

Studiengruppe für Elektronische Instrumentierung der Helmholtz-Zentren

106. Tagung der Studiengruppe elektronische Instrumentierung im Frühjahr 2015

vom 2. März - 4. März 2015

am

Deutsches Elektronen-Synchrotron, Zeuthen

Editor: Peter Göttlicher (DESY) Verlag Deutsches Elektronen-Synchrotron

Impressum

106. Tagung der Studiengruppe elektronische Instrumentierung im Frühjahr 2015 2.-4. März 2015, Zeuthen, Deutschland

Conference Homepage https://indico.desy.de/conferenceDisplay.py?ovw=True&confId=10944 oder https://indico.desy.de//event/SEL_2015

Online Proceedings auf http://www-library.desy.de/confprocs.html

The copyright is governed by the Creative Commons agreement, which allows for free use and distribution of the articls for non-commertial activity, as long as the title, the authors' names and the place of the original are referenced.

Editor: Peter Göttlicher Juni 2015 DESY-PROC-2015-01 ISBN 978-3-935702-96-6 ISSN 1435-8077

Published by Verlag Deutsches Elektronen-Synchrotron Notkestraße 85 22607 Hamburg Germany

Printed by Kopierzentrale Deutsches Elektronen-Synchrotron

106. Tagung der Studiengruppe elektronische Instrumentierung im Frühjahr 2015

SEI - Studiengruppe elektronische Instrumentierung der Helmholtz-Zentren Zeuthen (DESY), 2. März - 4. März 2015

Inhaltsverzeichnis

Allgemeines und Zusammenfassendes	P Göttlicher	3
Bild der Teilnehmer		4
Tagungsprogramm		5
Vorträge Überblick DESY/Hamburg	P. Göttlicher	10
Überblick über aktuelle Projekte im DESY, Zeuthen	F. Tonisch	15
Vorstellung des Servicezentrums Elektronik DESY Hamburg	OC. Zeides	21
Flip Chip Technologie am Desy	S. Arab	36
CE-Zertifizierungen fr elektronische Geräte - zentral durchgeführt durch DESY ZE	J. Voigt	43
Ein VHDL basierter Gigabit Ethernet Protokollstapel fr FPGAs	F. Födisch	52
Digitaler Kameratrigger fr das Cherenkov Teleskop Ar- ray	KH. Sulanke	77
Das Triggersystem in der Hess1 Upgrade Camera	A. Kretzschmann	96

Datenverbindung zwischen Schiffen und Zeppelin zur Erkundung von Strömungswirbeln	O. Listing	113
IP-basierende Messgeräte auf Basis von FPGA (Spartan 6) und HTML5/JSON	J. Plewka	118
MTCA.4 RTM Modul basierend auf dem DRS-4 Capac- itorArray	A. Menshikov	127
Basis Designregeln	S. Döhl	139
Integrated phase locked loop design	N. Parkalian	146
Machine Protection System for XFEL and FLASH II	S. Karstensen	155
General Machine Timing FAIR: Status	Dietrich Beck	171
MTCA.4 Based Reference and Clock Distribution Module for the Europen XFEL	U. Mavric	182
Das Steuerungssystem des MST, ein 12m-Cherenkov-Teleskop	R. Sternberger	189
Lüftersteuerung fr VDC-Kammern am Versuch CMS (CERN)	F. P. Zantis	204
Implementierung eines TANGO-Servers zur Anbindung des Mythen-Detektors beim Experiment GALAXI	A. Steffens	214
PiLC, ein flexibler Controller fr Steuer- und Messauf- gaben mit FPGA-Performance	T. Spitzbart, H. Zink	226
Messung wichtiger Strahlparameter des LHCs mit Dia- mantsensoren	W. Lange	236
ATLAS Strip Tracker Upgrade: Recent Developments for the Electronics	M. Stanitzki	253
Flexibles elektromagnetisches Aktuatorsystem fr die Turbulenzforschung	M. Schiek	?267
Prototyp Entwicklung fr das CALICE Analoge Hadro- nische Kalorimeter	M. Reinecke	284

Workshop

P. Göttlicher 293

Kurze Zusammenfassung des Workshops zu analoger und mixed-Mode Simulation

Peter Göttlicher DESY-FEB 3. Juni 2015

Eröffnung

Jährlich treffen sich Mitarbeiter und Mitarbeiterinnen der Helmholtz-Zentren, die an Elektronik in der Forschung arbeiten. Die Tagung ist organisiert von den Helmholtz-Zentren, steht aber auch anderen Interessierten zur Teilnahme, Vorträgen und Ausstellung offen. Dieses Jahr nahmen 82 Personen teil. Diese reisten von den Helmholtz-Zentren DESY, FZJ, GSI, HZB, HZG, HZDR und KIT sowie Universitäten und Firmen an.

Bei den Vorstellung kristallisierten sich folgende Vortragsblöcke heraus:

- Fertigung und Test
- Datenaufnahme/-prozessierung/-transfer
- Schaltungsdesign und -realisierung
- Elektronik fr Beschleuniger
- Steuerung und Kontrollen
- Detektoren und Gerte

Auf einer Exkursion zum Funkerberg bei Königswusterhausen lernten wir die Anfänge des Rundfunks in Deutschland kennen. Dabei wurde uns der Rundfunk und die dazu entwickelten Elektronik-Bauteile, Schaltungskonzepte und Strom-Generatoren gezeigt.

Das Tagungsprogramm ist auf dem Internet einzusehen: https://indico.desy.de/conferenceDisplay.py?confId=10944 oder https://indico.desy.de//event/SEL_2015

Die Homepage der Studiengruppe ist auf http://sei.desy.de/ zu finden.

Im Anschluss an die Tagung haben sich viele Teilnehmer noch zu einem halbtägigen Workshop zusammengesetzt und über eingesetzte Techniken zu analoger und Mixed-Mode Simulation zu diskutieren

Ausblick

Die nächste Tagung wird für das Frühjahr 2016 in Darmstadt an der GSI geplant.

Teilnehmer der SEI-Tagung 2015, DESY(Zeuthen), $\ensuremath{\mathbb{C}}$ DESY-Zeuthen, PR-Abteilung

Atmosphäre verursachten Ereignisse, zu detektieren. Es wird ein möglicher Kameratrigger beschrieben, der auf der Verarbeitung überlappender Pixelregionen basiert. Der Trigger besteht aus drei Stufen. Ein präziser, sehr schneller Diskriminator von PMT-Pulsen bildet die erste Stufe (L.). Die zweite Stufe (L.1), besteht aus einer einfachen (low cost) FPGA, die die LO-Signale von 37-Pixel Regionen verarbeitet. Einfache Trigger-Algorithmen wie 3NN (Three Next Neighbor), aber auch komplexere, können implementiert werden oder sogar parallel laufen. Neben der Flexibilität, ist die Möglichkeit, die individuellen LO-Signalverzögerungen im Subnanosekunden-Bereich zu kalibrieren, eines der Hauptvorteile der FPGA-basierenden Trigger-Implementierung. Das minimal mögliche Zeitfenster für den Trigger ist eine Nanosekunde weit. Die dritte Stufe (L2), die letztlich das Kamera-Triggersignal generiert, ist ein separates 19 Zoll Crate.

Speaker: Karl-Heinz Sulanke (DESY) Material: Slides 🗐 🔂

17:00 Das Triggersystem in der Hess1 Upgrade Camera 20

Es wird ein Überblick über die Funktionalität des Triggersystems der Hess1-Upgrade-Camera gegeben. Es werden die Komponenten und deren Leistungsfähigkeit vorgestellt und mit denen aus der original Kamera verglichen. Ein zentrales Element ist ein neu entwickelter DAC in differentieller Technik. Vor- und Nachteile des Systems werden diskutiert.

Speaker: Axel Kretzschmann (DESY)

17:25 Datenverbindung zwischen Schiffen und Zeppelin zur Erkundung von Strömungswirbeln 20'

Ziel ist es relativ kurzlebige Wasserwirbel zu untersuchen. Diese werden zunächst vom Zeppelin geortet. Anhand der Position werden anschließend die Schiffe zum Wirbel geleitet, um mit der Untersuchung desselben zu beginnen. Problemstellung ist hier der Aufbau der Funkstrecke zwischen dem Zeppelin und den Schiffen. Mögliche Konzepte hierzu werden derzeit bei uns evaluiert.

Speaker: Oliver Listing (HZG)

17:50 **IP-basierende Messgeräte auf Basis von FPGA (Spartan 6) und HTML5/JSON** 20" Speaker: Jörn Plewka (HZG)

19:00 - 21:00 Abendessen Montag

Location: Restaurant Olympia

Tuesday 03 March 2015

08:30 - 10:00

08:30 MTCA.4 RTM Modul basierend auf dem DRS-4 CapacitorArray 20

Viele Experimente erfordern eine Digitalisierung zeitlich kurzer Signale. Im KIT wurde speziell dafür ein 16-Kanal-Digitalisierungsmodul auf Basis von vier DRS-4 ICs entwickelt. Der DRS-4-IC beinhaltet 9 kapazitive Arrays mit jeweils 1024 Zellen zum Speichern der analogen Signale mit einer Abtastfrequenz von 700 MHz bis 5 GHz. Nach einer Triggerung werden die kapazitiven Speicherelemente sequentiell ausgelesen und mit einem 12-Bit-ADCs bei 30 MHz digitalisiert. Zwei DRS-4 ICS bilden eine Funktionsgruppe, die im Wechselspeicherprinzip verwendet werden, um die Totzeit zu minimieren. Jeder analoge Eingangskanal ist mit einem einstellbaren Komparator ausgerüstet und in einem FPGA ist die dazugehörige Triggerlogik und die Auslessetuerung implementiert. Das Modul ist nach dem MTCA.4 Rear Transition Modul Spezifikation gebaut. Die Präsentation stellt das Design und die ersten Ergebnisse sowie die Implementierung in ein MTCA.4 System vor.

