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Abstract: Predictions for the di�ractive photoproduction of the �-family at HERA

energies, within the framework of the analysis by Frankfurt, Koepf and Strikman,

are presented. Two novel e�ects lead to a signi�cant enhancement of the original

calculation: the non-diagonal (or skewed) kinematics, calculated to leading-log(Q

2

)

accuracy, and the large magnitude of the real part of the amplitude. The resultant

cross sections are found to agree fairly well with recent preliminary data from ZEUS

and H1. A strong correlation between the mass of the di�ractively produced state

and the energy dependence of the cross section is found. In particular, a considerably

stronger rise in energy is predicted than that found in J= -production.
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1. Introduction

Di�ractive heavy vector meson production was initially evaluated to leading-log accu-

racy in energy [1], while in [2] all vector mesons were treated to the leading-log accuracy

in lnQ

2

and ln 1=x. It is now well understood in QCD, to leading twist accuracy thanks

to a generalization of the QCD factorization theorem to hard exclusive processes [3].

So far, for heavy quarkonium production, this knowledge has only been used to con-

front photo- and electroproduction of J= [4{6]. Unfortunately, the light mass of the

charm quark leads to many theoretical uncertainties in the �nal result (relativistic ef-

fects in the wavefunction, scale uncertainties, unitarity corrections...). By studying

�-production, which has recently been observed in photoproduction for the �rst time

at HERA [7], within the same framework, one may hope to pin down some of these

uncertainties.

The current paper is an extension of the work presented by Frankfurt et al [5]. One

of the main �ndings was that the use of realistic light-cone wavefunctions for the heavy

vector mesons,  

V

(z; k

t

), with signi�cant average k

t

, leads to an overall suppression of

the cross-section relative to the static,  

V

(z; k

t

) = �(z � 1=2) �

(2)

(k

t

), and Gaussian,

 

V

(z; k

t

) = A�(z � 1=2) exp(�ak

2

t

=m

2

c

), forms used in [6]. The hybrid wavefunctions

used were designed to interpolate hard QCD behaviour at small transverse distances

(normalised to the decay width into leptons) with quarkonium models at large trans-

verse distances. In the limit m

2

q

! 1 (but m

2

q

� W

2

) such Fermi-motion e�ects of

the quarks can be substantiated in QCD, because non-quark degrees of freedom will

be suppressed by the powers of m

2

q

. Whether such an approximation is applicable to

the production of states in the  -family is an open question. The k

t

-suppression was

tempered by an enhancement due to a rescaling (beyond leading-log(Q

2

)) of the gluon

density to higher scales, to re
ect more accurately the typical transverse size of the

scattering dipoles.

Here, we present predictions for di�ractive (also called exclusive) photoproduction

of the �-family using similar hybrid wavefunctions. One of our main results is that

the non-diagonal (hereafter skewed) kinematics lead to a signi�cant enhancement of

the cross section. We present an estimate of the size of this e�ect, to the leading-log

accuracy with which the skewed splitting functions are known. At HERA energies

�(ns)-states are produced at large e�ective scales (around 40, 60 and 75 GeV

2

for

n = 1; 2; 3, respectively) and at relatively high-x (between 0:001 and 0:02). It follows

that the real part of the amplitude is large and we calculate it using a �t to the energy

dependence of the imaginary part and dispersion relations. Taking both e�ects into

account leads to cross-sections which concur with the measured ones and rise very

steeply with W

2

, the 
P centre-of-mass energy (approximately W

2(0:85)

).

This note is organised as follows. Firstly, we very brie
y recap the relevant equations

in [5]. Secondly, we discuss the rescaling procedure in detail. We then explain how

the skewedness is calculated and implemented. Next, we give an explanation of the

calculation of the real part of the amplitude. Finally, we present and discuss the

1
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Figure 1: Photoproduction of Heavy Vector mesons

resultant cross-sections, and conclude.

