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Abstract

Several two-dimensional quantum �eld theory models have more

than one vacuum state. Familiar examples are the Sine-Gordon and

the �

4

2

-model. It is known that in these models there are also states,

called kink states, which interpolate di�erent vacua. A general con-

struction scheme for kink states in the framework of algebraic quantum

�eld theory is developed in a previous paper. However, for the appli-

cation of this method, the crucial condition is the split property for

wedge algebras in the vacuum representations of the considered mod-

els. It is believed that the vacuum representations of P (�)

2

-models

ful�ll this condition, but a rigorous proof is only known for the mas-

sive free scalar �eld. Therefore, we investigate in a construction of

kink states which can directly be applied to P (�)

2

-model, by making

use of the properties of the dynamic of a P (�)

2

-model.



1 Introduction and Overview

There are familiar examples of 1+1 dimensional quantum �eld theory

models which possess more than one vacuum state. Let us mention

the Sine-Gordon model, the �

4

2

-theory and the Skyrme model. Further

candidates are special types of P (�)

2

-models.

It is known that the Sine-Gordon and the �

4

2

-model possess states,

called kink states, which interpolate di�erent vacuum states. A con-

struction of them was done by J. Fr�ohlich in the 70s and can be ob-

tained from [15]. In [15, chapter 5], J. Fr�ohlich discusses the existence

of kink states in general P (�)

2

-models. However, this construction

leads only to kink states which interpolate vacua which are connected

by an (special) internal symmetry transformation, namely � 7! ��.

Moreover, a construction of the vacuum states of the �

4

2

-model and

their corresponding kink states is given in [16] by using Euclidean

methods.

We expect that there are P (�)

2

-models which have more than one

vacuum state, but where these vacua are not related by an internal

symmetry transformation. For these purposes, we investigate the fol-

lowing question:

Let us consider a 1+1-dimensional model of a quantum �eld theory

which possesses more than one vacuum state, which conditions a pair

of vacuum sates has to ful�ll, such that an interpolating kink state

can be constructed?

This question is already discussed in [29], where a general con-

struction scheme for kink states is developed. It is purely algebraic

and independent of the speci�c properties of a model. Another advan-

tage is that the assumption that the vacua are related by an internal

symmetry transformation, as is used in [15, 16], is not needed. On

the other hand, to apply this construction scheme to a pair of vacuum

states, the crucial condition is the split property for wedge algebras in

the GNS-representations of the considered vacuum states. Hence we

have to prove this condition for pairs of vacuum states of the model

under consideration if we want to apply these results to a concrete

model. It is believed that the vacuum states of P (�)

2

-models ful�ll

this condition, but a rigorous proof is only known for the massive free

scalar �eld [1, 8, Appendix of this paper].

Therefore, we investigate a construction of kink states which can

directly be applied to P (�)

2

-models.

We make use of the properties of the dynamic of a P (�)

2

-model to
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show that the construction scheme, which is described in [29], is also

applicable to P (�)

2

-models. More precisely, it is su�cient to assume

that the vacua under consideration have the local Fock property, which

is automatically the case for each P (�)

2

vacuum [18], and that the

dynamic of the model satis�es an additional technical condition which

we shall explain in more detail later.

In the second section, we give a short introduction in the frame-

work of algebraic quantum �eld theory in which a 1 + 1 dimensional

quantum �eld theory is described by a prescription which assigns to

each bounded region O � R

2

a C*-algebra A(O). The elements in

A(O) represent physical operations which are localized in O. This

prescription has to satisfy a list of axioms which are motivated by

physical principles.

For our purpose it is convenient to work with the time slice formu-

lation of a quantum �eld theory. We �x a space-like plane � � R

2

and

consider a prescription which assigns to each bounded subset I � �

a C*-algebra M(I). The elements in M(I) represent boundary con-

ditions for physical operations at time t = 0. We may interpret the

algebras M(I) as Cauchy data. For our analysis, it is su�cient to

consider the algebras of the massive free scalar-�eld at time t = 0.

They are given by

M(I) := fe

i�

0

(f

1

)+i�

0

(f

2

)

: supp(f

j

) � I � �g

00

where �

0

is the free time zero-�eld, represented on Fock-space, and

�

0

its canonical conjugate momentum. The double-prime

00

denotes

the bicommutant with respect to the algebra of bounded operators on

Fock-space. We denote by C

�

(M) is the C*-algebra which is generated

by all algebras M(I). The space-like translations, i.e. translations in

�

�

=

R, act as an automorphism-group f�

x

: x 2 Rg on C

�

(M), where

�

x

maps M(I) ontoM(I + x).

To describe the time development of a physical system, we consider

a special class of one-parameter automorphism groups f�

t

: t 2 Rg

which are called dynamics. Motivated by physical principles, they

should satisfy the following list of axioms:

(1) The automorphisms �

t

commute with the spatial translations �

x

.

(2) The propagation speed, which is induced by the automorphism

group f�

t

: t 2 Rg, is not faster than the speed of light, i.e. if

an operator a is localized in the open interval (x;y), then the

operator �

t

(a) localized in (x� jtj;y+ jtj).
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There are familiar examples of dynamics, namely the dynamic of

the massive free scalar �eld and the interacting dynamics of the P (�)

2

-

models [18].

We close the second section, discussing the connection between the

time slice formulation of a quantum �eld theory and its corresponding

formulation in two-dimensional Minkowski space.

In the third section, we introduce a class of states which are of

interest for our subsequent analysis. A state is described by a normed

positive linear functional ! on the C*-algebra C

�

(M). For an oper-

ator a 2 M(I), the value !(a) is the expectation value of a physical

operation a in the state !. Since we want to discuss vacuum states

and states with particle-like properties, we select the class of states

which satisfy the Borchers criterion (positivity of the energy). A state

! ful�lls the Borchers criterion if the conditions, listed below, are sat-

is�ed.

(1) There exists a unitary strongly continuous representation of the

translation group U : (t;x) 7! U(t;x) on the GNS-Hilbert space

H of ! which implements �

(t;x)

= �

t

��

x

in the GNS-representation

� of !, i.e.

� � �

(t;x)

= Ad(U(t;x)) � � :

This condition can physically be interpreted as the fact that the

outcome of an experiment will not change if we prepare the same

state in a translated laboratory.

(2) The spectrum of the generator of U(t;x) is contained in the closed

forward light cone. The physical interpretation of this spectrum

condition is the requirement that the energy has to be positive.

This condition describes the stability of a physical system.

In addition to the Borchers criterion, a vacuum state !

0

is translation-

ally invariance, i.e.:

!

0

� �

(t;x)

= !

0

We have to mention, that in our context the de�nitions given above

depend on the dynamic of the speci�c model.

It is shown by Glimm and Ja�e [18] that for each dynamic of a

P (�)

2

-model, there exists a vacuum state !. In some cases there are

more than one vacuum state with respect to the same dynamic, for

example there are two di�erent vacua with respect to the �

4

2

-dynamic

[15, 18].
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A mathematical de�nition of kink states and the main result of this

paper are given in the 4th section. A kink state ! which interpolates

vacuum states !

1

; !

2

is characterized by the following properties:

Particle-like properties: We require that a kink state ful�lls the Borchers

criterion. This property guarantees that one has the possibil-

ity to "move" a kink like a particle. If the lower bound of the

spectrum of U(x) is an isolated mass shell, then a kink state

"behaves" completely like a particle.

The interpolation property: A pair of vacuum states !

1

; !

2

is interpo-

lated by a kink state ! if there is a bounded region I � �, such

that

!(a) = !

1

(a), if a is localized in the left (space-like) complement

of I, and !(a) = !

2

(a), if a is localized in the right (space-

like) complement of I. In other words, the state ! "looks like"

the vacuum !

1

at plus space-like in�nity and it "looks like" the

vacuum !

2

at minus space-like in�nity.

We are now prepared to formulate the main result.

The main Result: Let (!

1

; !

2

) be a pair of two inequivalent vacuum

states with respect to a dynamic of a P (�)

2

-model, then there

exists an interpolating kink state !.

The construction of an interpolating kink state is based on a sim-

ple physical idea. Let us consider a physical system in one spatial

dimension, represented by a net of observables (v.Neumann algebras)

I 7!M(I). As described above, we denote by C

�

(M) the C*-algebra

which is generated by all local algebras M(I).