Speaker: Alexander Menshikov (KIT)

Dienstag-1: Schaltungsdesign und -realisierung

09:00 Basis Designregeln 20'

Speaker: Sebastian Döhl (HEIDENHAIN-MICROPRINT GmbH)

09:30 Integrated phase locked loop design 20'

A phase locked loop structure will be presented, which generates the sampling clock for an ADC in an on-chip pulse detection receiver.

Phase locked loops generate output clocks with the same phase as and a multiple of the frequency of a reference clock. The main blocks of a PLL are a phase frequency detector (PFD), a charge pump, a loop filter, a voltage controlled socillator (VCO) and a frequency divider. The output clocks are generated through a four stage voltage controlled ring oscillator with 2GHz center frequency. The reference frequency is in the range of 20MHz-100MHz, so a frequency divider is necessary in the feedback path of the PLL to generate lower frequency clocks to synchronize with reference frequency. The PFD determines the phase and frequency difference between two inputs of the PLL. The phase and frequency difference is converted to a proportional current through the charge pump. The low pass filter extracts the dc amount of current to generate an appropriate control voltage for the oscillator to adjust the phase and frequency of the output clocks. In general, frequency dividers are divided into two categories of integer and fractional. Both of these frequency dividers are implemented as design alternatives for this structure. The division ratio of an integer frequency divider is a good option. In a fractional structure, the division ratio can be changed and is controlled by binary bits. The proposed structure is simulated in 65mm TSMC technology. Layout design currently is done for the VCO and according to post layout simulation, the VCO shows -92dB/Hz phase noise at 1MHz offset from the center frequency. The simulation results indicate 11.1mW power consumption using fractional divider.

Speaker: Nina Parkalian (Forschungszentrum Jülich, GmbH)

10:00 - 13:53 Ausstellung

10:00 CAEN-Produkte 2h00'

...

Speaker: Nico v. Düring (CAEN GmbH)

- 10:01 **Test- und Meßtechnik von Tektronix und Keithley** 1h59' Speaker: Holger Baessler (CALPLUS)
- 10:03 Hochspannung 1h57

Hochspannung

		Speaker: Maik Donix (ISEG Spezialelektronik GmbH)
	10:04	High Speed Digitizer 1h56'
		Speaker: Hans Dieter Spelthann (Keysight Technologies S.A Acqiris Operation)
	10:05	National Instruments - FPGA Technologie 1h55' Ansatz für FPGA-basiertes Design bei NI
		Bisher konnten nur die Anwender FPGA-Technologie nutzen, die über fundiertes Wissen im Bereich digitales Hardwaredesign verfügten. Der verstärkte Einsatz anspruchsvoller Systemdesignwerkzeuge wie NI LabVIEW vereinfacht auch die FPGA-Programmierung, da neue Technologien grafische Blockdiagramme und sogar C-Programmcode in digitale Hardwareschaltungen konvertieren können. Alle NI-FPGA-Hardwareprodukte beruhen auf einer rekonfigurierbaren I/O-Hardwarearchitektur (RIO) mit leistungsstarken Fließkommaprozessoren, rekonfigurierbaren FPGAs und modularer I/O. Die RIO-Hardware von NI ermöglicht in Verbindung mit der Software für das Graphical System Design, NI LabVIEW, eine vereinfachte Entwicklung komplexer Steuer-, Regel-, Überwachungs- und Prüfanwendungen sowie kürzere Markteinführungszeiten.
		Speaker: Christian Menzel (National Instruments)
	10:06	MTCA.4 Starter Kits 1h54' By several requests from "NEW" MicroTCA Users powerBridge Computer offers complete integrated & tested MTCA.4 Starter Kits. These system will have all necessary cables, adapter and filler modules, as well as an installed Ubuntu 14.04 LTSto start immideately.
		In addition powerBridge Computer can offer consultancy services for new product and system designs for the HEP community.
		Speaker: Kay Klockmann (powerBridge Computer)
	10:07	Professional Power Supplies 1h53'
		Schulz-Electronic ist führender Anbieter von professionellen Stromversorgungen - vom klassischen Herstellerprodukt bis hin zur hochspeziellen Sonderlösung.
		Speaker: Michael Neeb (Schulz-Electronic)
	10:08	MTCA.4 Digitizer und assoziierte Rear Transition Module 1h52'
		Struck wird den aktuellen Stand der SIS8300 10 Kanal 125 MSPS 16-bit Digitizer Familie und der zugehörigen RTMs (Rear Transition Modules) für den Einsatz im Beschleuniger- und anderen Bereichen zeigen. Darüberhinaus stellen wir die 2 Kanal 1.6 GSPS 12-bit PCI Express SIS1332 Lösung mit optionalem Einkanal 3.2 GSPS Betrieb vor.
		Speaker: Kirsch Matthias (Struck Innovative Systeme GmbH)
	10:09	Stromversorgungen 1h51'
		Stromversorgungen
		Speaker: Thomas Berner (W-IE-NE-R Plein & Baus GmbH)
10:00 - 11:00	Kaffee	Dienstag
12:00 - 13:00	Dienst 12:00	ag-2: Elektronik für Beschleuniger I
		ausgefallen
	12.30	Machine Distoction System for VEEL and ELASH II 201
	.2.00	For the operation of a machine like the 3 km long linear accelerator XFEL at DESY Hamburg, a safety system keeping the beam from damaging components is obligatory. This machine protection system (MPS) must detect failures of the RF system, magnets, and other critical components in various sections of the XFEL as well as monitor beam and dark current losses, and react in an appropriate way by limiting average beam power, dumping parts of the macro-pulse, or—in the worst case—shutting down the whole accelerator. It has to consider the influence of various machine modes selected by the timing system. The MPS provides the operators with clear indications of error sources, and offers the possibility to mask any input channel to facilitate the operator of the machine. In addition, redundant installation of critical MPS components will help to avoid unnecessary downtime. This document summarizes the requirements on the machine protection system and includes plans for its architecture and for needed hardware components. Speaker: Sven Karstensen (DESY)
13:00 - 13:45	Mittag	essen Dienstag
14:00 - 15:00	Dienst 14:00	ag-3: Elektronik für Beschleuniger II General Machine Timing @ FAIR: Status 20' The FAIR facility involves a long chain of accelerators which need to be tightly synchronized. This is achieved by the General Machine Timing (GMT) system, a distributed event generation system based on the notion of time. Time synchronization is achieved by using White Rabbit (WR), a fully deterministic Ethernet-based field bus for clock transfer and synchronization. The key components of the GMT are a so-called Data Master (DM) that schedules actions by broadcasting messages, a WR network and Timing Receiver (TR) nodes executing machine relevant
		 The primary tasks of the timing system are the following. Time-Synchronization of ~2000 - 3000 nodes with sub-ns accuracy over fiber lengths of up to 2 km. Distribution of TAI counters with ns accuracy. Generation of timing events for synchronization of equipment. Provide infrastructure for common services of the accelerator (Post Mortem, Interlock,) and FAIR experiments (time stamps,). Speaker: Dietrich Beck (GSI)