2. Formulae for cross sections

Hard exclusive processes factorize in QCD [3] and at small-x are driven by the exchange

of two gluons in the t-channel. One such process is the di�ractive electroproduction

of heavy vector mesons, in which the exchanged gluons are connected to the q�q-pair


uctuation of the photon (virtuality q

2

= �Q

2

) in the four possible ways (one of which

is shown in �g.(1)) and convoluted with  

V

(z; k

t

). The forward di�erential cross-section

for a vector meson, mass M

V

, containing a (current) quark of mass m, can be written

as the product of an asymptotic expression and a �nite Q

2

correction, C(Q

2

) (see [5]

for more details) :

d�




(�)

P!V P

dt

�

�

�

�

t=0

=

12�

3

�

V

M

3

V

�

em

(Q

2

+ 4m

2

)

4

�

�

�

�

s

(Q

2

eff

) (1 + i�)xG

N

(x;Q

2

eff

)

�

�

2

�

1 + �

Q

2

M

2

V

�

C(Q

2

) ; (2.1)

with

C(Q

2

) =

�

�

V

3

�

2

�

Q

2

+ 4m

2

Q

2

+ 4m

2

run

�

4

T (Q

2

)

R(Q

2

) + �

Q

2

M

2

V

1 + �

Q

2

M

2

V

; (2.2)
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where Q

2

eff

(Q

2

);�

V

; � are the e�ective transverse scale, the leptonic decay width and

photon's polarisation respectively; � is the ratio of real to imaginary parts of the

amplitude. The k

t

-suppression factor T , R and �

V

contain integrals involving the light-

cone wavefunctions of the photon and vector meson. Hybrid wavefunctions are used

which are designed to have the characteristic z(1�z) behaviour at very small transverse

distances expected from QCD (this implies �

V

= 3). This justi�es the use of the QCD

running mass and hence the correction for this in eq.(2.2). Overall the use of the hybrid

wavefunctions, in place of the pure non-relativistic wavefunctions, does not lead to

signi�cant e�ects in the cross sections. In this paper we use the particular model of the

quarkonium wavefunction due to Buchmueller and Tye [8]. They used a QCD-inspired

potential, with a Coulomb piece corresponding to t-channel gluon exchange (/ 1=r)

and a con�nement piece (/ r). The analysis produced a value of m

b

= 4:88 GeV for

the quark mass. The signi�cant QCD radiative corrections to the amplitude of heavy

quarkonium transition into q�q-pair are accounted for by normalising the short-distance

part of the hybrid light-cone wavefunctions to the width of heavy quarkonium decay

into leptons. The analysis of [5] indicated that once the short-distance corrections were

included (for transverse distances less than b

0

= 0:1 GeV

�1

) several potential models

produced similar results. As a result, we expect that the resultant model uncertainty

is less than that from other sources and only consider the potential of [8].

In the photoproduction limit we have

�(
P ! V P ) =

3�

3

�

V

M

3

V

(1 + �

2

)

64�

EM

(m

2

)

4

B

D;V

�

�

s

(Q

2

eff

)xg(x;Q

2

eff

)

�

2

C(Q

2

= 0) ; (2.3)

where, as usual, an exponential decay in jtj is assumed, with B

D;V

the slope parameter.

Since these parameters have not yet been measured, we are forced to estimate them.

The established trend is that the slope parameter decreases with increasing vector me-

son mass. This is a geometrical e�ect: most of B

D

comes from the proton end of the

ladder where the typical transverse momenta are much smaller, the upper end con-

tributes progressively less as the typical transverse momentum scales involved increase.

On this basis we expect B

D;�

to be a little less than that measured in photoproduction

of J= : B

D;J= 

= 4:4 � 0:3 GeV

�2

(H1). For the purpose of this paper we assume,

for each state, the same value as that measured in electroproduction of J= by H1,

B

D;V

= 3:9 GeV

�2

(see [9] and references therein), since the typical transverse scales

at the upper vertices in these processes are similar. Of course, this introduces a further

overall uncertainty in the normalisation of the cross sections of about 10 � 20%.