Let us suppose that there is an partition wall, represented by a

bounded interval I = (x;y), such that it splits our system into two

in�nitely extended laboratories, namely the laboratory on the left side

of the wall, i.e. the region I

LL

:= (�1;x), and the laboratory on the

right side of the wall, i.e. the region I

RR

= (y;1).

The physical operations which take place in the laboratory on the

left side of the wall are represented by the C*-algebra C

�

(M; I

LL

)

which is generated by all local algebras M(I), I � I

LL

. Analo-

gously we consider the physical operations, represented by the algebra

C

�

(M; I

RR

), on the right side of the wall.

The property of the wall to separate the left from the right lab-

oratory can be mathematically formulated by the requirement that

the C*-algebra which is generated by C

�

(M; I

LL

) and C

�

(M; I

RR

) is

5



isomorph to their C*-tensor product, i.e.:

C

�

(M; I

LL

[ I

RR

))

�

=

C

�

(M; I

LL

)
 C

�

(M; I

RR

) (1)

This means that observations which take place in the left laboratory

are statistically independent from those in the right one. See also

[25, 26] for these notions.

Let us suppose that our physical system possesses at least two

inequivalent vacuum states !

1

and !

2

. Since the partition wall, which

plays the role of the kink region, has the separation property, described

above, the vacuum states !

1

and !

2

can independently be prepared

in the laboratory on the left side and in the laboratory on the right

side respectively.

Let us give a mathematical description of this scenario. By using

the isomorphy, which is described by equation (1), we conclude that

the prescription

ab 7! !

1

(a)!

2

(b) a 2 C

�

(M; I

LL

) and b 2 C

�

(M; I

RR

)

de�nes a state ! on the C*-algebra C

�

(M; I

LL

[ I

RR

). By the Hahn-

Banach theorem, we know that there exists an extension !̂ of the state

! to the algebra C

�

(M).

The state !̂ interpolates the vacua !

1

and !

2

correctly, but for an

explicit construction of an extension of ! which satis�es the Borchers

criterion, some technical di�culties have to be overcome.

To solve these problems, we use a technical trick (compare also

[15, chapter 5]), namely we couple two copies of our physical system,

i.e. we consider the net

I 7! F

2

(I) :=M(I) 
 M(I) (W*-tensor product).

The map �

F

which is given by interchanging the tensor factors,

�

F

: a

1


 a

2

7! a

2


 a

1

is called the ip automorphism. We interpret the algebra F

2

(I) as

a �eld algebra with an internal Z

2

-symmetry. For an unbounded re-

gion J � �, let us denote by F

2

(J ) the v.Neumann algebra which is

generated by all algebras F

2

(I) with I � J .

We shall show in the appendix that for each bounded interval I =

(x;y) (I

RR

:= (y;1) and I

R

:= (x;1)) the inclusion

F

2

(I

RR

) � F

2

(I

R

)

6



is split. By using the universal localizing map with respect to this

split inclusion, a unitary operator �

I

can be constructed, such that �

I

implements the ip �

F

on F

2

(I

RR

) and commutes with each element in

F

2

(I

LL

) [2, 29, 23]. The adjoint action of �

I

induces an automorphism

�

I

of C

�

(F

2

) which has the following properties:

(1) The automorphism �

I

is an involution, i.e. �

I

� �

I

= id.

(2) For a 2 C

�

(F

2

; I

LL

) and b 2 C

�

(F

2

; I

RR

) one has:

�

I

(a) = �

F

(a) and �

I

(b) = b

For each bounded interval I, the automorphism �

I

can be used to

construct an extension !̂ of the state ! to the algebra C

�

(M), namely:

!̂ := !

1


 !

2

� �

I

j

C

�

(M)
C1

We shall show that the state !̂ satis�es the Borchers criterion if the

automorphism

�

(t;x)

� �

I

� �

�(t;x)

� �

I

of C

�

(F

2

) is inner, i.e. it is given by the adjoint action of a local

operator (t;x) 2 C

�

(F

2

). Indeed, for this case, the translation group

is implemented in the GNS-representation of !̂ by the representation

(t;x) 7! U(t;x) = U

1

(t;x)
 U

2

(t;x)�

1


 �

2

((�t;�x))

where U

1

(t;x) and U

2

(t;x) implement the translations in the corre-

sponding vacuum representations �

1

and �

2

. The spectrum condition

can be proven by using the additivity of energy-momentum spectrum,

as described in [29].

We shall show in section 5 that the automorphism

�

I

� �

(t;x)

� �

I

� �

�(t;x)

is inner in C

�

(F

2

) if the dynamic � of the model under consideration

can be extended to the (non-local) net

I 7!

^

F

2

(I) := F

2

(I) _ f�

I

g (compare also [23]). Once we have estab-

lished this result, we conclude that !̂ satis�es the Borchers criterion.

These aspects are discussed for a slightly more general situation.

We consider the net which is given by the N -fold W*-tensor product

I 7! F

N

(I) := M(I)


 N

. The permutation group S

N

acts on it as

an internal symmetry group of automorphisms f�

�

; � 2 S

N

g.

7



This generalization can be used to construct multi-kink states in a

very simple way. Given a permutation � 2 S

N

and a bounded interval

I. Using the universal localizing map, we construct an automorphism

�

I

�

which acts on observables, localized in I

LL

, trivially and on ob-

servables, localized in I

RR

, as the automorphism �

�

.

Let us consider a family of vacuum states (!

1

; � � � ; !

N

) and inter-

vals

I

1

; � � � ; I

N

. Then the state

! := !

1


 � � � 
 !

N

� �

I

N

s

N

� � ��

I

1

s

1

j

C

�

(M)
C1

can be interpreted as a multi-kink-state. Here s

j

denotes the trans-

position of j and j + 1.

Indeed, if we consider an observable a 2M(I) with I > I

1

[� � �[I

N

we obtain

!(a) = !

1


 � � � 
 !

N

� �

I

N

s

N

� � ��

I

1

s

1

(a
 1)

= !

1


 � � � 
 !

N

� �

s

N

���s

1

(a
 1) = !

N

(a)

Analogously we obtain for a

0

2M(I

0

) with I

0

< I

1

[ � � � [ I

N

!(a

0

) = !

1

(a

0

)

since the automorphisms �

I

j

s

j

act trivially on M(I

0

).

Finally, to prove the main result of our paper, we shall show in

section 6 that each dynamic of a P (�)

2

-Model is extendible.

We close our paper with section 7, where we give a summary of

the main results and discussing some work in progress.

2 Preliminaries

The Framework of Algebraic Quantum Field Theory: Let

us consider a quantum �eld theory in two dimensions which is de-

scribed by a translationally covariant Haag-Kastler net. We briey

discuss the axioms of such a net.

A 1+1 dimensional quantum �eld theory is given by a prescription

which assigns to each region O � R

2

a C*-algebra A(O) and the

elements in A(O) represent physical operations which are localized in

O. This prescription has to satisfy a list of axioms which are motivated

by physical principles.

8



(1) A physical operation which is localized in a region O should also

localized in each region which contains O. Therefore, we require

that if a region O

1

is contained in a lager region O, then the

algebra A(O

1

) is a sub-algebra of A(O).

(2) Two local operations which take place in space-like separated re-

gions should not inuence each other. Hence the principle of

locality is formulated as follows: If a region O

1

is space-like sep-

arated from a region O, then the elements of A(O

1

) commute

with those of A(O).

(3) Each operation which is localized in O should have an equivalent

counterpart which is localized in a translated region O+ x. The

principle of translation covariance is described by the existence

of a two-parameter automorphism group f�

x

; x 2 R

2

g which acts

on the C*-algebra A, generated by all local algebras A(O), such

that �

x

maps A(O) onto A(O + x).

A prescription O ! A(O) of this type is called a translationally co-

variant Haag-Kastler net.

Cauchy Data and Dynamics of a Quantum Field The-

ory: For our purpose, it is convenient to work with the time slice

formulation of a quantum �eld theory. Let us choose a space-like plain

� � R

2

. The time slice-formulation has two main aspects. Firstly,

the Cauchy data with respect to � which describes the boundary con-

ditions at time t = 0. Second, the dynamic which describes the time

evolution of the quantum �elds.

The Cauchy data of a quantum �eld theory are given by a net of

v.Neumann-algebras

M := fM(I) � B(H

0

); I is open and bounded interval in �g

represented on a Hilbert-space H

0

. This net has to satisfy the follow-

ing conditions:

(1) The net is satis�es isotony, i.e. if I

1

� I

2

, then M(I

1

) �M(I

2

).

