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Abstract

Recent data on the structure function F

2

(x;Q

2

) at small values of x are analysed

and compared with theoretical expectations. It is shown that the observed rise

at small x is consistent with a logarithmic increase, growing logarithmically also

with Q

2

. A stronger increase, which may be incompatible with unitarity when

extrapolated to asymptotically small values of x, cannot be inferred from present

data.



1 Introduction

The H1 and ZEUS collaborations at the ep collider HERA have published measurements

of the structure function F

2

(x;Q

2

) [1, 2, 3], which extend the range in x and Q

2

by two

orders of magnitude as compared to previous �xed target experiments. A prominent rise

of the structure function has been observed at small values of x, which has stimulated a

variety of theoretical investigations.

The behaviour of the structure function F

2

(x;Q

2

) for x ! 0, with Q

2

�xed, cor-

responds to the high-energy or Regge limit for virtual photon-proton scattering. The

computation of the high-energy behaviour of cross sections in QCD is an important and

still unsolved problem. Theoretical approaches to understand the Regge limit are almost

exclusively based on perturbation theory. The standard evolution equations

1

predict a

rise of the structure function F

2

at small x. This holds for the double-asymptotic solution

of the evolution equations at large Q

2

and small x [5], as well as for the solution of the

BFKL equation [6] which makes a prediction for the growth at small x for �xed Q

2

. One

expects that the rise of cross sections at large energies is eventually damped by screening

corrections [7] leading to an asymptotic behaviour which, for proton-proton scattering,

has to satisfy the Froissart bound [8].

The starting point of this paper is the examination of the small-x regime of the

HERA data. For values of x below about 10

�2

all measurements are compatible with

a double-logarithmic behaviour in x and Q

2

. We then address the question whether

the observed rise of the structure function F

2

at small x is consistent with unitarity

bounds. It is argued that a ln

1

x

increase, if persistent to asymptotically small x , may

be compatible with constraints from unitarity. The double-logarithmic �t to the data is

compared with the double-asymptotic form considered by Ball and Forte [9, 10].

2 Phenomenological analysis

The collaborations H1 and ZEUS have provided measurements at various values of Q

2

covering the range in x as shown in �g. 1. The measurements of both collaborations are

compatible with each other. The 1994 data by the H1 collaboration [3] are used for the

�ts, since at present they are the most precise ones, and they also allow the distinction

between correlated and uncorrelated contributions to the systematic uncertainties.

1

For a review, see [4].

2



Q
2

x
-1

1

10

10
2

10
3

10
4

10
5

1 10 10
2

10
3

10
4

Figure 1: (Q

2

,

1

x

)-phasespace region covered by the H1 and ZEUS measurements of F

2

.

The behaviour of the structure function F

2

in the covered kinematical range is dis-

played in �gs. 2 and 3 as function of x and Q

2

, respectively. The Q

2

-dependence for

three bands in x, displayed in �g. 2, shows a logarithmic behaviour. The slopes are

strongly x -dependent. For x ' 0.05 the slope vanishes and the structure function F

2

becomes independent of Q

2

. Fig. 3 shows the x -behaviour of F

2

for three values of Q

2

.

The striking new feature of the HERA data is the prominent rise at values of x below

about 10

�2

. This small-x regime connects to the valence region, which was intensively

investigated in previous low energy experiments.

In the following only the small-x data will be considered. The restricted phase space

region is de�ned by

x < 0:010 ; Q

2

> 5 GeV

2

: (1)

The cut in x implies an e�ective cut of the high Q

2

-data (cf. �g. 1).

It is a remarkable property of the data that in this small-x regime they are well

described by a polynomial linear in log

1

x

for every measured Q

2

-value,

F

2

(x;Q

2

) = u

0

(Q

2

) + u

1

(Q

2

) log

v(Q

2

)

x

: (2)

Possible higher order terms in log

1

x

are statistically not signi�cant and are consequently

not considered. The quantities u

0

and u

1

are functions of Q

2

, as well as the quantity log v,
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) versus Q

2

for three values of x : upper points 0.0001, middle points

0.003, lower points 0.05.
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which is uniquely de�ned as the weighted average hlog

1

x

i. Using uncorrelated errors, also

the uncertainties of u

0

and u

1

are uncorrelated. The numerical value of v(Q

2

) re
ects the

available x-range for any given Q

2

(see �g. 1), as well as the precision of the data. It is

then possible to represent the whole body of data in the restricted phase space region,

de�ned by (1), for each measured Q

2

-value by three numbers,

v(Q

2

) ; u

0

(Q

2

)� �u

0

(Q

2

) ; u

1

(Q

2

)� �u

1

(Q

2

) : (3)

In terms of F

2

the two independent functions u

0

and u

1

represent average and slope,

u

0

(Q

2

) = F

2

(v(Q

2

); Q

2

) ;

u

1

(Q

2

) =

@

@ log

1

x

F

2

(x ;Q

2

) : (4)

The data on F

2

is consistent with a linear dependence in both logQ

2

and log

1

x

.

