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Chiral Anomaly from the Fokker-Planck Formalism

J.A. Magpantay * and M. Reuter

Deutsches Elektronen-Synchrotron DESY, Hamburg

Abstract

We show how chiral anomalies arise in the Fokker-Planck formulation
of stochastic ﬁuantization. Starting from a noise correlation func-
tion which is non-local in real space—timeja gauge invariantly re-
gularized Fokker-Planck Hamiltonian is derivéd and used to compute

the anomaly.

* Alexander von Humboldt fellow. On leave of absence from the

University of the Philippines.

L. Intreduction

Recently various authors /1/ treated the problem of anomalous symmetry breaking
in the framework of stochastic quantization /2,3,4,5/. All these derivations

of the chiral anomaly, for instance, have been done using the Langevin formula-
tion. In this letter we laook at the same problem from the Fokker-Planck point
of view. At first giance, it might seem that this can be done trivially because
the relationship between the Fokker-Planck and the Langevin formulation is well-
established. However, actually this is not the case. The reason is that, to re-
gulate the quantum field theory, one uses the Breit-Gupta-Zaks /3/ regularized
noise which basically makes the process nen-Markov. Thus, it is not evident if

there is a Fokker-Planck formulation at all because the equivalence between the

" two formulations is defined by a single-"time" equation /4/. To circumvent this

problem we propose to use the following different regularizaticn scheme: instead
of smearing out the noise correlation in the 3 -direction, we replace the space-
time  -function by a smboth, Lorentz-invariant regulator function. This leads
to a Fokker-Planck Hamiltonian which is a non-local,secand order functional
operator. Calculating the anomaly in this scheme turns out to be basically equi-

valent to the well-known point-splitting method /6,7/.

IY. The Gauge-Invariant, Regularized Fokker-Planck Hamiltonian

In this section we will derive the gauge-invariant, regularized Fokker-Planck

Hamiltonian using the canonical procedure.

For illustrative purposes consider the Euclideanized action of massless QED4
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where /‘@’:Jﬁmﬁ and we follow the convention ?Jﬂr: —5#?) X‘:; - i" ,

The Langevin equations are then

%—Lb - -0y Yy ) (2a)
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1T \»fﬁ + l J

(2b})
—~ Fa
where @ = ,a/r /{}’( . The Langevin esquaticns ({2a,b) are gauge invariant

provided the noise terms % and ”E transform like Y and 4 , respectively.

At this point, we specify how the noise is regularized. It is a common practice
to regularize the noise in the F direction. As pointed cut already in the intro-
duction, this makes the stochastic process non-Markov. As an alternative, we
prapese to regulate the neise in the x,u direction. Because of thes gauge trans-

formation properties of "l and "’Z, we propase the following correlation

<'V1thj\)'7lgix:y')> = Q g"ﬁ 5(?’7')/3 ) (P('J; XD, 3

where Hyﬂfx’;«) is a Lorentz-invariant smearing function which approsches the

Dirac delta as /A (which has the dimensionality of a mass)approaches . We alsa

assume that SFA(J_-;() d‘f)g’ - ’1 . The phase factor
%

J:L A.d?

$tn )= & (a)

is necessary because of the gauge trensformation preperties of the noises. The

correlation (3) implies that the noise have the distribution
- L ¥ fare _ , '
_tqupf 3jd’Dofxd;’< " (53] X x’)¢zx/x)7]/x/1')}

To derive the Fokker-Planck Hamiltonian, we consider the Wiener integral

corresponding to the Langevin process given by (Z2a,b).

- bt = x
Gr=plirg) < j 47 03) 1 dnsy] & F fdrdhd™ Homp o %) @6X) ik 5)
U}D}: “;D(j .
‘ﬁ,?f)t’:r): V;.fx)

(3)

Using the Langevin egquations, we transform this into integrals over 4 and 4.

Grealhoo = Jetmalidton] J (L) amp i-f [dratate
e points A
C (8)
T T b (2 )1

X'y
/

Y

and the Jacobian of transformation is

aLx-_x')(-g-J +ﬁlzx¢))$w-;') 0
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(7}
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In (7), g{x-x') is the Greens functiocn of U?’. Factoring out To solve for the velocities, we use
gbs-x')_g__ % -39 O .
43 o d%, g x- ! 4
do = dek BB O by = ey
0 9-?—3&1')33—5')
J ) The "Hamiltonian" is given by the Legendre transformation
and using the midpoint ruie @(0)z ‘/9\ , we find :
445 % 2 ora - —_
J ~ ap {2 sho) [drdb (9 r g ] (®) Hep = e [Ty, 2% 470 2, |- L an
’ T A 2r Fr )

From (B) and the exponential term in (8) we read-off the Fokker-Planck

and after operater ordering gives
Lagrangian /5/

P 'Lj“”“‘ [9—* + 'F?J Plr-x)tsad | o5 (2t 7 H‘)J, j"w‘ d'! E'H) »?7((5 Jr-x)@yc)).m ,
xl
-t 5 - | @ -
2 b m)f;v” [% e j , }’%{) ( ('X,x‘)& (x- x’)) Y i }
' W”)
We now use the canonical procedure. The conjugate mementa are + Jd'&

* 4y, S L o aw
Wll)y; W)'}'ﬁ&”z%&)&) }

- 5L "
T B8 = T bacrodu gies, o

Equation (12) is the gauge-invariant, regularized Fokker-Planck Hamiltonian.