	The reference and clock distribution module for the europen XFEL is an MTCA.4 based, double-full size, full width module located in Slot 15 on the rear side of a standard MTCA.4 crate. The module makes use of the RF backplar connectivity and delivers 22 differential LVPECL clocks in the range from 10 MHz up to 250 MHz. The LO frequent range spans from 700 MHz up to 6 GHz and is distributed over the RF backplane to 9 slots (4-12).
	Speaker: Uros Mavric (DESY) Material: Slides
15:00 - 18:00	Exkursion Location: Rundfunkstadt
18:00 - 20:00	Abendessen Dienstag Location: Restaurant Seeblick
Wednesday	04 March 2015
08:30 - 10:10	Mittwoch 1: Steuerung und Kontrollen 08:30 Das Steuerungssystem des MST, ein 12m-Cherenkov-Teleskop 20' Im Rahmen des internationalen Großprojekts "Cherenkov Telescope Array' (CTA) arbeiten derzeit über 1000 Wissenschaftler aus 25 Ländern zusammen. Innerhalb dieses Projektes werden drei Teleskopgrößen mit 4 m, 12 und 24 m Durchmesser realisiert. Die Hauptaufgabe der Teleskope liegt in der indirekten Erfassung von Gammastrahlen auf der Erdoberfläche.
	Das DESY Zeuthen entwickelt in Zusammenarbeit mit anderen Instituten in Europa und Südamerika, ein Cherenko Teleskop mit einem Spiegelträger von 12m Durchmesser. DESY Zeuthen übernimmt hier die Verantwortung für der Entwurf und den Bau der mechanischen Struktur, der Antriebs- und Steuerungstechnik, sowie der Auslegung der Sicherheitssysteme.
	Durch das DESY Zeuthen wurde ein MST-Prototyp in Berlin-Adlershof errichtet. Am Prototyp konnten entworfene Antriebskonzepte integriert und durch Messungen auf ihre Funktionstüchtigkeit getestet werden. Die Schwingungsanalyse, mittels spezieller Beschleunigungssensoren und einer eigens dafür geschriebenen Software zur Datennahme, führte zu einer Optimierung der Lagemessung und im Weiteren zur Verbesserung der Positionserkennung. Ein integriertes Structure-Health-Monitoring wurde erfolgreich getestet und soll fester Bestandteil der Serienproduktion werden. Im Steuerungssystem des Teleskops ist durch das automatische Umschalten auf alternative Stromnetze oder eine USV ein sicherer Betrieb zu jeder Zeit gewährleistet.
	Speaker: Ronny Sternberger (DESY Zeuthen)
	08:55 Lüftersteuerung für VDC-Kammern am Versuch CMS (CERN) 20' Zur Untersuchung von Gas, dass bei CMS verwendet wird, werden Drift-Kammern eingesetzt. Die Umgebungsluft dieser Driftkammern muss konstant gehalten werden. Dazu wurde eine Lüftersteuerung basierend auf einer Standard-Interfacekarte (Eigenentwicklung der Elektronikwerkstatt) mit einem Tablet-PC aufgebaut. Die Software wurde mit VisualBasic erstellt.
	Speaker: Franz Peter Zantis (RWTH-Aachen)
	09:20 Implementierung eines TANGO-Servers zur Anbindung des Mythen-Detektors beim Experiment GALAXI 20' Das Jülich Centre for Neutron Science (JCNS) des Forschungszentrums Jülich betreibt in der Forschungs- Neutronenquelle Heinz-Maier-Leibnitz (FRM II) der Technischer Universität München (TUM) in Garching verschiedene Neutronenstreuexperimente. Der Institutsbereich Systeme der Elektronik (ZEA-2) arbeitet als Systemhaus und Technologielieferant mit zum Teil erheblichen Eigenentwicklungen in Hardware und Software für das JCNS.
	Bei jedem Experimentsystem sind mehrere Geräte wie Netzteile, Motoren, Detektoren, Zählerkarten oder Blenden Einsatz und müssen vom Experimentator in vollem Umfang bedient werden können. Zur Steuerung dieser werden daher zuallererst Server benötigt, die für die Kommunikation mit dem jeweiligen Gerät verantwortlich sind. Auf die bereitgestellten Funktionen dieser Server greifen die Programme, die von den Experimentatoren bedient und mit denen die Systeme gesteuert werden, zu.
	An das Experiment GALAXI soll nun ein weiterer Detektor - der Mythen-Detektor - angeschlossen werden, damit zukünftig bei Messungen größere Streuwinkel erfasst werden können. Da zur objektorientierten Instrumentensteuerung der Neutronenstreuexperimente im JCNS das Kontrollsystem TANGO verwendet wird, mu der Server für den neuen Detektor unter der Verwendung dieses Systems in der Programmiersprache C++ entwic werden. Als Schnittstelle zur Kommunikation wird dabei das TCP/IP-Protokoll dienen.
	Im Vortrag werden das Röntgenstreuexperiment GALAXI sowie die Implementierung des TANGO-Servers zur Anbindung des Detektors und eines Simulationsservers zu Testzwecken vorgestellt. Die dadurch zur Verfügung gestellten Funktionalitäten als auch weitere darauf aufbauende Projekte werden erläutert.
	Speaker: Alexander Steffens (Forschungszentrum Jülich GmbH)
	09:45 PiLC, ein flexibler Controller für Steuer- und Messaufgaben mit FPGA-Performance 20'
	Speakers: Tobias Spitzbart (DESY) , Horst Zink (DESY)
10:20 - 10:30	Gruppen-Foto
10:30 - 11:00	Kaffee Mittwoch
11:00 - 13:00	Mittwoch-2: Detektoren und Geräte 11:00 Messung wichtiger Strahlparameter des LHCs mit Diamantsensoren 20' Zwei Detektoren mit jeweils 4 Einkristall-Diamantsensoren auf beiden Seiten des Wechselwirkungspunktes im Experiments CMS dienten in der ersten Betriebsperiode des LHCs am CERN zur Übewachung der

		wurden die Raten von Strahluntergrund und Teilchen aus Proton-Proton-Wechselwirkungen bestimmt. Überdies wurden entlang des Beschleunigerrings 4 weitere Mess-Stationen mit gleicher Technologie installiert und betrieben. Nach dem überaus erfolgreichen Einsatz wurden die Detektoren im Experiment CMS während des gegenwärtigen Technischen Stopps des Beschleunigers bedeutend erweitert. Jeder Detektor enthält numehr 12 Sensoren, unterteilt in jeweils zwei Pads. Neu entwickelte Front-End-ASICs mit sehr kurzen Ausgangssignalen wurden entwickelt und in strahlungsfester 130_nm-CMOS-Technologie hergestellt. Im Januar 2015 wurden die neuen Detektoren im Experiment CMS eingebaut. Der Vortrag beschreibt ihr Messprinzip, die Sensoren und den Aufbau des erweiterten Systems, das sowohl Untergrund- als auch Luminositätsmessungen erlaubt.
		Speaker: Wolfgang Lange (DESY Zeuthen)
	11:30	ATLAS Strip Tracker Upgrade: Recent Developments for the Electronics 20'
		Speaker: Marcel Stanitzki (DESY)
	12:00	Flexibles elektromagnetisches Aktuatorsystem für die Turbulenzforschung 20'
		Im Rahmen der DFG-Forschergruppe FOR1779 ,Aktive Widerstandsreduktion durch Wellen-förmige Oberflächenoszillation' wurde ein neuartiges leistungsstarkes elektromagnetisches Aktuierungssystem entwickelt. Dieses ermöglicht die Erzeugung von transversalen Oberflächenwellen auf einer bis zu 0.5 mm starken Aluminiumplatte in einem flexiblen Amplitudenbereich von 45 µm bis 1 mm. Dabei können mit diesem ersten Prototyp minimale Wellenlängen von 4 cm mit Frequenzen von bis zu 100 Hz generiert werden. Mit diesem Aktuatorsystem konnte erstmals die Verringerung des turbulenten Reibungswiderstandes über einem flächigen Versuchsaufbau experimentell nachgewiesen werden. In dem Vortrag werden der Aufbau des Aktuatorsystems und die ersten Windkanalexperimente vorgestellt. Zum Abschluss wird die Weiterentwicklung des Systems im Rahmen der zweiten Förderperiode der Forschergruppe FOR1779 skizziert.
		Speaker: Michael Schiek (ZEA-2, Forschungszentrum Jülich GmbH)
	12:30	Prototyp Entwicklung für das CALICE Analoge Hadronische Kalorimeter 15'
		In der CALICE Kollaboration werden neue Kalorimeterkonzepte für den International Linear Collider (ILC) entwickelt, in Prototypen realisiert und im Teststrahlbetrieb untersucht. In diesem Beitrag wird die Entwicklung verschiedener Ausbaustufen von Prototypen für das analoge hadronische Kalorimeter beschrieben, welche auf der Verwendung von neuartigen Silizium Photomultipliern als Detektoren in Szintillatorplättchen basieren. Neben der analogen Front- End Elektronik wird auch die digitale Steuerung und Datenerfassung erläutert, sowie die besondere Betriebsart "power pulsing", bei der zur Reduktion der Verlustleistung die Front-End Elektronik mit hoher Rate ein- und ausgeschaltet wird.
		Speaker: Mathias Reinecke (DESY)
	12:50	Abschluss und Ausblick 10' Speaker: Peter Göttlicher (DESY)
13:00 - 14:00	Mittag	jessen Mittwoch
14:00 - 15:30	Works	shop 1
15:30 - 16:00	Kaffee	e Workshop
16:00 - 17:00	Works	shon 2
10.00 17.00	WOIN:	

Inhaltsübersicht
 Forschungsschwerpunkte Standort Großprojekte
 Struktur f ür die Arbeit an Elektronikentwicklung/-bau Hier gibt es nur eine Übersicht. Details folgen in Vortr
Peter Göttlicher SEI 2015 2.März 2015 Page 2

Infrastrukturgruppen	
> Elektronik	1 =0.
 Entwicklung Werkstatt Ausbildung 	
> Mechanik	Line in the second
KonstruktionWerkstattAusbildung	
> Rechenzentrum	
 High-Performance-Computing, TIER-Zentrum für IceCube und LHC Allgemeiner Service (PC's, Drucker etc.) Array Control Software für CTA Embedded & Real-Time Systeme für PITZ 	
> Allgemeine Dienste	
 Verwaltung, Bibliothek, Experimente-Support, Technische Infrastruktur 	
Frank Tonisch DESY in Zeuthen: Überblick über aktuelle Projekte SEI-Tagung	vom 2.März- 4.März.2015

Projektsteuerung d	lurch ERP-System orderbase
> Auftraggeber füllen einen We	erkstattauftrag aus:
Cs werden Arbeitsgange gep ermittelt und in ERP-System	Image: Source interaction of the full guild get of the full get of