(2) The net is local, i.e. if I

1

\ I

2

= ;, then M(I

1

) �M(I

2

)

0

.

(3) There exists a unitary and strongly continuous representation

U : x 2 R 7! U(x) 2 U(H

0

)

of the spatial translations in �

�

=

R, such that �

x

:= Ad(U(x))

maps M(I) ontoM(I + x).

9



Notation: Let us give a few comments on the notation to be used.

Given a net N : I 7! N(I) of W*-algebras. In the sequel, we denote

the C*-inductive limit of the net N by C

�

(N). The corresponding C*-

and W*-algebras, which belong to an unbounded region J � �, are

denoted by

C

�

(N;J ) :=

[

I�J

N(I)

jj�jj

and N(J ) :=

_

I�J

N(I) respectively.

Furthermore,we write Aut(N), for the group of *-automorphisms of

C

�

(N).

Remark: In general, the W*-algebra N(J ) is not contained in the

C*-inductive limit C

�

(N), since C

�

(N) is only generated by algebras

with respect to bounded intervals.

As mentioned in the introduction, we introduce the notion of of

dynamics.

De�niton 2.1 : A one-parameter group of automorphisms

� = f�

t

2 Aut(M); t 2 Rg is called a dynamic of the net M if

(1) the automorphism group � has propagation speed ps(�) � 1,

where ps(�) is de�ned as follows:

ps(�) := inff�

0

j�

t

M(x;y)�M(x� �

0

jtj;y+ �

0

jtj); 8t;x;yg

(2) The automorphisms f�

t

2 Aut(M); t 2 Rg commute with the

automorphism-group of spatial translations f�

x

2 Aut(M);x 2

Rg, i.e.:

�

t

� �

x

= �

x

� �

t

; 8x; t

The set of all dynamics ofM is denoted by dyn(M).

Here we write M(x;y) for the algebra which belongs to the interval

I = (x;y).

At this point we should mention that it is possible to choose for

di�erent theories the same net of Cauchy data. In case of P (�)

2

-

models, the Cauchy data are given by the time zero-algebras of the

free massive scalar �eld.

To distinguish di�erent theories, we have to compare di�erent dy-

namics. For this purpose, we shall construct a universal Haag-Kastler

net with respect to the net M of Cauchy data in the next paragraph.
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Haag-Kastler nets for Cauchy Data: We denote by U(M)

the group of unitary operators in C

�

(M). Let G(R;M) be the group

which is generated by the set

f(t; u)j t 2 R and u 2 U(M) g

modulo the following relations:

(1) For each u

1

; u

2

2 U(M) and for each t

1

; t

2

; t 2 R, we require:

(t; u

1

)(t; u

2

) = (t; u

1

u

2

) and (t; 1) = 1

(2) For u

1

2 M(I

1

) and u

2

2 M(I

2

) with I

1

� I

2

+ [�jtj; jtj]) we

require for each t

1

2 R:

(t

1

+ t; u

1

)(t

1

; u

2

) = (t

1

; u

2

)(t

1

+ t; u

1

)

We conclude from relation (1) that (t; u) is the inverse of (t; u

�

). Fur-

thermore, a localization region inR�� can be assigned to each element

in G(R;M).

An element of the form

v = (t

1

; u

1

) � � �(t

n

; u

n

)

is localized in O � R� � if the following holds:

There exists a region I � �, such that ft

1

; � � � ; t

n

g � I � O and

u

1

; � � � ; u

n

2M(I).

The subgroup of G(R;M) which is generated by elements which are

localized in the double cone O, is denoted by G(O).

We easily observe that relation (2) implies that group elements

commute if they are localized in space-like separated regions.

The translation group in R

2

is naturally represented by group-

automorphisms of G(R;M). They are de�ned by the prescription

�

(t;x)

(t

1

; u) := (t+ t

1

; �

x

u) :

Thus the subgroup G(O) is mapped onto G(O + (t; x)) by �

(t;x)

.

To construct the universal Haag-Kastler net, we build the group

C*-algebra B(O) with respect to G(O). For convenience, we briey

describe the construction of B(O).

In the �rst step we build the *-algebra B

0

(O) which is generated

by all complex valued functions a on G(O), such that

a(u) = 0 for almost each u 2 G(O) .

11



We write such a function symbolically as a formal sum, i.e.

a =

X

u

a(u) u

The product and the *-relation is given as follows:

ab =

X

u

a(u) u �

X

u

0

b(u

0

) u

0

=

X

u

0

�

X

u

a(u)b(u

�1

u

0

)

�

u

0

a

�

=

X

u

�a(u

�1

) u

It is well known, that the algebra B

0

(O) has a C*-norm which is

given by

jjajj := sup

�

jj�(a)jj

�

where the supremum is taken over each Hilbert-space representation

� of B

0

(O). Finally, we de�ne B(O) as the closure of B

0

(O) with

respect to the norm above.

The C*-algebra which is generated by all local algebras B(O) is

denoted by C

�

(B). By construction, the group isomorphisms �

(t;x)

induce a representation of the translation group by automorphisms of

C

�

(B).

Observation: The net of C*-algebras

B := fB(O)jO is a bounded double cone in R

2

g

is a translationally covariant Haag-Kastler net.

The universal properties of the net B are stated in the following

Proposition:

Proposition 2.1 : Each dynamic � 2 dyn(M) induces a C*-homomorphism

�

�

: C

�

(B)! C

�

(M)

such that

�

�

� �

(t;x)

= �

(t;x)

� �

�

,

for each (t; x) 2 R

2

. In particular,

O 7! A

�

(O) := �

�

(B(O))

00

is a translationally covariant Haag-Kastler net.
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Proof. Given a dynamic � of M. We conclude from ps(�) � 1 that

the prescription

(t; u) 7! �

t

u

de�nes a C*-homomorphism

�

�

: C

�

(B)! C

�

(M) :

In particular, �

�

is a representation of C

�

(B) on the Hilbert space H

0

.

This statement can be obtained by using the relations, listed below.

(a)

�

�

((t; u

1

)(t; u

2

)) = �

t

u

1

�

t

u

2

= �

t

(u

1

u

2

) = �

�

(t; u

1

u

2

)

(b) If (t

1

; u

1

) and (t

1

+ t; u

2

) are localized in space-like separated re-

gions, then we obtain from ps(�) � 1:

[�

�

(t

1

; u

1

); �

�

(t

1

+ t; u

2

)] = �

t

1

[u

1

; �

t

u

2

] = 0

(c)

�

�

(�

(t;x)

(t

1

; u)) = �

�

(t+ t

1

; �

x

u) = �

(t;x)

�

t

1

u

�

In general we expect that for a given dynamic � the representation

�

�

is not faithful. Hence each dynamic de�nes a two-sided ideal

J(�) := �

�1

�

(0) 2 C

�

(B)

in C

�

(B) which we call the dynamical ideal with respect to � and the

quotient C*-algebras

B(O)=J(�)

�

=

A

�

(O)

may depend on the dynamic �. Indeed, if O is a double cone whose

base is not contained in �, then for di�erent dynamics �

1

; �

2

the

algebras A

�

1

(O) and A

�

2

(O) are di�erent. On the other hand, if the

base of O is contained in �, then we conclude from the fact that the

dynamic � has �nite propagation speed and from Proposition 2.1:

Corollary 2.1 : If I � � is the base of the double cone O, then the

algebra A

�

(O) is independent of �. In particular, the C*-algebra

C

�

(M) =

[

I

M(I)

jj�jj

=

[

O

A

�

(O)

jj�jj

is the C*-inductive limit of the net A

�

.

From the discussion above, we see that two dynamics with the same

dynamical ideal induces the same quantum �eld theory.
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TheMassive Free Scalar Field: As mentioned above, the Cauchy

data for the P (�)

2

-models are given by the time zero-algebras of the

massive free scalar �eld. For our purpose, let us briey describe the

time slice formulation of the massive free scalar �eld in one spatial

dimension.

Let us denote by H

0

the symmetrized Fock space over L

2

(R), i.e.

H

0

=

1

M

n=0

s

n

(L

2

(R)


n

)

where s

n

denotes the symmetrization operator. As usual, we consider

annihilation and creation operators, where the creation operator is

given by

a

�

(f) =

1

X

n=0

n

1=2

s

n

(

^

f 
 �

n�1

 ) :

�

n

denotes the canonical projection fromH

0

ontoH

0;n

:= s

n

(L

2

(R)


n

)

and

^

f the Fourier transform of f . The operator a

�

(f) has an adjoint

a(f) := (a

�

(f))

�

which is the annihilation operator.

