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Exclusive incoherent electroproduction of the �

0

(770) meson from

1

H,

2

H,

3

He, and

14

N targets

has been studied by the HERMES experiment at squared four-momentum transfer Q

2

> 0:4 GeV

2

and positron energy loss � from 9 to 20 GeV. The ratio of the

14

N to

1

H cross sections per nucleon,

known as the nuclear transparency, was found to decrease with increasing coherence length of quark-

antiquark uctuations of the virtual photon. The data provide clear evidence of the interaction of

the quark-antiquark uctuations with the nuclear medium.

PACS numbers: 13.60.Le, 24.85.+p, 25.30.Rw, 14.40.Cs

The space-time evolution of a virtual quantum state,

such as a quark-antiquark (q�q) uctuation of a photon,

can be probed by studying its propagation through a

perturbing medium. The unperturbed virtual state can

travel a distance l

c

, known as the \coherence length,"

in the laboratory frame during its lifetime. The inter-

actions between the state and the medium can be stud-

ied at di�erent values of l

c

by varying the kinematics at

which the state is produced. In this letter, interactions

of a q�q uctuation with the nuclear medium are studied

by measuring the nuclear dependence of the exclusive �

0

electroproduction cross section.

Studies of the hadronic (q�q) structure of high-energy

photons started with ground-work by Yang and Mills,

Sakurai, Gell-Mann and Zachariasen, and Berman and

Drell in the early 1960's [1]. The hadronic structure arises

from uctuations of the (real or virtual) photon to short-

lived quark-antiquark states of mass M

q�q

and propaga-

tion distance l

c

= 2�=(Q

2

+M

2

q�q

) [2{4], where �Q

2

and �

are the squared mass and laboratory-frame energy of the

photon (adopting units where �h = c = 1). The q�q uc-

tuations are assumed to dominate many photon-induced

reactions in the laboratory frame [2]. For example in ex-

clusive production of the �

0

meson, a q�q pair is scattered

onto the physical �

0

mass shell by a di�ractive interaction

with the target [2{5].

In nuclear targets, photon-induced reactions can be

a�ected by the initial state interactions (ISI) of the q�q

states with the nuclear medium. The ISI are maximized

when l

c

is large compared to the nuclear radius R

A

, and

the photon converts to the q�q pair before entering the nu-

cleus [2{4]. The hadronic ISI vanish in the limit l

c

� R

A

of negligible q�q interaction path. The dependence of the

ISI on l

c

can be measured explicitly in exclusive �

0

pro-

duction experiments, where a single mass|namely, the

�

0

mass|dominates M

q�q

and l

c

[2{4]. Due largely to

limited coverage in l

c

, previous experiments have not yet

seen the expected l

c

dependence [2,6].

In exclusive reactions a speci�c �nal state is produced

without additional particles, for example eN ! e�

0

N

(here N is a nucleon). The e�ect of the nuclear medium

on the particles in the initial and �nal states of such re-

actions can be characterized by the nuclear transparency

T

A

. It is de�ned as the ratio of the measured cross sec-

tion to that expected in the absence of these initial and

�nal state interactions (ISI and FSI). If the ISI and FSI

amplitudes factorize from the exclusive scattering ampli-

tude, then T

A

is the probability that no signi�cant ISI

or FSI occur. The transparency has been used to study

the space-time dynamics of several exclusive reactions

[2,6{9]. This paper reports measurements of the nuclear

transparency for exclusive incoherent �

0

electroproduc-

tion on

2

H,

3

He, and

14

N targets at Q

2

> 0:4 GeV

2

,

9 GeV < � < 20 GeV, and 0:6 fm

<

�

l

c

< 8 fm. The data

provide an explicit demonstration that the interactions

of the photon with the nuclear medium depend on the

propagation distance l

c

of the q�q pair.

The data were obtained during the 1995-1997 running

periods of the HERMES experiment using

1

H,

2

H,

3

He,

and

14

N internal gas targets in the 27.5 GeV HERA

positron storage ring at DESY. The scattered e

+

and

the �

+

�

�

pair from the �

0

decay (� 100% branching ra-

tio) were detected in the HERMES forward spectrometer

[10].

