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Abstract

We estimate the cross section for 
p ! �p by two independent methods. First, by

studying the corrections to the naive leading-order QCD formula and, second, by using

parton-hadron duality. The estimates are in good agreement with each other and with

the recent measurements of the cross section at HERA.
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The elastic photoproduction of � mesons has recently been measured for the �rst time

both by the ZEUS [1] and H1 [2] collaborations. The observed cross section B� � �(
p !

�p) B(�! �

+

�

�

) is found to be rather large

B�(�) = 13:3 � 6:0

+ 2:7

� 2:3

pb at hW i = 120 GeV (ZEUS [1]); (1)

B�(�) = 16:0 � 7:5 � 4:0 pb at hW i = 160 GeV (H1 (preliminary) [2]) (2)

where � stands for the sum over the �(1S);�(2S) and �(3S) states and where hW i is the

average photon-proton centre-of-mass energy. In both presentations it was noted that the

measurements are higher than the predictions of various QCD models by about two standard

deviations.

In this paper we estimate elastic � photoproduction from perturbative QCD by two inde-

pendent methods. Both calculations are found to give cross sections which agree well with the

data, and so we conclude that there is no disagreement with QCD. The �rst method is to study

the main corrections to the naive QCD formula [3] for heavy vector meson photoproduction.

The second method makes use of parton-hadron duality similar to [4], where � electroproduc-

tion at HERA was described successfully.

Method I

The �rst method is based on the leading-order expression for the photoproduction of a heavy

vector meson of mass M

V

[3]

d�

dt

(
p! V p)

�

�

�

�

�

t=0

=

�

2

S

�

V

ee

3�M

5

V

16�

3

"

xg

 

x;

M

2

V

4

!#

2

(3)

where �

V

ee

is the partial width of the V ! ee decay, �

S

is the QCD coupling, � = 1=137 is

the QED coupling and g(x; �

2

) is the gluon density measured at x = M

2

V

=W

2

and the scale

� = m

Q

'M

V

=2. We discuss below four types of corrections to this naive formula.

(a) Relativistic corrections

A non-relativistic wave function for the heavy vector meson was used to derive (3), so �rst

we quantify the size of the relativistic corrections. For J= photoproduction these corrections

have been the subject of debate [5, 6, 7]. Since the velocity of the charm quarks can be sizeable

in the J= meson

�

hv

2

i '

1

4

�

the kinematical correction coming from the quark propagators

suppresses the J= cross section by a factor of about 2 according to Ref. [6] or up to a factor of

10 in [7]. However it was shown in [6] that to a good approximation this correction is nulli�ed in

the cross section formula (3) since it has been written in terms of the J= mass, instead of the

current quark mass (2m

c

< M

 

) which should have been used in perturbative QCD. So it turns

out that there are practically no hv

2

i corrections to the leading order result (3). This result is

1



consistent with a more detailed study by Hoodbhoy [8]. Strictly speaking to estimate the hv

2

i

corrections we should also take into account the contributions coming from more complicated

components of the vector meson wave function which contain one or more gluons besides the q�q

pair. These components were included in a self-consistent way by Hoodbhoy [8], who showed

that the total O(v

2

) relativistic correction (including corrections to the quark propagator and

extra gluons in the J= wave function) to the naive cross section formula (3) amount to at most

only 7% for J= photoproduction. The correction should be even smaller for � production.

Therefore we neglect these relativistic e�ects below.

(b) Real part

Only the imaginary part of the 
p ! V p amplitude is expressed in terms of xg(x; �

2

) in

(3). To restore the real part we may use the approximation

ReA=ImA ' ��=2 (4)

where

� =

@ logA

@ log s

=

1

xg(x; �

2

)

@(xg(x; �

2

))

@ ln(1=x)

: (5)

This approximation is valid for small �, say � <

1

2

, for the even signature amplitude A. The

real part correction factor

C

b

=

 

1 +

�

2

�

2

4

!

= 1:43(1:36) or 1:54(1:46) (6)

for hW i = 120(160) GeV and scale �

2

= 25 GeV

2

, according to whether the MRS(R2) [9] or

the GRV [10] gluon distribution is used.