There is a unitary and strongly continuous representation of the

spatial translation group on H

0

, which is given by

�

n

(U(x) )(k

1

� � �k

n

) = exp

�

ix

n

X

i=1

k

i

�

�

n

 (k

1

� � �k

n

) ;

together with a unique vector 


0

2 H

0

which is invariant under the

translation group fU(x);x 2 Rg, namely




0

= (1; 0; 0; 0; � � �) :

The massive free Bose �eld at time t = 0 is an operator valued

distribution B on K = S

R

(R)�S

R

(R). For a function f = f

1

�f

2

2 K

the operator B(f) is given by

B(f) :=

1

2

�

a

�

(�

�1=2

f

1

) + a(�

�1=2

f

1

)

�

+

1

2i

�

a

�

(�

1=2

f

2

)� a(�

1=2

f

2

)

�

where �

�

is the pseudo di�erential operator which is given by kernel

�

�

(x� y) :=

Z

dp (p

2

+m

2

)

�=2

e

ip(x�y)

: (2)

It is well known that B(f) is an essentially self adjoint operator.
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Notation: Given a regionG � R. We denote byM(G) the v.Neumann

algebra which is given by

M(G) := fw(f) := e

iB(f)

: supp(f) � Gg

00

;

where

00

denotes the bicommutant in B(H

0

).

Hence we obtain a net of Cauchy data:

M := fM(I)j I is open and bounded interval in Rg

The algebras with respect to half-lines, for example G = (x;1), are

called wedge algebras. They play an important role for the construc-

tion of kink-states.

Notation: Let us consider a bounded interval I = (x;y). We de�ne

the following four regions notation with respect to I:

I

LL

:= (�1;x) , I

L

:= (�1;y) ,

I

R

:= (x;1) and I

RR

:= (y;1) :

An important property, which we shall use later, is given in the

proposition below.

Proposition 2.2 : Given a nonempty and bounded interval I. Then

the inclusion

M(I

RR

) �M(I

R

)

is standard split.

Proof. The proof of the statement can be found in the appendix. Here

the methods of [8] are used. Compare also the results of [1, 2]. �

Since the inclusion which is given above is standard split, there

exists a unitary operator

w

I

: H

0

! H

0


H

0

such that for a 2M(I

LL

) and b 2M(I

RR

) we have:

w

I

(a
 b)w

�

I

= ab

15



Thus there is an interpolating type I factor N

�

=

B(H

0

), i.e.

M(I

RR

) � N �M(I

R

)

which is given by

N := w

I

(1
B(H

0

))w

�

I

:

Hence we obtain an embedding of B(H

0

) into the algebra M(I

R

):

	

I

: F 2 B(H

0

) 7! w

I

(1
 F )w

�

I

2M(x;1)

This embedding is called the universal localizing map.

3 States

Let us consider the set S of all locally normal states on C

�

(M), i.e.

for each state ! 2 S and for each bounded interval I, the restriction

!j

M(I)

is a normal state on M(I).

As mentioned in the introduction, we are interested in states with

vacuum and particle-like properties, i.e. states which satis�es the

Borchers criterion (See the Introduction for this notion).

Notation: Given a dynamic � 2 dyn(M). We denote the corre-

sponding set of all locally normal states which satis�es the Borchers

criterion by S(�) and analogously the set of all vacuum states by

S

0

(�). Moreover, we write for the set of vacuum sectors

sec

0

(�) := f[!]j! 2 S

0

(�)g (3)

where [!] denotes the unitary equivalence class of the the GNS-representation

of !.

In the next two paragraphs, we discuss some familiar examples of

vacuum states.
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Free Vacuum States: The simplest example for a vacuum state

is the free massive vacuum state !

0

with respect to the free dynamic

�

0;t

(a) = e

ih

0

t

ae

�ih

0

t

which is given by the free Hamiltonian

h

0

=

Z

dp (p

2

+m

2

)

1=2

a

�

(p)a(p)

As usual, a(p) and a

�

(p) are the creation and annihilation forms on

the Fock space H

0

.

Vacuum States for Interacting Dynamics: Further exam-

ples for vacuum states are the vacua of the P (�)

2

-models. The inter-

acting part of the cuto� Hamiltonian is given by a Wick polynomial

of the time zero �eld �

0

, i.e.

h

1

(I) = h

1

(�

I

) =: P (�

0

) : (�

I

)

where �

I

is a test function with �

I

(x) = 1 for x 2 I and �

I

(y) = 0

on the complement of a slightly lager region

^

I � I. It is well known

that h

1

(I) is a self-adjoint operator, which has a joint core with the

free Hamiltonian h

0

, and is a�liated with M(

^

I). The operator h

1

(I)

induces a automorphism group �

I

which is given by

�

I;t

(a) := e

ih

1

(I)t

ae

�ih

1

(I)t

:

Consider the inclusion of intervals I

0

� I

1

� I

2

. Then we have for

each a 2M(I

0

):

�

I

1

;t

(a) = �

I

2

;t

(a)

Hence, there exists a one-parameter automorphism group

f�

1;t

2 Aut(M); t 2 Rg such that �

1;t

acts on a 2M(I) as follows:

�

1;t

(a) = �

I;t

(a) ; 8t 2 R

The automorphism group f�

1;t

2 Aut(M); t 2 Rg is a dynamic of M

with zero propagation speed, i.e. ps(�

1

) = 0.

Since h

1

(I) has a joint core with the free Hamiltonian h

0

, we are

able to de�ne the Trotter product of the automorphism-groups �

0

and

�

1

which is given for each local operator a 2M(I) by

�

t

(a) := (�

0

� �

1

)

t

(a) = s� lim

n!1

(�

0;t=n

� �

1;t=n

)

n

(a) :
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The limit is taken in the strong operator topology. Furthermore,the

propagation speed is sub-additive with respect to the Trotter product

[18], i.e.

ps(�

0

� �

1

) � ps(�

0

) + ps(�

1

)

and we conclude that � 2 dyn(M) is a dynamic of M. We call the

dynamic � interacting.

It is shown by Glimm and Ja�e [18] that there exist vacuum states

! with respect to the interacting dynamic �. We have to mention,

that there is no vector  in Fock space H

0

, such that the state

a 7! h ; a i

is a vacuum state with respect to an interacting dynamic �, but there

is a net of vectors (


�

) in H

0

such that the limit

! = �

�

� lim

�

h


�

; �


�

i

is a vacuum state with respect to the dynamic �. The limit has to

be taken in the local norm topology (here denoted by �

�

) on C

�

(M)

�

which is induced by the following family of semi norms:

�

jj'jj

I

:= sup

a2M(I)

jjajj

�1

j'(a)j

�

�

�

�

I is an open bounded interval

�

Of course, the topology �

�

is weaker than the ordinary norm topology

and stronger than the weak*-topology. In addition to that, the set of

locally normal states S is complete with respect to the topology �

�

.

4 Interpolating Kink States

In this section we give a mathematical de�nition of a kink state and

we formulate the main result of our paper.

Notation: Let us write (H; �;
); (H

j

; �

j

;


j

) for the GNS-triples of

the states ! 2 S(M) and !

j

2 S

0

(M); j = 1; 2 respectively, unless we

state something di�erent.

De�nition of Kink States:

De�niton 4.1 : Let � 2 dyn(M) be a dynamic of M. A state ! of

M is called a kink state, interpolating vacuum states !

1

; !

2

2 S

0

(�)

if

18



(a) ! satis�es the Borchers criterion

(b) and there exists a bounded interval I, such that ! ful�lls the

relations:

�j

C

�

(M;I

LL

)

�

=

�

1

j

C

�

(M;I

LL

)

and �j

C

�

(M;I

RR

)

�

=

�

2

j

C

�

(M;I

RR

)

The symbol

�

=

means unitarily equivalent.

The set of all kink states which interpolate !

1

and !

2

is denoted by

S(�j!

1

; !

2

).

Existence of Interpolating Kink States: A criterion for the

existence of an interpolating kink state ! 2 S(�j!

1

; !