Furthermore, its extrapolation to smaller values in logQ

2

and log

1

x

, respectively, suggests

the existence of a common \�xpoint" (x

0

,Q

2

0

) (cf. �gs. 3, 2). All this can be summarized

in an ansatz for F

2

which is linear in the double-logarithmic scaling variable �,

F

2

(x ;Q

2

) = a+m � ;

� = log

Q

2

Q

2

0

log

x

0

x

: (5)

This simple form, when confronted with the data given in (3), implies

a+m log

Q

2

Q

2

0

log

x

0

v(Q

2

)

= u

0

(Q

2

) ;

m log

Q

2

Q

2

0

= u

1

(Q

2

) : (6)

The �rst of these equations can be cast into the form

u

0

� a

log (x

0

=v)

= u

1

; (7)

thus allowing the comparison between the directly measured slope u

1

and the one ob-

tained from the point (v; u

0

) and the �xpoint (x

0

,a). This is illustrated in �g. 4. The two

parameter pairs (a,x

0

) and (m,Q

2

0

) are correlated, as is obvious from eq. (5). They are

chosen as follows :

a = 0:078 ; m = 0:364 ; x

0

= 0:074 ; Q

2

0

= 0:5 GeV

2

: (8)

Using the H1-data [3] with uncorrelated errors the measured structure function F

2

is

plotted in �g. 5 as a function of the scaling variable � computed from x and Q

2

with the
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Figure 4: The open circles represent the directly measured slopes u

1

, the full circles are

the induced slopes for x

0

= 0:074 and a = 0:078.
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Figure 5: The F

2

-data of H1-1994 is plotted versus the scaling variable �. The open circles

represent the data for Q

2

above 5 GeV

2

; the crossed circles correspond to the data with

Q

2

between 3 and 5 GeV

2

.
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parameter values for x

0

and Q

2

0

as given in eq. (8). The �

2

=dof is 83/72. It turned out

that even the data below 5 GeV

2

are well described by eq. (5). We have checked that

also the other data on F

2

(c.f. [2, 1]) are well described by the same set of parameters.

3 Constraints from unitarity

No rigorous bound is known on the asymptotic behaviour of the structure function

F

2

(x;Q

2

) as x! 0, with Q

2

�xed. However, within the framework of the parton model

constraints on the allowed growth of parton densities at small x can be obtained by

considering the Froissart bound [8] on the total proton-proton cross section at large

energies,

�

tot

(s) �

�

m

2

�

�

ln

s

s

0

�

2

: (9)

Here m

�

is the pion mass, s is the center-of-mass energy squared and s

0

is an unknown

constant. The total cross section measured at the Tevatron is of order �=m

2

�

� 100 mb.

The cross section for the production of particles with high tranverse momentum,

p

2

?

> �

2

� �

2

QCD

, can be calculated perturbatively. Clearly, this part of the cross

section, �

pert

, must also satisfy the Froissart bound, i.e.

�

pert

(s; p

2

?

> �

2

) < �

tot

(s) : (10)

Here �

pert

is evaluated in terms of parton cross sections and parton densities. Eq. (10)

then yields a consistency condition for the behaviour of the parton densities at small x.

In the parton model the dominant contribution to �

pert

is elastic gluon-gluon scat-

tering. Consider the production of two gluons with transverse momentum p

?

��p

?

and

rapidities y

3

��y and y

4

��y, respectively. Other partons in the �nal state are summed

over. The corresponding cross section reads in lowest order perturbation theory (cf. [11])

��

gg

' C�

s

(�)

2

x

1

g(x

1

; �)x

2

g(x

2

; �)

1

p

4

?

F (�

�

)�p

2

?

�y

2

: (11)

Here x

1

and x

2

are the momentumfractions of the gluons in the initial state, and g(x; �) is

the gluon density at scale �; C is a constant and F is the averaged squared matrix element

of the gluon-gluon cross section, which depends only on �

�

, the scattering angle in the

gluon-gluon center-of-mass system. Note, that the multiplicity factor, which connects

inclusive and exclusive cross sections, is (1 + O(�

s

)) in eq. (11). In the special case

y

3

+ y

4

= 0, one has

x

1

= x

2

� x =

2p

T

p

s

: (12)
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The cross section (11) is a tiny fraction of the total cross section, ��

gg

< �

2

s

=�

2

� 1�b.