By doing a similarity transformation

_ Slep _ (4t dY 8 ft- 3 ' At A a A
ﬂ; - gafg) - a f % "QPAZX X)) 4’%)(.)40(,*%1)(%?*3 ‘/))& ’ {10b) . HFP =~ 1 HFP J: A ) (438)
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we find

A TR NP N L S P |
fep = Jat St % " ()} - o

Note that ﬂﬁp does not depend con the regulator and thus its spectrum is inde-
pendent of A . Sakita had shown that ﬁﬁp is a positive-definite operator and

thus it is also true that the point-splitted, gauge-invariant Fokker-Planck
Hamiltonian (12) isalso positive definite. Another prerequisite is the existence

of a mass gap between the zero mode and the non-zero modes. Making the usual

A
assumption that H%P has a mass gap then ﬁFP also has a mass gap.

III. Derivation of the anomaly

We determine the anomaly as the Jacobian Jj«} associated with an infinitesimal

chiral transformation

Axpe) g

i)

H

Yolu) )

;qll)ir

) e _ (15)

1

')

For this Jacobian we make the ansatz

Jlal= (=i fd amdin)) (16)

Now one considers the normalization conditian

E[d*}[dﬁl P[L},@; tl= 1 (17)

}

and changes the integration variables from qv and 1} te qj and Lf‘%ccording

to (15) for infinitesimal ¥ (x). This implies

ijd"x a) g = JLJHM\TJ SP[%E-'I‘J) " (18)

where  SPIOR71= PIVF;5] - PG, T

mmtmmmmm,wiﬁw@manmﬂﬁe%t{ﬁ@%@J} of eigenfunctionals

. To make this equation

I .
of the Fokker-Planck Hamiltonian: HFP Fn = En Fn. In terms of the Fn's the distri-

bution function may be expanded as

/

P[U,@’-TJ pa ZC" ﬁhfn: Fldd] (19)
n

The coefficients {cn } are to be determined from the initial conditions. Thus
we have

. _E,T - _
LJJ#,M){)A—Z#) = Z Cn2 JHH[W} 5& el |
¥

(20

This eguation nicely exhibits the T -evolution of the anomaly. Since in general
the eigenfunctionals Fn for En7 0 are not known explicitly, we can evaluate the
RHS of (20) only in the limit —% 00 . In this case only the zero-mode

_ -1 } s . - 7
Fy= 7 7 exp(-S; ) with the partition function 7=z I[d%]fef‘-{’] 20 C’SE)

contributes. Hence one obtains
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Afd%amydon) = - E—jﬁ"““”“'ﬁ s vpl-S )= - @Sg V. (1)

Contrary to Fujikawa's /8/ approach, whereA, is evaluated directly from the
LI b
definition of the Jacobian 8[‘!“, "P)/% [‘J}LI— ) , we here determine J{" by
Ilculati
ecalevlating 338 >'

From the Hamiltonian (12) it is easy to see that S’i is given by
= - L% 4 d ; g !
SE ajd s fi[f)ii}[xﬁ)@m)x)iﬁ; Yox) 4 ‘f»u),g,z@% vig) Yixe 59 } e2)

Recalling that for A ""700 the Lorentz invariant functien [3/3 approaches

a & -function, we may replace llm gﬁlﬁ FAH){.,.) by hm.(-;;b') where an average
over the directions of. E accord].ng to f,_"'_;;v.a v E ete. 1s understood.
txpanding the bracket of (22) to first order in § . which is eguivalent to the

first order in 1;‘A , one gbtains

Sz = Lim [l T ) fAmps @A 7 v i,
L0

4 (’3’2“@“)} Fix- £

The change of (23) under an infinitesimal chirsl rotation reads

-t o £)]- (ra )+ £ ) (4 45 A) t3dliy a) Y

YA ALY JUs dl £)

Next, one has to compute the vacuum expectation value of (24) in the limit

E - O . Using the well known matrix element. /7/

J(X+£ R = L f_,V "3 N
< L),u Jl“:( %)7 ‘-{ﬂ" -_é—l 6)}(&4!} rf‘ﬂ + O/fo) ) (25)

and the Heisenberg equations for Y it is straightforward to arrive at

88,y = -4 Lism Sa‘"’ F £ et ) v VY DY,

imo (26)
=4 jo”x KD «/4'(1)
with
— ! * v
L}i(’” = P E“V F™ , (27)

Together with (16) this yields the standard result /8/ for the Jacobian of the

chiral transformations (15):

JId = wp - 5ra5ﬂ o) (28)

AV .

To cbtain the divergence of the axial vector current one notes that using the

equations of motion for LP the expectation value of (24) can he written as

8 Y=~ Jak o) Lim 3 (Fex )Y ding "“KL)W"%)), (29)

£ o

Inserting this together with (27} into (21))une ends up with the desired rela-

tion /7/

Riwa D CHixt &
o PR o) 0ok B Py
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. [ad
This completes the proof that the Fokker-Planck dynamics described by our HFP

leads to the correct anomaly for F-—5 00
1V, Conclusions

In this letter we proposed a new way of regulating the neise in stochastic
quantization. We find that this scheme gives rise to a (gauge-invariant) Fokker-
Planck Hamiltonian whereas in the Breit-Gupta-Zaks scheme it is not evident if
there is a simple Fokker-Planck formulation., As a first application, we derive
the chiral anomaly of QEDa. The generalization to more complicated theories is

in principle straightforward.
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