2

), can be ob-

tained by looking at the construction method of [29]. In our context,

we have to select a class of dynamics which are equipped with good

properties. Such a selection criterion is developed in section 5. We

shall show that each dynamic of a P (�)

2

-model satis�es this criterion

which leads to the following result:

Theorem 4.1 : If � 2 dyn(M) is a dynamic of a P (�)

2

-model, then

for each pair of vacuum states !

1

; !

2

2 S

0

(�) there exists an interpo-

lating kink state ! 2 S(�j!

1

; !

2

).

We postpone the proof of Theorem 4.1 until section 6, since we

need some further results for preparation.

5 A Criterion for the Existence of an

Interpolating Kink-State

Technical Preliminaries: As mentioned in the introduction, let

us consider the net which is given by the N -fold W*-tensor product

F

N

: I 7! F

N

(I) :=M(I)


 N

As usual, we denote by C

�

(F

N

) the C*-algebra which is generated by

all local algebras F

N

(I). The permutation group S

N

acts by auto-

morphisms on C

�

(F

N

), i.e.:

� 2 S

N

7! �

�

: a

1


 � � � 
 a

N

7! a

�(1)


 � � � 
 a

�(N)
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Observation: We observe from Proposition 2.2 that the inclusion of

wedge algebras

F

N

(I

RR

) � F

N

(I

R

)

is split. Moreover, the net F

N

ful�lls Haag duality (see [29]), i.e.

F

N

(I

c

) = F

N

(I

LL

) _ F

N

(I

RR

)

where I

c

:= In� denotes the complement of I in �.

If we interpret F

N

as a net of �eld algebra with internal symmetry

group S

N

, we can apply the analysis of [23].

From the observation above, we obtain for each bounded interval

I a unitary representation of the permutation group

U

I

: � 2 S

N

7! U

I

(�) 2 F

N

(I

R

)

which implements the action of the automorphism group f�

�

: � 2

S

N

g on F

N

(I

RR

), i.e.:

�

�

(a) = U

I

(�)aU

I

(�)

�

; 8a 2 F

N

(I

RR

) :

The representations U

I

can be obtained by using the universal localiz-

ing map 	

I

(see Section 1). The Hilbert-space H


N

0

carries naturally

a unitary representation U of S

N

and the representation U

I

is simply

given by

U

I

:= 	

I

� U : S

N

! F

N

(I

R

) :

The adjoint action of U

I

(�) maps the algebra F

N

(I

1

) onto itself

for

I

1

� I (See [23, 29]). Hence the implementing operator U

I

(�) induces

an automorphism

�

I

�

:= Ad(U

I

(�)) (4)

of the algebra C

�

(F

N

). Finally, we construct a non-local extension of

the net I 7! F

N

(I) (see [23]):

^

F

N

: I 7!

^

F

N

(I) := F

N

(I) _ U

I

(S

N

)

Extendible Dynamics: We are now prepared to introduce the

notion of extendible dynamic.
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De�niton 5.1 : Let � 2 dyn(M) be a dynamic of M. We call �

N -extendible if there is a dynamic �̂

N

of the extended net

^

F

N

such

that

�̂

N

t

j

C

�

(F

N

)

= �

N

t

:= �


N

t

; 8t 2 R

Here a dynamic of

^

F

N

is de�ned in the sense of De�nition 2.1 by

replacing the net M by the non-local extended net

^

F

N

.

Lemma 5.1 : If a dynamic is 2-extendible, then it is N -extendible

for each N � 2.

Proof. If we apply the discussion of [23] to our situation, we conclude

that

X

�2S

N

a

�

� u

�

7!

X

�2S

N

a

�

U

I

(�)

is a faithful representation of the crossed-product F

N

(I) o S

N

. Now

each permutation can be decomposed into a product of transpositions

and the result follows. �

In the sequel, we call a dynamic which is 2-extendible simply ex-

tendible.

Given a bounded interval I. We consider for each pair (x; �) 2

R� S

N

the operator



I

�

(x) = U

I

(�)

�

�

x

(U

I

(�)) = U

I

(�)

�

U

I+x

(�) :

The family f

I

�

(x);x 2 Rg of unitary operators has useful properties

which are given in the lemma below.

Lemma 5.2 : The family f

I

�

(x);x 2 Rg of unitary operators has

the properties:

(1) The map 

I

�

: x 7! 

I

�

(x) is strongly continuous.

(2) For each pair x;y 2 R we have: 

I

�

(x+ y) = 

I

�

(x)�

x



I

�

(y)

(3) For I = (y

1

;y

2

) and x > 0, 

I

�

(x) is contained in F

N

(y

1

;x+y

2

),

and for x < 0, 

I

�

(x) is contained in F

N

(x+ y

1

;y

2

).

Proof. (3): For x > 0 the operator U

I+x

(�) is contained in F

N

(x +

y

1

;1) and implements �

�

on F

N

(x+ y

2

;1). We have now for each

a 2 F

N

(�1;y

1

) and a

0

2 F

N

(x+ y

2

;1)



I

�

(x)a

I

�

(x)

�

= U

I

(�)

�

U

I+x

(�)aU

I+x

(�)

�

U

I

(�) = a



I

�

(x)a

0



I

�

(x)

�

= U

I

(�)

�

U

I+x

(�)a

0

U

I+x

(�)

�

U

I

(�) = �

�1

�

�

�

(a

0

) = a

0
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which implies 

I

�

(x) 2 F

N

(y

1

;x + y

2

). The proof for x < 0 works

analogously.

The properties (1) and (2) follow directly from the construction of



I

�

(x). �

A one-parameter family, which satis�es the conditions (1) and (2)

in the lemma above, is called a 2-cocycle [24, 15, 16].

Let us discuss now the relations between the automorphism �

I

�

and a dynamic � 2 dyn(M).

Lemma 5.3 : If the dynamic � 2 dyn(M) is extendible, then for

each � 2 S

N

the automorphism

(�

I

�

)

�1

� �

N

t

� �

I

�

� �

N

�t

of C

�

(F

N

) is inner.

Proof. Since the dynamic � is extendible there is a dynamic �̂

N

2

dyn(

^

F

N

) of the extended net

^

F

N

. We consider the operator



I

�

(t) := U

I

(�)

�

�̂

N

t

(U

I

(�))

and show that it implements the action of the automorphism above.

Now we compute for a 2 C

�

(F

N

):

Ad(

I

�

(t))a = U

I

(�)

�

�̂

N

t

(U

I

(�))a�̂

N

t

(U

I

(�)

�

)U

I

(�)

= U

I

(�)

�

�̂

N

t

(U

I

(�)�

N

�t

(a)U

I

(�)

�

)U

I

(�)

= U

I

(�)

�

�̂

N

t

�

�

I

�

(�

N

�t

(a))

�

U

I

(�)

= U

I

(�)

�

�

N

t

�

�

I

�

(�

N

�t

(a))

�

U

I

(�)

= (�

I

�

)

�1

�

�

N

t

�

�

I

�

(�

N

�t

(a))

��

Using the fact that ps(�) < 1 we can �nd for each t 2 R a bounded

interval I

t

= (x

1

(t);x

2

(t)) such that for each y

1

< x

1

(t), for each

y

2

> x

2

(t) and for each a 2 F

N

(y

1

;x

1

(t)) _ F

N

(x

2

(t);y

2

) we have:

(�

I

�

)

�1

� �

N

t

� �

I

�

� �

N

�t

(a) = a

This implies that 

I

�

(t) is contained in

F

N

(�1;x

1

(t))

0

_ F

N

(x

2

(t);1)

0

= F

N

(I

t

). �
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ACriterion for the Existence of Interpolating Kink States:

Now we are ready to formulate a criterion for the existence of an in-

terpolating kink state.

Proposition 5.1 : Let � 2 dyn(M) be an extendible dynamic, then

for each pair of vacuum states !

1

; !

2

2 S

0

(�) the state

! := !

1


 !

2

� �

I

j

C

�

(M)
C1

is an interpolating kink-state, i.e. ! 2 S(�j!

1

; !

2

).

Proof. To prove the statement above, we apply the construction

scheme which is outlined in [29]. Let us consider the case N = 2.

