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Abstract

We study the electroweak phase transition by lattice simulations of

an e�ective 3{dimensional theory, for a Higgs mass of about 70 GeV.

Exploiting, among others, a variant of the equal weight criterion of phase

equilibrium, we obtain transition temperature, latent heat and surface

tension, and compare with M

H

� 35 GeV. In the broken phase masses

and Higgs condensates are compared to perturbation theory. For the

symmetric phase, bound state masses and the static force are determined.
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1 Introduction

Recent lattice studies of the electroweak phase transition [1]-[8] had been trig-

gered by the interest in understanding the baryon number asymmetry of the uni-

verse. Signi�cant cosmological consequences would require a su�ciently strong

�rst order transition [9, 10]. The transition has to be strong enough, both in

order to accomplish a su�cient rate of baryon generation during the transi-

tion and to prevent the wash{out of baryon number after it is completed. The

present quantitative understanding of possible mechanisms as well as experi-

mental lower bounds for the Higgs mass make this unlikely within the minimal

standard model. Extensions, in particular supersymmetric ones may still be

viable, however [11]-[13].

A second reason for lattice investigations was the wish to control the be-

haviour of perturbative calculations of the e�ective action. This quantity is

the appropriate tool of (non{lattice) thermal quantum �eld theory for dealing

with symmetry breaking. Infrared problems prevent a perturbative evaluation

of the free energy in the symmetric phase to higher loop order. However, the

true, non{perturbative nature of the symmetric phase will be characterized by

massive W{ and Higgs bound states instead of massless W gauge bosons. A

self{consistent approach to provide masses across the transition, e.g. by gap

equations [14], can improve the ability to calculate perturbatively the symmet-

ric phase. Gauge �eld condensates are another property of the symmetric phase,

expected to lower its free energy density.

An independent method is needed to characterize the electroweak phase

transition even within a pure SU (2) gauge{Higgs version of the theory. This

model has become a test{�eld to control the validity of perturbative predictions

over a broad range of Higgs masses. At present, one is interested to see whether

the �rst order transition ends somewhere around a Higgs mass M

H

� 100 GeV

[15, 16]. Lattice simulations are not only able to describe both phases starting

from �rst principles but, moreover, make it possible to put both phases into

coexistence near the phase equilibrium. Thus one is able to measure directly

quantities like latent heat, surface tension, condensates etc. quantifying the

strength of the transition.

One approach to lattice calculations of the electroweak transition is based

on an e�ective 3{dimensional Higgs model. It is attractive phenomenologically

because it circumvents the problem of putting chiral fermions on the lattice.

Due to dimensional reduction, fermions as well as non{static bosonic modes

contribute to the e�ective action. In contrast to QCD, dimensional reduction

should work for the electroweak theory around and above the transition tem-

perature because g

2

is small. For the electroweak phase transition this approach

has been pioneered by Farakos et al. (see e.g. [17, 18]). This program aims
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at exploring the accuracy of dimensional reduction at various Higgs masses by

comparing various parameters of the transition with those of 4{dimensional lat-

tice and perturbative approaches. Perturbation theory is necessary to relate

the 4{dimensional continuum theory to the parameters of the dimensionally re-

duced theory and, �nally, to the bare coupling parameters of the lattice action.

Dimensionally reduced versions retain the remnant of the temporal gauge �eld

A

0

(as an adjoint Higgs �eld) or not (as in this work).

In its simplest version the dimensionally reduced e�ective theory is again a

SU(2){Higgs theory with just one doublet. This model represents whole classes

of 4d theories but might not be su�cient to describe all 4d variants generically.

So far, only this simple e�ective theory has been studied by lattice techniques,

for several Higgs self{couplings �

3

in units of the 3d gauge couplings squared g

2

3

[5, 7, 6, 8]. Here we extend our analysis [6] to a higher coupling value

�

3

g

2

3

=

1

8

(

M

�

H

80 GeV

)

2

(1)

namely �

3

=g

2

3

� 0:095703, referred to as M

�

H

= 70 GeV, and compare with

previous results at this smaller coupling �

3

=g

2

3

� 0:023926 (M

�

H

= 35 GeV). As

expected the �rst order nature has become weaker but is still evident.

2 Relation of the dimensionally reduced model

to the SU(2) Higgs theory in four dimensions

The procedure of dimensional reduction in gauge theories consists of two steps.

In a �rst step, nonstatic modes of the gauge �eld are integrated while the tem-

poral component A

0

is retained as adjoint Higgs �eld. The action is further

simpli�ed by integrating over A

0

in a second step. The mass of the latter �eld

is given by the Debye mass m

D

. The reduced Higgs theory has the following

action resembling the form of the 4{dimensional theory

S =

Z

d

3

x

�

1

4

F

b

��

F

b

��

+ (D

�

�)

+

(D

�

�) +m

2

3

�

+

�+ �

3

(�

+

�)

2

�

; (2)

where �; �; b = 1; 2; 3. The 3{dimensionalmass parameterm

3

(�

3

), renormalized

at scale �

3

and the renormalization group invariant couplings �

3

and g

3

can be

expressed by dimensional mapping in terms of the running parameters of the

4{dimensional theory at the scale � and temperature T in the MS scheme. The

renormalization scale � is most conveniently chosen as � = �

T

= 7:05T which

puts logarithmic contributions of bosonic origin to zero.
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To make this paper self{contained we collect some formulae for later use.

As the result of the second step of reduction mentioned above, the couplings

g

3

and �

3

and the 3{dimensional mass m

3

can be expressed in terms of the

corresponding couplings and mass of the intermediate theory with A

0

included,

g

3

, �

3

and m

3

(and the Debye mass m

D

=

p

5=6gT ). The latter parameters

in their turn can be written in terms of the temperature and the parameters of

the 4{dimensional theory:

g

2

3

= g

2

3

(1�

g

2

3

24�m

D

);

g

2

3

= g

2

(�

T

) T

�

1 +

g

2

16�

2

2

3

�

;

�

3

= �

3

�

3g

4

3

128�m

D

;

�

3

= �(�

T

) T

�

1 +

g

2

16�

2

3M

2

W

M

2

H

�

; (3)

m

2

3

(�

3

) = m

2

3

(�

3

) �

3

16�

g

2

3

m

D

+

g

4

3

16�

2

�

15

8

log

�

3

2m

D

+

9

16

�

;

m

2

3

(�

3

) = ��

2

(�

T

) + T (

1

2

�

3

+

3

16

g

2

3

) +

T

2

16�

2

�

137

96

g

4

+

3

4

�g

2

�

+

1

16�

2

�

81

16

g

4

3

+ 9�

3

g

2

3

� 12�

2

3

�

(log

3T

�

3

� 0:348725):

