partial \alpha) + \varepsilon^{4}(\Omega_{\alpha})(\partial x + iA) + \frac{1}{2} \partial (\varepsilon^{4}) \right\}$$

$$+ i \, \varepsilon^{4} A_{n}(\partial \alpha) \, d^{4}x \, d^{4}x + \frac{\varepsilon}{2} \, d^{4}x \, d^{4}x + \frac{\varepsilon}{2} \, d^{4}x \, d^{4}x + \frac{\varepsilon}{2} \, d^{4}x + \frac{$$

Next, one has to compute the vacuum expectation value of (24) in the limit $\xi \to 0$. Using the well known matrix element /7/

and the Heisenberg equations for Ψ it is straightforward to arrive at

$$\langle \delta S_{\xi} \rangle = -i \lim_{\xi \to 0} \int d^{4}x \, F \, \left[\sum_{n} \langle \overline{\Psi}(x + \underline{\xi}) \rangle^{n} \, V_{\delta} + (x - \underline{\xi}) \rangle \right]$$

$$= -i \int d^{4}x \, \alpha(x) \, \mathcal{A}(x) \, , \qquad (26)$$

with

$$A(x) = \frac{1}{511^2} F_{\mu\nu} F^{\mu\nu}. \qquad (27)$$

Together with (16) this yields the standard result /8/ for the Jacobian of the chiral transformations (15):

$$J[x] = exp\left(-\frac{i}{\delta \Pi^{2}}\int d^{4}x F_{\mu\nu}^{*} F^{\mu\nu}\right) \qquad (28)$$

To obtain the divergence of the axial vector current one notes that using the equations of motion for ψ the expectation value of (24) can be written as

Inserting this together with (27) into (21) one ends up with the desired relation /7/

This completes the proof that the Fokker-Planck dynamics described by our \hat{H}_{FP} leads to the correct anomaly for $\mathcal{T} \rightarrow \infty$.

IV. Conclusions

In this letter we proposed a new way of regulating the noise in stochastic quantization. We find that this scheme gives rise to a (gauge-invariant) Fokker-Planck Hamiltonian whereas in the Breit-Gupta-Zaks scheme it is not evident if there is a simple Fokker-Planck formulation. As a first application, we derive the chiral anomaly of QED₄. The generalization to more complicated theories is in principle straightforward.

References

- /1/ J. Alfaro, M.B. Gavela, Phys. Lett. 158B (1985) 473;
 M.B. Gavela, N. Parga, Phys. Lett. 174B (1986) 319;
 R. Kirschner, E.R. Nissimov, S.J. Pacheva, Phys. Lett. 174B (1986) 324;
 E.S. Egorian, E.R. Nissimov, S.J. Pacheva, Lett. Math. Phys. 11 (1986) 209;
 E.R. Nissimov, S.J. Pacheva, Lett. Math. Phys. 11 (1986) 373;
 R. Tzani, Phys. Rev. D33 (1986) 1146;
 J.P. Ader, J.C. Wallet, Z. Phys. C32 (1986) 575;
 Z. Bern, H.S. Chan, M.B. Halpern, Z. Phys. C 33 (1986) 77;
 E.R. Nissimov, S.J. Pacheva, Phys. Lett. 171B (1986) 267 and CERN-TH.4435/86, unpublished;
 M. Reuter, DESY-preprint (1986), unpublished
- /2/ G. Parisi, Y. Wu, Sci. Sin. 24 (1981) 483; P.H. Damgaard, K. Tsokos, Nucl. Phys. B235 FS11 (1984) 75
- /3/ J.D. Breit, S. Gupta, A. Zaks, Nucl. Phys. B233 (1984) 61
- /4/ 8. Sakita, Proceedings of the Johns Hopkins Workshop 1983, World Scientific, Singapore
- /5/ E. Gozzi, Phys. Rev. D28 (1983) 1922
- /6/ J. Schwinger, Phys. Rev. 82 (1951) 664
- 77/ R. Jackiw, K. Johnson, Phys. Rev. 182 (1969) 1459;
 R. Jackiw in Lectures on current algebra and its applications; ed.
 D. Gross, R. Jackiw, S. Treiman, Princeton University Press (1972)
- /8/ K. Fujikawa, Phys. Rev. Lett. 42 (1979) 1195 and Phys. Rev. D21 (1980) 2848