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Abstract

We present a theoretical reappraisal of the branching ratios and CP asymmetries for the decays

B ! X

q

`

+

`

�

, with q = d; s, taking into account current theoretical uncertainties in the description

of the inclusive decay amplitudes from the long-distance contributions, an improved treatment of

the renormalization scale dependence, and other parametric dependencies. Concentrating on the

partial branching ratios �B(B ! X

q

`

+

`

�

), integrated over the invariant dilepton mass region

1 GeV

2

� s � 6 GeV

2

, we calculate theoretical precision on the charge-conjugate averaged partial

branching ratios h�B

q

i = (�B(B ! X

q

`

+

`

�

) + �B(

�

B !

�

X

q

`

+

`

�

))=2, CP asymmetries in partial

decay rates (a

CP

)

q

= (�B(B ! X

q

`

+

`

�

) � �B(

�

B !

�

X

q

`

+

`

�

))=(2h�B

q

i), and the ratio of the

branching ratios �R = h�B

d

i=h�B

s

i. For the central values of the CKM parameters, we �nd

h�B

s

i = (2:22

+0:29

�0:30

) � 10

�6

, h�B

d

i = (9:61

+1:32

�1:47

) � 10

�8

, (a

CP

)

s

= �(0:19

+0:17

�0:19

)%, (a

CP

)

d

=

(4:40

+3:87

�4:46

)%, and �R = (4:32�0:03)%. The dependence of h�B

d

i and �R on the CKM parameters

is worked out and the resulting constraints on the unitarity triangle from an eventual measurement

of �R are illustrated.
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1 Introduction

With the advent of new and upgraded experimental facilities in the next year(s), avour physics

involving B decays will come under minute experimental and theoretical scrutiny. The overriding

interest in these experiments is in measuring CP-violating asymmetries in partial B-decay rates,

which will allow to quantitatively test the Kobayashi-Maskawa [1] paradigm of CP violation. In

addition, the large number of B hadrons anticipated to be produced at these facilities (estimated

to be O(10

8

) - O(10

12

)) will allow to measure a number of avour-changing-neutral-current (FCNC)

processes involving the transitions b ! sX and b ! dX , with X = ; g; `

+

`

�

; ���, and B

0

- B

0

mixings. In the context of the Standard Model (SM), FCNC decays and mixings measure the Cabibbo-

Kobayashi-Maskawa (CKM) [1] matrix elements, in particular V

td

, V

ts

and V

tb

. These quantities can,

in principle, also be measured directly in top quark decays t! q

i

W

+

, with q

i

= d; s; b. A comparison

of these matrix elements in the FCNC processes and direct measurements in t decays would provide

one of the best strategies to search for new physics in B decays. So far, only V

tb

has been directly

measured at Fermilab, yielding jV

tb

j = 0:99� 0:15 [2].

Present knowledge of V

td

owes itself to the measurements of �M

d

, the mass di�erence in the B

0

-

B

0

complex. With the current world average �M

d

= 0:471�0:016 (ps)

�1

, the error on V

td

is dominated

by theoretical uncertainty on the hadronic matrix element f

B

d

p

B

B

d

, for which present Lattice-QCD

estimates are f

B

d

p

B

B

d

= 215 � 35 MeV [3], yielding 0:0065 � jV

td

V

�

tb

j � 0:010. We also mention

that a single event for the charged kaon decay mode K

+

! �

+

��� reported by the Brookhaven E787

experiment, yielding B(K

+

! �

+

���) = (4:2

+9:7

�3:5

)� 10

�10

, allows one to infer 0:006 � jV

td

V

�

tb

j � 0:06

[4]. The branching ratio for the decay B ! X

s

 has led to a determination of the matrix element

V

ts

[5], yielding jV

ts

V

�

tb

j = 0:0035� 0:004, with the error dominated by the experimental error on the

branching ratio B(B ! X

s

+ ) [6,7]. These numbers can be taken as the measurements of jV

td

j and

jV

ts

j by assuming the value V

tb

' 1 from the CKM unitarity, which holds to a very high accuracy [8].

In this paper, we pursue the idea of measuring the FCNC semileptonic decays B ! X

s

`

+

`

�

and

B ! X

d

`

+

`

�

, below the J= - and above the �; !-resonance regions in the dilepton invariant mass, to

determine jV

ts

j and jV

td

j, respectively, and the ratio jV

td

=V

ts

j from the ratio of the branching ratios. In

this context, these decays and the related ones, B ! X

s

��� and B ! X

d

���, were discussed some time

ago [9]. The decays B ! (X

s

; X

d

)��� are practically free of long-distance complications [10] and the

renormalization-scale dependence of the decay rates has also been brought under control [11]. Hence,

these decays are theoretically remarkably clean but, unfortunately, they are di�cult to measure in

�(4S) decays and out of question in hadronic collisions. Using the missing energy technique and LEP

I data, the ALEPH collaboration has searched for the decays B ! X

s

��� setting an upper bound

B(B ! X

s

���) < 7:7� 10

�4

(at 90% C.L.) [12], which is a factor 20 away from the SM expectations

[11]. While the discovery of these decays looks formidable elsewhere, a high luminosity Z

0

-factory -

being discussed in conjunction with an e

+

e

�

linear collider [13]- looks like having the best chance of

measuring them. This possibility deserves a dedicated study.
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The possibility of determining jV

td

=V

ts

j from the ratio of the invariant mass decay distributions

dR

ds

�

dB

ds

[B ! X

d

`

+

`

�

]=

dB

ds

[B ! X

s

`

+

`

�

] away from the resonances was revisited by Kim, Morozumi

and Sanda [14]. These authors included the e�ects of the leading order power corrections (in 1=m

2

b

) in

the short-distance part of the dilepton invariant mass distribution and the long-distance contributions

from the c�c-resonances, calculated in Ref. [15]. (For earlier-vintage derivations without the power

corrections, see [16,17].) We reanalyze the decays B ! X

s

`

+

`

�

and B ! X

d

`

+

`

�

and the ratio of

the branching ratios �R �

R

ds

dB

ds

[B ! X

d

`

+

`

�

]=

R

ds

dB

ds

[B ! X

s

`

+

`

�

], integrated over a kinematic

range q

2

min

� s � q

2

max

, designed to minimize the resonant contribution. Our theoretical treatment

di�ers from that of Ref. [14] in a number of ways, summarized below.