The 4{dimensional renormalized quantities g

2

(�) , �

2

(�) and �(�) have the

generic form with one{loop corrections formally indicated

g

2

(�

T

) = g

2

0

(1 + �g

2

)

�(�

T

) =

g

2

0

8

M

2

H

M

2

W

(1 + ��)

�

2

(�

T

) =

M

2

H

2

(1 + ��

2

) (4)

with g

2

0

= 4

p

2G

F

M

2

W

. G

F

= 1:16639� 10

�5

GeV

�2

is Fermi's constant. The

corrections indicated in these formulae, which depend on g

2

; �

T

and the Higgs

and W mass squared M

2

H

and M

2

W

, can be found in Ref. [18]. For de�niteness,

we use as the 3{dimensional renormalization scale �

3

= g

2

3

and take M

W

=

M

Z

= 80:6 GeV. For the 4{dimensional coupling in the loop corrections we

choose g

2

= g

2

0

.
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At M

�

H

= 70 GeV the corrections in (4) without fermions are numerically

obtained as follows

�g

2

� �0:01343� 0:01945 log(�

2

T

=M

2

W

);

�� � �0:01625 + 0:008491 log(�

2

T

=M

2

W

);

��

2

� �0:01892� 0:004721 log(�

2

T

=M

2

W

): (5)

Similarly, we �nd for M

�

H

= 35 GeV

�g

2

� �0:01281� 0:01945 log(�

2

T

=M

2

W

);

�� � �0:05396 + 0:06131 log(�

2

T

=M

2

W

);

��

2

� �0:07286� 0:005766 log(�

2

T

=M

2

W

): (6)

3 The 3{dimensional lattice model

3.1 Lattice action

On the lattice, we study the SU (2){Higgs system with one complex Higgs dou-

blet of variable modulus. The gauge �eld is represented by unitary 2 � 2 link

matrices U

x;�

and the Higgs �elds are written as �

x

= �

x

V

x

. �

2

x

=

1

2

Tr(�

+

x

�

x

)

is the Higgs modulus squared, V

x

an element of the group SU (2), U

p

denotes

the SU (2) plaquette matrix. The lattice action is

S = �

G

X

p

�

1�

1

2

TrU

p

�

� �

H

X

l

1

2

Tr(�

+

x

U

x;�

�

x+�

)

+

X

x

�

�

2

x

+ �

R

(�

2

x

� 1)

2

�

(7)

(summed over plaquettes p, links l and sites x), with

�

G

=

4

ag

2

3

: (8)

The lattice Higgs self{coupling is

�

R

=

�

3

g

2

3

�

2

H

�

G

(9)
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and the hopping parameter can be expressed in the form

�

H

=

2(1� 2�

R

)

6 + a

2

m

2

3

: (10)

The relation between the 3{dimensional bare mass squared m

2

3

, expressed via

the lattice couplings (see (10)) and the renormalized continuum mass squared

has been worked out by Laine [19] to two loops

m

2

3

(�

3

) = m

2

3

+m

2

1

+m

2

2

m

2

1

=

�

4�a

(

3

2

g

2

3

+ 6�

3

) ; � = 3:175911 (11)

m

2

2

=

1

16�

2

((

51

16

g

4

3

+ 9�

3

g

2

3

� 12�

2

3

)(log

6

a�

3

+ 0:09)

+5:0g

4

3

+ 5:2�

3

g

2

3

):

This completes the relation of the lattice parameters of the 3d model to the 4d

continuum parameters.

The lattice model de�ned by (7) is numerically studied at given couplings

�

G

; �

H

and �

3

=g

2

3

. We have used the same simulation algorithms as in our pre-

vious investigations. We have combined a 3{dimensional Gaussian heat bath

update for the gauge �elds with a 4{dimensional Gaussian heat bath method

for the Higgs �eld. In the last one, the Gaussian step was improved for later

acceptance by taking the non{linearity into account. To reduce the autocorre-

lations near to the phase transition, a heat bath step as described was followed

by several reections (eight in practice) for the Higgs (and partly one reection

for the gauge �eld).

In the search for the phase transition, bulk variables like the space{averaged

square of the Higgs modulus and the space{average link

�

2

=

1

L

x

L

y

L

z

X

x

�

2

x

;

E

link

=

1

3L

x

L

y

L

z

X

x;�

1

2

Tr(�

+

x

U

x;�

�

x+�

); (12)

are heavily used (the average quartic Higgs modulus �

4

is de�ned analogously).

Others like the average plaquette

P =

1

3L

x

L

y

L

z

X

p

1

2

TrU

p

(13)
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are less useful for this purpose, although they also show a two{state signal on

large enough lattices. In principle, the histograms and discontinuities of all

bulk variables have to be known in order to estimate the strength of the phase

transition, but �

2

proves to be the most important one. It has turned out that,

due to the con�nement property of the symmetric phase, histograms of medium

size rectangular Wilson loops show a two{state signal as well.

While the bulk quantities discussed are measured after each Monte Carlo

iteration, other quantities like Wilson loops and correlation functions are mea-

sured after every 10th iteration.

To reduce the noise in the evaluation of Wilson loops the original links are

replaced by their mean �eld values [20]. They are calculated from the links

interacting with the original links through the staples. In the case of SU (2) this

value is calculated analytically. This procedure is not applied to the links in the

corners of the Wilson loops.

The Higgs and vector boson masses are measured from correlation functions

of extended operators of length n (�

b

are the Pauli matrices)

0

+

: S

x;�

(n) =

1

2

Tr(�

+

x

U

x;�

U

x+�;�

: : :U

x+(n�1)�;�

�

x+n�

)

1

�

: V

b

x;�

(n) =

1

2

Tr(�

b

�

+

x

U

x;�

U

x+�;�

: : :U

x+(n�1)�;�

�

x+n�

) (14)

For the mass �ts we have used the maximum n(= 4) for the vector boson which

gave the best signal in the symmetric phase. In the Higgs channel we did not

observe such a strong n dependence. In the analysis we used both n = 0 and

n = 4.