BEVE TX. AV Numgenetiantial State (LABER) Überwiegend schon automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch generiert durch data de ne hans to financie interventionen automatisch genentionen automatisch genentinterventionen automatis	
The fact and have a factor and factor for the facto	
an h Ruleman will be at law of 15 that is many at law of 15 that is ma	
Distribution Basistic	
Operation Description Description Description 2 0.000 0.00000000000000000000000000000000000	
201000 2010	
40703 40 4070 41 4070 41 407 41 40	
20203 G. Ansteinum, 1997, 1921, 2015, 1915, 1915, 1915 File a fairle forse, 5-001 Mc22021/1984 20203 G. Ansteinum, 1997, 1921, 1915, 1915, 1915, 1915 File a fairle forse, 5-001 File a fairle forse, 5-001 20203 G. Ansteinum, 1997, 1921, 1915, 1915, 1915 File a fairle forse, 5-001 File a fairle forse, 5-001 20203 G. Ansteinum, 1997, 1912, 1915, 1915, 1915 File a fairle forse, 5-001 Mc22021/1914 20203 G. Ansteinum, 1997, 1912, 1913, 1913, 1913 File a fairle forse, 5-000, 1914, 1914 Mc22021/1914 20203 G. Ansteinum, 1997, 1913, 1913, 1913 File a fairle forse, 5-000, 1914, 1914 Mc22021/1914	
20203 C1 Knohmener, Yudy 1711, 2019, Vol. 408 Tays the based offent LAKC2017100a F 20203 C0 Knohmener, Yudy 2012, DN, Yudy 2019, Tays Vol. 408 Tays the based offent LAKC2017100a F 202031 C4 Knohmener, Yudy 2012, DN, Yudy 2019, Tays Vol. 408 Tays three based offent LAKC2017100a F 202031 C4 Knohmener, Yudy 2012, DN, Yudy 2019, Tays 2019 Tays three based offent LAKC2017100a F 202031 C4 Knohmener, Yudy 2019, DN, Yudy 2019, DN, Yudy 2019, Tays 2019, DN, Yudy 2019, ND, Yudy 2019,	
20183 C8 Kandenandi 1004/ 1710 295 197 295 197 298 197 299 198 199 199 199 199 199 199 199 199 1	
ALC: N.T. STORTED REV. NO. AND ALC: DO NO. CONT DOCCOMMING	
201127 C11 Montemation (%2,000,2011) 10,201 M (%2,000) M (%2,10,000) (%2,00	
20114 C14 Kindenakti 1907 003.01% 00.499 AVG mit 000204131472A	
> Diese werden in ERP-System importiert:	
And the second sec	
1 F2 ANRI 1 F2 P2 61 7 2000 Deve 51 V2 360 Tableston	
Concernent and Concernet and Concernent and Concernent and Concernent and Co	eburg
Construction of the state of	ellung weber, 4.7pf, 0003, 60 web, 1204, 0402, 1%, 1
Control of the second sec	elburg mater: 4.7pf 2003, s0 und: 120x; 0462; 1%, and: 48/k; 0015; 1%,
Constraints and the second secon	ellurig texter, 4.7pF, 0803, 40 texte, 120x, 0402, 1%, texte, 44/K, 0805, 1%, 1 texte, 4107, 0402, 1%, 1 texte, 41% 0802, 1%, 1
Discussion Discussion <thdiscussion< th=""> Discussion Discussi</thdiscussion<>	whurig mater: 4.7pF 0003, 10 mard: 120x, 0402, 1%, mard: 40% 0005, 1%, mard: 5007, 0402, 1%, 0 mard: 620, 0802, 1%, 0
Constraints of the second s	whung mate: 4 Typf: 0003, s0 mand: 120x; 0402; 1%, mand: 120x; 0402; 1%, 10 mand: 120x; 0402; 1%, 05 mand: 1%; 0402; 1%, 53 mand: 1%; 0402; 1%, 63
Control Control Control Description Description Description Description All Description Control	whung mater 4 7pd 5003, s0 mant 120x 6482 1% (mant 40% 5005, 1%, 1 mant 100-6492 1%, 0 mant 100-6492 1%, 53 mat 1x, 6402 1%, 53 mat 1x, 6402 1%, 53 mat 1x, 6402 1%, 53

Shaghayegh Arab | Flip-Chip-Bonding am DESY | 2.3.2015 | Seite 6

	An Werkstatt	Typ V	Verkstattauftrag	Nr. 03900 Externe Kosten	72 Pos_	Har von der Werkstat
	ZE	Gesambeert	e		sofort	Voige
0	Bedarf für		SAP Text (max. 40 Zeic	ten)	000	ZE
	Bau, Erweiterung V von Anlagen, Projekten F	Vartung, Instandhaltung, Reparatur	Ce - ze	i citiziei	ung	Hauptautrag
	Ersatz, Verbrauch 🕅 Er	ntwicklung, Sonstiges				
	Kostenstelle Auftrag	zur Weiterberechnung an:				gestern
-	Projekt, Anlagen Nr.					Geplantes Arbeitsende mook schnell
	05 5 (10)		1.2.1.1	1	10.	Geptante Interne Kosten
	CE - Zertifu	zierung ein	er nochst	kompuzier	reen	am besten keine
	Kiste, von	der nieman	d weiß, u	oas sie		wenn's sein muß.
	eigentlich t	tut.				Geptante Gesamtkosten
0	Unterlagen	sind gehein	n, Geld nic	ld vorha	nden.	E
0						Contraction of Provident
10						

400G Ethernet	40G/100G Ethernet	25G Ethernet	10 G Ethernet	Gigabit Ethernet	10/100 Ethernet
400G Ethernet	Integrated 100G Ethernet	25G Ethernet	10G EMAC	Tri-mode Ethernet Soft IP (Ethernet AVB)	AXI Ethernet Lite
	40G/100G EMAC		AXI 10G Ethernet with optional 1588	AXI Ethernet with optional 1588	
			10Gigabit Ethernet PCS/PMA with FEC/Auto- Negotiation (10GBASE-KR)	QSGMII	
			10 Gigabit Ethernet PCS/PMA(10GBASE-R)	Ethernet 1000BASE-X PCS/PMA	
			RXAUI		
			XAUI		
kein Tri-r	Protokollst node MAC	apel (\$4000)	XAUI		

2.	Umsetzu	ing			
		sundon			
UL		sungen			
	Jahr Autor	· D:	atonrato	NOTIZ	
[1]	20051 öfar	en	105 60 MHz	keine Tests angegeben	
[2]	2005 Dolla	s	77.00MHz	keine Tests angegeben	
[3]	2008Kühn	0	49.31 MB/s	Embedd PPC on Virtex4	
[4]	2008Uchic	ta	118.63MB/s	TCP	
[5]	2009Herrr	nann	125.00MHz	keine Tests angegeben	
[6]	2010Alach	niotis	115,00MB/s	OpenCores Project (Xilinx EMAC)	
[7]	2011 Liebe	er	15,00MB/s	OpenCores Project	
[8]	2013Sasi		112,82MB/s	Fragwürdige Testergebnisse (1us IFG Jitter)	
-	nur [4] er	reicht m	nax. Datenra	ate	
- Tests schlecht dokumentiert					
-	Logikvert	orauch s	schwer verg	leichbar (verschiedene Plattformen)	
lite 11			Phi	Mitglied der Helmholtz-Gemeinschaft lipp Födisch I Zentralabteilung Forschungstechnik I Abteilung Instrumentierung I www.hzdr.de	

2. Umsetzung Protokollstape	I			
		UDP	ICMP	
[ARP	I	>	
[ETHEF	RNET		
MDIO	GMII MAC RX	GMII M	IAC TX	
	РНҮ			
Seite 12			DRESDEN O F	-Gemeinschaft

2. Umsetzung Sendemodul
Ethernetpaket im Chipscope
InstSpat X 0 3 2 7 12 17 22 27 22 37 42 47 52 57 42 47 72 77 12
+u,
vision;ft 0 -
Verarbeitungslatenz:
(1) Eingangsflipflop : 1 lakt (2) Präambel : 8 Takte
(3) CRC : 4 Takte
(4) Framegap : einstellbar (11 Takte)
Anforderung: maximale Sendegeschwindigkeit (UDP Schicht)
-> Lückenloser Datenstrom durch Protokollschicht
-> Datenflussmodel
Seite 18 Mitglied der Helmholtz-Gemeinschaft Philipp Födisch I Zentralabteilung Forschungstechnik 4. Abteilung Instrumentierung I www.badt.de

2. Umsetzu	ng						
Protokollsta	apel – Pak	et FIF0	C				
	, <u></u>						
w_clk	Length	8 Bit	8 Bit	8 Bit	8 Bit		r_clk
w_en	1	8 Bit	8 Bit	8 Bit	8 Bit		r_en
w data	M	8 Bit	8 Bit	8 Bit	8 Bit	1	l ∢
	Ň	8 Bit	8 Bit	8 Bit	8 Bit	1	
32 w length en		8 Bit	8 Bit	8 Bit	8 Bit	1	packet_length
		8 Bit	8 Bit	8 Bit	8 Bit	1	└►
	1	8 Bit	8 Bit	8 Bit	8 Bit	1	fifo_empty
	I I	8 Bit	8 Bit	8 Bit	8 Bit	1	fifo_full
	!		0.8%	0.8%	0 81	J	¦►
	Length	8 Bit	8 Bit	8 Bit	8 Bit		1
	I I	8 Bit	8 Bit	8 Bit	8 Bit		1
	1	8 Bit	8 Bit	8 Bit	8 Bit		, ,
	WP	8 Bit	8 Bit	8 Bit	8 Bit	■ RP	
	۱ <u> </u>						!
Seite 28		Ph	ilipp Födisch I Z	entralabteilung	Forschungstech	Mite	glied der Helmholtz-Gemeinschaft

66

1 0			
- user@ma119 ~/Proje	te/IDP Server?		
Unicast coply from 102 16		0 097mc	
Unicast reply from 192.10	8.0.15 [40.08.55.05.50.05]	0.907HS	
Unicast reply from 192.10	8 0 15 [40.08.55.05.50.05]	0.841HS	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.962ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.814ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.885ms	
Unicast reply from 192.16	8.0.15 40:D8:55:05:50:05]	0.937ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.769ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.864ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.939ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.725ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.883ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.706ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.802ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.862ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.914ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.740ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.829ms	
Unicast reply from 192.16	8.0.15 [40:D8:55:05:50:05]	0.909ms	
Unicast reply from 192.16		0.95505	
Sent 122 probes (1 broade	$(c_1) = (c_1) + (c_2) + (c_3) + (c_3$	0.76505	
Deceived 123 response(s)			
user@ma119:~/Projekte/IDP	Server2\$		
USEI WHUIIS. "IFIOIEKLE/ODF			