� The dilepton invariant mass distributions in B ! (X

s

; X

d

)`

+

`

�

can be calculated in the con-

text of the heavy quark e�ective theory (HQET) as a power expansion in regions far from

the resonances, thresholds and end-points [15,10]. Away from the J= ;  

0

; :::-resonances, the

1=m

2

c

-expansion provides, in principle, a viable description of the non-perturbative contribu-

tions arising from the c�c-loop [10]. The contribution of the light quark q�q-loops, which is not

CKM-suppressed in the decay B ! X

d

`

+

`

�

, can likewise be calculated by doing an expansion of

the decay amplitudes in �

2

QCD

=q

2

in regions of the dilepton squared mass satisfying q

2

� �

2

QCD

.

Thus, the HQET framework provides an evaluation of the invariant dilepton mass spectrum in

these processes with the present precision limited to the leading power corrections in 1=m

2

b

, 1=m

2

c

and �

2

QCD

=q

2

. We present HQET-based calculations of the decay rates, CP asymmetries and

the ratio �R.

� Away from the resonances and the end-points, the power corrections in 1=m

2

b

calculated in

HQET and in explicit wave function models, such as the Fermi motion (FM) model [18], yield

very similar invariant dilepton mass [15] and hadron energy distributions [19] in the decays

B ! X

q

`

+

`

�

. However, it is known that there are marked di�erences in estimates of the non-

perturbative c�c-contribution, obtained by using the 1=m

2

c

-corrections in the HQET approach

and alternative methods based on the Breit-Wigner-shaped resonant amplitudes [20,21]. Data

may eventually provide a discrimination against some of these approaches, but currently at least

four di�erent variations on this theme exist in the literature [10,15,22,23]. This LD-uncertainty

therefore compromises theoretical precision on decay rates and has to be taken into account. We

calculate the theoretical uncertainties on the branching ratios for the decays B ! (X

d

; X

s

)`

+

`

�

,

CP asymmetries and the ratio �R, showing numerically their impact on the determination of

jV

ts

j, jV

td

j and the CKM-Wolfenstein parameters � and � [24] from an eventual measurement of

these decays.

� We reanalyze the renormalization scale dependence in the branching ratios for the decays B !

X

s

`

+

`

�

and B ! X

d

`

+

`

�

, using the method employed by Kagan and Neubert in the radiative

decay B ! X

s

+ [25]. This approach avoids accidental cancellations among the individual scale-

dependent contributions but gives a larger scale (�)-dependence of the branching ratios than the

2



method of evaluating the same in the total branching ratio [14]. The former is probably a more

realistic estimate of the neglected higher order corrections.

We �nd that the partial branching ratio in the SM is uncertain by typically �13% (�15%) for the

decay B ! X

s

`

+

`

�

(B ! X

d

`

+

`

�

), but the ratio �R is remarkably stable with typical error less

than several percent. Hence, �R is well-suited to determine the ratio jV

td

=V

ts

j. However, the scale-

dependence of the CP asymmetries in B ! (X

s

; X

d

)`

+

`

�

is found to be huge, reecting the (present)

leading logarithmic theoretical accuracy of the CP-odd parts of the amplitudes. Without the power

corrections and �xing the scale to � = m

b

, the CP asymmetries in question have been studied earlier

in Ref. [26]. We point out that these estimates are uncertain by almost �100% due to the sensitive

scale-dependence and their stabilization requires next-to-leading order corrections. In the case of the

CP-even parts, we recall that the inclusion of the explicit O(�

s

) corrections in the matrix elements

has reduced the scale dependence of the decay rates considerably [27,28].

This paper is organized as follows: In section 2, we briey review the derivation of the matrix

elements and dilepton invariant mass distributions for the decays B ! (X

s

; X

d

)`

+

`

�

including long-

distance contributions in the four approaches: (i) AMM [17,15], (ii) KS [22], (iii) LSW [23] and (iv)

HQET [10]. The partially integrated branching ratios and CP asymmetries are presented in section

3 where we also specify our input parameters. We show the scale dependence of the branching ratios

�B(

�

B !

�

X

s

`

+

`

�

) and �B(

�

B !

�

X

d

`

+

`

�

) in the AMM approach and the contributions arising from

the individual Wilson coe�cients. We also present a comparative numerical study of the quantities

h�B

s

i, h�B

d

i, (a

CP

)

s

and (a

CP

)

d

in the four mentioned approaches. Uncertainties arising from the

other parameters (m

b

, m

t

and �

(5)

QCD

) are worked out numerically. With this we calculate the overall

theoretical errors in these quantities and the ratio �R and their impact on the determination of the

CKM parameters. Finally, section 4 contains a brief comparison of the theoretical precision of jV

td

=V

ts

j

in the decays B ! (X

s

; X

d

)`

+

`

�

with that of other methods proposed in the literature to determine

the same ratio.