3.2 Implementation on QUADRICS parallel computers

The simulations which are reported in this paper have been performed on

QUADRICS parallel computers at the University of Bielefeld, at the QUADRICS

Q4o and the CRAY-YMP of HLRZ in J�ulich. Additionally, codes have been

partly tested on the Q1 at DESY{IfH Zeuthen. The computing facilities at

Bielefeld were provided by the Deutsche Forschungsgemeinschaft (DFG) to the

groups being part of the DFG task force program "Dynamical Fermions". The

code written in TAO had to be portable to various topologies of the QUADRICS

family (Q4o, QH2) of parallel machines. The Q4o is a 32 node machine with a

2� 4� 4 topology, the QH2 has 256 nodes in 4� 8� 8 topology.

For the calculation of large Wilson loops we have de�ned long strings of

links and their mean �eld values (as auxiliary �eld attached to the point of

7



beginning). The factors must be communicated from remote processor nodes.

Forming loops in a later step, these auxiliary building blocks must be multiplied

non{locally where nodes far away have to be addressed simultaneously. Due to

memory constraints (size of the auxiliary �eld) we were able to measure Wilson

loops on the Q4o for lattice sizes up to 40

3

. Similar communications have to be

considered for correlation functions on non{neighbouring nodes.

The accumulation of histograms of bulk variables as well as Wilson loops

must be done on the host computer (after taking the appropriate global sums

which are then available on all nodes simultaneously) since integer arithmetics

is not possible on the QUADRICS processors.

3.3 Multihistogram technique and phase separation

As usual, the search for the phase transition point requires extensive application

of the multihistogram technique [21, 1] to the bulk variables listed above. We

have processed data obtained in up to 7 runs with di�erent �

H

values (for a

given volume) within and near to the metastable region. Each run consisted

out of 30000 to 145000 measurements, depending on the measured integrated

autocorrelation time �

int

. The respective maximum of the autocorrelation time

increases roughly linearly with the volume. These numbers, observed in the run

nearest to the respective pseudocritical �

Hc

, range from 200 (for 30

3

) to 1500

(for 64

3

). These are autocorrelation times with tunneling and mainly indicate

the longer lifetime of each one of the two metastable phases, i.e. the suppression

of tunneling in the larger lattices.

We look for the phase transition point in terms of the critical hopping pa-

rameter, �

Hc

, for various (in fact two, in the present work) values of the lattice

gauge coupling �

G

, while the continuum couplings are kept �xed. In other

words, we have studied the phase transition driven by m

3

. Then the lattice

Higgs self{coupling �

R

varies with �

H

(see (9)). Therefore, the reweighting uses

not only E

link

, but �

2

and �

4

at the same time. In general, a 3{dimensional

binning has to be performed in the two relevant parts of the action (correspond-

ing to �

H

and �

R

) and some other observable of interest. This enables to create

histograms for any bulk variable and for any value of �

H

near to the transition

point, based on an estimated density of states which subsums all measurements

in the metastable region with appropriate weights.

We have determined the �nite volume pseudocritical �

Hc

(L) by the minima

of the Binder cumulants

B

E

link

(L; �

H

) = 1�

hE

link

4

i

3hE

link

2

i

2

(15)
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and B

�

2
(L; �

H

), by the maxima of the susceptibilities

C

E

link

(L; �

H

) = hE

link

2

i � hE

link

i

2

(16)

and C

�

2
(L; �

H

), and using the equal weight method. Our aim is to apply this

method for phase transitions of relatively weak �rst order. For these transitions

a frequent tunneling between the pure phases is observed in the metastability

region for all lattice sizes studied. This has made necessary the re�nements

described below.

Concerning histogram methods at �rst order transitions, there is an ambi-

guity in the literature how to de�ne the critical coupling (in fact: pseudocritical

for �nite volume). Throughout the metastable region, a two{state signal is vis-

ible in the histograms, e.g. of �

2

and E

link

, but there are two prescriptions for

�

Hc

: equal height of the maxima vs. equal weight of the two competing phases.

While theoretical arguments [22] favour the equal weight criterion, this requires

in practice a procedure to separate the (measured or reweighted) histogram into

contributions from con�gurations to be attributed to the respective pure phases.

In addition, there are inhomogeneous (mixed) con�gurations contributing to the

histograms. There is no generally accepted procedure that unambiguously de-

�nes the weights of these three contributions.

Our main assumption is that the pure phases can be described by Gaussian

distributions for any volume averaged quantity. Order parameters like �

2

or

E

link

can be considered in this context. We have utilized the equal weight

method as described below for the case of �

2

. The normalized histogram has

been presented as a weighted sum of three histograms referring to the two pure

phases and to all inhomogeneous mixed states

p(�

2

; �

H

) = w

b

p

b

(�

2

; �

H

) + w

s

p

s

(�

2

; �

H

) +w

mix

p

mix

(�

2

; �

H

) (17)

with

w

b

+w

s

+ w

mix

= 1: (18)

w

b;s

denotes the weight of the broken/symmetric phase, w

mix

is the correspond-

ing weight of the mixed state, all weights are �

H

dependent. The pseudocritical

�

Hc

(L) is then found for w

b

= w

s

< 0:5.

The positions, widths and weights of the pure phase histograms at a given

�

H

have been obtained by �tting the outer anks of the two{peak histogram

to Gaussian shape. At the same time, this �xes the weight w

mix

and the �

2

distribution to be attributed to con�gurations with domains of both phases in

9



equilibrium. We should mention potential additional problems to this �t proce-

dure when histograms of both phases are strongly overlapping. In asymmetric

transitions (generic for the Higgs case), with susceptibilities (widths) very dif-

ferent in both phases, this happens for smaller lattice sizes. For su�ciently large

volumes one can avoid this problem.

We have used an iterative procedure to �nd the critical �

Hc

according to the

requirement w

b

= w

s

. It consists of merging all data into a single histogram at

a tentative �

H

. This step is followed by a �tting procedure as described above

which tells the weights of the pure phases at this �

H

. If they are not equal, �

H

is corrected accordingly.