3. Rescaling: calculation of Q

2

eff

The procedure that we use for determining the scale, Q

2

eff

, in eq.(2.3) is similar to that

described in sec.(IIIa) of [4]. The amplitude the for photoproduction of � in co-ordinate

3



space is given by:

A(


T

P ! V

T

P ) /

Z

1

0

dz

z(1 � z)

Z

1

0

d

2

b

t

m

2

run

 


;T

(z; b

t

) �̂(b

2

t

) 

V;T

(z; b

t

); (3.1)

where,

�̂(b

2

t

) =

�

2

3

b

2

t

�

s

(b

2

t

)xg(x; b

2

t

) (3.2)

is the cross section for scattering a q�q dipole of transverse size b

2

t

o� the proton (b

t

is

the conjugate variable to k

t

). This quantity is expected to be universal.  


;T

(z; b

t

) =

K

0

(bm

run

) and  

V;T

(z; b

t

) are the light-cone wavefunctions of the transversely-polarised

real photon and heavy vector meson in con�guration space, respectively.

In order to proceed we need to establish the relation between transverse sizes and

momentum scales, such as Q

2

eff

, to determine the scale at which we must sample the

gluon density and �

s

in eq.(3.2). We establish this relation using the expression for the

longitudinal structure function written in b

t

-space:

�

L

(x;Q

2

) /

Z

dz

Z

1

0

d

2

b

t

�̂(b

2

t

) j 


;L

(z; b

t

)j

2

: (3.3)

We now assume that for a particular �xed x;Q

2

the product of transverse size and

the momentum scale squared is constant, b

2

t

Q

2

= �, with b

2

t

measured in GeV

�2

= b

2

t

(fm

2

)/(hc)

2

, with hc = 0.197 GeV fm. We establish this constant from the typical or

average transverse sizes contributing to the b

t

-integral above. The average b

2

t

is de�ned

to be that value up to which we must integrate in order to reach half of the full b

2

t

integral in eq.(3.3). This average value is fed back into the integral via � =<b

2

t

> Q

2

.

The integral is recalculated, sampling the gluon and �

s

at �= <b

2

t

> and a new median

b

2

t

is found. The procedure is then iterated to convergence. It turns out that the

resultant � depends weakly on x;Q

2

. Table.(1) shows � for a wide range of these

kinematic variables (in [5] a constant value of � = 8:5 at x = 10

�3

is used for J= ).

Now we have established the relation between transverse size and momentum scales

we can use it to set the scale of �̂(b

2

t

) in the b

t

-integral in eq.(3.1). This allows us to

establish the e�ective scale for the production of each state, by a procedure similar to

that used above. With some starting assumption for Q

2

eff

we use �(x;Q

2

eff

)=b

2

t

as the

scale at which xg; �

s

;m

2

run

are sampled in the integral. This requires some regulation at

very small and very large values of b

2

t

, however, the contributions to the overall integral

from these regions are negligible. We establish the median b

2

=<b

2

> for this integral,

as above. This is then fed back in via Q

2

eff

(new) = �(x;Q

2

eff

(old))= < b

2

> and the

procedure is iterated to convergence.

In this way the value of the e�ective scale depends on the dominant values of b

2

t

.

Dipoles in the photon which most closely correspond to the relevant s-wave state, (have

the \right transverse size" and momentumsharing z) contribute most to the production.

The rescaling procedure is designed to re
ect this. The scale varies depending on

4



Q

2

10 30 50 70 90

x

1:0 � 10

�3

8.51 10.8 11.5 11.8 12.0

8.80 10.7 11.1 11.4 11.7

5:0 � 10

�3

9.82 12.3 12.9 13.2 13.4

10.2 12.1 12.5 12.7 12.9

9:0 � 10

�3

10.4 12.8 13.5 13.8 13.9

10.8 12.7 13.0 13.5 13.6

1:3 � 10

�2

10.8 13.3 13.9 14.1 14.3

11.1 13.0 13.4 13.7 13.8

1:7 � 10

�2

11.2 13.7 14.3 14.6 14.7

11.3 13.3 13.7 13.8 14.0

Table 1: �(x;Q

2

) as a function of x and Q

2

(GeV

2

). The upper values refer to CTEQ4L

partons and the lower to MRSTLO.

x 0.001 0.005 0.009 0.013 0.017

� CTEQ 37 40 40 40 41

MRST 41 42 42 42 43

�

0

CTEQ 58 61 62 63 65

MRST 57 60 62 63 65

�

00

CTEQ 71 76 77 80 80

MRST 70 75 76 78 79

Table 2: The e�ective scale, Q

2

eff

in GeV

2

, for each s-wave �-state as a function of x

the state in question since the relevant light-cone wavefunctions weight the integral

in eq.(3.1) di�erently. The resulting e�ective scale, Q

2

eff

, depends weakly on x and

strongly on the state concerned (see table.(2)).