2 B ! (X

d

; X

s

)`

+

`

�

Decays in the E�ective Hamiltonian Approach

We work in the e�ective Hamiltonian approach, which is based on integrating out the heavy degrees of

freedom (t;W

�

; Z

0

), in the SM. The resulting e�ective Hamiltonian for the decays B ! (X

d

; X

s

)`

+

`

�

,

H

eff

(b! q`

+

`

�

), can be expressed as follows:

H

eff

(b! q`

+

`

�

) = �

4G

F

p

2

V

�

tq

V

tb

10

X

i=1

C

i

O

i

+

4G

F

p

2

V

�

uq

V

ub

h

C

1

(O

1

(u)

� O

1

) + C

2

(O

2

(u)

� O

2

)

i

; (1)

where V

ij

are the CKM matrix elements. The C

i

are the Wilson coe�cients, which depend, in general,

on the renormalization scale �, except for C

10

, and can be seen in leading logarithmic approximation

in [27]. The operators are de�ned as follows:

O

1

= (�q

L�



�

b

L�

)(�c

L�



�

c

L�

) ;

3



O

2

= (�q

L�



�

b

L�

)(�c

L�



�

c

L�

) ;

O

3

= (�q

L�



�

b

L�

)

X

q

0

=u;d;s;c;b

(�q

0

L�



�

q

0

L�

) ;

O

4

= (�q

L�



�

b

L�

)

X

q

0

=u;d;s;c;b

(�q

0

L�



�

q

0

L�

) ;

O

5

= (�q

L�



�

b

L�

)

X

q

0

=u;d;s;c;b

(�q

0

R�



�

q

0

R�

) ;

O

6

= (�q

L�



�

b

L�

)

X

q

0

=u;d;s;c;b

(�q

0

R�



�

q

0

R�

) ;

O

7

=

e

16�

2

�q

�

�

��

(m

b

R+m

q

L)b

�

F

��

;

O

8

=

g

16�

2

�q

�

T

a

��

�

��

(m

b

R+m

q

L)b

�

G

a��

;

O

9

=

e

2

16�

2

�q

�



�

Lb

�

�

`

�

` ;

O

10

=

e

2

16�

2

�q

�



�

Lb

�

�

`

�



5

` ; (2)

where L and R denote chiral projections, L(R) = 1=2(1�

5

). Here, unitarity of the CKM matrix has

been used in writing the avour structure of a generic FCNC b! q transition amplitude T

(q)

in the

form

T

(q)

=

X

i=u;c;t

�

(q)

i

T

i

= �

(q)

t

(T

t

� T

c

) + �

(q)

u

(T

u

� T

c

) ; (3)

where �

(q)

i

= V

�

iq

V

ib

and q = d; s. For the b! s transitions, the second term in Eq. (3) can be safely

neglected as �

(s)

u

� �

(s)

t

. However, for the b! d transitions, the CKM factors �

(d)

u

and �

(d)

t

are of the

same order and hence all terms in Eq. (3) must be kept. The operator basis given in Eq. (1) has been

written in accordance with Eq. (3) and includes the Four-Fermi operators containing a u�u pair,

O

1

(u)

= (�q

L�



�

b

L�

)(�u

L�



�

u

L�

) ;

O

2

(u)

= (�q

L�



�

b

L�

)(�u

L�



�

u

L�

) : (4)

The matrix element for the decays b! q`

+

`

�

(q = d; s) can be written as

M(b! q`

+

`

�

) =

G

F

�

p

2�

V

�

tq

V

tb

h�

C

e�

9q

� C

10

�

(�q 

�

L b)

�

�

` 

�

L `

�

+

�

C

e�

9q

+ C

10

�

(�q 

�

L b)

�

�

` 

�

R`

�

� 2C

e�

7

�

�q i �

��

q

�

q

2

(m

q

L+m

b

R) b

�

�

�

` 

�

`

�

�

: (5)

Here q

�

� p

�

+

+ p

�

�

denotes the Four-momentum of the invariant dilepton system, where p

�

are

the corresponding momenta of the `

�

; s � q

2

is the invariant dilepton mass squared. The e�ective

coe�cients of O

9

are given by

C

e�

9q

(ŝ) = C

9

�(ŝ) + Y

q

(ŝ) : (6)

4



The functions �(ŝ) and Y

q

(ŝ) represent the O(�

s

) correction [29] and the (perturbative) one loop

matrix element of the Four-Fermi operators [27,28], respectively. We have in the (naive dimensional

regularization) NDR-scheme, which we use throughout our work,

Y

q

(ŝ) = g(m̂

c

; ŝ) (3C

1

+ C

2

+ 3C

3

+ C

4

+ 3C

5

+ C

6

)

�

1

2

g(1; ŝ) (4C

3

+ 4C

4

+ 3C

5

+ C

6

)�

1

2

g(0; ŝ) (C

3

+ 3C

4

)

+

2

9

(3C

3

+ C

4

+ 3C

5

+ C

6

)�

V

�

uq

V

ub

V

�

tq

V

tb

(3C

1

+ C

2

)(g(0; ŝ)� g(m̂

c

; ŝ)) ; (7)

where we have introduced the dimensionless variable ŝ � q

2

=m

2

b

and m̂

c

� m

c

=m

b

. The functions �(ŝ)

and g(z; ŝ) can be seen elsewhere [27,20]. Note that the renormalization scheme-dependence of the

function Y

q

(ŝ) cancels with the corresponding one in C

9

. The e�ective coe�cient of the bs vertex is

given by C

e�

7

= C

7

� C

5

=3� C

6

[30].

The dilepton invariant mass spectrum including power corrections in the HQET approach in B !