Phase separation of measurements is necessary not only for this application

of the multihistogrammethod. Another particular example is the measurement

of pure phase correlation lengths near to the phase transition. For this purpose

and for the splitting of badly separating histograms in some particular variables

it is better to use the Monte Carlo time sequence of con�gurations for runs

in the metastability range. The aim is to remove successful tunneling escapes

and unsuccessful tunneling attempts towards the "wrong" phase from what

should then be considered as the Monte Carlo trajectory restricted to the "right"

phase. The procedure rescans the records of the volume averaged �

2

which has

a well separated two{peak signal for all considered volumes. Referring to this

variable a lower cut for the upper (broken) phase and an upper cut for the lower

(symmetric) phase can be chosen. These cuts are determined in such a way that

the remaining histograms (for the "pure" phases) are almost symmetric around

their maxima. If the Monte Carlo history of �

2

enters the range of a certain

phase and stays there for more than 100 iterations, all measured quantities

(recorded for the whole trajectory, including correlators etc.) are considered to

contribute to the statistics of the given phase until the trajectory leaves this

phase again.

The minimal time the trajectory is required to stay within one phase has

to be much larger than the autocorrelation time without tunneling but smaller

than the autocorrelation time with tunneling. The choice of 100 iterations is

consistent with this requirement.

4 Localization of the phase transition

In Tables 1 and 2 the statistics is reported for each set of couplings and volumes,

that has been used in the various procedures for the localization of the phase

transition.
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�

H

30

3

48

3

64

3

0.343440 75000

0.343480 30000

0.343520 85000

0.343540 50000 80000

0.343544 120000

0.343546 90000

0.343548 145000 120000

0.343550 100000

0.343560 40000

0.343580 110000

0.343600 40000

Table 1: Data samples used for the localization of the transition for M

�

H

= 70

GeV and �

G

= 12

�

H

32

3

40

3

48

3

0.340700 45000

0.340780 40000 40000 45000

0.340800 40000 100000 90000

0.343820 40000 40000 45000

Table 2: Data samples used for the localization of the transition for M

�

H

= 70

GeV and �

G

= 16

4.1 The in�nite volume limit for �

Hc

In order to determine the set of pseudocritical values of the couplings �

H

(and

the corresponding �

R

) we have used the volume averages �

2

and E

link

searching

for the minima of the Binder cumulants (15) B

�

2
(L; �

H

) and B

E

link

(L; �

H

), and

for the maxima of the susceptibilities (16) C

�

2
(L; �

H

) and C

E

link

(L; �

H

). In

addition to these methods we have used the equal weight method in the variant

described above.

To demonstrate the two{peak structure we show in Fig. 1 the measured

histogram of �

2

on lattices 48

3

and 64

3

, all at �

G

= 12, for �

H

values nearest

to the respective pseudocritical �

Hc

(L). The positions of the maxima change

already only slightly with the volume.

In Figs. 2 and 3 results of the multihistogram interpolation of our data

for �

G

= 12 for the Binder cumulant of E

link

and for the susceptibility of �

2

are presented. Finiteness and shrinking of the Binder cumulant with increasing

volume present evidence for the �rst order nature of the transition at Higgs

massM

�

H

= 70 GeV. The maximum of the interpolated susceptibility (with the

11



Figure 1: Measured histograms of �

2

for �

G

= 12

Figure 2: Multihistogram interpolation of B

E

link

, �

G

= 12

background susceptibility subtracted) increases almost linearly with the volume.

A histogram reweighted to pseudocritical �

Hc

(L) = 0:3435441 (as deter-

mined according to the equal weight criterion) for a lattice size 64

3

is presented

in Fig. 4 together with the Gaussians describing the pure phases just at that

�

Hc

. The distribution attributed to mixed con�gurations with domains of both

12



Figure 3: Multihistogram interpolation of C

�

2
, �

G

= 12

Figure 4: Equal weight histogram of �

2

at pseudocritical �

H

, �

G

= 12 on a 64

3

lattice with contributions of the pure phases

phases in equilibrium is well identi�ed between the two peaks.

The various pseudocritical �

Hc

(L) values for the three methods applied to

E

link

and �

2

are collected in Figs. 5 and 6. They are plotted there versus 1=L

3

for �

G

= 12 and 16. The errors of the individual pseudocritical �

H

values

13



Figure 5: In�nite volume extrapolation of �

Hc

for �

G

= 12

Figure 6: In�nite volume extrapolation of �

Hc

for �

G

= 16

were obtained by a variant of the Jackknife procedure. From each of the Monte

Carlo histories near to the critical point (n simulated �

H

values, n = 3 in

most cases) one half has been left out of the analysis. This amounts to 2

n

Jackknife estimators for �

Hc

. The equal weight method could be reasonably

applied only for the larger volumes because of the overlap problem mentioned

above. Corresponding to each method, a 1=L

3

�t has been used to yield a

14



respective �

1

Hc

. The extrapolations nicely coincide as expected.

In table 3 the extrapolations for each method are collected together with

the average �

1

Hc

for �

G

= 12 and 16. With the use of formulae (10,11,3,5) the

�

1

Hc

is translated into a physical temperature and an "exact" Higgs mass M

H

.

For de�niteness, these numbers are given for the case of the SU (2) Higgs theory

without fermions. Comparing these temperatures there seems to be not much

space left for O(a) corrections. The "exact" Higgs mass is practically the same.

B C w

b

= w

s

�

G

= 12

E

link

0.3435434 0.3435430

�

2

0.3435429 0.3435429 0.3435441

�

Hc

0.3435433(6)

T

c

=GeV 154.34(1)

M

H

=GeV 66.52

�

G

= 16

E

link

0.3407950 0.3407937

�

2

0.3407943 0.3407939

�

Hc

0.3407942(6)

T

c

=GeV 154.68(2)

M

H

=GeV 66.52

Table 3: In�nite volume limit for �

Hc

at M

�

H

= 70 GeV

For comparison, at the smaller coupling (M

�

H

= 35 GeV) the transition

temperature is T

c

= 85:7(1) GeV with the Higgs mass M

H

= 33:0 GeV. This

has been obtained for gauge couplings in the range from �

G

= 12 to 20 on

lattices of size 40

3

and 20

3

.