(c) The e�ect of o�-diagonal partons

At leading order the elastic photoproduction of vector mesons is mediated by two-gluon

exchange. Strictly speaking the amplitude is proportional to the o�- diagonal gluon distribution

x

0

g(x; x

0

), where the momentum fraction x

0

carried by the \second" gluon is much smaller than

the fraction x ' M

2

V

=W

2

carried by the \�rst" gluon. The e�ect, R = x

0

g(x; x

0

)=xg(x), was

estimated in Ref. [11]. The correction is almost negligible for � production, giving about 10%

enhancement of the J= amplitude, but is much more important for � photoproduction since

the scale �

2

'M

2

�

and the value of x =M

2

�

=W

2

are much larger. In fact the correction factor

to the cross section formula (3) for � production is [11]

C

c

= R

2

' (1:4)

2

' 2: (7)

(d) NLO corrections

Finally we have NLO corrections which come from an explicit integration over the loop

which corresponds to the convolution of the exchanged gluons with the vector meson wave
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function. The integral is not of a pure logarithmic form, which was assumed in deriving the

leading order result (3). The typical range of integration corresponds to the scale �

2

=

1

4

M

2

V

and

the non-logarithmic contribution is well approximated by a NLO correction with a coe�cient

of about

1

2

[6]. That is the correction can be written as

C

d

'

�

1 + �

S

�

1

4

M

2

V

�

=2

�

' 1:2 (8)

for � photoproduction.

We are now in the position to estimate the cross section for elastic � photoproduction. If we

assume that the elastic � di�erential cross section, d�=dt � exp(bt), has a slope b = 4 GeV

�2

,

as for elastic J= photoproduction, then the leading order formula gives

B�(�

1S

)j

LO

' 1:7 pb (9)

at hW i = 120 GeV. Taking into account the corrections C

b;c;d

we obtain

B�(�

1S

) ' 6 pb: (10)

However the cross sections measured by the ZEUS and H1 collaborations, (1) and (2), did

not select the pure �(1S) state, but rather the data were integrated over an interval of the

�

+

�

�

mass which includes at least the 1S, 2S and 3S resonances. We estimate the combined

contributions of the 2S and 3S states to be 40% of the �(1S) cross section, in agreement with

the measurement of the CDF collaboration [12]. Thus multiplying (10) by a factor of 1.4 we

estimate

B�(�) = 8:4 pb; (11)

which is compatible with the ZEUS measurement given in (1). Going from hW i = 120 GeV to

160 GeV, the cross section is predicted to increase by a factor of 1.6, due to the larger gluon

density at smaller x, and so the prediction is in agreement with the preliminary H1 measure-

ment quoted in (2).

Method II

The second method that we use to estimate the elastic photoproduction of vector mesons

from perturbative QCD is based on parton-hadron duality. The procedure [4] is to calculate

the amplitude for open q�q production, then to project the amplitude onto the J

P

= 1

�

q�q

state and �nally to integrate the cross section over an appropriate interval �M of the mass

of the q�q pair which includes the resonance peak. As there are almost no other possibilities

for hadronization at M

q�q

' M

V

we should obtain a reasonable estimate of the cross section

for vector meson production. This framework was found [4] to describe successfully the energy

and Q

2

dependence of �-meson electroproduction (


�

p ! �p), both for longitudinally and

transversely polarized � mesons, including the Q

2

dependence of the �

L

=�

T

ratio.

The computer code used here to estimate the 
p ! �p cross section takes into account

all the corrections mentioned above, with the exception of the enhancement due to the use of
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o�-diagonal gluons. (The enhancement is negligible for � production.) We therefore include the

extra factor C

c

' 2 of (7). As the recent measurements (1) and (2) cover a rather large �

+

�

�

mass interval

1

(�M � 2 GeV) over the � resonances a description based on parton-hadron

duality might even be more appropriate to describe the data.

In practice we have to extend our code to include the mass m of the heavy b quark. First

we restore the mass term m�

��

0

in the expression for the 
 ! q�q matrix element, see Eq. (32)

of Ref. [13]. Here we will use the notation � = i = +;� and �

0

= i

0

= +;� for the helicities of

the quark and antiquark. The cross section is then given by (see also [13])

d

2

�

T

dM

2

dt

�

�

�

�

�

t=0

=

�

2

e

2

q

�

3(Q

2

+M

2

)

2

Z

2dz

X

i;i

0

jB

ii

0

j

2

(12)

where the helicity amplitudes are (for photon helicity +1)

B

++

=

mI

L

2

q

z(1� z)

; B

��

= 0 (13)

and

B

+�

=

�zk

T

I

T

q

z(1� z)

; B

�+

=

(1� z)k

T

I

T

q

z(1� z)

: (14)