X

q

`

+

`

�

decays can be written as:

dB

dŝ

=

dB

0

dŝ

+

dB

1=m

2

b

dŝ

+

dB

1=q

2

dŝ

; (8)

where the �rst term corresponds to the parton model [27,28], the second term accounts for the O(1=m

2

b

)

power corrections [15], and the last term accounts for the non-perturbative interaction of a virtual u�u-

and c�c-quark loop with soft gluons. The explicit expression for dB

1=q

2

=dŝ for m

q

= 0 can be deduced

from the literature [10]

dB

1=q

2

dŝ

= �B

0

C

2

�

2

32

27

(1� ŝ)

2

(9)

� Re

("

C

e��

7

(1 + 6ŝ� ŝ

2

)

ŝ

+ C

e�(0)�

9q

(ŝ)(2 + ŝ)

#"

F (s;m

c

)

m

2

c

�

�

(q)

u

�

(q)

t

(

F (s;m

u

)

m

2

u

�

F (s;m

c

)

m

2

c

)

#

+ [(3C

1

+ C

2

)(g(0; ŝ)� g(m̂

c

; ŝ))]

�

(2 + ŝ)

"

j

�

(q)

u

�

(q)

t

j

2

(

F (s;m

u

)

m

2

u

�

F (s;m

c

)

m

2

c

)�

�

(q)

u

�

(q)

t

F (s;m

c

)

m

2

c

#)

:

The branching ratio for B ! X

q

`

+

`

�

is expressed in terms of the measured semileptonic branching

ratio B

sl

for the decays B ! X

c

`�

`

. This �xes the normalization

B

0

� B

sl

3�

2

16�

2

jV

�

tq

V

tb

j

2

jV

cb

j

2

1

f(m̂

c

)�(m̂

c

)

; (10)

where f(m̂

c

); �(m̂

c

) can be seen, for example, in [15]. The function F (s;m) � F (r) with r = s=(4m

2

)

is given in [10]. In the region r � 1, F (s;m

u

)=m

2

u

/ 1=s. The condition r � 1 is well satis�ed, for

example, for q

2

� 1:0 GeV

2

(for which r > 25). In this region, the operator product expansion (OPE)

is not in '1=m

2

u

' but in �

2

QCD

=q

2

. Hence, there is a su�ciently large region in q

2

where the OPE holds

in 1=m

2

b

, 1=m

2

c

and �

2

QCD

=q

2

. Note also that for the terms proportional to the power corrections, we

use C

e�(0)�

9q

(ŝ) which equals C

e��

9q

(ŝ) with �(ŝ) = 1.

5



In B ! X

q

`

+

`

�

decays c�c-resonances are present via B ! X

q

+ (J= ;  

0

; :::) ! X

q

`

+

`

�

. Their

implementation and the corresponding uncertainties in the B ! X

s

`

+

`

�

case have been discussed

recently by us [20]. There are at least four di�erent Ans�atze advocated in the literature in this

context, summarized below.

� The HQET-based approach [10], where the non-perturbative c�c-contribution away from the

(J= ;  

0

; :::)-resonances is implemented by the 1=m

2

c

terms in the expression for dB

1=q

2

=dŝ.

� One could add the resonant c�c-contribution, parametrized using a Breit-Wigner shape with

the normalizations �xed by data, to the complete perturbative contribution resulting from the

c�c-loop. This scheme has been used in a number of papers [17,15,14,20].

The e�ective coe�cients including the c�c-resonances are de�ned as

C

e�

9q

(ŝ) � C

9

�(ŝ) + Y

q

(ŝ) + Y

res

q

(ŝ) ; (11)

where Y

q

(ŝ) has been given earlier and Y

res

q

(ŝ) in this scheme is de�ned as:

Y

res

q

(ŝ) =

3�

�

2

�

 

�

V

�

cq

V

cb

V

�

tq

V

tb

C

(0)

�

V

�

uq

V

ub

V

�

tq

V

tb

(3C

3

+ C

4

+ 3C

5

+ C

6

)

!

�

X

V

i

= (1s);:::; (6s)

�(V

i

! `

+

`

�

)M

V

i

M

V

i

2

� ŝ m

b

2

� iM

V

i

�

V

i

; (12)

with C

(0)

� 3C

1

+ C

2

+ 3C

3

+ C

4

+ 3C

5

+ C

6

. In what follows we shall neglect the part �

V

�

uq

V

ub

V

�

tq

V

tb

in Eq. (12) in our numerical analysis, since the particular combination of the Wilson coe�cients

appearing in this term is strongly suppressed compared to C

(0)

. Further, since data only determines

the product �C

(0)

= 0:875 [8], we keep this �xed. For ease of writing, we call this approach the AMM

approach [17].

The remaining two approaches are the following:

� The LSW-approach [23]: Here, for the non-resonant c�c-contribution, only the constant term in

g(m̂

c

; ŝ) is kept. Calling it ~g(m̂

c

; ŝ), it is given by ~g(m̂

c

; ŝ) = �

8

9

ln(m

b

=�)�

8

9

ln m̂

c

+

8

27

. The

resonant c�c part is essentially as given in Eq. (12).

� The KS-approach [22], in which the function C

e�

9q

(ŝ) is parametrized using a dispersion approach.

For details and further discussions of this approach, we refer to [22,20].

In B ! X

d

`

+

`

�

decays, in addition to the c�c bound states, also the u�u bound states have to be

included in the decay amplitudes. We have calculated the dilepton invariant mass distribution, using

the Breit-Wigner shape for the resonances, as discussed earlier, and taking the widths and partial

leptonic widths from the Particle Data Group [8]. However, numerically the u�u-resonant part is less

important, as the leptonic branching ratios B(V

0

! e

+

e

�

) and B(V

0

! �

+

�

�

) for the dominant

resonances V

0

= �

0

; ! are small [8]. Moreover, their e�ect is reduced by imposing a cut on the

6



dilepton invariant mass, say q

2

> 1GeV

2

, which we have explicitly checked. Higher states like �

0

; !

0

have larger widths and are thus expected to play minor roles due to their smaller branching ratios in

dilepton pairs.