We have S

N

= Z

2

= f1;�1g and denote the automorphism with re-

spect to the non-trivial element by �

I

:= Ad(U

I

(�1)). By Lemma 5.2

and Lemma 5.3 we conclude that the automorphisms

�

I

� �

(t;x)

� �

I

� �

�(t;x)

are inner which implies that the representation

� := �

1


 �

2

� �

I

j

A
C1

is translationally covariant, i.e. there exists a unitary strongly-continuous

representation of the translation group

U : (t;x) 7! U(t;x)

on H

1


H

2

such that:

� � �

(t;x)

= Ad(U(t;x)) � �

Furthermore, it can be shown that the spectrum of the generator of U

is contained in the closed forward light cone. If we use the arguments

of [29], we conclude that � is a cyclic representation which implies

that � is unitarily equivalent to the GNS-representation of !. Hence

! satis�es the Borchers criterion.

We consider now two bounded intervals I

1

� (�1;x) and I

2

�

(y;1). We obtain for operators a

1

2M(I

1

) and a

2

2M(I

2

):

!

I

(a

1

) = !

1

(a

1

) and !

I

(a

2

) = !

2

(a

2

)

Thus we conclude that the state !

I

has the correct interpolation prop-

erty. �
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Multi-Kink States: The construction of kink states which is de-

scribed in the proof of Proposition 5.1 can naturally be generalized

to a construction of multi-kink states. We formulate this statement in

the following Corollary:

Corollary 5.1 : Let (!

1

; � � � ; !

N

) � S

0

(�) be a family of vacuum

states with respect to an extendible dynamic � and let I

1

; � � � ; I

N

be

bounded intervals, then the state

! := !

1


 � � � 
 !

N

� �

I

N

s

N

� � ��

I

1

s

1

j

A
C1

is an interpolating kink-state which is contained in S(�j!

1

; !

N

).

Proof. We use analogous arguments as in the proof of Proposition 5.1,

to conclude that the representation

� = �

1


 � � � 
 �

N

� �

I

N

s

N

� � ��

I

1

s

1

j

A
C1

is translationally covariant. If we generalize the methods of [29] to the

N � 2 case, then we obtain that ! satis�es the Borchers criterion.

We consider an observable a 2 M(I) with I > I

1

[ � � � [ I

N

and

we obtain

!(a) = !

1


 � � � 
 !

N

� �

I

N

s

N

� � ��

I

1

s

1

(a
 1)

= !

1


 � � � 
 !

N

� �

s

N

���s

1

(a
 1) = !

N

(a) :

Analogously we obtain for a

0

2M(I

0

) with I

0

< I

1

[ � � � [ I

N

!(a

0

) = !

1

(a

0

)

since the automorphisms �

I

j

s

j

act trivially onM(I

0

). Thus the correct

interpolation property follows immediately. �

The state ! can be interpreted as a multi-kink state. To motivate

this interpretation, we consider a family of intervals (I

j

= (x

j

;y

j

); j =

1; � � � ; N) such that y

j

< x

j+1

. For each operator a 2M(y

j

;x

j+1

) we

obtain:

!(a) = !

1


 � � � 
 !

N

� �

I

N

s

N

� � ��

I

1

s

1

(a
 1)

!

1


 � � � 
 !

N

� �

I

j

s

j

� � ��

I

1

s

1

(a
 1)
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= !

1


 � � � 
 !

N

� �

s

j

���s

1

(a
 1)

= !

j

(a)

Hence the state ! describes a con�guration of N kinks, where the kink

which is localized in I

j

interpolates the vacua !

j�1

and !

j

.

6 Kink States in P (�)

2

-Models

Let us consider the dynamic �

P (�)

2 dyn(M) of a P (�)

2

-model. As

already mentioned, there are familiar P (�)

2

-models for which the set

sec

0

(�

P (�)

) contains more than one element. It is well known that for

the ��

4

2

-model, the set sec

0

(�

��

4

) contains two elements for suitable

values of the coupling constant �, i.e.:

#sec

0

(�

��

4

) = 2

We shall show that each dynamic of a P (�)

2

-model is extendible. For

this purpose, let us briey discuss the properties of them. As described

in section 2 the dynamic of a P (�)

2

-model consists of two parts.

(1) The �rst part is given by the free dynamic �

0

, with propagation

speed ps(�

0

) = 1,

�

0;t

(a) = e

ih

0

t

ae

�ih

0

t

which is given by the free Hamiltonian (h

0

; D(h

0

)) which is a

self-adjoint operator on the domain D(h

0

) � H

0

.

(2) The second part is a dynamic �

1

with propagation speed ps(�

1

) =

0, i.e. it maps each local algebraM(I) onto itself. As described

in section 2, the interacting part is given by a Wick polynomial

of the time-zero �eld �

0

, i.e.

h

1

(I) = h

1

(�

I

) =: P (�

0

) : (�

I

)

where �

I

is a smooth test function which is one on I and zero

on the complement of a slightly lager region

^

I � I. The unitary

operator exp(ith

1

(I)) implements the dynamic �

1

locally i.e. for

each a 2M(I) we have:

�

1;t

(a) := e

ih

1

(I)t

ae

�ih

1

(I)t
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De�niton 6.1 : A dynamic u 2 dyn(M) of M is called ultra local if

there exists an operator valued distribution v : S(R)! L(H

0

) which

satis�es the following properties:

(1) For each real valued test function f 2 S(R), with supp(f) � I, the

operator v(f) is essentially self adjoint on C

1

(h

0

) = \

n2N

D(h

n

0

),

a�liated with M(I) and we have v(f)C

1

(h

0

) � C

1

(h

0

).

(2) For each pair of test functions f

1

; f

2

2 S(R), the operators v(f

1

)

and v(f

2

) commute on C

1

(h

0

).

(3) For each bounded interval I and for each operator a 2M(I), the

dynamic u is implemented by the unitary one parameter group

fexp(itv(�)); t 2 Rg, i.e.

u

t

(a) = exp(itv(�))a exp(�itv(�))

where � 2 S(R) is a positive test function which is one on I.

It is shown by Glimm and Ja�e [18] that the interacting part of the

dynamic of a P (�)

2

-model is ultra local. Moreover each ultra local

dynamic u has propagation speed ps(u) = 0.

The idea is to extend each part of the dynamic separately. Since

the free part of the dynamic can be extended to the algebra of all

bounded operators on Fock spaceB(H

0

), it is clear that it is extendible

for all N 2 N.

Lemma 6.1 : Each ultra local dynamic u 2 dyn(M) is extendible.

Proof. Let us consider any ultra local dynamic u 2 dyn(M) which is

given by an operator-valued distribution v which satis�es the condi-

tions of the de�nition above. Let I = (a; b) be a bounded interval.

We write

V (�jt) := exp

�

itv(�)

�

and for the N -fold tensor product: V

N

(�jt) := V (�jt)


N

. We consider

now for each � > 0 test functions �

m

; �

�

2 S(R) such that

�

m

(x) =

�

1 x 2 (�m;m)

0 x 2 (�1;�m� 1) [ (m+ 1;1)

�

�

(x) =

�

1 x 2 (a� �; b+ �)

0 x 2 (�1; a� 2�) [ (b+ 2�;1)
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For m > b+ � and �m < a� �, there are test functions �

�

m;�

2 S(R)

with

supp(�

�

m;�

) � (�m� 1; a� �)

supp(�

+

m;�

) � (b+ �;m+ 1)

�

m

� �

�

= �

+

m;�

+ �

�

m;�

In the sequel, we use the following notation:

V (mjt) := V (�

m

jt) ; V (�jt) := V (�

�

jt) ; V

�

(m; �jt) := V (�

�

m;�

jt)

Since we have [v(�

1

); v(�

2

)] = 0 for any pair of test functions �

1

; �

2

2

S(R), we obtain for each � > 0:

V

N

(mjt) = V

N

(�jt)V

N;�

(m; �jt)V

N;+

(m; �jt) (5)

If we use the fact, that V

N;�

(m; �jt) is �

�

-invariant, for each � 2 S

N

,

we obtain

Ad(V

N

(mjt))U

(a;b)

(�) = Ad(V

N

(�jt))U

(a;b)

(�) (6)

which depends only of the localization interval (a; b). Hence we con-

clude that for a 2

^

F

N

(a; b) and for �m < a < b < m

û

N

t

(a) := Ad(V

N

(mjt))a

de�nes a dynamic of

^

F

N

whose restriction to F

N

is u


N

. �

If �̂

N

0

denotes the natural extension of the free dynamic to

^

F

N

and

let û be the extension of an ultra local dynamic then, by using the

Trotter product, we conclude that the dynamic

�̂ := �̂

N

0

� û

N

is an extension of the dynamic (�

0

� u)


N

to

^

F

N

. This leads to the

following result:

Proposition 6.1 : Each dynamic of a P (�)

2

-model is extendible.