The fact that Q

2

eff

increases with the mass of the state agrees with [4, 5] and is

perhaps counter-intuitive given that the quarks are less tightly bound in the higher

s-wave states, leading to larger typical sizes. It is worth remembering, however, that

the precise momentum scale is governed by a convolution of the photon and vector

meson light-cone wavefunctions, and that higher states also contain nodes which further

confuses the issue from an intuitive point of view. In fact, the typical transverse

momenta contributing to the production of these higher mass states is larger (see

table.(3)) and this is re
ected in the larger Q

2

eff

. The precise values of this e�ective scale

are sensitive to the details of the vector meson wavefunction. The outlined rescaling

procedure represents a reasonable estimate given the current knowledge of this quantity.

5



4. Calculation of the e�ect of skewedness

Recently, there has been considerable progress in calculating and understanding skewed

parton distributions, which probe new non-perturbative information about hadrons

and are a generalisation of conventional parton distributions (for an extensive list of

references see [10]). The former replace the latter in expressions for hard exclusive

cross-sections. They are relevant for a wide range of hard exclusive processes such

as deeply-virtual Compton scattering, di�ractive dijets in photoproduction, and most

importantly for our purposes, photo- and electroproduction of vector mesons.

In the latter processes, the skewedness, �, arises from the need to convert a space-like

q

2

= �Q

2

, into a time-likeM

2

V

, and is given by the di�erence in momentum fractions

carried by the outgoing (x

1

) and returning (x

2

) gluons (see �g.(1)),

x

1

=

M

2

q�q

+Q

2

W

2

+Q

2

; x

2

=

M

2

q�q

�M

2

V

W

2

+Q

2

; (4.1)

� = x

1

� x

2

=

M

2

V

+Q

2

W

2

+Q

2

; (4.2)

whereM

2

q�q

is the mass of the intermediate q�q-state. In terms of the light-cone variables

it is given by

M

2

q�q

=

k

2

t

+m

2

q

z(1 � z)

: (4.3)

For photoproduction of � at HERA, � = M

2

�

=W

2

is small and lies in the range

f0:0011; 0:017g, although it is an order of magnitude larger than for J= -photoproduction

in the same energy range.

It was argued in [11] that for small x and for Q

2

0

, where parton densities weakly

depend on x, the dependence on � can be neglected. It was further demonstrated

in [11] that for large Q

2

and small x the main contribution to the skewed parton

densities comes from the parton densities at Q

2

0

scale where ~x � x, for which the

skewedness is very small. Hence the answer for these kinematics does not depend on

this approximation. Freund and Guzey [12] have modi�ed the DGLAP-evolution [13]

package of the CTEQ collaboration [14], which is based on a numerical grid integration,

to produce the skewed gluon functions, G

�

(x

1

; Q

2

), for any x

1

at a �xed value of � (it

is straightforward to write an interpolating subroutine to obtain G for any �). We use

this code and the approximation that the skewed and conventional distributions are

the same at the starting scale, Q

2

0

.

It is then su�cient to replace the conventional splitting functions with their skewed

generalisations in the evolution (i.e. P

ab

(x) ! P

ab

(�; x)). Unfortunately the latter

are only known to leading-log accuracy at present (although, very recently progress

has been reported [15] on the next-to-leading order). For consistency one is forced

6



to use only leading-log parton distributions at the input scale; we use the two most

recent leading-order distributions, i.e. CTEQ4L [16] and MRSTLO

1

[17], and evolve to

leading-log(Q

2

) accuracy. The code produces the skewed gluon distributionG

�

(x

1

; Q

2

eff

)

to replace the ordinary gluon density, xg(x;Q

2

eff

) of eq.(2.3). The two distributions are

shown in �g.(2), in the relevant x-range for Q

2

eff

= 40 GeV

2

characteristic of �(1s)-

production (see table.(2)). This replacement leads to an overall enhancement factor of

about (1:6)