In the three approaches discussed above (AMM,LSW,KS) we include the 1=m

2

b

-corrections, calcu-

lated in the phenomenological Fermi motion model (FM) [18], which implements such e�ects in terms

of the B-meson wave function e�ects. The implementation of the FM model in B ! X

s

`

+

`

�

decays in

the dilepton invariant mass distribution can be seen in [15], which we also adopt here for the calcula-

tions of the distributions in B ! X

d

`

+

`

�

. We note that the branching ratios in the HQET-based 1=m

2

b

approach and the FM-model are very close to each other for identical values of the input parameters.

3 Branching Ratios and CP Asymmetries in B ! X

q

`

+

`

�

3.1 Numerical input and de�nitions of the partial branching ratios and CP asym-

metries

We now specify how we determine theoretical uncertainties in the branching ratios, the ratio �R,

and CP asymmetries in the decays B ! (X

s

; X

d

)`

+

`

�

. The dispersion in the values of the obsevables

m

W

80:41 GeV

m

Z

91:1867 GeV

sin

2

�

W

0:2255

m

s

0:2 GeV

m

d

0:01 GeV

m

b

4:8� 0:2 GeV

m

t

173:8� 5:0 GeV

� m

b

+m

b

�m

b

=2

�

(5)

QCD

0:220

+0:078

�0:063

GeV

�

�1

129

�

s

(m

Z

) 0:119� 0:0058

B

sl

(10:4� 0:4) %

Table 1: Default values of the input parameters and the �1 � errors on the sensitive parameters used

in our numerical calculations.

due to the errors in the input parameters m

b

; �;m

t

, �

s

(m

Z

) (equivalently �

(5)

QCD

), and B

sl

, given in

Table 1, is calculated by varying one parameter at a time. To estimate the uncertainty from the b-quark

mass in the FM model, we explore the parameter space of this model with three sets of parameters:

(p

F

; m

q

) = (520; 280); (450; 0); (245; 0) in (MeV,MeV), which correspond to an e�ective b-quark mass

of m

e�

b

= 4:6; 4:8; 5:0 GeV, respectively. We set m

c

= m

e�

b

(m

b

) � 3:4 GeV in both the FM-model

and HQET analysis. Comparison with the HQET prediction [15] is worked out for �

1

= �0:20 GeV

2

7



and �

2

= 0:12 GeV

2

, as the dependence of the branching ratios on these parameters is small. The

individual errors are then added in quadrature to get the �nal cumulative error.

We proceed by de�ning the partly integrated branching ratios (q = s; d):

�B

q

�

Z

q

2

max

q

2

min

dq

2

dB(B ! X

q

`

+

`

�

)

dq

2

; (13)

together with �

�

B

q

, for the CP-conjugate decays

�

B !

�

X

q

`

+

`

�

, and the branching ratio averaged over

the charge-conjugated states:

h�B

q

i �

�B

q

+�

�

B

q

2

; (14)

The CP asymmetry in the partial rates for B ! X

q

`

+

`

�

is de�ned as:

(a

CP

)

q

�

�B

q

��

�

B

q

�B

q

+ �

�

B

q

: (15)

We further decompose the partial branching ratios �B

q

in terms of the CKM factors

�B

q

= (j�

(q)

t

j

2

D

(q)

t

+ j�

(q)

u

j

2

D

(q)

u

+Re(�

(q)�

t

�

(q)

u

)D

(q)

r

+ Im(�

(q)�

t

�

(q)

u

)D

(q)

i

)=jV

cb

j

2

; (16)

from which the CP conjugated branching ratio �

�

B

q

can be obtained by substituting �

(q)

u;t

! �

(q)�

u;t

.

Hence, the charge-conjugate averaged branching ratio h�B

q

i is obtained from �B

q

by dropping the

Im(�

(q)�

t

�

(q)

u

) term. The CP asymmetry is given by the expression:

(a

CP

)

q

= Im(�

(q)�

t

�

(q)

u

)D

(q)

i

=(jV

cb

j

2

h�B

q

i) : (17)

The functions D

(q)

j

, j = t; u; r; i depend on the input parameters, which we have speci�ed in Table 1,

and on the interval in q

2

, speci�ed by q

2

min

and q

2

max

. We shall work always above the (�, !)- and

below the J= -resonances in the so-called low-q

2

region with q

2

min

and q

2

max

taken as

q

2

min

= 1:0 GeV

2

� q

2

� 6:0 GeV

2

= q

2

max

: (18)

We use the Wolfenstein representation of the CKM matrix [24] with A = 0:819 and � = 0:2196

�xed, as the errors on these quantities are small [8]. The other two parameters (�; �) are implicitly

the subject of the present work. De�ning �� = �(1 �

�

2

2

) and �� = �(1�

�

2

2

), we have up to terms of

order �

6

[31]:

�

(s)

u

= A�

4

(�� i�) ; �

(s)

t

= �A�

2

"

1�

�

2

2

+ �

2

(�� i�)

#

; (19)

�

(d)

u

= A�

3

(��� i��) ; �

(d)

t

= A�

3

(1� ��+ i��) ; (20)

and V

cb

= A�

2

. It follows that

�

�

�

V

td

V

ts

�

�

�

2

= �

2

(1 + �

2

(1� 2��))((1� ��)

2

+ ��

2

) +O(�

6

). Global �ts of the

CKM parameters have been performed in a number of papers [32,33,34], with very similar (though

not identical) results. For illustration, we shall use the results of the CKM �ts from Ref. [32], yielding:

� = 0:155

+0:115

�0:105

; � = 0:383

+0:063

�0:060

: (21)
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(a) (b)

Figure 1: Renormalization scale (�)-dependence of the individual terms and the partly integrated

branching ratios �B

s

for the decay

�

B !

�

X

s

`

+

`

�

(a) and �B

d

for

�

B !