Its dependence on the center-of-mass energy s scales like (xg(x; �))

2

, with x = 2p

?

=

p

s.

Clearly, if the gluon density satis�es the bound

xg(x; �) < B ln

1

x

; (13)

where B is a constant, then the corresponding bound on ��

gg

and the Froissart bound

scale with s in the same way, i.e. like (ln s)

2

. Hence, ��

gg

will always remain far below

the Froissart bound.

One may hope to derive a stronger bound on the gluon density based on a complete

evaluation of the perturbative cross section �

pert

. Already the integration over the ra-

pidities of the two �nal state gluons yields another factor of (ln s)

2

. Contributions with

additional gluons in the �nal state yield further powers of ln s which eventually build

up the full BFKL ladder [6]. It is conceivable that these perturbative corrections can be

absorbed in a properly de�ned gluon density for which the bound (13) may then apply. A

similar analysis could be carried out for deep-inelastic scattering where one has only one

gluon in the initial state. In this way it may be possible to obtain a true bound on the

structure function F

2

at small x. This, however, is beyond the scope of our paper. In any

case, it is clear that with a logarithmic growth of the gluon density the perturbative cross

section can be extrapolated several orders of magnitude beyond present center-of-mass

energies before it possibly reaches the Froissart bound.

One can readily evaluate the contribution of photon-gluon fusion to the structure

function F

2

for a gluon density saturating the bound (13). One �nds (cf. [12]),

�F

2

(x;Q

2

) = A+

�

s

3�

X

q

e

2

q

B ln

Q

2

Q

2

0

ln

x

0

x

; (14)

where the sum extends over all quarks with masses small compared to Q, and the con-

stant A depends on the renormalization scheme. Eq. (14) is identical to the �t (5) of F

2

,

obtained by the phenomenological analysis in sect. 2, if parameters are properly iden-

ti�ed. >From the slope m = 0:364 one obtains B ' 3. At small x the gluon density is

large, and the structure function is likely to be dominated by photon-gluon fusion.

2

Eq. (14) relates the behaviour of F

2

at small x to a constraint on the gluon density

obtained from the total proton-proton cross section. Our discussion has been based on

a comparison of cross sections in perturbation theory to leading order, and the e�ect

of higher order corrections is not clear. It is conceivable that, at �xed Q

2

, F

2

(x;Q

2

)

2

A similar �t to F

2

, with ln 1=x replaced by a small power x

��

has been performed in [13].

8



continues to rise like ln

1

x

down to asymptotically small values of x. In fact, such a

behaviour has been predicted by Bjorken. His starting point is an expression for the

photon wave function renormalization constant derived by Gribov [14],

1� Z

3

=

�

3�

Z

ds

sR(s)

(Q

2

+ s)

2

; (15)

where R(s) is the hadronic cross section in e

+

e

�

-annihilation normalised to the �-pair

cross section. Based on the aligned-jet picture of deep inelastic scattering he then obtains

for the inclusive structure function [15]

F

2

(x;Q

2

) /

�

R ln

1

x

: (16)

This corresponds to a gluon density saturating the bound (13). At present, however, we

do not know whether eqs. (16) or (14) represent the correct behaviour of F

2

(x;Q

2

) at

asymptotically small values of x. There is neither a proof that such a behaviour will ever

be reached nor can it be excluded that it might set in already at moderate values of x.

4 Comparison with double-asymptotic scaling

So far we have discussed the Regge limit, i.e. x! 0 withQ

2

�xed. In this limit the double-

logarithmic scaling form (5) of the structure function F

2

may be correct. However, in an

appropriate simultaneous limit Q

2

!1 and x! 0 (see below), the double-logarithmic

scaling form is expected to be incorrect. In this limit, for appropriate boundary condi-

tions, the structure function is given by an asymptotic solution of the standard evolution

equations [4], which was found more than 20 years ago [5], and which has recently been

thoroughly studied by Ball and Forte [9, 10]. This solution is known to correspond to a

summation of all terms of the form

 

�

s

ln

Q

2

�

2

ln

1

x

!

n

: (17)

Hence, at small x, it increases faster than any power of ln

1

x

. The double-logarithmic form

(5) corresponds to the �rst term in this series. A comparison of these two expressions

with data on F

2

therefore tests for the evidence of terms more singular than ln

1

x

at small

x.

The asymptotic solution is conveniently expressed in terms of the variables [10]

� =

 

ln

x

0

x

ln

 

�

s

(Q

0

)

�

s

(Q)

!!

1=2

; � =

�

ln

x

0

x

�

ln

 

�

s

(Q

0

)

�

s

(Q)

!!