3 Performance Test
3. Tenomance rest
Ping Test
8 - 0 user@mg119: ~/Projekte/UDP_Server2
64 bytes from 192,168.0.15: icmp reg=5982 ttl=64 time=0.582 ms
64 bytes from 192.168.0.15: icmp_req=5983 ttl=64 time=0.340 ms
64 bytes from 192.168.0.15: icmp reg=5984 ttl=64 time=0.575 ms
64 bytes from 192.168.0.15: icmp reg=5985 ttl=64 time=0.327 ms
64 bytes from 192.168.0.15: icmp_req=5986 ttl=64 time=0.327 ms
64 bytes from 192.168.0.15: icmp_req=5987 ttl=64 time=0.307 ms
64 bytes from 192.168.0.15: icmp_req=5988 ttl=64 time=0.331 ms
64 bytes from 192.168.0.15: icmp_req=5989 ttl=64 time=0.545 ms
64 bytes from 192.168.0.15: icmp_req=5990 ttl=64 time=0.481 ms
64 bytes from 192.168.0.15: icmp_req=5991 ttl=64 time=0.505 ms
64 bytes from 192.168.0.15: icmp_req=5992 ttl=64 time=0.495 ms
64 bytes from 192.168.0.15: icmp_req=5993 ttl=64 time=0.298 ms
64 bytes from 192.168.0.15: icmp_req=5994 ttl=64 time=0.514 ms
64 bytes from 192.168.0.15: icmp_req=5995 ttl=64 time=0.518 ms
64 bytes from 192.168.0.15: ccmp_req=5996 ttl=64 time=0.490 ms
64 bytes from 192.168.0.15: 1cmp_req=599/ ttl=64 ttme=0.466 ms
64 bytes from 192.108.0.15: 1Cmp_req=5998 ttl=64 ttme=0.452 ms
64 bytes from 192.108.0.15: 1Cmp_req=5999 ttl=64 time=0.462 ms
64 bytes from 192.108.0.15: tcmp_req=0000 ttl=64 tlme=0.400 ms
102 168 A 15 pipe statistics
122.100.0.13 prog statistics
rtt min/ava/max/mdv = 0.250/0.412/0.604/0.075 ms
user@mg119:-/Projekte/UDP Server25
ping 102 168 0.15 = 0.6000 + 0.010
ping 192.168.0.15 – c 6000 – i 0.010
e 38 Mitglied der Helmholtz-Gemeinschaft

Podule samp_inst seeth_inst	nsetzu hesere	ng port 179/179 144/144 12/12 67/67 44/44	511ce Reg 480,490 378,378 0.0 136,256 148,756 148,756	UTs 484/454 459/458 16/16 151/151 121/121	LUTRAN 0/0 0/0 0/0 0/0 14/26 0/0	8840/FIF0 9/0 9/0 9/0 9/0 9/0	05P48A1 040 040 040 040 040 040	8UFG 0/0 0/0 0/0 0/0 0/0	Burto 0/0 0/0 0/0 0/0	BUFR 0/0 0/0 0/0 0/0	DOH 0/0 0/0 0/0 0/0	PLL_ADV 0/0 0/0 0/0 0/0 0/0	Full Hisrarchiel Rame Top/Soc (AFAr_Lost Top/Soc (AFAr_Lost Top/Soc (AFAr_Lost) fort Top/Soc (AFArt_r_int)
++icmp_inst ++ip_inst ++ip_mux_inst ++edio_i0		64/64 225/225 45/45 38/38	169/169 547/547 0/0 80/80	118/118 575/575 101/101 74/74	24/24 0/0 0/0 0/0	1/1 0/0 0/0 0/0	1 0/0 1 0/0 1 0/0 1 0/0	0/0 0/0 0/0 1/1	0/0	8/0 8/0 8/0 8/0	0/0	0/0	top/box_i0/icmp_inst top/box_i0/ip_inst top/box_i0/ip_ws_inst top/box_i0/ip_ws_inst top/box_i0/ip_ws_inst
++++fast_fifo_inst ++++zpu_fif0_inst		58/58 53/53	107/107 101/101	157/157	0/0	0/22 18/18 4/4	0/0 0/0 0/0	2/0 0/0	0/0	0/0 0/0	0/0 0/0	0/0	top/box_t0/ubp_inst top/box_t0/udp_inst/fest_fifo_inst top/box_t0/udp_inst/zpu_fifo_inst
		1217 6822	2555 54576	3162									

Z. Umsetzung			
UDP Checksu	m (1472 F	Pavload)	
8 - 0 eth1 [Wireshark 1.6.7]			
File Edit View Go Capture Analyze Statis	stics Telephony Tools Internal	Help	
🗑 🗑 🞯 🗟 🗑 💆 🗙 💪		🛓 📃 🖷 O 🗆 O 🖾 🕷 🕅 🕵 🗙 🔹	
Filter:	• Expression 0	lear Apply	
No. Time Source	Destination Protoco	l Length Info	
79943 1.007814 192.108.0.15	192.168.0.1 UDP	1514 Source port: blackjack Destination port: 1024 1514 Source port: blackjack Destination port: 1024	
79945 1.007820 192.168.0.15	192.168.0.1 UDP	1514 Source port: blackjack Destination port: 1024	
79956 1.008032 192.168.0.15	192.168.0.1 UDP	1514 Source port: blackjack Destination port: 1024	
79957 1.008034 192.168.0.15 ^{1d}	192.168.0.1 UDP	1514 Source port: blackjack Destination port: 1024	
79959 1.008039 192.168.0.15	192.168.0.1 UDP	1514 Source port: blackjack Destination port: 1024	
79960 1.008041 192.168.0.15 79961 1.008044 192.168.0.15	192.168.0.1 UDP 192.168.0.1 UDP	1514 Source port: blackjack Destination port: 1024 1514 Source port: blackjack Destination port: 1024	
79971 1.008078 192.168.0.15	192.168.0.1 UDP	1514 Source port: blackjack Destination port: 1024	
79972 1.008080 192.168.0.15 79973 1 008083 192 168.0.15	192.168.0.1 UDP	1514 Source port: blackjack Destination port: 1024 1514 Source port: blackjack Destination port: 1024	
Frame 79943: 1514 bytes on wire (12112 b)	its), 1514 bytes captured (12	112 bits)	
Ethernet II, Src: 40:d8:55:05:50:05 (40: Internet Protocol Version 4, Src: 192.16	d8:55:05:50:05), Dst: Concurr 8.0.15 (192.168.0.15), Dst: 1	e_03:68:c5 (00:40:9e:03:68:c5) 92.168.0.1 (192.168.0.1)	
* User Datagram Protocol, Src Port: blackj	ack (1025), Dst Port: 1024 (1	024)	
Destination port: 1024 (1024)			
Length: 1480			
<pre>> Checksum: 0x41b2 [correct] > Data (1472 bytes)</pre>			
Data: 972b3d18972b3d19972b3d1a972b3d1b9	972b3d1c972b3d1d		
[congen. wrie]			
0000 00 40 9e 03 68 c5 40 d8 55 05 50 05	08 00 45 00 .@h.@. U.P.	E.	1
0020 00 01 04 01 04 00 05 c8 41 b2 97 2b	3d 18 97 2b A+	*	
0030 3d 19 97 2b 3d 1a 97 2b 3d 1b 97 2b 0040 3d 1d 97 2b 3d 1e 97 2b 3d 1f 97 2b	3d 1c 97 2b =+=+ =+ 3d 20 97 2b =+=+ =+	5.5* 1.5*	1
8050 3d 21 97 2b 3d 22 97 2b 3d 23 97 2b 8060 3d 25 97 2b 3d 26 97 2b 3d 27 97 2b	3d 24 97 2b =1.+=".+ =#.+ 3d 28 97 2b =5.+=6.+ ='.+	i\$.+ ={.+	
0070 3d 29 97 2b 3d 2a 97 2b 3d 2b 97 2b 0080 3d 2d 97 2b 3d 2e 97 2b 3d 2f 97 2b	3d 2c 97 2b =).+=*.+ =+.+	ε, .+ -0 →	
0090 3d 31 97 2b 3d 32 97 2b 3d 33 97 2b	3d 34 97 2b =1.+=2.+ =3.+	4.+	
00b0 3d 39 97 2b 3d 3a 97 2b 3d 3b 97 2b 00b0 3d 39 97 2b 3d 3a 97 2b 3d 3b 97 2b	3d 3c 97 2b =9.+=:.+ =;.+	ic,+	
eede 3d 41 97 2b 3d 3e 97 2b 3d 3T 97 2b eede 3d 41 97 2b 3d 42 97 2b 3d 43 97 2b	0 30 40 97 20 ==.+=>.+ =?.+ 0 30 44 97 2b =A.+=B.+ =C.+	ep.+ .0.+	
00e0 3d 45 97 2b 3d 46 97 2b 3d 47 97 2b 00f0 3d 49 97 2b 3d 4a 97 2b 3d 4b 97 2b	3d 48 97 2b =E.+=F.+ =G.+ 3d 4c 97 2b =I.+=J.+ =K.+	H.+ =L.+	
0100 3d 4d 97 2b 3d 4e 97 2b 3d 4f 97 2b 0110 3d 51 97 2b 3d 52 97 2b 3d 53 97 2b	3d 50 97 2b =M.+=N.+ =0.+ 3d 54 97 2b =Q.+=R.+ =S.+	iP.+ iT.+	
1717 IL 1717 IL 1717 IL 1717 IL 17		ad .	
eite 44			Mitglied der Helmholtz-Gemeinschaft
		Philipp Födisch I Zentralabteilung Forschur	ngstechnik Abteilung Instrumentierung www.hzdr.de