5 The strength of the phase transition

5.1 Condensate discontinuities at the phase transition

The jumps in h�

2

i and h�

4

i are connected to the renormalization group invariant

discontinuities of the quadratic and quartic Higgs condensates. The two{state

signal for h�

2

i and h�

4

i is still clearly visible for all lattice sizes considered at

the higher Higgs mass of M

�

H

= 70 GeV, where the transition turns out much

15



weaker than at M

�

H

= 35 GeV. The continuum condensate jumps can be put

into relation to the lattice quantities by the following formulae

�h�

+

�i=g

2

3

=

1

8

�

G

�

Hc

�h�

2

i (19)

�h(�

+

�)

2

i=g

4

3

= (

1

8

�

G

�

Hc

)

2

�h�

4

i: (20)

Figure 7: In�nite volume extrapolation of �h�

2

i

Corresponding to the di�erent criteria applied for the de�nition of the pseu-

docritical �

Hc

(L) we obtain histograms of the various operators just at the

respective pseudo{criticality. From the jump of the operator expectation values

between the phases (read o� from the maxima of the corresponding histogram)

an in�nite volume extrapolation is performed. A collection of discontinuities

of h�

2

i and h�

4

i for various �nite lattices is shown in Figs. 7 and 8. As in

the analysis of Ref. [7] we found that the size dependence of the jumps for all

available lattice sizes is best described by a 1=L

2

�t. The extrapolations to in-

�nite volume (for the two criteria B

�

2
and C

�

2
) and the averages (of the results

obtained with di�erent methods to extrapolate) of the jumps of the scalar Higgs

operators are given in table 4 in lattice units.

The corresponding condensate discontinuities in continuum units are col-

lected in table 5. The quadratic Higgs condensate is already independent of

�nite a e�ects. On the contrary, the quartic condensate shows a severe a depen-

dence. So we conclude, it is more subtle to extract an appropriate continuum

value for this higher condensate.

16



Figure 8: In�nite volume extrapolation of �h�

4

i

B

�

2
C

�

2
average

�h�

2

i

�

G

= 12 0.490(9) 0.479(8) 0.485(6)

�

G

= 16 0.372(8) 0.362(7) 0.367(5)

�h�

4

i

�

G

= 12 4.86(9) 4.81(8) 4.84(6)

�

G

= 16 3.62(8) 3.51(7) 3.56(5)

Table 4: In�nite volume limit for �h�

2

i and �h�

4

i at M

�

H

= 70 GeV

�h�

+

�i=g

2

3

�h(�

+

�)

2

i=g

4

3

�

G

= 12 0.250(3) 1.28(2)

�

G

= 16 0.250(4) 1.65(3)

Table 5: The continuum Higgs condensate discontinuities at M

�

H

= 70 GeV

For the case of the lighter Higgs mass M

�

H

= 35 GeV we present the cor-

responding quantities in table 6. These data were obtained from two separate,

completely metastable runs on a 40

3

lattice at �

G

= 12 and �

H

= 0:34140.

They failed to tunnel to the other phase. The actual �

H

value of these two runs

had been found as pseudocritical one on a smaller lattice.

Besides of jumps in the quadratic and quartic Higgs condensates also a

discontinuity in the expectation values of E

link

appears being a good indicator

17



�h�

2

i 6.24(1)

�h�

4

i 96.1(2)

�h�

+

�i=g

2

3

3.20(1)

�h(�

+

�)

2

i=g

4

3

25.2 (1)

Table 6: �h�

2

i and �h�

4

i and condensates at M

�

H

= 35 GeV and �

G

= 12

for the phase transition as well.

It is known (see [17]), that the sum of expectation values of the various Higgs

operators is constant according to a sort of Schwinger{Dyson equation

� 3�

H

hE

link

i+ (1� 2�

R

)h�

2

i+ 2�

R

h�

4

i = C (21)

independent of the couplings �

H

, �

G

and �

3

=g

2

3

. We have checked this sum rule

for all used coupling values and found C = 2 exactly within very good numerical

accuracy.

From eq. (21) one sees that the Higgs condensate discontinuities are related

to each other by the following sum rule

� 3�

H

�hE

link

i + (1� 2�

R

)�h�

2

i + 2�

R

�h�

4

i = 0: (22)

Additionally, the expectation value of the average plaquette hP i shows a

discontinuity as well at the phase transition. The jump in this observable is

numerically a tiny e�ect at the larger Higgs mass (mostly superimposed by the

uctuations, see the discussion and Fig. 10 below). Nevertheless, we are able to

estimate this jump using the phase separation technique discussed earlier.

In table 7 the jump �hP i is reported for �

H

values nearest to the critical

ones at M

�

H

= 70 and 35 GeV at lattice sizes 64

3

and 40

3

, respectively. At the

�hP i

M

�

H

= 70 GeV �

G

= 12 0.00037

�

G

= 16 0.00015

M

�

H

= 35 GeV �

G

= 12 0.00370

Table 7: Estimated plaquette jump �hP i

larger M

�

H

the phase separation technique is used. We do not set these jumps

in correspondence to a continuum gauge condensate discontinuity

�h

1

4

F

a

��

F

a

��

i=g

6

3

= �3

�

4

G

64

�hP i (23)
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since severe a e�ects and perturbative contributions are expected.

5.2 Latent heat

The latent heat L

heat

= �� (� is the density of thermal energy) of the transition

is calculated according to [17]

L

heat

T

4

c

=

M

2

H

T

3

c

�h�

+

�i (24)

With the reported jumps and the values forM

H

and T

c

(g

2

(�

T

c

) � 0:38) we

�nd the latent heats at the higher and smaller Higgs masses as given in table 8.

L

heat

=T

4

c

M

�

H

= 70 GeV 0.0176(3)

M

�

H

= 35 GeV 0.180(1)

Table 8: Latent heat

The equal weight method makes it possible to reconstruct directly the free

energy densities of the pure phases in the vicinity of the phase equilibrium. The

corresponding numbers are obtained in the iterative search of the pseudocritical

�

Hc

using the reweighting technique at �xed �

G

. The latent heat can then be

expressed alternatively as the jump �� of the energy density by

L

heat

T

4

c

=

1

T

2

c

a

3

L

3

d

dT

�

logw

s

� logw

b

�
�

�

�

T=T

c

: (25)

Using at �xed �

G

d

dT

�

�

�

T=T

c

� ��

2

Hc

a

2

M

2

H

2T

c

@

@�

H

�

�

�

�

H

=�

Hc

(26)

one �nds

L

heat

T

4

c

= �

g

2

3

T

3

c

1

8

M

2

H

�

2

Hc

�

G

1

L

3

@

@�

H

�

logw

s

� logw

b

�
�

�

�

�

H

=�

Hc

: (27)

The change of the weights very close to the critical �

H

is shown in Fig. 9.

Taking the corresponding slopes needed in (27) we obtain at M

�

H

= 70 GeV
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for the largest lattices (where the equal weight method can be applied without

ambiguity) L

heat

=T

4

c

= 0:0180(9) which is in good agreement with the other

method.