2

' 2:6 for �(1s,2s,3s) cross-sections.

cteq

mrst

x; x

1

x

g

(

x

;

4

0

)

;

G

�

(

x

1

;

4

0

)

0.020.0180.0160.0140.0120.010.0080.0060.0040.002

30

25

20

15

10

5

0

Figure 2: A comparison of skewed and conventional gluon densities at a scale of Q

2

= 40

GeV

2

, the e�ective scale for �-photoproduction. Conventional leading-order input distribu-

tions are used in both cases (at starting scales Q

2

0

= 1:6 and 1:0 GeV

2

for CTEQ4L [16] and

MRSTLO [17], respectively). The skewed distributions are the upper curves and have �xed

x

1

=� = 1:2.

It is necessary to determine the appropriate value of x

1

to use. We estimate this by

calculating the average values of transverse momentumand light-cone momentum shar-

ing <k

t

> and <z> contributing toM

2

q�q

in the relevant loop integral. A more accurate

calculation would integrate explicitly overM

2

q�q

, but in this case all direct connection to

the measured forward distribution, and hence predictability, would be lost (until the

input densities for skewed evolution have been explicitly measured themselves).

The amplitude of eq.(3.1) is used to calculate the relevant value of M

2

q�q

for the

particular value of W . First of all we calculate <z>. We then integrate over z, take

a Fourier transform back to k

t

-space and calculate the median value of the k

t

-integral

by the method outlined above for calculating medians of integrals. Both < z > and

<k

2

t

> are then fed into eq.(4.3) to determineM

2

q�q

. The range of values of <k

2

t

> and

typical <z> for each s-wave state are shown in table.(3). The result depends weakly

on energy, W . Table.(4) shows the resultant values of x

1

=� =M

2

q�q

=M

2

V

as a function of

1

We thank R. Roberts for providing the parameters at the starting scale.
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W for the three s-wave states. The code for calculating the cross sections automatically

takes this variation into account.

Note that as soon as x

1

=� is small we are not sensitive to a speci�c value of this

ratio since in this limit the ratio of skewed and diagonal densities weakly depends on

x

1

=�. This justi�es the use of the conventional distributions in �̂ when calculatingM

2

q�q

.

< k

2

t

> (80 GeV) < k

2

t

> (280 GeV) < z >

� CTEQ 4.04 5.34 0.40

MRST 4.54 5.90 0.40

�

0

CTEQ 4.88 6.20 0.28

MRST 5.43 6.71 0.28

�

00

CTEQ 5.90 7.34 0.26

MRST 6.50 7.78 0.26

Table 3: Averages of k

2

t

and z for each s-wave �-state.

W (GeV) 80 130 180 230 280

� CTEQ 1.14 1.16 1.17 1.18 1.19

MRST 1.17 1.20 1.21 1.22 1.24

�

0

CTEQ 1.23 1.26 1.28 1.29 1.30

MRST 1.28 1.30 1.32 1.33 1.34

�

00

CTEQ 1.28 1.30 1.32 1.33 1.34

MRST 1.32 1.35 1.36 1.37 1.38

Table 4: The ratio x

1

=� for each s-wave �-state as a function of W .

5. Calculating the real part of the amplitude

It is convenient to use the dispersion representation in energy to calculate the real part

of the scattering amplitude. In doing so we automatically take into account a possible

contribution of the region of x

1

> 0; x

2

< 0 in the real part. Previously, the ratio of real

to imaginary parts of the amplitude, �, was calculated using the approximate solution

of this dispersion relation:

� =

�

2

d ln(xg(x;Q

2

))

d ln(1=x)

; (5.1)

�rst derived in [18], and used in [4{6]. This is appropriate at small x and fairly low

scales where the gluon density and hence the imaginary part of the amplitude may be

approximated by a single power in energy (ImA / xg=x / (W

2

)

�

). The result is then

� =

�

2

(�� 1), for � su�ciently close to 1.