The �

0

production sample was extracted from events

with exactly three tracks: a scattered positron and two

oppositely-charged hadrons. The relevant 4-momenta

are: k (k

0

) of the incident (scattered) positron, q � k�k

0

of the virtual photon, P of the struck nucleon, P

h

+ and

P

h

� of the detected hadrons, v � P

h

++P

h

� of the �

0

can-

2



didate, and P

Y

� P + q� v of the undetected �nal state

Y . The relevant Lorentz invariants are: Q

2

= �q

2

> 0;

� = q � P=M (here M is the proton mass); an exclusiv-

ity measure �E = (P

2

Y

�M

2

)=2M ; the invariant mass

M

��

=

p

v

2

assuming the detected hadrons are pions;

the squared 4-momentum transfer t = (q � v)

2

to the

target; the maximum value t

0

of t for �xed �, Q

2

, P

2

Y

,

and M

��

; and the above-threshold momentum transfer

t

0

= t� t

0

< 0.

For nuclear targets, the di�ractive interaction with the

target can occur incoherently from individual nucleons or

coherently from the nucleus as a whole. The incoherent

exclusive �

0

production signal was extracted in the kine-

matic region t

0

l

< �t

0

< 0:4 GeV

2

, �2 GeV < �E <

0:6 GeV, 0:6 GeV < M

��

< 1 GeV, and 9 GeV < � <

20 GeV. The lower �t

0

limit, t

0

l

, is chosen separately for

each target and l

c

bin to maximize statistics while keep-

ing small the contribution from coherent scattering; t

0

l

is

0.03 to 0.06 GeV

2

for

2

H, 0.03 to 0.14 GeV

2

for

3

He, and

0.05 to 0.09 GeV

2

for

14

N.

FIG. 1. (a) Measured events as a function of exclu-

sivity variable �E for the

1

H,

2

H,

3

He, and

14

N data

passing the experimental cuts; the distribution is shown

for 0:1 GeV

2

< �t

0

< 0:4 GeV

2

(open circles) and for

0:7 GeV

2

< �t

0

< 5 GeV

2

(histogram, scaled to the same

total counts at �E > 3 GeV). (b) Invariant mass distribu-

tion for the exclusive events at 0:1 GeV

2

< �t

0

< 0:4 GeV

2

.

The distribution of the selected events in �E is shown

for all targets in Figure 1a. Exclusive eN ! eh

+

h

�

N

events, where the undetected �nal state consists of a

nucleon recoiling without excitation, occur at �E = 0.

Non-exclusive events that involve the production of ad-

ditional, undetected particles appear at larger �E. The

events with �E

>

�

3 GeV are predominantly due to deep

inelastic scattering (DIS). The �E dependence of DIS

events is measured at 0:7 < �t

0

< 5 GeV

2

where the

di�ractive exclusive signal is negligible (see histogram

in Figure 1a). The DIS background below the exclu-

sive peak is subtracted for each target and kinematic bin

separately, assuming the shape of the background is in-

dependent of t

0

and normalizing to the number of events

measured at t

0

l

< �t

0

< 0:4 GeV

2

and �E > 3 GeV. The

di�erence at �E � 2 GeV between the two distributions

shown in Figure 1a is due mainly to the radiative tail

of the exclusive peak and to �

0

production events where

the di�ractive interaction excites the nucleon. Except for

small kinematic shifts, these processes do not a�ect the

propagation of the virtual photon or outgoing �

0

through

the nuclear medium.

The exclusive M

��

distribution, shown in Figure 1b, is

dominated by resonant production of the �

0

(770), with

small interfering contributions from exclusive production

of non-resonant �

+

�

�

pairs and of the !(782) resonance

(in its 2% decay branch to �

+

�

�

[11]). Background

from the two-kaon decay of exclusively-produced �(1020)

mesons, which would appear at M

��

< 0:5 GeV, is elim-

inated by requiring that the two-kaon invariant mass be

greater than 1:04 GeV.