Figure 9: Weights for the pure phases around the equal weight pseudocritical

�

H

for �

G

= 12 on a 64

3

lattice

5.3 Wilson loops at the phase transition

If the lattice is large enough, a two{state signal becomes visible also in the

average plaquette P . This can be seen in Fig. 10 for �

G

= 12, �

H

= 0:343548

at 64

3

. 120:000 measurements are collected in this histogram.

For medium size rectangular Wilson loops a two{state signal is even better

visible than for the plaquette. This is due to the fact that the con�guration

averages follow an area and perimeter law in the symmetric and broken phase,

respectively. If these loops are not too large (i.e. not too small numerically),

this can be well separated in the histograms of Wilson loops as demonstrated in

Fig. 11. In that �gure a histogram of 2:000 measurements of a space{averaged

Wilson loop of size 12�12 is shown obtained during 20:000 MC iterations in the

metastability region at lattice size 48

3

. The corresponding average plaquette for

this size does not show a two{state signal.

In Fig. 12 we plot the logarithm of expectation values of symmetric L � L

Wilson loops versus area A = L

2

, separated into symmetric and broken phase

contributions at the critical �

H

, for both Higgs masses M

�

H

= 70 GeV and 35

20



Figure 10: Measured histograms of P for �

G

= 12

Figure 11: Measured histogram of the 12� 12 Wilson loop

GeV (in both cases for �

G

= 12). The numbers of measurements are 2:000 in

both cases. This �gure shows clearly the area law in the symmetric phase and

practically no (or only weak) dependence of the string tension (in lattice units)

on the Higgs self{coupling �

3

.
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Figure 12: Wilson loops for �

G

= 12

5.4 Estimate of the surface tension

The coexistence of both phases in lattice con�gurations opens the possibility

to determine the surface tension �. The use of the equal weight method as

described above allows to estimate the contribution of the mixed phase state at

the pseudocritical coupling for which w

b

= w

s

(for large enough lattices). The

mixed phase state weight w

mix

is directly related to �. Using these weights to

estimate � seems to be more natural than to obtain the surface tension from

the ratio of the maximum to the minimum of the �

2

distribution at equilibrium

de�ned by equal weight. For asymmetric transitions the choice of the maximum

is even somewhat arbitrary (unless equal height is the criterium of choice).

To get an idea about the shape of the interfaces (bubbles, walls) we show a

snapshot of a particular con�guration on a 32

2

� 128 (M

�

H

= 70 GeV, �

G

= 12)

in the pseudocritical �

H

region. This con�guration has a �

2

= 3:67 where

mixed states can be expected. To suppress the large uctuations in the local

�

2

x

values we have averaged them iteratively over the next neighbours. The

con�guration obtained in this way is shown in Fig. 13 where we have plotted

all lattice points with �

2

x

> 3:67. The �lled (empty) region can be interpreted

as the broken (symmetric) phase contribution. Besides of a few bubbles we see

two large interfaces separating the pure phases. Although the con�guration has

been smoothed the interfaces are rather structured which makes it di�cult to

assign them a de�nite area A. For simplicity we use in the �t below A = L

2

x

a

2

,

which tends to overestimate �.
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Figure 13: Smoothed mixed state con�guration, plotted are the points to be

assigned to the broken phase

We parametrize the relation between the weights at pseudocriticality and �

for lattices of the form L

2

x

� L

z

as follows

w

mix

w

s

=

w

mix

w

b

= b L

2

z

logL

x

exp(�2�a

2

L

2

x

=T

c

): (28)

With that ansatz we try to describe data obtained either from cubic and from

cylindrical lattice geometries.

The factor L

2

z

is an entropy factor which accounts for the positions of the two

surfaces, logL

x

is the result (for d = 3) of the capillary wave approximation for

the (internal) uctuations of the surfaces. The degeneracy factor b is introduced

to count di�erent possible orientations of the surfaces dominant for cubic (b = 3)

and for prolongated lattices (b = 1).

In Fig. 14 we present the data for �=T

3

c

as function of (�

G

=L

2

x

) for various

lattice sizes and geometries and di�erent �

G

values at M

�

H

= 70 GeV. From a

linear �t to the in�nite volume limit we �nd the upper bound

�

T

3

c

� 0:00022: (29)

These lattice results are smaller by one order of magnitude than the one{

loop estimates for the surface tension [23]. A trend of �nding smaller surface

tensions at larger Higgs masses was already observed in [7]. Whereas the latent

heat is determined by the position of the broken minimum alone, the surface

tension is sensitive to the shape of the e�ective potential in the whole ' range

between the symmetric and the broken phase. The disagreement between the

measured surface tension and the one{loop estimate at intermediate Higgs mass

appears to indicate that the loop expansion to the e�ective potential gets out
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Figure 14: Surface tension vs. (�

G

=L

x

)

2

of control at intermediate ' values already, reecting the infrared problems of

the symmetric phase.

The surface tension is the only quantity indicating a substantial deviation

from perturbative predictions at M

�

H

= 70 GeV, i.e. additional weakening of

the phase transition with increasing Higgs mass. At still larger Higgs masses

(M

H

� M

W

= 80 GeV) the phase transition has been suggested recently to

be of second order [15] or to be a smooth crossover [16] in accordance with

predictions from the study of gap equations [14]. The �rst case would be di�cult

to discriminate from a phase transition being very weakly �rst order. In any

case, however, one will observe the turn{over to a very weak or continuous

transition at higher Higgs mass.

6 Broken phase and perturbation theory

Analysing the lattice data one should answer the question whether the broken

phase can be understood perturbatively. There are no infrared problems in this

phase because the elementary excitations are massive. Nevertheless, a pertur-

bative treatment is expected to break down at larger Higgs masses, close to the

phase transition.

It is known [24] that for calculating the temperature dependent e�ective
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potential the appropriate e�ective expansion parameter for the broken phase is

g

2

3 eff

=

g

2

3

2m

W

(T )

(30)

with the 3{dimensional gauge boson mass m

W

(T ). This coupling can be deter-

mined from the two{loop e�ective potential [25]. Its value depends on the gauge

�xing as well as on the choice of the renormalization point �

3

. Using Feynman

gauge and �

3

= g

2

3

for M

�

H

= 70 GeV this e�ective coupling is found to be 1:10

at the critical temperature.