Proof. The statement follows from Lemma 6.1 and due to the fact

that each dynamic of a P (�)

2

-model is a Trotter product of the free

dynamic �

0

and an ultra local dynamic �

1

. �
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Proof of Theorem 4.1: The statement of Theorem 4.1 is an

immediate consequence which is the formulated in the corollary below.

Corollary 6.1 : Let � 2 dyn(M) be a dynamic of a P (�)

2

-model,

then for each pair of vacuum states !

1

; !

2

2 S

0

(�) there exists an

interpolating kink state ! 2 S(�j!

1

; !

2

).

Proof. By Proposition 6.1 each dynamic of a P (�)

2

-model is extendible

and we can apply Proposition 5.1 which implies the result. �

7 Conclusion and Outlook

We have seen that for each pair of vacuum states which belong to a

dynamic of a P (�)

2

-model, there exists an interpolating kink state.

This result can be obtained by a generalization of the methods which

are used by J. Fr�ohlich in [15, 16]. The assumption that the interpo-

lated vacua are related by an internal symmetry transformation is not

needed for the application of our construction scheme. Furthermore,

the construction is independent of speci�c properties of a model and

uses only the extendibility condition of its dynamic.

Familiar examples of super symmetric models (Wess-Zumino mod-

els), which are described in [20], have more then one vacuum state and

their dynamics consist of a P (�)

2

-like and a Yukawa

2

-like part. We

conjecture that there are also kink states in Yukawa

2

-like models. By

using the construction of the dynamic of the Yukawa

2

model, which

is discussed by Glimm and Ja�e [18], we can use similar technics as

above, to show that the dynamic of a Yukawa

2

-like model is extendible.

Therefore, we belief that our results can also be applied to this class

of models.
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A Appendix

Remarks on the Split Property for Massive Free

Scalar Fields

We are going to prove the generalization of Proposition 2.2 to any

number of spatial dimensions.

Preliminaries: For our purpose it is convenient to work with the

self-dual CCR-algebra (in the sense of Araki). Therefore, we need

some technical de�nitions.

De�niton A.1 : For the vector space K = S(R

d

)�S(R

d

), we denote

by � the complex conjugation in K, �f =

�

f . Moreover, we introduce

the following sesquilinear form  on K:

(f; g) =

�

f;

�

0 �i

i 0

�

g

�

(7)

where (�; �) denotes the ordinary scalar-product in L

2

(R

d

) � L

2

(R

d

).

The self-dual CCR-algebra A(K; ;�) is the *-algebra which is gen-

erated by the set of symbols fb(f) : f 2 Kg modulo the following

relations:

(1) The map b : f 2 K 7! b(f) 2 A(K; ;�) is linear.

(2) We have the following *-relation: b(f)

�

= b(�f).

(3) We have the commutator relation [b(f)

�

; b(g)] = (f; g)1.

For a regionG � R

d

we consider the CCR-algebra A(G) := A(K(G); ;�)

where K(G) is de�ned by K(G) := �

1=2

S(G)� �

�1=2

S(G). Here � is

the pseudo di�erential operator which is given by kernel

�(x� y) :=

Z

dp (p

2

+m

2

)

1=2

e

ip(x�y)

(8)

as described in section 1.

We de�ne now the vacuum functional !

0

on A(K; ;�) by

!

0

(b(f)

�

b(g)) := 1=2(f; g) :

where the functions f; g are contained in K. The GNS-representation

of !

0

is unitarily equivalent to the representation �

0

which is given by

b(f) 7! �

0

(b(f)) :=

1

2

�

a

�

(f

1

) + a(f

1

)

�

+

1

2i

�

a

�

(f

2

)� a(f

2

)

�

:
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Each test function f 2 K(G) can be written of the form

f = �

�1=2

f

1

� �

1=2

f

2

with test functions f

1

; f

2

2 S(G) and we obtain

�

0

(b(f)) = B(f

1

� f

2

)

where B denotes the operator valued distribution which is given in

section 2.

Product States: Let us consider now two regions G

1

; G

2

with non

vanishing distance. In the sequel we writeG := G

1

[G

2

for their union.

We denote by A(G

1

)_A(G

2

) the algebra which is given by all �nite

sums

P

a

n

b

n

with a

n

2 A(G

1

) and b

n

2 A(G

2

). Since G

1

and G

2

have

non vanishing distance we conclude that A(G

1

) _ A(G

2

) = A(G). We

de�ne now a product state ! on A(G) by

!(

X

a

n

b

n

) :=

X

!

0

(a

n

)!

0

(b

n

) : (9)

Clearly since !

0

is quasi-free, ! is also a quasi-free state on A(G).

We are now interested in a criterion which give us the possibility

to decide for which regions G

1

; G

2

with non vanishing distance the

GNS-representations with respect to the states ! and !

0

are unitarily

equivalent on A(G).

We are going to use a criterion which is proven by H. Araki [3].

To formulate this criterion, let us consider the following two scalar

products on the space K(G

1

[G

2

):

(1) (f; g)

0

:= !

0

(b(f)

�

b(g)) + !

0

(b(�f)

�

b(�g))

(2) (f; g)

p

:= !(b(f)

�

b(g)) + !(b(�f)

�

b(�g))

Here ! is the product state, induced by !

0

. The completion of

K(G) with respect to the norm jj � jj

0

= (�; �)

0

(resp. jj � jj

p

= (�; �)

p

) is

denoted by K(G)

0

(resp. K(G)

p

).

Moreover, denote by s

0

(resp. s

p

) a positive operator, bounded

by 1, with the property (f; s

0

g)

0

= !

0

(b(f)

�

b(g)) (resp. (f; s

p

g)

p

=

!(b(f)

�

b(g))).

Criterion: The GNS-representations with respect to !

0

and !

are unitarily equivalent if the following conditions hold:
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(1) The values 0; 1=2 are not eigenvalues of s

0

(resp. s

p

) in K(G)

0

(resp. K(G)

p

).

(2) The norms jj � jj

0

and jj � jj

p

are equivalent on K(G).

(3) The following operators are of Hilbert-Schmidt class in K(G)

0

=

K(G)

p

:

(s

0

� s

p

)(1� 2s

0

)

�1

and (s

0

(1� s

0

))

1=2

� (s

p

(1� s

p

))

1=2

The following analysis can be done in complete analogy to those

of D. Buchholz [8] who has proven that ! and !

0

are unitarily equiv-

alent on A(G), in the case where G

1

= O

1

is a compact region and

G

2

= O

2

the complement of a slightly larger compact region in R

3

.

The only argument in this analysis which depends on the spatial di-

mension is contained in the proof of condition (2) ([8, Lemma 3.2]).

The necessary generalization is given in the next paragraph.

If one carries through the analysis of [8], we obtain the following

criterion: Consider two regions

^

G

j

� G

j

; j = 1; 2 such that

^

G

1

and

^

G

2

have also non vanishing distance and let �

G

1

; �

G

2

be two C

1

-

functions with supp(�

G

j

) �

^

G

j

and �

G

j

(x) = 1 for x 2 G

j

. Then we

obtain:

Proposition A.1 : The states ! and !

0

are unitarily equivalent on

A(G) if the integral-kernel

�

G

1

(x)�(x� y)�

G

2

(y) (10)

is an element of S(R

2d

).

Equivalence of Norms: For convenience, we cite now the proof

of [8, Lemma 3.2] by making the necessary changes to show that the

result is independent of the spatial dimension.

Lemma A.1 : Let (G

1

; G

2

) be any pair of regions with non-vanishing

distance, then the norms jj � jj

0

and jj � jj

p

are equivalent on K(G

1

[G

2

).