The variable z is the momentum fraction carried by the quark and k

T

is its transverse momen-

tum. The integrals I

L

, I

T

are de�ned in [13]. The second modi�cation due to the mass of the

quark is associated with the fact that the 
 ! q�q helicity amplitudes B

ii

0

are de�ned in the

proton rest frame (pRF), while the projection onto the J

P

= 1

�

state was done using the quark

helicities in the q�q rest frame (q�qRF). Unfortunately helicity is not a good quantum number

for a heavy quark. It can be changed by a Lorentz boost. So we have to compute the helicity

amplitudes A

jj

0

in the q�qRF in terms of B

ii

0

in the pRF. We have

A

jj

0

=

X

i;i

0

c

ij

c

j

0

i

0

B

ii

0

(15)

where we will calculate the coe�cients (c

ij

for the quark and c

j

0

i

0

for the antiquark) via the

polarized quark density matrix �. For a quark with 4-momentum k

�

and polarisation vector a

�

(satisfying a

2

= �1 and a:k = 0) we have [14]

� =

(=k +m)

2

(1 + 


5

=a)

2

; (16)

where (1 + 


5

=a)=2 projects onto the state with polarisation vector a

�

. For the states with

helicities j = � in the q�qRF these vectors take the form

a

j

�

= (a

0

;a

T

; a

z

) = (a

0

;a) = �(k; k

0

k=k)=m (17)

1

Note that in the parton-hadron duality approach �M is related to the formation time rather than to the

width of the resonances. The 
p! �p data are integrated over an interval larger than the formation time but

which includes at least the �rst three � states and possibly some small contribution from the b

�

b continuum.
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where k = jkj. Let b

i

�

be the analogous polarisation vectors describing helicities i = � in the

pRF. After the boost from the pRF to the q�qRF these vectors are given by

b

i

�

= �

 

M

2m

�

m

zM

;

k

T

m

;

M

m

�

z �

1

2

�

+

m

zM

!

(18)

where M is the mass of the q�q pair, z =

1

2

+ k cos �=M and � is the quark decay angle in the

q�qRF.

Now that we have all the polarisation vectors in the q�qRF we can calculate the product of

the two di�erent projectors

2

1

4

Tr [(1 + 


5

=a

j

)(1 + 


5

=b

i

)] = 1 � (a:b) = 2c

2

ij

: (19)

Thus we have

c

++

= c

��

= c

+�

= �c

�+

=

s

1 � (a:b)

2

; (20)

where c

�+

is chosen to be negative to ensure the orthogonality of the b

i

states when expressed

in the a

j

basis. Note that if the quark mass m! 0 then

a

�

�

! b

�

�

= � k

�

=m (21)

leading to the unit matrix c

ij

= �

ij

.

The procedure is therefore to decompose the original amplitude B

ii

0

in the pRF in terms of

the amplitudes A

jj

0

with helicities j; j

0

= +;� in the q�qRF, as in (15). The resulting helicity

amplitudes are projected onto the J

P

m

= 1

�

m

q�q states so as to obtain the production amplitudes

in spin states j1;mi with m = 0;�1

T

m

=

X

j;j

0

s

3

2

Z

1

�1

d cos � A

jj

0

d

1

1m

(�) �

m;(j�j

0

)

: (22)

The cross section of di�ractive J

P

= 1

�

q�q pair production is then obtained by summing over

the m = 0;�1 amplitudes squared in an analogous way to that described in Ref. [4].

The expressions for I

L;T

of (13) and (14) were written in [13] for the (dominant) imaginary

part of the amplitude. They are integrals over the gluon transverse momentum `

T

with weight

w corresponding to the q�q-loop

ImI

L;T

=

Z

d`

2

T

f(x; `

2

T

) w

L;T

(`

2

T

; Q

2

;M

2

� � �) (23)

where f is the unintegrated gluon distribution

f(x; `

2

T

) =

@xg(x; `

2

T

)

@`

2

T

: (24)

2

We omit the projector

1

2

(=k +m) of (16) so that the trace includes both quark and antiquark components.

Hence the factor 2 in 2c

2

ij

on the right hand side of (19).
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The real part of the amplitude has been included using the same approximation as in Eqs. (4,

5), by replacing f(x; `

2

T

) with the derivative (�=2)@f(x; `

2

T

)=@ ln(1=x), that is we have computed

ReI

L;T

=

�

2

Z

d`

2

T

@f(x; `

2

T

)

@ ln 1=x

w

L;T

(`

2

T

; Q

2

;M

2

; : : :): (25)

Finally the NLO corrections (analogous to C

d

of (8)) are approximated in the code by use of

a K-factor, see [4, 13]. As in [13] (and (8)) the scale in the coupling �

S

(�

2

) was chosen to be

�

2

=M

2

=4.