�

X

d

`

+

`

�

(b), calculated in the

AMM-approach. The solid, dotted, dashed, long-short dashed curves correspond to the contributions

proportional to the e�ective Wilson coe�cients jC

e�

7

j

2

; jC

10

j

2

; jC

e�

9

j

2

and Re(C

e�

7

C

e�

9

), respectively.

The resulting � uncertainty in the branching ratio, obtained by adding the weighted errors in quadra-

ture, is indicated by the shaded area.

3.2 Parametric dependence of the branching ratios and CP asymmetries

We study the scale (�)-dependence of the branching ratios along the lines followed in [25] in the

B ! X

s

 case. Thus, instead of varying the scale � betweenm

b

=2 and 2m

b

in the full expression for the

respective branching ratios (the naive method), the scale-dependence of the individual terms involving

di�erent Wilson coe�cient combinations is calculated independently and the resulting errors are added

in quadrature. It is a conservative approach and avoids the possibility of accidental cancellations of

the scale-dependence in the various terms, which takes place in the SM in both the B ! X

s

 case

[25] and in B ! X

q

`

+

`

�

, as shown here. For the branching ratio in B ! X

q

`

+

`

�

decays the relevant

coe�cients are: jC

10

j

2

; jC

e�

9

j

2

; Re(C

e�

7

C

e�

9

) and jC

e�

7

j

2

. Of these, C

10

does not renormalize, however,

there is a residual dependence on � from the normalization for which inclusive semileptonic branching

ratio is used, bringing in an extra �

s

(�)-dependence.

The scale-dependence of the individual contributions from the speci�ed Wilson coe�cients to the

branching ratios �

�

B

s

and �

�

B

d

and the branching ratios themselves, are shown in Fig. 1(a) and 1(b),

respectively. We �nd for the scale dependence of �

�

B

s

an uncertainty (+9:0;�7:3)%, measured from the

reference value � = m

b

. This is to be compared with the corresponding uncertainties (+4:1;�1:3)%

calculated in the naive approach. The estimated �-dependent uncertainty in �

�

B

d

is found to be

9



(+7:7;�7:6)%, compared to 2% in the naive approach.

h�B

s

i[10

�6

] (a

CP

)

s

[%] h�B

d

i[10

�8

] (a

CP

)

d

[%]

AMM 2.22 -0.19 9.61 4.40

KS 2.05 -0.18 8.83 4.09

LSW 2.31 -0.19 9.98 4.51

HQET 2.06 -0.17 8.93 4.02

m

b

= 4:6GeV 2.15 -0.19 9.29 4.48

m

b

= 5:0GeV 2.32 -0.18 10.03 4.29

m

t

= 178:2GeV 2.36 -0.18 10.18 4.18

m

t

= 168:2GeV 2.10 -0.20 9.06 4.63

�

(5)

QCD

= 0:298GeV 2.20 -0.16 9.52 3.74

�

(5)

QCD

= 0:157GeV 2.24 -0.22 9.70 5.03

Table 2: Values of the charge-conjugate averaged partial branching ratios h�B

s

i and h�B

d

i and the CP

asymmetries (a

CP

)

s

and (a

CP

)

d

, in the four LD-approaches AMM [17], KS [22], LSW [23] and HQET

[10], discussed in the text. In the top part of the table (above the horizontal line), the parameters are

�xed to their central values given in Table 1 and Eq. (21). In the lower part of the table, the parametric

dependence of the observables on m

b

, m

t

and �

(5)

QCD

, calculated using the AMM-approach, is listed.

The dependence of the charge-conjugate averaged branching ratios h�B

s

i and h�B

d

i, and the CP

asymmetries (a

CP

)

s

and (a

CP

)

d

on the four schemes concerning the c�c-contribution is shown in the

upper part of Table 2. For all these entries, we have �xed the parameters to their central values given

in Table 1 and Eq. (21). The dependence of these observables on m

b

, m

t

and �

(5)

QCD

, obtained in the

AMM-scheme by varying only one parameter at a time, is shown in the lower part of Table 2. For

the central values of � and �, the partial branching ratios are found to vary in the four approaches in

the range: 2:05� 10

�6

� h�B

s

i � 2:31� 10

�6

and 8:83� 10

�8

� h�B

d

i � 9:98� 10

�8

. For the same

values of � and � but taking into account in addition the rest of the parametric uncertainties in Table

2, B

sl

, and the scale-dependence from Fig. 1(a) and 1(b), we �nd:

h�B

s

i = (2:22

+0:29

�0:30

)� 10

�6

;

h�B

d

i = (9:61

+1:32

�1:47

)� 10

�8

: (22)

Thus, apart from the CKM-parametric dependence, we estimate �13% uncertainty on h�B

s

i and

somewhat larger, �15%, on h�B

d

i. These errors are signi�cantly larger than what one comes across

in the literature. The present experimental bound is B(B ! X

s

`

+

`

�

) < 4:2 � 10

�5

(at 90% C.L.)

[35]. We are not aware of a corresponding bound on B(B ! X

d

`

+

`

�

).

The branching ratio h�B

d

i, calculated in HQET, is shown in Fig. 2 as a function of the CKM

parameter � for three �xed values of �, which correspond to the central value and the 95% C.L.

bounds given in Eq. (21). The other input parameters have been �xed to their central values given

10



in Table 1. In the allowed CKM parameter space, this partial branching ratio varies by a factor 3.

As the theoretical error from the rest of the parameters is estimated to be �15%, the measurement

of h�B

d

i should allow to determine � and �. The ratio �R = h�B

d

i=h�B

s

i has lot less theoretical

error, as shown below.

The CP asymmetry, (a

CP

)

s

de�ned in eq. (15) in the b ! s case in the SM is small. Hence its

measurement can be used to search for new sources of CP violation in the b ! s`

+

`

�

transition.