The Time S	Stamp and the Reference Clock Offset.	Katruber Institut für Technologie
Tin LSB The T	ne_Stamp and the Offset of the Ref_Clk_Out specify time of reco of the time stamp is 10ns. Ref_Clk_In frequency is 100MHz. offset specifies position of 100MHz clock in respect to the last ce Time of the ADCSample#1024 is calculated as follows (Time_Stamp)*10n – Offset*0,250ns	rded event. Il of DRS4 chip.
	Accuracy of the time measurements is affected by several factors DWRITE delay and jitter Ref. Clk_In_delay and jitter 100MHz clock delay and jitter (in respect to an absolute external clock) Peak-to-peak error of the time measurement is about 1 ns. That agrees with fixed-pattern jitter declared by S.Ritt in one of	ⁱ his presentation.
14 26.07.2015	RTM Module based on DRS-4 waveform digitizing chip.	Institute für Prozessdatenverarbeitung und Elektronik

		Event Packet structure.		Karlaruher Institut für Technologie
	 Number of Time stamp Event Pack FPGA prov 	ADC samples in the event packet can be fixed of and Position of Reference Clk give absolute tets are received to the circular buffer built on ides a bottom address pointer of the buffer an	d or can change dynamically with length of der time of recorded signal the SDRAM memory of AMC module. d length of buffer filled with events.	ected signal.
		Bits 3116	Bits 150	
		Packet length (ADC Samples + 8)	Chip Nr (Bits 9,8), Channel Nr (Bits 30)	
		Time Stamp (6348)	Time Stamp (4732)	
		Time Stamp (3116)	Time Stamp (150)	
		ADC1	ADC2	
		ADC3	ADC4	
		ADC N-1	ADC N	
		Stop position of DRS4	Offset of Reference Clk	
18	26.07.2015	RTM Module based on DRS-4 waveform digitizing	chip. Institute für Prozessdaten	verarbeitung und Elektronik

PCIe re - 128 - 128	esources of the A 3,08 Mbytes PCIE address is 3 MBytes SDRAM is directly a module pagagage a gartter	AMC Module. required by the module. mapped. where CDMA explice	Karlsruher Institut für Technologie
- On - 8 re	chip 32KBytes RAM is availated and 8 write ports of the C	able. Sustomizable IP are used for steering AMC and RTM modules.	
Superuser PCI BAR2	0x000.0000-0x000.0FFF	PCIe configuration registers (normally are not accessed by users)	
	0x000.1000-0x000.1FFF	CDMA control registers (see Xilnx "LogiCORE IP AXI CDMA" User Guide) - with scatter-gather functionality - MSI is implemented	
	0x000.2000-0x000.2004	User Interrupt Mask and Interrupt Request registers	
User PCI BAR1	0x0000.8000-0x0000.8FFF	Customizable IP : - AMC reset register (reset AMC FPGA, reset RTM) - AMC Interrupt Enable / Request register - Event Buffer Control / Status registers - Tx FIFO write port - Rx FIFO read port - Tx / Rx Status registers	
	0x0000.0000-0x0000.7FFF	On chip RAM 32 KBytes	
SDRAM PCI BAR0	0x0000.0000-0x07FF.FFFF	SDRAM 128MB - Circular Event Buffer	
26.07.2015			

Konturen

	mm	3,00	6,00	30,00	120,00	400,00	1000	,00
	fein	±0,05	±0,05	±0,10	±0,15	±0,20	±0,30)
	mittel	±0,10	±0,10	±0,20	±0,30	±0,50	±0,80)
	grob	±0,20	±0,30	±0,50	±0,80	±1,20	±2,00)
	sehr grob		±0,50	±1,00	±1,50	±2,50	±4,00)
lennwer	t	Innenradien		0,30 mm	1,00) mm	00	
	к	Konturelemente zueinander		< 0.10 mm	n ISO 2	768 m	-	
oleranze	n Ko	Konturelemente zum Bohrbild			≤0,10 mm ≤ 0,1	15 mm -		
	Ko	Konturelemente zum Leiterbild			≤0,15 mm	n ≤ 0,2	0 mm	-
	* Wähl	en Sie k	leinere F	Radien, To	leranzen L	und Abstär	nde nur	

hmp

other layout-elements lines, pads or copper areas

Via / Hole (drilled mechanical)

142
pcb-design / LASER-Vias

110 m 114 um 30 m Trainin 10 um 114 um 30 m Trainin 10 um 114 um 114 um 114 um

Abstand ca.	Prepreg	LASER Ø	Pad Ø
50 µm	1x106	85 µm	285 µm
50 µm	1x106	100 µm	300 µm
70 µm	1x1080	100 µm	300 µm
70 µm	1x1080	125 µm	325 µm
100 µm	2x106	125 µm	325 µm
100 µm	2x106	150 µm	350 µm
120 µm	106+1080	150 µm	350 µm
140 µm	2x1080	150 µm	350 µm

Pad Ø = LASER Ø + 200 µm

pcb Design / BGA`s

hmp

Gestaltung von Ball Grid Arry (BGA)

Durch den immer starkeren Einsatz von Bauelementen in BGA-Bautorm und eer daraus restlierenden Ernöhung der Packungsdichte wird immer wieder die Frage an uns als Leiterplattenhersteller gestellt: "Was für Strukturen sind realisierbar, was kann fertjungstechnisch und kostengünstig hergsstellt werden". In vielen Desprächen mit unseren Kurden haben wir festgestellt, dass es unterschiedliche Ansichten über die Größe von Landrig Pads, Stopplackfreimachung. Vol's und Fertigungstoleranzen gibt. In der nachfolgenden Tabele wird dargestellt, was aus heutiger Sicht realisierbar ist.

		Pitch-Abstand		1,270	1,000	0.800	0,500	hmp 0,50
	A	Landing-Pad		Ø 0,600	∅ 0,500	@ 0,400	Ø 0,25	0 0.260
	В	VIA (Bohrung)		∅ 0,300	Ø 0,250	0 0,200	Laservia Ø0,10	aser Ø 0,07
	С	Lötauge vom VIA in derAussenlage		∅ 0,600	Ø 0,550	@ 0,457	Ø 0,30)	0 0,260
	D	Stopplackfreimschung vom Landing-PAD		∅ 0,760	Ø 0,660	@ 0,533	Ø 0,330	Ø 0,260
lag	E	Stopplackfreimachu	ung vom VIA	Ø 0,450	∅ 0,400	@ 0,335	Ø 0	0
Sen	F	Maximale	einer Durchführung	0,200	0,180	0,127	0,075	0,080
IG I I	G	Leiterzugbreite bei	zwei Durchführungen	0,127				
	н	Minimaler Isolatonsabsand zwischen den Leiterzügen bei zwei Durchführungen		0,100	•	1.8	•	
	I	Minimaler Isolaton Leiterzug und Land	sabsand zwischen ing-Pad	0,158	0,158	0,136	0,087	0,080
	J	Laser VIA in Laudin	ng-Pad	,a	ja	ja	nein	ja
	С	Lötauge vom VIA in	derSignalinnenlage	Ø 0,650	∅ 0,600	@ 0,500	Ø 0,351	Ø 0,260
I D T	F	Maximale	einer Durehführung	0,200	0,146	0,400		0,080
	G	Leiterzugbreite bei	zwei Durchführungen	0,127				
	н	Minimaler Isolatonsabsand zwischen den Leiterzügen beizwei Durchführungen		0,100	1.02	2		
1	I.	Minimaler Isolaton Leiterzug und VA-I	sabsand zwischen Pad	0,133	0,127	0,100	0,100	0,080

hmp

hochwertig. modern. professionell

hmp

Zusammenfassung - Designregeln

Design-Element	Varserie / Serie	Kleinmengen
Bohrdaten (ggf. – Konturcaten)	EXCELLON oder Sieb & Meier mit Angaben zu Maßeinheit, Nullunterdrück Koordinatenart (absolut/incremen/al?) und Durchmessereinheit oder ODB++	ung, Vor- und Nachkommasiellen,
dk-Bohrungen		
 kleinster Bohr-Ø 	0,2 mm bei Aspect Ratio ≤ 1:8	
- SackBohrungen:	0,2 mm bei Aspect Ratio ≤ 1:1	
- größter Bohr-Ø	5,95 mm (größere Ø werden gefräst)	
LASER-Bohrungen	Ø 0,10,15 mm bei Aspect Ratio ≤ 1:1	
- Lötaugenrestring Außenlagen	min. 150 µm -> bei 50µm Fertig Restring auf der Leiterplatte	100 µm möglich
Innenlagen	min. 175 µm -> Bchrung auf der fertigen LP vollständig im IL-Lötauge	125 µm möglich
- LASER-Bohrungen Restring	min. 100 µm umlaufend Innen- und Außenlagen (large Window-Technologie	
- Isolation in Versorgungsinnenlagen	min. 275 µm umlaufend	225 µm möglich
 Ohne Lötauge/Antindung in Signalinnenlagen 	Abstand zu potentialfremden Leiterbildelementen min. 275 µm umlaufend	225 µm möglich
- DK ohne Lötauge in Außenlagen	Pad 100 µm umlaufend < Bohr-Ø. Abstand zu potentialfremden Leiterbildelen	menten min. 200 µm umlaufend
ndk – Bohrungen	Ø wie dk Bohrungen	
- für Tenting	min. 300 µm (zu Masseflächen) 250 µm (zu Pads/Tracks) umlaufend Cu-frei	Bohr-Ø max. 5,0 mm
 NDK-Bohrungen in Cu-Flächen 	75 µm umlaufend Cu-frei - extra Eohrarbeitsgang oder bohren auf Fräsmasc	hine
- NDK-Bohrungen mit Lötaugen	ohne Cu-Freimachung - extra Eohrarbeitsgang	
 in Innenlagen 	200 µm umlaufend Cu-frei	
Designdaten (auch Kontur)	GERBER 274x (extended GERBER) oder ODB++	
Leiterbild		
- Leiterzugbreite	min. 75 µm (bei 5 µm Basis-Cu) / von Kupferdicke abhängig	
 Isolationsabstand 	min. 75 µm (bei 5 µm Basis-Cu) / von Kupferdicke abhängig	
- "Wünsche":		
Elemente < 75 µm	sollten in den Daten nicht vorhanden sein	
Lötaugen & SMD-Pads	möglichst "geblitzte Daten" (im GERBER mit D3-Befehl)	
Abstände el. verbundener Elemente	> 75 µm (z.B. sog. "T"-Anbindungen / Slivers)	
Masseflächen	mit extra D-Code zeichnen	