To compare with the ZEUS data for 
p ! �p we integrate over the mass interval 8.9{

10.9 GeV. We take the mass of the b quark to be m

b

= 4:6 GeV and, as in Ref. [4], we use the

MRS(R2) set of partons [9]. In this way we �nd

�(
p!

X

�p) ' 620 pb (26)

at hW i = 120 GeV. This should be compared with the value 635 � 310 pb obtained from the

ZEUS measurement. The \ZEUS" value is calculated from (1) by assuming the ratios

B�(�

1S

) : B�(�

2S

) : B�(�

3S

) ' 0:7 : 0:15 : 0:15; (27)

which are consistent with the expectations of (3) and with the CDF data [12], and using

the known leptonic branching ratios of the � states. What is the uncertainty in our cross

section estimate (26) due to the choice of m

b

? The PDG [15] give 4:1 < m

b

< 4:4 GeV for

the running mass evaluated at � = m

b

in the MS scheme, which corresponds to the range

4:5 < m

b

< 4:8 GeV for the pole mass. The latter mass is relevant for our perturbative

calculations. If we were to use m

b

= 4:4 or 4.8 GeV then the cross section (26) would become

900 or 380 pb respectively.

Fig. 1 shows the ZEUS and H1 data, together with our QCD estimates obtained from the two

independent methods. The comparison is given for the 
p! �(1S)p cross section as a function

of the photon-proton centre-of-mass energy W . To obtain the �(1S) cross section for method

II, in which we integrate over the mass interval 8.9{10.9 GeV, we divide the 
p ! (

P

�)p

result by a factor 1.7. This factor is obtained using (27). For completeness we also show in

Fig. 1 the prediction from the naive leading order formula (3) of method I as well as the result

of method II without the corrections from the real part of the amplitudes. We note that the


p ! �p process is particularly sensitive to o�-diagonal gluon e�ects. These e�ects give an

enhancement of about a factor of 2, which appears to be required by the data.

To estimate the ratio of � to J= photoproduction we calculate both cross sections using

all the corrections listed for method I. For hW i = 120 GeV we �nd

�(�

1S

)=�(J= ) ' 1=400 (28)

where the MRS(R2) gluon has been used. This is near the lower bound observed by ZEUS

[1]. To be speci�c we underestimate � production and overestimate

3

J= production. We note

3

Note that in Ref. [6] absorptive corrections were included and that a better description of J= photoproduc-

tion was obtained. Here absorptive corrections were not discussed as they should be small for � photoproduction.
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that if, for example, the steeper GRV gluon was used the ratio would be 1/1500. Clearly, as

expected, the ratio is very sensitive to the x and scale dependence of the gluon in the region of

very small x and low scale that is sampled by J= production. In the case of � production we

sample x � 0:01 and Q

2

� 25 GeV

2

where the predictions are much more stable with respect

to di�erent parametrizations of the gluon.

We conclude that the recent measurements of elastic � photoproduction are in good agree-

ment with the expectations of perturbative QCD. Of course when more precise data become

available the e�ects that are estimated here | relativistic corrections, NLO contributions, o�-

diagonal parton e�ects and the contribution of the real part of the amplitude | should be

calculated in detail. The elastic photoproduction of J= and � at HERA will be a good labo-

ratory to probe these e�ects.
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Note added

While writing this note we received a paper on the same subject by Frankfurt, McDermott

and Strikman [16]. Their procedure is comparable to our method I and also yields a cross

section in agreement with the HERA data. However although our �nal values are similar, there

are large, physically signi�cant, di�erences in the various component factors. Unlike the present

work, they do not make use of the result of Hoodbhoy [8] and so have a large suppression from

the relativistic corrections. In [16] this suppression is compensated by a larger o�-diagonal

e�ect (2.6 as compared to 2), a larger real part and an enhancement due to re-scaling (giving

an e�ective Q

2

of about 40 as compared to 25 GeV

2

).
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Figure Caption

Fig. 1 The 
p ! �(1S)p cross section as a function of the 
p centre-of-mass energy W . The

data points are the ZEUS [1] and preliminary H1 [2] measurements. The horizontal lines

indicate the range of W sampled by the measurements, the vertical lines the systematic

and statistical errors added linearly. The continuous curves are obtained from the two

QCD calculations (model I and II) described in the text. The dotted curve corresponds

to the naive leading-order formula (3), the dashed curve shows our prediction for method

II if we neglect the corrections from the real part of the amplitudes.
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