FIG. 2. Distribution of momentum transfer t

0

for

exclusive �

0

-production from

1

H,

2

H,

3

He, and

14

N tar-

gets. The solid curves are �t to a

N

(b

N

e

b

N

t

0

+ f

A

b

A

e

b

A

t

0

),

the dotted lines are extrapolations beyond the �t interval

�t

0

< 0:4 GeV

2

, and the dashed lines are the inferred inco-

herent contributions.

The exclusive �t

0

distributions for the

1

H,

2

H,

3

He,

and

14

N nuclei are shown in Figure 2. The data ex-

hibit the rapid fallo� expected for a di�ractive process.

To isolate incoherent scattering, the data are �t to a

shape giving the sum of incoherent and coherent con-

tributions, b

N

e

b

N

t

0

+ f

A

b

A

e

b

A

t

0

(solid curves). Here f

A

is the ratio of coherent to incoherent total counts and

3



e

b

N

t

0

(e

b

A

t

0

) represents the product of the �

0

and struck

nucleon (nucleus) elastic form factors, squared [12]. The

incoherent slope parameter b

N

for each nucleus (mea-

sured to an accuracy of about 0:5 GeV

�2

) is consistent

with the hydrogen value b

N

= (6:82� 0:15) GeV

�2

. The

coherent slope parameters b
2

H

= (33:3 � 9:8) GeV

�2

,

b
3

He

= (32:5�5:7) GeV

�2

, and b
14

N

= (57:2�3:3) GeV

�2

are consistent with the values predicted by the rela-

tionship b

A

� R

2

A

=3 [12] and the measured electromag-

netic RMS radii R
2

H

= 2:1 fm, R
3

He

= 1:9 fm, and

R
14

N

= 2:5 fm [13].

In the absence of ISI and FSI, the cross section �

A

for incoherent �

0

production from a nucleus with A nu-

cleons would be A�

H

(assuming the expected isospin

symmetry �

n

= �

H

[2], where n and H refer to the

neutron and

1

H). The nuclear transparency is therefore

T

A

� �

A

=(A�

H

) = N

A

L

H

=(AN

H

L

A

), where the second

equality follows from the A-independence of the exper-

imental acceptance. Here N

A;H

is the number of inco-

herent events in the range t

0

l

< �t

0

< 0:4 GeV

2

; N

A

is

corrected for the coherent contribution using the t

0

�t for

each l

c

bin (t

0

l

is chosen so that the correction factor is less

than 1.05 with an uncertainty of less than 4%). The inte-

gral L

A;H

of the e�ective luminosity is determined from

the number of inclusive DIS positrons and the published

nuclear DIS structure functions [14], with a correction for

the e�ciency (

>

�

0:8) for tracking the h

+

h

�

pair.

The dominant systematic uncertainties are from pos-

sible di�erences in the spectrometer performance for the

nuclear and

1

H data (estimated by studying the time

dependence of N

A;H

=L

A;H

and other normalized yields)

and from the treatment of the non-exclusive background

(estimated by studying the dependence of T

A

on �E).

The systematic uncertainty in the overall normalization

of T
2

H

, T
3

He

, or T
14

N

is 2.7%, 5.5%, or 5.9% respectively.

The additional point-to-point systematic uncertainty in-

cludes the �t uncertainty in the coherent contribution.

The T

A

results are unchanged at the 3% level (and the

systematic uncertainties are essentially unchanged) if the

non-exclusive background is not subtracted.

The nuclear transparencies for

2

H (�lled diamond),

3

He (open square), and

14

N (�lled circle) are shown as

functions of the coherence length l

c

in Figure 3. Within

uncertainties the

2

H and

3

He transparencies are indepen-

dent of l

c

: T
2

H

= 0:970� 0:024 (statistical) �0:040 (sys-

tematic) and T
3

He

= 0:862� 0:042� 0:061. The consis-

tency of the deuterium transparency with unity suggests

that �

n

� �

H

and that the ISI and FSI are small in

2

H.