Proof. Let t > 0 be the distance between G

1

and G

2

. Moreover,

let s, be a function in S with support in B

d

(t=2) and Fourier trans-

form ŝ, such that ŝ(p) � 0 for all p 2 R

d

. Clearly, a function
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with these properties exists and can be obtained by using the con-

volution theorem. Hence there are constants c > a > 0 such that

c > (p

2

+m

2

)

1=2

(ŝ(p) + a) � a > 0. This implies

j(p

2

+m

2

)

�1=2

� c

�1

(ŝ(p) + a)j � ac

�1

(p

2

+m

2

)

�1=2

j(p

2

+m

2

)

1=2

� c

�1

(p

2

+m

2

)(ŝ(p) + a)j � ac

�1

(p

2

+m

2

)

�1=2

(11)

We consider now the following operators which are diagonal in mo-

mentum space:

w

1

(p) = c

�1

(ŝ(p) + a)

w

2

(p) = c

�1

(p

2

+m

2

)(ŝ(p) + a)

(12)

For any element g 2 S(G

2

) one has

(w

1

g)(x) = c

�1

(s � g(x) + ag(x))

(w

2

g)(x) = c

�1

(@

�

@

�

+m

2

)(s � g + ag)(x) ; � = 1; 2; 3

(13)

and hence suppw

j

g \ G

1

= ;. Thus one gets (f; w

j

g) = 0 for each

f 2 K(G

1

) and each g 2 K(G

2

). Now we compute:

j(f; �

�1

g)j = j(f; �

�1

g � w

1

g)j

�

R

dp j(p

2

+m

2

)

�1=2

� c

�1

(ŝ(p) + a)jj

^

f(p)jjĝ(p)j

� ac

�1

R

dp (p

2

+m

2

)

�1=2

j

^

f(p)jjĝ(p)j

� ac

�1

(f; �

�1

f)

1=2

(g; �

�1

g)

1=2

(14)

Analogously we obtain the estimate j(f; �g)j � ac

�1

(f; �f)

1=2

(g; �g)

1=2

.

Keeping in mind that ac

�1

< 1, the equivalence of the norms jj � jj

0

and jj � jj

p

can be obtained by using the same arguments as in [8]. �

Application of the Criterion: In this paragraph, we discuss the

application of Proposition A.1 with respect to the possible cases for

G

1

and G

2

.

Denote by S(R

d

; 0) the space of functions f such that �

G

f 2 S(R

d

)

for each open set G which does not contain the point x = 0. Here

�

G

2 S(R

d

) denotes the smoothed characteristic function of a region

G.

It turns out that the problem can be reduced to the following

question:
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Let f be a function in S(R

d

; 0). For which pairs of regionsG

1

; G

2

�

R

d

is the function

f

(G

1

;G

2

)

: (x;y) 7! �

G

1

(x)f(x� y)�

G

2

(y) (15)

contained in S(R

2d

) ?

Clearly since f may be singular at x = 0, one has to require that

G

1

and G

2

have non vanishing distance.

De�niton A.2 : A pair of regions G

1

; G

2

� R

d

with non vanishing

distance is called admissible if there exists a constant k > 0 such that

for each r > 0 the set

G(r) := f(x

1

;x

2

)jx

1

2 G

1

;x

2

2 G

2

; x

1

� x

2

2 B

d

(r)g

is contained in B

2d

(kr), where B

d

(r) denotes the closed ball in R

d

with radius r.

Lemma A.2 : If (G

1

; G

2

) is a pair of regions in R

d

witch is admis-

sible, then the function f

(G

1

;G

2

)

is contained in S(R

2d

).

Proof. Since the pair (G

1

; G

2

) is admissible, the region G(k

�1

r) :=

f(x;y)jx 2 G

1

;y 2 G

2

; x�y 2 B

d

(k

�1

r)g is contained in the closed

ball B

2d

(r) for a constant k > 0. This implies that for each m 2 N

one has

j�

G

1

(x)f(x� y)�

G

2

(y)j < const: � jx� yj

�m

� const: � k

m

r

�m

� const: � j(x;y)j

�m

:

(16)

Hence we conclude that f

(G

1

;G

2

)

is of fast decrease and thus contained

in S(R

2d

). �

Corollary A.1 : If the pair of regions (G

1

; G

2

) is admissible, then

the states !

0

and ! are unitarily equivalent on A(G).

Proof. The function

f : x 2 R

d

nf0g 7! f(x) =

Z

dp (p

2

+m

2

)

1=2

e

ipx

(17)
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is contained in S(R

d

; 0). An application of Proposition A.1 and Lemma

A.2 implies the result. �

Let us now discuss the cases for witch the pair (G

1

; G

2

) is admis-

sible. To carry through this analysis, we have to give a few more

de�nitions. Let e 2 R

d

be a vector of unit length and s 2 (0; 1), then

we de�ne the convex cone C(e; s) := R

+

�(B

d

(s)+e). The complement

of C(e; s) in R

d

is denoted by C

0

(e; s).

Lemma A.3 : Let s

1

; s

2

2 (0; 1) with s

1

< s

2

and e a unit vector,

then for each � > 0 the pair (C(e; s

1

) + �e; C

0

(�e; s

2

)) is admissible.

Proof. Let us consider the set C(e; s

2

)nC(e; s

1

) = C(e; s

2

; s

1

). For

s

2

> s

1

, there exists a convex cone C(e

0

; s

3

) which is contained in

C(e; s

2

; s

1

). Hence for each x 2 @C(e; s

1

) exists r > 0, such that

B

d

(r)+x � C(e; s

2

). Moreover, we have the following relation between

x and r:

jxj � sin('

2

� '

1

)

�1

� r (18)

Here '

j

= arcsin(s

j

) is the opening angle of C(e; s

j

). We set t :=

sin('

2

� '

1

)

�1

and conclude for each x 2 B

d

(tr)

0

\ C(e; s

1

)

B

d

(r) � C(�e; s

2

) + x : (19)

Hence for each x 2 B

d

(tr)

0

\ C(e; s

1

) there is no y 2 C

0

(�e; s

2

) such

that x + y 2 B

d

(r). Since for each � > 0 the set C(e; s

1

) + �e is

contained in C(e; s

1

), we obtain that

G(r) := f(x;y)jx 2 C(e; s

1

) + �e;y 2 C

0

(�e; s

2

) ; x+ y 2 B

d

(r)g

(20)

is contained in B

d

(tr)�C

0

(�e; s

2

). On the other hand, for each r > 0

there exists y 2 @C(�e; s

2

) such that B

d

(r) \ C(e; s

1

) = ;. We have

the following relation for y and r:

jyj � sin('

2

� '

1

)

�1

� r (21)

Thus with the same argument as above we conclude �nally that there

exists a constant k > 0, such that

G(r) � B

d

(tr)� B

d

(tr) � B

2d

(kr) (22)

which implies the result. �
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We see that for d > 1 the arguments in the proof of Lemma A.3

fails for cones with the same opening angle, i.e. the pair (C(e; s) +

�e; C

0

(�e; s)) is not admissible.

On the other hand, for d = 1 the pair ((�1; 0]; [�;1)) is indeed

admissible.

The Split Property: To discuss the split property, we briey

describe the construction of the local v.Neumann algebras for the

free massive scalar �eld in the vacuum representation. Denote by

(H

0

; �

0

;


0

) the GNS-triple of !

0

. We de�ne for each f 2 K

�

:= fg 2

K : �g = gg, the �eld operator b

0

(f) := �

0

(b(f)) which is essentially

self-adjoint on �

0

(A(K; ;�))


0

. For a region G � R

d

we denote by

M(G) the v.Neumann algebra which is given by M(G) := fe

i�

0

(b(f))

:

f 2 K

�

(G)g

00

, where

00

denotes the double commutant in B(H

0

).

Let us consider a pair of admissible regions (G

1

; G

2

), then by Corol-

lary 3.1 we know that the vacuum state !

0

and its induced product

state ! are unitarily equivalent on A(G

1

[ G

2

). Hence the product

state ! induces a normal state on M(G

1

) _M(G

2

) which is given by

a vector � 2 H

0

, where � is cyclic forM(G

1

) _M(G

2

). Thus we have

for a

1

2M(G

1

) and a

2

2M(G

2

)

h�; a

1

a

2

�i = h


0

; a

1




0

i h


0

; a

2




0

i (23)

By standard arguments [8], we conclude that for a pair of admis-

sible regions (G

1

; G

2

) the inclusion

M(G

1

)

0

�M(G

2

) (24)

is a split inclusion.

Example: We close the appendix by discussing the 1+1-dimensional

case briey. We consider the regions (0;1) and (�1; 0). For x 2

(0;1) the pair ((x;1); (�1; 0)) is admissible (see Lemma A.3). Keep-

ing in mind that the net of the free �eld I 7! M(I) satis�es wedge

duality we obtain that the inclusion

M(x;1) �M(0;1) (25)

is standard split. Hence the massive free scalar �eld in 1+1 dimensions

satis�es the split property for wedge regions.
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