Zusammenfassung - Designregeln

hmp

hmp

Design-Element	Vorserie / Serie					Kleinn	nengen
Stopplack							
Stegbreite	grün: min. 50 µm; nicht grün: 100µm						
Freimachung zum Leiterbild	grün: min. 35 µm; nicht grün: 75 µm						
Lötaugen & SMD-Freimachungen	"geblitzte Daten" (im GERBER mit D3-Befehl) bevorzugt						
Vias ohne Freimachung	werden mindestens mit Bohr-Ø freigemacht - sind al	so offer	oder wer	den durch	n extra Zudruck	mit Fotol	ack gefü
Abziehlack für Kunden							
Strukturbreite	mir. 2.5 mm						
Abzudeckende Elemente	mir. 0,35 mm umlaufend abgedeckt						
Abstand abzudeckende ↔ freizuhaltende Elemente	mir. 0,7 mm						
Zudruck von Bohrungen und Schlitzen	Max. 1,6 mm bis 1mm Schlitzbreite – 5mm Länge möglich						
Kennzeichendruck							
Strichbreite	mir. 0.17 mm / 0.13 mm (nur veiß)						
Abstand zu Lötilächen	mir. 0.2 mm						
Kerbfräsen	LP-Dicke 0,52,8 mm						
Abstand zu Leiterbildelementen	mir. 0,4 mm / von Kerbtiefe abhängig						
Abstand zu Stopplack	mir. 0,3 mm / von Kerbtiefe abhängig						
Sprungritzen	Auslauf ca. 10 mm - von Kerbtefe abhängig						
Fräsen							
Abstand zu Leiterbildelementen	mir. 0,2 mm in Innen- und Aussenlagen						
Abstand zu Stopplack	min. 0,1 mm						
WzØ	0,6 3,0 mm (in 0,1 mm-Schritten)						
		-			·		
dia hara l	Continuence Banal (Zupahaitta)	Nr.	Zu-Mal	ß (mm)	LP-Art	nutzbar	res Maß
ale nmp-	engungs Paner (Luschnitte):		x	Y		x	Y
		S1	456	606	DK / NDK	426	576
		M3	450	600	ML / SBL	418	570
						110	
		CIVI	523	025	ML / 550	493	292

SIN CC	MULAT DRNERS	ION RES	SULTS IN DI	FFERENT	D JÜL PROCESS	ICI
	Process corner	Control voltage@2GHz	Tunning range@27*	Tuning range@-22*	Tuning range@120*	
	TT	487mv	1.294GHz_3.209GHz	1.329GHz_3.367GHz	1.26GHz_2.99GHz	
	SS	326mv	986.2MHz_2.708GHz	992MHz_2.85GHz	980MHz_2.52GHz	
	FF	670mv	1.672GHz_3.794GHz	1.72GHz_3.9GHz	1.62GHz_3.54GHz	
	FS	455mv	1.322GHz_3.13GHz	1.36GHz_3.28GHz	1.27GHz_2.92GHz	
	SF	509mv	1.23GHz_3.261GHz	1.246GHz_3.43GHz	1.22GHz_3.028GHz	
03. Ma	arch 2015	INTE	GRATED PHASE LOCKE	D LOOP		8

Conclu	ision			
 The design technology 	n of an integer PLL and y.	fractional PLL has	been presented in 65	inm TSMC
		Integer divider	Fractional divider	
	Reference frequency	62.5 MHz	20MHz	
	Center frequency of oscillator	2GHz	2GHz	
	Division ratio	32	100	
	Lock time	1484ns	1546ns	
	Power consumption	18.47mW	30mW	
03. March 2015	INTEG	RATED PHASE LOCKE	ED LOOP	17

Latencies						
Besides already travelling bunches	6	Origin of an alarm	Distance from	Distance from	# of already	
 which cannot be stopped anymore by means of the laser or lines dump kicker 	l anymore by		laser	dump kicker	travelling bunches	
		Injector	0 m	-	0	
Signal run-time to be added		BC1	160 m	-	7	
worst case 1: from end of linac to laser		BC2	360 m	-	15	
controller via fiber optics ~10 us		Linac center	1040 m	-	44	
		Linac end	1650 m	-	69	
Worst case 2: from last undulator to lina dump kicker via fiber optics ~2 up	IC	Beam distribution	(2010 m)	40 m	2	
dump kicker via liber optics *2 µs		Last undulator	(3010 m)	1040 m	44	
Latency to be added						
of signal converters and FPGA logic	z	-	MASTER]—> <mark>82</mark> r	is Ala	
of slave-master communication	ns II		MASTER	_]→780	ns s	
♦ Power	Alarr 	→ SLAVE → MASTER → 1400 ns				
max.: 20 GeV		+Latonov Eib	or Optio	e. Ene/r	n	
27 000 Elashes/s		-Latency Fib		5. 0115/1	11	
Sven Karstensen, DES	Y Hambu	rg SEI 2015 DESY Zeuthe	n 3 rd -Mar-2015	Page 26	DESY	

03-Mar-2015

Dietrich Beck for the Timing Team (GSI/CSCO)

SEI-Tagung, Frühjahr 2015, DESY Zeuthen

File Edit View -> eb 1 1.1 1.1 1.1 1.2 1.3 2 1.1 1.2 2.2 2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 3.1 3.2 3.3 3.4 3.5 3.6 3.6.1 3.7 3.7.1 4 5 6 7 8 9 10 03-Mar-2015 03-Mar-2015	Sarch Terminal Help -1s dev/ttyUSB0 Yendor ID Product 000000000000051: eef0b198 000000000000051: eef0b198 000000000000051: eef0b198 000000000000c42: ab286338 00000000000c42: ab286338 00000000000c42: ab286338 00000000000c42: cb5158dc0 00000000000c42: cb518dc0 00000000000c42: cb518dc0 00000000000c42: cb518dc0 000000000000c42: cb518dc0 000000000000c42: cb518dc0 00000000000000000000000000000000000	 USB: dev/ttyUSB: PCIe dev/wbm0 network: udp/152 BaseAddress (Hex) 400 600 700 40000 6000 60000 80100 80100 80200 80000 800000 80000 800000 8	0 .168.123.456 Description WB4-Bridge-GSI WB4-Bridge-GSI WB4-Bridge-GSI WB4-BlockRAM WB4-BlockRAM WB4-BlockRAM WB4-BlockRAM WR-PS-Generator WR-Periph-Syscon WR-Periph-Syscon WR-Periph-UART WR-PPS-Generator WR-Periph-1Wire Etherbone-Config CB_LM32_CLUSTER CLUSTER_INFO_ROM WB4-BlockRAM LOAD_MAWAGER WB4-BlockRAM LOAD_MAWAGER WB4-BlockRAM LOAD_MAWAGER WB4-Bridge-GSI NB4-BlockRAM_010 GSI:BUID_ID ROM SPI-FLASH-10M-MMAP FPGA_RESET Etherbone_Master GSI TM_LATCH V2 ECA_UNIT:CONTROL ECA_UNIT:EVENTS_IN /CSCO), d.beck@gsi.d		
1 1 4 01					
R	н	ardwar	e	the second	
	H	ardwar	E		
Switches: bu	H	ardwar	E		

Measurements II.
S parameters of the splitting section:
S21 = LO -16 dB (spread = 0.4 dB), CAL -16 dB (spread = 0.5 dB)
■ S11 = < -22 dB
Isolation = mostly < -80 dB, some specific channels -65 dB
No bit with the stateNo bit with the stateNo bit with the stateNo bit with the stateNo bit with the state11
Image: Second se

1. Introduction (1/5)

Cherenkov Telescope Array (CTA):

- Observatory for ground-based gamma-ray astronomy
- Two arrays of telescopes (one in northern and one in southern hemisphere) are planned
- Installation of southern array should start in 2016
- 3 types of telescopes with different mirror sizes are foreseen:

2. Drive Control System 8/8

g) Performance of drive system during tracking:

- Calculation of new target positions every 200 ms + wind speed: <10 km/h
 - Tracking error = error between ext. encoder position and target position at target time → Test of drive system only, it does <u>not</u> include bending model and Sky CCD!