In Figs. 15 and 16 we present a comparison of our lattice data with two{

loop continuum predictions for the renormalized Higgs condensate �

2

(T ) and the

vector boson (m

W

(T )) and Higgs boson (m

H

(T )) masses at the corresponding

temperature, respectively, using the e�ective potential [25]. The temperature T

is implicitly given via m

2

3

(g

2

3

) (see eqs. (3, 4, 5). The h�

2

i data are obtained

from the measured h�

2

i by subtracting the one{loop and two{loop counterterms

[17]

Figure 15: Comparison of perturbative and lattice �

2

�

2

= 2h�

+

�i(g

2

3

);

h�

+

�i(g

2

3

)=g

2

3

=

1

8

�

G

�

H

h�

2

i �

�

G

8�

� �

3

16�

2

�

log

3

2

�

G

+ 0:67

�

: (31)

We di�er from [7] by a factor of 2 in the convention of de�ning �

2

. The two{
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Figure 16: Measured masses at M

�

H

= 70 GeV and �

G

= 12 compared to

continuum perturbation theory

loop predictions are calculated in Feynman gauge. In the case of m

W

and

m

H

predictions are shown with and without the one{loop wave function renor-

malization constants for the Higgs and vector boson masses Z

H

and Z

W

[24]

(m = Z

�1=2

m

0

). The prediction for m

H

is derived from the curvature of the

e�ective two{loop potential at the broken minimum, which is not identical to

the pole mass. However, the di�erence is expected to be small.

Comparing perturbation theory predictions with the data we observe very

good agreement deeper in the broken phase, as should be expected. Wave func-

tion renormalization is obviously required. Otherwise the agreement is poor.

Close to the phase transition we observe a systematic di�erence between lattice

data and the continuum calculation as function of m

2

3

. Nevertheless, the pre-

dicted mass and h�

2

i values at the corresponding continuum critical point agree

well with the measured ones at T

c

(m

2

3

< 0). The mapping of the two{loop

results from the parameter v

0

=v used in [25] to m

2

3

(g

2

3

) fails close to the phase

transition. This may be an indication that higher loop terms start to play a

signi�cant role in this regime.

7 Some properties of the symmetric phase

3{dimensional SU (2) pure gauge theory is known to possess con�nement, i.e.

the spectrum is formed by massive W{balls instead of the elementary massless
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W 's. Adding a Higgs doublet has similar consequences as adding fermions: new

massive (�

+

�) bound states occur, and the static con�ning potential should be

screened. The Lagrangian mass of the scalar bosons increases with temperature,

i.e. su�ciently away from the phase transition the Higgs bound states become

heavy. As a consequence, the symmetric phase should more and more resemble

pure SU (2) gauge theory at higher and higher temperature. In the �

H

range

(resp. m

3

range) that we have explored this could not yet be con�rmed, however.

The lowest Higgs bound state is still signi�cantly lighter than the lightest 0

+

W{

ball.

7.1 Higgs and vector boson bound states

Results for the lowest Higgs bound state (0

+

) and the vector boson bound state

(1

�

) are shown in Fig. 17 as function of m

3

(g

2

3

)=g

4

3

. Data from di�erent �

G

Figure 17: Masses in the symmetric phase for �

G

= 12, diamonds correspond

to �

G

= 16

values nicely coincide. Our results for the vector boson mass m

W

should be

considered as upper bounds, because of a possible admixture of states with a

somewhat higher mass. For the Higgs mass m

H

this problem is not severe

because the mass gap to higher mass states is signi�cantly larger. This problem
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has been carefully studied recently by Philipsen et al. [26]. Note that our

gauge boson masses are calculated from correlators of gauge invariant operators

in contrast to Ref. [15] where gauge variant correlators have been analysed,

obtained in conjunction with gauge �xing (Landau gauge).

One important conclusion from Fig. 17 is the scaling behaviour of masses

when plotted versus m

2

3

. Outside the immediate vicinity of the phase transition

no �

3

dependence is seen within errors. Our data point at the lighter Higgs

mass has been reanalysed as compared to our Ref. [6].

An attempt has been made to reproduce these bound state masses by approx-

imate analytical methods [27] based on the Feynman{Schwinger representation

of correlators. The measured static potential (see below) is used as input. The

level spacings (2s{1s, 1p{1s) are very well reproduced by this approach for the

data point of Ref. [26]. The other interesting phenomenon is the m

2

3

dependence

of the bound state masses, also being reproduced well.

7.2 The static potential

In four dimensions one usually considers Creutz ratios of Wilson loop expecta-

tion values instead of the loops directly in order to avoid explicit renormaliza-

tion. This is not necessary in three dimensions because renormalization becomes

very simple. All ultraviolet divergent contributions are covered by the exponen-

tiated (Abelian) one{loop term, having a logarithmic divergence. For the poten-

tial, the one{loop massless W{exchange contribution is g

2

3

3=(8�) log(R=(2a)).

This is the result of a continuum calculation with a introduced as ultraviolet

cut{o�. Interesting enough, the behaviour of the two{loop contribution can sim-

ply be predicted on dimensional grounds to be c

2l

g

4

3

R, with some constant c

2l

not yet evaluated. Correspondingly, higher loop orders generate higher powers

of R. Perturbation theory will therefore be appropriate to describe small Wil-

son loops, i.e. the potential at small R, whereas it breaks down in a power{like

manner at large distances (infrared regime). This is di�erent from the 4d case

where corresponding e�ects are logarithmic.

At small R, an appropriate �t to the potential (in units of g

2

3

) should be

provided by

V (R) = V

1

+

3

8�

log(

R

2a

) + c

1

R; (32)

where a is identi�ed as the lattice constant, and V

1

has been introduced as

additional �t parameter. It could be �xed, however, by a one{loop lattice cal-

culation (not yet done). The renormalized potential will anyway contain some
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arbitrariness in the overall normalization, due to the choice of the renormaliza-

tion point.

A priori, it is not clear up to which distance this ansatz may be appropriate.

Interesting enough we shall �nd (see below) that it describes our data reason-

ably well in the whole range, up to about R = 6=g

2

3

. Two{loop perturbation

theory generates a term looking like a string tension. The value of c

1

�tted

at intermediate R may therefore have perturbative as well as non{perturbative

contributions. Because of the gauge coupling being dimensionful it will be dif-

�cult not only in practice but also conceptually to separate perturbative from

non{perturbative e�ects. This in particular concerns the de�nition of a possible

W condensate.