1=2

; (18)
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Figure 6: Comparison of F

2

-data with the Ball-Forte �t (right vertical scale) and the

double-logarithmic �t (left vertical scale); the horizontal axis corresponds to 2.2 � and

�, respectively.

where �

s

is the two-loop QCD coupling,

�

s

(Q) =

4�

�

0

ln

Q

2

�

2

0

@

1�

�

1

�

2

0

ln ln

Q

2

�

2

ln

Q

2

�

2

1

A

: (19)

The �rst two coe�cients of the �-function and other relevant parameters read [10]

�

0

= 11�

2

3

n

f

; �

1

= 102 �

38

3

n

f

; 


2

=

12

�

0

; � =

1

�

0

�

11 +

2

27

n

f

�

;

�

+

=

1

�

0

 

3

�

1

�

0

+

103

27

n

f

!

; �

�

=

78

�

0




2

: (20)

At large values of � the structure function F

2

can now be written as [10]

F

2

(x ;Q

2

) = C exp 2
� exp

 

��

�

�

�

1

2

ln 
� � ln

�




!

� (1 + (�

+

+ �

�

)�

s

(Q)� �

+

�

s

(Q

0

))

�




 

1 +O(

1

�

) +O(

1

�

)

!

:(21)

Here C is an unknown normalization constant. For large values of � and � the �rst

exponential gives the dominant contribution,

F

2

(x;Q

2

) ' C exp (2
�) : (22)

10



In this limit the structure function only depends on �, which is referred to as double-

asymptotic scaling.

Eq. (21) gives F

2

in terms of four a priori unknown constants, �, Q

0

, x

0

and C.

It is known that a proper choice of these parameters yields a good description of the

measured data on F

2

in the range of small x and large Q

2

[10, 3]. Using the optimised

values of [3], the constancy of the ratio between the data and the theoretical prediction

(21) is clearly borne out in �g. 6 and quanti�ed by �

2

=dof = 93/69. Eq. (21) has been

used for the number of 
avours n

f

= 4. A more sophisticated treatment incorporating

Q

2

-dependent threshold e�ects has not been attempted.

x
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h
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o
ry
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2
 = 15 GeV

2
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Figure 7: The structure function F

2

for Q

2

= 15 GeV

2

for the Ball-Forte �t (open circles)

and the double-logarithmic �t (stars) extrapolated to values of x one decade below the

HERA range.

What does this mean concerning the validity of double-asymptotic scaling? As we

have seen in sect. 2 (cf. also �g. 6), the data are equally well described by just the

�rst term in the sum of double logarithms given in eq. (17). Hence, the characteristic

feature of double-asymptotic scaling, a growth stronger than any power of ln

1

x

cannot

be inferred from the present HERA data. This more singular behaviour should become

visible if, at given Q

2

, the range in x is extended by one order of magnitude. As �g. 7

illustrates, a clear di�erence is then expected between the double-logarithmic �t (5) and

the double-asymptotic form (21).
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5 Conclusions

We have shown that data on the structure function F

2

(x;Q

2

) at small x and large Q

2

published up to date are consistent with a logarithmic growth in

1

x

as well as Q

2

. This

is of interest for several reasons.

No rigorous bounds are known on the asymptotic behaviour of F

2

(x;Q

2

) in the

Regge limit, i.e. as x! 0 with Q

2

�xed. However, according to our discussion in sect. 3,

a logarithmic growth of F

2

can be extrapolated to smaller values of x by many orders

of magnitude without getting into con
ict with the Froissart bound. Such a logarithmic

increase with

1

x

may even be the correct asymptotic behaviour of the structure function.

In the double-asymptotic regime of small x and large Q

2

perturbative QCD predicts

double-asymptotic scaling for the structure function F

2

, given su�ciently soft input

distributions. This implies a growth stronger than any power of ln

1

x

. So far, however,

the data are still consistent with double-logarithmic scaling corresponding to an increase

like ln

1

x

. This may mean that at HERA the small-x regime has not yet been reached,

where the strong growth expected on the basis of perturbative QCD will become visible.

More precise measurements may di�erentiate between double-logarithmic scaling,

double-asymptotic scaling and the even more singular BFKL power behaviour. As dis-

cussed in sect. 4, these di�erences should become manifest if, for given Q

2

, the range in

x is extended by one order of magnitude. This corresponds to an increase in the center-

of-mass energy squared by one order of magnitude, which could be reached at future

colliders, such as LEP
LHC or at a 500 GeV Linear Collider
HERA.

We would like to thank J. Bartels, P. V. Landsho�, F. Schrempp and P. M. Zerwas
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