Numerically, the CP asymmetries are more uncertain reecting in particular the scale-dependence of

the functions D

(q)

i

. A qualitatively similar behaviour has also been noted for the CP asymmetries

in the radiative decays B ! X

s

+  and B ! X

d

+  in [37]. However, the scale-dependence of

the CP asymmetries is more marked in the decays B ! (X

s

; X

d

)`

+

`

�

due to cancellations in two

di�erent products of the Wilson coe�cients entering in D

(q)

i

. (Speci�cally, between C

e�

7

Im(C

e�

9q

j

u

)

and Im(C

e�

9q

j

u

C

e��

9q

j

t

), with C

e�

9q

j

x

denoting the part in C

e�

9q

which is proportional to the CKM factor

�

(q)

x

.) This can be seen in Fig. 3, where we show the �-dependence of the two mentioned contributions

in D

(d)

i

, and the function D

(d)

i

itself calculated in the naive and independent approaches. The function

D

(s)

i

is very similar and hence not shown. The �-dependence of D

(d)

i

in the naive approach, shown

by the long-short dashed curve, is very marked and it gets further accentuated in the independent

approach, shown by the two dashed curves. For the central values of the CKM parameters and

estimating the �-dependence in the independent approach, we �nd:

(a

CP

)

s

= �(0:19

+0:17

�0:19

)% ;

(a

CP

)

d

= (4:40

+3:87

�4:46

)%: (23)

The corresponding numbers in the naive scale-dependent method are: (a

CP

)

s

= �(0:19

+0:12

�0:13

)%, and

(a

CP

)

d

= (4:40

+2:77

�3:23

)%. In either case, Fig. 3 underscores the importance of calculating the next-to-

leading order e�ects in (a

CP

)

q

.

3.3 Extraction of

�

�

�

V

td

V

ts

�

�

�

For a precise determination of

jV

td

j

jV

ts

j

(equivalently the CKM parameters), we calculate the ratio:

�R �

h�B

d

i

h�B

s

i

: (24)

In terms of the CKM parameters and the functions D

(s)

t

and D

(d)

j

with j = t; u; r, de�ned earlier:

�R = �

2

(1� ��)

2

+ ��

2

)D

(d)

t

+ (��

2

+ ��

2

)D

(d)

u

+ (��(1� ��)� ��

2

)D

(d)

r

(1� �

2

(1� 2�))D

(s)

t

; (25)

where we have neglected terms proportional to �

(s)

u

=�

(s)

t

. A simpler form for �R follows, if one notes

that the functions D

(d)

t

and D

(s)

t

are equal for all practical purposes (see Table 3). Hence, setting

D

(d)

t

= D

(s)

t

, one has

�R = �

2

(1� ��)

2

+ ��

2

)

(1� �

2

(1� 2�)

"

1 +

(��

2

+ ��

2

)

(1� ��)

2

+ ��

2

)

D

(d)

u

D

(s)

t

+

(��(1� ��)� ��

2

)

(1� ��)

2

+ ��

2

)

D

(d)

r

D

(s)

t

#

: (26)
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Figure 2: The charge-conjugate averaged partial branching ratio h�B

d

i in the HQET-approach for

the decay B ! X

d

`

+

`

�

as a function of the CKM parameter � for three values of �; solid curve

(� = 0:383), dotted curve (� = 0:5), dashed curve (� = 0:27).

The overall CKM factor is just the ratio jV

td

j

2

=jV

ts

j

2

. Note that the �rst (and dominant) term is

independent of the dynamical details. The ratio D

(d)

u

=D

(s)

t

is found to be numerically small (but

model dependent, varying between 1:03 � 10

�2

for the KS-approach and 2:16 � 10

�2

for the LSW

approach). The ratio D

(d)

r

=D

(s)

t

is, in general, larger and it depends more sensitively on the estimate

of the long-distance c�c-contribution, varying between +0:14 (for the LSW-approach) and �0:12 (in

HQET). However, the multiplicative CKM factor accompanying this term in Eq. (26) being small

comes to rescue. For example, for �� = 0:151 and �� = 0:374, this factor is only �0:012. Hence, for

these values, we �nd �R = (4:32� 0:03)%. For other values of the CKM parameters, the uncertainty

is larger and we quantify it later. The ratio �R as a function of � is shown in Fig. 4 for the HQET-

method. The three curves correspond to � = 0:5 (dotted curve), � = 0:383 (solid curve), and � = 0:27

(dashed curve).

We now evaluate the theoretical precision in the determination of

�

�

�

V

td

V

ts

�

�

�
from an eventual measure-

ment of �R. The other uncertainties being insigni�cant, there are basically two sources of errors:

(i) a small residual scale-dependence, and (ii) the LD-scheme-dependent uncertainty, which depends

on the parameters � and �. In Fig. 5 we show the constraints on � and � from an assumed value

of �R with the LD-e�ects calculated in the AMM-approach. For each value of �R, the practically

overlapping curves represent the e�ect of varying � in the range m

b

=2 � � � 2m

b

. Numerically, the

net � uncertainty on the ratio �R is found to be �0:6%. The e�ect of the errors of m

t

; �

s

(m

Z

) and

the b-quark mass are smaller and not shown.

The potentially largest uncertainty in �R, due to the LD-e�ects, is shown in Fig. 6, where we have
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Figure 3: Renormalization scale (�)-dependence of the individual contributions and the function

D

(d)

i

, calculated in the AMM-approach. The solid and dotted curves correspond to the contributions

proportional to the e�ective Wilson coe�cients C

e�

7

Im(C

e�

9

j

u

) and Im(C

e�

9

j

u

C

e��

9

j

t

), respectively.

The naive � dependence is shown by the long-short dashed curve. The resulting � uncertainty in the

independent approach is bounded by the dashed lines.

plotted the constraints on � and � from assumed values of �R. The four curves shown correspond

to the LD-schemes: AMM, KS, HQET and LSW. As remarked earlier, the LD-related uncertainty is

vanishingly small for the central values of � and �, i.e. at or close to the apex of the drawn triangle.