Equation (32) is based on massless perturbation theory. We know, however,

that the symmetric phase is formed by massive bound states instead. This

information may be taken into account in �tting our potential data. We shall

also consider the ansatz (K

0

is a modi�ed Bessel function)

V (m;R) = V

2

�

3

8�

K

0

(mR) + c

2

R (33)

with some additional �t parameter m representing the mass of the exchanged

particle. It should come out close to the measured W mass.

Figure 18: Example for static potential in comparison to perturbation theory

As an example we present in Fig.18 the potential for �

H

= 0:3434, �

G

= 12

andM

�

H

= 70 GeV from a run on a 30

3

lattice. The data for V (R) are obtained
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from exponential �ts to the Wilson loops

W (R=a; T=a) = C(R) exp(�V (R)T ) ; 2a � R � T � 3a: (34)

This potential is compared to the above described ans�atze using massless (m =

0) and massive (m > 0) perturbation theory. For the second case the mass

parameter is chosen to minimize the �

2

value of the least square �t. For this

particular example we obtain the parameter values V

1

= 0:267, c

1

= �=g

2

3

=

0:0791g

2

3

for the massless and V

2

= 0:339, c

2

= �=g

2

3

= 0:118g

2

3

, m = 0:93g

2

3

for the massive case (m

2

3

(g

2

3

)=g

4

3

= 0:00022). In general, the �ts using massive

perturbation theory ansatz seem to describe the data somewhat better at the

larger distances studied.

7.3 Temperature and Higgs mass dependence of the \string

tension"

In Fig. 19 we present the string tension obtained from the ans�atze for the po-

tential in (32) and (33), respectively, at di�erent m

2

3

values. In this analysis

Figure 19: String tension �=g

4

3

from (32) and (33) vs. m

2

3

(g

2

3

)=g

4

3

data from the higher and smaller Higgs mass M

�

H

cases as well as for di�erent

�

G

are used. Most of the data are from 30

3

lattices. The closest to T

c

and the

�

G

= 16 string tensions are obtained from �ts to Wilson loops on 48

3

lattices

(compare Fig. 12) up to distances R = 18a. The scattering of the data points
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is an estimate for the error of the string tension. The errors obtained from the

least square �t are obviously too small to be reliable.

We observe that there is no signi�cant dependence of �=g

4

3

on �

3

(M

�

H

) in

both �ts. At larger m

2

3

(temperatures), i.e. deeper in the symmetric phase,

the result of the string tension based on the �t to massive perturbation theory

(33) is (not unexpectedly) close to the value reported by Teper [28] for pure 3d

SU (2) gauge theory. This lends additional support to this parametrization of

the potential.

For the lattice distances we could explore the expected screening behaviour

of the static potential has not yet been observed. Still larger distances are

di�cult to study due to the numerical smallness of the Wilson loops that are

needed.

8 Summary

The numerical results of this study provide evidence for the �rst order nature of

the thermal phase transition in the SU (2){Higgs system with Higgs masses up

to 70 GeV. The answers will soon converge concerning the upper critical Higgs

mass above which the thermal transition is no longer �rst order.

One of the motivations for the interest in non{perturbative investigations

of the thermal electroweak phase transition in general, was to be able to check

the reliability of perturbative calculations of the e�ective potential. The corre-

sponding results of two{loop perturbation theory are con�rmed for the masses

and the renormalized Higgs condensate in the broken phase. It turns out, that

the e�ect of wave function renormalization cannot be ignored. Physics that

depends only on the potential in the vicinity of the broken minimum, can be

systematically improved by higher order perturbation theory.

The surface tension which is sensitive to the barrier shape of the e�ective

potential for Higgs �eld below the order parameter at T

c

is systematically over-

estimated in the perturbative calculation available so far. But this is not ex-

clusively a problem for perturbation theory. The surface tension is notoriously

hard to measure for weak transitions as at M

H

' 70 GeV. The equilibrium con-

�gurations can be inspected and show rather structured interphase surfaces. In

view of this, estimators of the surface tension like ours seem to be not extremely

justi�ed either.

To check the viability of the dimensional reduction program in the vicinity

of the electroweak phase transition has been another motivation for 3d lattice

studies. The reduced model does not only make very precise predictions, but
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seems to be reliable in the range of Higgs masses which was of particular interest

in this investigation. In order to learn about the necessity to include higher

dimensional operators into the e�ective lattice action one should explore the case

of smaller or very much heavier Higgs masses, but this is much less interesting,

phenomenologically. In any case, 4d anisotropic lattices will be important for

obtaining results (and to study masses) near to the continuum limit in physically

large 3{volumes.

Phenomenologically, the Standard Model is ruled out as an arena for baryon

asymmetry generation at the electroweak transition. The 3d lattice approach

promises to be applicable as an e�ective formulation of nonstandard extensions

as well. The phase structure of the model, once fully reveiled by 3d lattice

simulations, as well as the quantitative characterization of the strength of the

phase transition, will be useful to inquire a multitude of 4d extended theories

by Monte Carlo parameter exploration. For this purpose, it is now possible to

go beyond the easiest perturbative formulae.

We have turned the equal weight criterion in conjunction with the multihis-

togram Ferrenberg{Swendsen interpolation technique into a valuable iterative

procedure. In our variant to apply this criterion, we do not need to choose any a

priori known cut between the phases nor to associate individual con�gurations

uniquely to one of the pure phases or to the two{phase mixed con�gurations.

Finally, the method yields the thermodynamical weight of the latter ones. For

any lattice size where the pure phase histograms do not overlap, the critical

hopping parameter is obtained within the cone of in�nite volume extrapolations

of all other, more standard criteria to �nd �

Hc

. Moreover, the iterative search

for �

Hc

provides the thermal energy of both pure phases in the vicinity of the

transition, allowing to obtain an independent estimator for the latent heat.

We have put much more emphasis than before to the properties of the sym-

metric phase. Within the 3d approach, information on the spectrum of particle

like states can only be accessed through the 3d correlation lengths. The pat-

tern obtained lacks deeper understanding. Despite some technical progress in

resolution of the spectrum of the 3d transfer matrix, the interplay between the

con�ning properties of the 3d e�ective theory at high physical temperature and

the space{time structure of physical excitations needs further investigations, as

well as the nature of this con�nement itself for the 3d pure gauge theory and in

the presence of scalar matter �elds.
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