The average

3

He transparency is 1.9 standard deviations

below unity.

The nitrogen transparency exhibits the decrease ex-

pected from the onset of hadronic ISI as l

c

increases. The

decrease from 0:681� 0:060 at l

c

< 2 fm to 0:401� 0:054

at l

c

> 3:6 fm (errors exclude normalization uncertainty)

has a 3.5 standard deviation statistical signi�cance. In

the absence of ISI variations, the transparency would ex-

hibit a small (< 3%) increase with l

c

due to the known

[2] energy dependence of the �

0

N cross section.

FIG. 3. Nuclear transparency T

A

as a function of l

c

for a)

2

H (�lled diamond), b)

3

He (open square), and c)

14

N (�lled circle) targets. The error bars include statistical

and point-to-point systematic uncertainties added in quadra-

ture. The systematic uncertainty in the overall normaliza-

tion of T

A

is not shown. Panel (c) includes comparisons with

previous expriments with photon (open diamonds) [6] and

muon (open circle) [8] beams. Due to the acceptance for

20 < �

<

�

370 GeV, the three Q

2

bins measured by [8] cor-

respond to broad ranges in l

c

(horizontal error bars). The

dashed curves are the Glauber calculation of H�ufner et al.

for

3

He and

14

N [3].

Figure 3c also shows the transparency to incoherent

�

0

production measured at Cornell with 4 and 8 GeV

photons [6] and by the E665 collaboration at FNAL with

470 GeV muons [8]. These results are consistent with the

present data but give no indication of a variation with l

c

.

The E665 T
14

N

values are inferred from the published A-

dependence [8]. The E665 value for T
14

N

at l

c

� 8 fm

was measured at �

>

�

100 GeV and Q

2

> 3 GeV

2

[8],

and may therefore be inuenced by color transparency.

Color transparency implies that at high Q

2

and � the q�q

pair (and the subsequent �

0

) is produced and propagates

in a non-interacting con�guration of reduced transverse

size, resulting in T

A

! 1 [2,5,15,16]. For this reason data

collected by the NMC collaboration with a muon beam

4



at 40 GeV < � < 180 GeV and Q

2

> 2 GeV

2

[9] are not

included in Figure 3c.

The T
14

N

and T
3

He

data are consistent with a recent

prediction (dashed curves in Figure 3) of the coherence

length e�ect [3], although the statistics for T
3

He

are not

su�cient to demonstrate the l

c

variation. The prediction

uses Glauber multiple-scattering theory [17], where the

total �

0

production amplitude is the sum of the ampli-

tudes from each nucleon, modi�ed by elastic and inelastic

rescattering of the outgoing �

0

on the other nucleons. In

this model, the q�q uctuation from which the �

0

origi-

nates is found to interact with the nuclear medium like

a �

0

[3]. The strength of the �

0

and q�q interactions gov-

ern the transparency at small l

c

and its l

c

dependence,

respectively. The consistency of the model with the data

therefore suggests that when l

c

is large, the q�q ISI are ap-

proximately as strong as the �

0

FSI. For the � values of

the present measurement, color transparency is expected

to produce little deviation from the Glauber prediction

[3,16].

The data support the hypothesis [2,18] that absorption

of the photon's q�q component contributes to the shad-

owing observed in real and virtual photon nuclear cross

sections. Shadowing denotes that the cross sections grow

more slowly than linearly in A. It is observed for inclu-

sive DIS at small Bjorken x = Q

2

=2M� and for elastic

and inclusive real photon scattering at high energies.

In summary, the transparency of the

2

H,

3

He, and

14

N

nuclei to exclusive incoherent �

0

electroproduction was

measured by the HERMES experiment as a function of

the coherence length of q�q uctuations of the virtual pho-

ton. The measured transparencies agree well with previ-

ous data and with a prediction using the standard treat-

ment of high-energy initial and �nal state interactions.

The transparency of the nitrogen nucleus exhibits a sig-

ni�cant decrease with l

c

, which is attributed to initial

state interactions of the q�q uctuation from which the �

0

originates.
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