3. Summary

- Our tests show promising signs that the selected drive components are able to meet the CTA requirements:
 - Both bearings show a constant running at typical tracking speeds without any visible jerks (time: >100 min)
 - > The motors have a smooth running without overshoot
 - The MST repositioning requirement is met
 - > Small structural oscillations are visible on both telescope axes
 - → its effect (even at higher wind speeds) on the positioning accuracy is small

Ronny Sternberger | SEI Tagung 2015 | March 04, 2015 | Page 16

- \rightarrow can be removed by using active vibration damping
- Prototyping phase was important for the drive system development:
 - Theory and practice are two different things!
 - > Much progress has been made to identify and solve possible problems

Ronny Sternberger | SEI Tagung 2015 | March 04, 2015 | Page 28

Implementierung eines TANGO-Servers zur Anbindung des Mythen-Detektors beim Experiment GALAXI

Mitglied der Helmholtz-Gemeinschaft

3. März 2015 | Alexander Steffens | ZEA-2

- Team Softwaresysteme
- Kooperation mit Wissenschaftlern, insbesondere mit dem JCNS²
- Implementierung von Digitalelektronik und Software f
 ür wissenschaftliche Experimente
- Schwerpunkt: Realisierung von Steuerungs- und Datenerfassungssystemen f
 ür Neutronenstreuinstrumente

²Jülich Centre for Neutron Science

Alexander Steffens

- Zur Zeit ein Detektor mit zweidimensionaler Auflösung im Einsatz
- Messung von Streuungen maximal in einem Winkel von ca. -7° bis 4°
- Streuung links-rechts-symmetrisch, daher kein Nachteil f
 ür Messergebnisse

3. März 2015

Alexander Steffens

Alexander Steffens

- Senden des entsprechenden Befehls
- Interpretieren der Antwort in richtigem Datentyp
- Rückgabe des erhaltenen Werts (Lesen)

oder

Rückgabe einer Null als Bestätigung (Schreiben)

oder

Anzeigen einer Warnung (Auftreten von Fehlern)

3. März 2015

Alexander Steffens

- Zurücksetzen auf die Standardeinstellungen
- Abfrage der restlichen Messdauer
 - Vergleich verstrichener Zeit seit Messbeginn mit erwarteter Messdauer
 - Ausgabe der Differenz in Stunden, Minuten und Sekunden
- Generische Funktionen
 - Absenden des erhaltenen Kommandos
 - Ausgabe der Antwort in allen möglichen Datentypen
 - Bei Fehlern: Ausgabe der Beschreibung

3. März 2015

Alexander Steffens

Implementierung des Serv Beispiel: Generischer Aufruf	ers
Argin value quotes needed for string with space or special char	Command: galaxi/Mythen/l/SendCommand
Pause Reset SegetCommand	Duration: 3 msec Output argument(s) : Response as string: ÍÌ
SetProperties Show description Start Execute Status Plot	Response as integer: 1090571469 Response as float: 8.05 Response as long long:1090571469
Abbildung: Absenden eines	Abbildung: Ausgabe in allen
Kommandos	Datentypen
3. März 2015 Alexan	ider Steffens Folie 19

Alexander Steffens

Mitalied der

3. März 2015

225

PiLC Software Features		
 Betriebssystem: Debian Mögliche Programmiersprachen sind u.a. C, C++, Python Einfache Funktionen für die Kommunikation zwischen den Modulen Über Tango-Server, Touch-Display oder Web-Interface steuerbar Erstellen einer GUI zur Bedienung am Touch-Display FPGA Aktualisierung über Raspberry Pi FPGA Debugging über USB-IP möglich (beta) 		
T. Spitzbart, L. Wilke, H. Zink 24.02.2015 Seite 12		

PiLC Proof of concept
 Encoder lesen Encoder lesen und Trigger Signale erzeugen ADC ADC Werte mit 1kHz lesen und in eine Datenbank schreiben DAC Verschiedene Ausgangssignale erzeugen: Sägezahn, Dreieck, Sinus etc. Frequenz Generator Einstellbare Ausgangsfrequenz (Rechteck) erzeugen zwischen 1Hz bis zu 80 MHz Frequenzzähler Frequenzzähler bis zu 80 MHz Piezo Motor Controller
T. Spitzbart, L. Wilke, H. Zink 24.02.2015 Seite 16

Strah	Imc	onitore
Kontex	t	
	٠	Der LHC erreichte die bislang höchsten Kollisionsenergien und -raten.
	•	Bereits minimale Strahlverluste können Maschine und Experimenten schaden.
Strahlmonitore		
	•	messen den Teilchenfluss nahe am Strahlrohr (r ≥ 5cm … einige Meter);
	٠	Sichern durch mögliche Korrekturen ausreichend niedrigen Untergrund;
	٠	stellen Strahlverluste fest;
	•	veranlassen, wenn nötig, Sofortmaßnahmen (beam abort).
CMS		
hat unterschiedliche Strahlmonitore (BRM-System):		
	٠	integrierende Strahlmonitore (signal current monitors) \rightarrow BCM1L, BCM2;
	•	bunch by bunch monitors \rightarrow Szintillatoren und BCM1F ;
		(zukünftig noch Cherenkov-Detektoren).
		Wolfgang Lange Strahlmonitore mit Diamantsensoren SEI 2015 DESY Zeuthen 04-Mar-2015 Page 4

SEI-Tagung, Frühjahr 2015, DESY Zeuthen

SEI-Tagung, Frühjahr 2015, DESY Zeuthen

FOR 1779		Actuating System First results				
test parameter	parameter range	normalized parameter range	normalized parameter range	Reθ	A+	DR[%]
velocity	$U_{\infty} = 8 \text{ m/s}, 16 \text{ m/s}$	$Re_{\theta} = 1200$	$Re_{\theta} = 2080$	1200	0	4.7
excitation frequency	f= 81 Hz	$T^{+} = 110$	<i>T</i> ⁺ = 380	1200	6	4.1
wavelength	$\lambda = 160 \text{ mm}$	λ^+ = 3862	$\lambda^+ = 7170$	1200	9	5.8 9.4
amplitude	A = 0.25, 0.3, 0.375 mm	A ⁺ = 6 , 7, 9	A ⁺ = 11, 14, 17		•	
riblet spacing	s = 1 mm	<i>s</i> ⁺ = 24	s ⁺ = 45	2080	0 11	0.7 0.9
riblet height	h = 0.3 mm	$h^{+} = 7$	h ⁺ = 13	2080	14	2.2
■ fi	 rst time experiment extended 2-D in good agree 	tal proof of concept surface ement with numeric	al results at similar	2080 Reynold r	17 numbers	2.7
	SEI – Tagu	ng, DESY Zeuth	nen, 02. – 04. N	larch 20	15	20

FOR 1779		Actuating First re				
test parameter	parameter range	normalized parameter range	normalized parameter range	Reθ	A+	DR[%]
velocity	$U_{\infty} = 8$ m/s, 16 m/s	$Re_{\theta} = 1200$	$Re_{\theta} = 2080$	1200	0	4.7
excitation frequency	f= 81 Hz	$T^{+} = 110$	<i>T</i> ⁺ = 380	1200	6	4.1
wavelength	$\lambda = 160 \text{ mm}$	λ^+ = 3862	$\lambda^+ = 7170$	1200	9	5.8 9.4
amplitude	A = 0.25, 0.3, 0.375 mm	A ⁺ = 6 , 7, 9	A ⁺ = 11, 14, 17			
riblet spacing	s = 1 mm	$s^{+} = 24$	s ⁺ = 45	2080 2080	0 11	0.7 0.9
riblet height	h = 0.3 mm	$h^{+} = 7$	h ⁺ = 13	2080	14	2.2
Turk surf ^{w. Li^{1*} sub}	bulent drag red ace waves , W. Jessen ¹ , D. Roggenkam mittet to: Europ	duction by spa ^{ap¹, M. Klaas¹, W. Silex², M. ean Journal of M}	anwise travelin Schiek ² and W. Schröder ¹ , echanics - B/Flu	2080 g ribbe ids	17 d	2.7
	SEI – Tagu	ng, DESY Zeuth	nen, 02. – 04. M	larch 20	15	21

Inhalt	
 > ILC und CALICE Kollaboration ILD Detektor Konzept CALICE: Gruppen und Detektoren > Analoges Hadronisches Kalorimeter Aufbau für den ILC Szintillations Ziegel mit Silizium Photomultipliern (SiPMs) Auslese-Elektronik und DAQ > Zusammenfassung 	Szintillations Ziegel vor der Bestückung
Mathias Reinecke SE	I Tagung – DESY 4.3.2015 Page 2

P. Göttlicher DESY 30. April 2015

Kurze Zusammenfassung des Workshops: Analoge und Mixed-Mode Simulation

Der Workshop stand unter der Vorgabe mit kurzen Präsentationen ins Gespräch zu kommen. So sollte man gegenseitig lernen, was andere anwenden, wie sie Lösungen suchen und welche Produkte eingesetzt werden. Es galt auch, einen Blick darauf zu werfen, was andere machen, wie andere an Probleme herangehen und wie Simulation zur Verbesserung der Entwicklungen eingesetzt wird.

Mit dieser Zielrichtung wurden keine ausgefeilten Vorträge erwartet, sondern nur unterstützende Transparente. So werden diese hier auch nicht veröffentlicht, sondern nur eine persönliche Zusammenfassung.

Es wurde verschiedene Sprachen der Simulation kurz angerissen. SPICE als Standard bei der analogen Simulation, aber auch verschiedenen allgemeiner und firmenabhängiger Derivate,VHDL-analog als Differential-Gleichung getriebene Sprache und VHDL für digitale Bereiche. Es wurde die Möglichkeit vorgestellt IBIS-Modelle, die vorwiegend bei Ein- und Ausgängen digitaler Bausteine von den Hersteller geschrieben werden, in LT-SPICE umzuwandeln.

In größeren Darstellungen wurde die Modell-Bildung aufgegriffen. Dabei wurden exotischere Anwendungen in Richtung Geräte und Systemsimulation angerissen, wie - EMV-Simulation durch ein Widerstandsmodell der GND-Stromverteilung,

- Simulation von Kabeln und planaren Strukturen durch Ersetzen kleiner Elemente mit RCL-Elementen,

Es wurde der Wunsch angesprochen, auch noch größere Systeme zu simulieren und dabei auch physikalische Modellbildung zu involvieren. Dazu hatte sich aber von den Teilnehmern niemand aktiv zu Hause beschäftigt, so dass diese Techniken zwar als gute Idee und gewünscht erachtet wurden, aber zumindest für den Kreis der Teilnehmer/-innen als derzeit nicht realisierbar erschien.

DESY-PROC-2015-01 ISBN 978-3-935702-96-6 ISSN 1435-8077