8



� �

0

�

00

� (eq.(5.1))

W (GeV) CTEQ MRST CTEQ MRST CTEQ MRST CTEQ

80 1.25 1.27 1.55 1.56 1.78 1.78 0.88

130 0.76 0.79 0.89 0.91 0.94 0.99 0.68

180 0.62 0.65 0.71 0.73 0.72 0.78 0.60

230 0.55 0.58 0.63 0.64 0.63 0.68 0.56

280 0.51 0.54 0.58 0.59 0.58 0.63 0.53

Table 5: Relative contribution of the real part of the amplitude, �

2

, as a function of W for

photoproduction of �(1s), �(2s), �(3s). For comparison the last column shows the values of

�

2

obtained for � using eq.(5.1), sampling the CTEQ4L gluon at Q

2

eff

= 40GeV

2

.

At the larger values of x and higher scales, Q

2

eff

, relevant to photoproduction of �-

states it is necessary to include an additional sub-leading power in 1=x or equivalently

in W

2

. For �xed x

1

=� (we use the values at W = 180 GeV, see table.(4)) and Q

2

eff

the

skewed gluon distribution is a function of W

2

only. We perform a two-power Regge-

type �t to this distribution, at the relevant �xed e�ective scale, over the whole range

in W

2

using MINUIT [19]:

G

�

(x

1

; Q

2

eff

) = aW

2b

+ cW

2d

: (5.2)

We may then use analyticity of the amplitude directly to construct a dispersion

relation and hence determine �,

�(W ) =

ReA

ImA

= �

aW

2(b+1)

cot(

�(b+1)

2

) + cW

2(d+1)

cot(

�(d+1)

2

)

aW

2(b+1)

+ cW

2(d+1)

: (5.3)

Table.(5) shows how �

2

changes as a function of W , these values are used in the cross

sections of eq.(2.3). For a comparison, we also show the values of �

2

for � using eq.(5.1).

As expected these di�er most for smaller values of W .

6. Results

The cross section for photoproduction of the � states is

�(
P ! V P ) =

3�

3

�

V

M

3

V

(1 + �

2

)

64�

em

(m

2

)

4

B

D;V

�

�

s

(Q

2

eff

) g

�

(x

1

; Q

2

eff

)

�

2

C(Q

2

= 0) : (6.1)

The e�ective scale, Q

2

eff

, x

1

=� and �

2

all depend on the state concerned and weakly

on energy as indicated in the tables.(2,4,5) above. The overall suppression factor,

C(Q

2

= 0) is given by

C(Q

2

= 0) = (

m

2

m

2

run

)

4

"

m

6

run

M

2

V

R

dz

z(1�z)

R

db b

3

 

V;T

(z; b) 




(z; b)

R

dz

z(1�z)

 

V;T

(z; b = 0)

#

2

: (6.2)
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The resolution of the muon chambers at the HERA experiments is such that the

three contributing s-wave states �;�

0

;�

00

are not resolved [7]. Hence, what is actu-

ally measured is the sum of the production rates of the mesons times their respective

branching fractions to muons (Br(� (ns) ! �

+

�

�

) = 2.48, 1.31, 1.81 % for n = 1; 2; 3,

respectively [21]). In �g.(3) we present our predictions for this measured quantity using

MRST (upper solid curve) and CTEQ (lower solid curve) input parton distributions.

This illustrates the agreement of the model with the data collected so far. Also shown

(dashed curves) are the predictions for �(1s) alone for the two input distributions.

There are two reasons why the MRST curves should be higher than CTEQ curves.

Firstly, the skewed parton distributions are higher (see Fig.(2)). Secondly, smaller val-

ues for �

QCD

are used in MRSTLO than in CTEQ4L, this makes the value of �

s

larger

at a given e�ective scale.

ZEUS

H1

1s only

All s-states

W (GeV)

�

i

�

i

.

B

i

(

�

!