However, for other points in the (�; �)-plane, the uncertainty is perceptible but still small, except for

regions of the (�; �)-plane which are already ruled out from the existing CKM �ts.

4 Theoretical Precision on jV

td

=V

ts

j from B Decays

The ratio �R should be measurable at the Tevatron, the later phase of the B-factories, and certainly

at the LHC. The merit of �R lies in the theoretical precision on jV

td

=V

ts

j (or on the unitarity triangle)

which we have estimated here and found to be quite competitive with other proposals in the market,

some of which are reviewed below.

The B

0

-B

0

mixing ratio �M

s

=�M

d

can be expressed as follows:

�M

s

�M

d

=

M

B

s

M

B

d

(f

2

B

s

^

B

B

s

)

(f

2

B

d

^

B

B

d

)

j

V

ts

V

td

j

2

: (27)

The achievable accuracy on V

td

=V

ts

depends, apart from the experimental measurement error, on

the knowledge of the ratio of the hadronic matrix elements � � f

B

d

p

B

B

d

=f

B

s

p

B

B

s

, for which the

current Lattice estimate is � = 1:14� 0:06� 0:03� 0:10 [3]. The errors reect, respectively, the actual
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D

(d)

t

[10

�6

] D

(d)

u

[10

�8

] D

(s)

t

[10

�6

] D

(d)

r

[10

�8

] D

(d)

i

[10

�7

] D

(s)

i

[10

�7

]

AMM 2.31 3.75 2.30 20.96 -2.34 -2.34

KS 2.12 2.18 2.11 1.42 -2.00 -2.05

LSW 2.40 5.16 2.39 32.59 -2.50 -2.43

HQET 2.14 2.88 2.13 -24.89 -1.99 -1.94

m

b

= 4:6GeV 2.24 4.48 2.22 26.83 -2.31 -2.26

m

b

= 5:0GeV 2.41 3.47 2.40 18.86 -2.39 -2.31

m

t

= 178:2GeV 2.45 3.75 2.44 21.89 -2.36 -2.35

m

t

= 168:2GeV 2.18 3.75 2.17 21.61 -2.33 -2.33

�

(5)

QCD

= 0:298GeV 2.29 3.39 2.28 20.71 -1.97 -1.95

�

(5)

QCD

= 0:157GeV 2.33 4.15 2.32 21.35 -2.70 -2.73

Table 3: Values of the functions D

(d)

j

, j = u; t; r; i and D

(s)

t

; D

(s)

i

de�ned in eq. (25) and (17) in the

four schemes discussed in the text for the central values of the input parameters. The entries below

the horizontal line correspond to using the AMM scheme, and varying the input parameters, one each

at a time, �xing the rest to their central values.

calculational error of this ratio in the quenched approximation, estimated e�ects of unquenching, and

from chiral loops. Thus, the present theoretical error on this quantity is of O(10%) and it remains a

theoretical challenge to improve this signi�cantly. However, the measurement of �M

s

, for which the

present experimental lower bound is 12.4 ps

�1

(at 95% C.L.)[33], may turn out to provide the �rst

measurement of V

td

=V

ts

, as the central value of �M

s

in the SM is around 14 ps

�1

[32,33,34], which is

not too far from the present limit.

Theoretical precision on �R is comparable to the one on the corresponding ratio of the branching

ratios involving the CKM-suppressed decay B ! X

d

+  and the CKM-allowed decay B ! X

s

+ 

[36,37]. De�ning the ratio of the branching ratios as (implied are charge-conjugate averages)

R(d)=s)�

hB(B ! X

d

+ )i

hB(B ! X

s

+ )i

; (28)

the ratio R(d)=s) gives a constraint on the CKM matrix elements which is very similar to the one

given by �R (compare Eq. (26) in Ref. [37] and Eq. (26) here). Theoretical error on R(d=s) is

estimated to be at most a few percent in [37], comparable to the one on �R. In hadronic collisions,

the ratio �R is more likely to be measured than R(d=s).

We also mention here the exclusive radiative decays B ! (�; !) and B ! K

�

, whose ratios of the

branching ratios can also be used to determine jV

td

=V

ts

j [38]. The expected theoretical accuracy on the

ratio B(B

�

! �

�

+)=B(B

�

! K

��

+) is, however, not anticipated to be better than O(20%) [39].

The corresponding LD-corrections in the ratios of neutral B-decays, B(B

0

! (�

0

; !) + )=B(B

0

!

K

�0

+ ) are expected to be smaller [39,40] due to their being both colour and (electric)-charge

suppressed, hence reducing the theoretical uncertainty, but probably not better than �10%. Finally,
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Figure 4: The ratio �R de�ned in Eq. (24), calculated in the HQET-approach, as a function of �

for three values of �; solid curve (� = 0:383), dotted curve (� = 0:5), dashed curve (� = 0:27).

we also note the constraints on jV

td

=V

ts

j, which can be obtained from the measurements of the ratios

of some exclusive two-body non-leptonic decays, such as B(B

0

! K

�

K

0

)=B(B

0

! �K

0

), advocated in

Ref. [41]. This method may provide interesting results on the CKM ratio, but once data are available

on the FCNC radiative and semileptonic decays discussed above, they are expected to provide more

reliable information on the CKMmatrix elements V

td

and V

ts

. In particular, the ratio �Rmay provide

one of the most precise determinations of jV

td

=V

ts

j.

We hope that the results presented here will help focus attention on experimental measurements of

the branching ratios and CP asymmetries in the FCNC decays B ! (X

d

; X

s

)`

+

`

�

. We also underline

the need to calculate the next-to-leading order corrections in the CP asymmetries to tame the scale

dependence.
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