�

+

�

�

)

(

p

b

)

250200150100

30

25

20

15

10

5

0

Figure 3: Sum of cross sections times branching ratios to muons for �(1s), �

0

(2s), �

00

(3s)

as a function of energy. The dashed curves are for �(1s) alone. The upper (lower) curves in

each case correspond to MRSTLO (CTEQ4L) partons at the starting scale. Also shown are

the data from ZEUS and H1 (preliminary), at their respective mean energies, with systematic

and statistical errors added in quadrature.

Fig.(4) shows our prediction for the photoproduction of �(1s) as function of energy

in the HERA range, using both input distributions. A very steep rise is expected, as

can been seen from the �gure, this corresponds approximately to W

1:7

over the range

shown, i.e. almost a full power in W stronger than that seen in J= production (a

recent �t [9] to ZEUS and H1 data revealed a power of 0:8� 0:1). This very steep rise

is due to the sampling of the gluon at the large scale, Q

2

eff

' 40 GeV

2

, where it is

rising steeply with energy. In practice the steepness of the observed rise may prove to

be a useful way to discriminate between models which have rescaling and those that

do not, since for a �xed range in x the steepness increases with scale.
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ZEUS

H1

AW

1:7

mrst

cteq4l

W (GeV)

�

(




P

!

�

P

)

(

n

b

)

250200150100

1

0.8

0.6

0.4

0.2

0

Figure 4: Cross section for photoproduction of �(1s) in the HERA energy range, compared

to values quoted by the HERA experiments [7] at their respective mean energies. An addi-

tional curve, AW

1:7

, with A normalised to the CTEQ4L cross section atW = 80 GeV, is also

shown to indicate the very steep rise with energy.

R

3s

mrst

R

3s

cteq

R

2s

mrst

R

2s

cteq

W (GeV)

R

2

s

;

R

3

s

250200150100

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Figure 5: Ratios of cross-sections times branching ratio to muons: R

2s

= �B(2s)=�B(1s),

R

3s

= �B(3s)=�B(1s).

Figure.(5) shows predictions for ratios of the products of cross-sections and branch-

ing ratios to muons, for the �

0

;�

00

relative to � as a function of energy. The di�erent k

t

-

suppression factors for the di�erent states (for CTEQ4L C(Q

2

= 0) = 0:290; 0:139; 0:0820,

for MRSTLO C(Q

2

= 0) = 0:283; 0:138; 0:0817, respectively) imply that the relative

rates of the three states are not expected to be the same as those found at CDF [20],
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and used by ZEUS and H1 to unfold and produce a cross section for �(1s) production.

The CDF data implies that �(1s) is responsible for about 70% of the signal whereas

our calculation indicates a larger value of about 85% (see also �g.(3)). For this reason

a comparison of the predictions in Fig.(4) with the values quoted by the experiments

(also shown), must be done with care.

Although the states cannot be separated this predominance of �(1s) should re
ect

itself in the average observed value of the mean mass of the muon pair in the signal.

7. Conclusions and discussion

We have presented predictions for the cross sections of di�ractive photoproduction of

�-states in the HERA range, based on a previous analysis [5]. In this paper two new

e�ects, the o�-diagonal nature of the amplitude and the largeness of it's real part are

found to be important and lead to a signi�cant enhancement of the normalisation of

the cross sections. We perform a reanalysis of rescaling procedure used to set the scale

of the production of the three s-wave states. We �nd good agreement with the �rst

data from HERA. One striking prediction of the analysis is a very strong rise of the

cross sections with energy which is driven by the skewed gluon density (see eq.(6.1)

and �g.(2))

Throughout the paper we have used the hybrid light-cone wavefunctions suggested

in [5], which were constructed to agree with quarkonium wavefunctions at large dis-

tances and QCD at small distances. These wavefunctions have signi�cant Fermi motion

of the quarks inside the bound states. Gauge invariance demands that if one has �nite-

k

t

one also needs gluonic degrees of freedom. So far only the contribution to the cross

section of the lowest order Fock states of the vector meson and photon (jb

�

b>) have been

considered. The next step is to calculate higher order Fock states which also include

the gluon degrees of freedom. The connection between these light-cone wavefunctions

and quarkonium wavefunctions derived from solving the Schr�odinger equation for a

particular potential remains an open question, which such a calculation would begin to

address.
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