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Abstract

We study the validity of a relation by Drell, Levy and Yan (DLY) connecting the deep

inelastic structure (DIS) functions and the single-particle fragmentation functions in e

+

e

�

annihilation which are de�ned in the spacelike (q

2

< 0) and timelike (q

2

> 0) regions

respectively. Here q denotes the momentum of the virtual photon exchanged in the deep

inelastic scattering process or the annihilation process. An extension of the DLY-relation,

which originally was only derived in the scaling parton model, to all orders in QCD leads

to a connection between the two evolution kernels determining the q

2

-dependence of the

DIS structure functions and the fragmentation functions respectively. In relation to this

we derive the transformation relations between the space{and time{like splitting functions

up to next-to-leading order (NLO) and the coe�cient functions up to NNLO both for

unpolarized and polarized scattering. It is shown that the evolution kernels describing the

combined singlet evolution for the structure functions F

2

(x;Q

2

), F

L

(x;Q

2

) where Q

2

= jq

2

j

or F

2

(x;Q

2

); @F

2

(x;Q

2

)=@ ln(Q

2

) and the corresponding fragmentation functions satisfy

the DLY relation up to next-to-leading order. We also comment on a relation proposed by

Gribov and Lipatov.

http://xxx.lanl.gov/abs/hep-ph/0004172


1 Introduction

Neutral current deep inelastic lepton{nucleon scattering and single nucleon inclusive production

in e

+

e

�

pair{annihilation are formally related by crossing the kinematic channels. Already

before the advent of Quantum Chromodynamics (QCD) Drell, Levy, and Yan mentioned the

possibility [1, 2] that the deep inelastic scattering structure functions at the one side and the

nucleon fragmentation functions in e

+

e

�

pair{annihilation on the other side may be related by

an analytic continuation from the t{ to the s{channel. The hadronic tensors for the space{like

process of deep inelastic scattering (DIS) and the time{like single nucleon inclusive reaction

would therefore be related by

W

(S)

��

(q; p) = �W

(T )

��

(q;�p) : (1)

Here p denotes the nucleon momentumand q is the 4{momentum transfer to the hadronic system,

with q

2

< 0 for deep inelastic scattering and q

2

> 0 for e

+

e

�

{annihilation.

At that time the physical nucleons were considered as bound states built up of bare nucleons

and pions in the context of the Yukawa theory. The interactions were described by Bethe{

Salpeter [3] or Faddeev{type [4] equations and their generalization [5]

1

aiming at a perturbative

description of the structure and fragmentation functions. In these theories neither infra{red nor

collinear singularities are occurring. One may think o� a general representation of the structure

and fragmentation functions in terms of current{current expectation values. However it was

already shown [1] that for e

+

e

�

-annihilation also diagrams of distinct connectedness appear (cf.

also [8]) which are absent in DIS so that a proof of Eq. (1) at the non{perturbative level becomes

very di�cult. The relation could be established for the aforementioned ladder{models [1, 8, 9]

2

.

Within QCD the picture changes. Here it turns out that a thorough perturbative description

of the structure functions and fragmentation functions is not possible. However, perturbation

theory may be used to describe the scaling violations of these functions at large values of jq

2

j

where the running coupling constant is small. The QCD{improved parton model, moreover,

exhibits a similarity with the approach by Drell, Levy, and Yan, since in the range where single

parton states are dominating, i.e. for the contributions of lowest twist, the non{perturbative

contributions factorize. One therefore may calculate the respective one{particle evolution kernels

and study their behavior under the crossing from the t{ to the s{channel. A further complication

in the case of a vector{theory as QCD is the emergence of infrared and also collinear singularities

which have an essential impact on the crossing because of the behavior of the kernels at x = 1

3

.

Here x denotes the Bjorken scaling variable which will be de�ned di�erently for the timelike

and spacelike region except for x = 1 where both de�nitions lead to the same value for x. As

a consequence of the Bloch{Nordsiek theorem [13] the kernels become distribution{valued for

x = 1 [14].

In leading order for unpolarized scattering the crossing relations mentioned above were given

in [15]. Similar relations hold in the polarized case. In this order these kernels are nothing but the

lowest order splitting functions P

(0)

kl

(x), which are obtained from the inverse Mellin transforms

of the anomalous dimensions 

N(0)

kl

[16].

1

Later on massive vector meson ladder{models were studied in [6, 7], where the crossing relation Eq. (1) was

veri�ed for the respective kernels.

2

For a review on the early developments see [10].

3

Eq. (1) was originally postulated assuming that those terms are absent [1]. See also the subsequent discussion

in [11] pointing out that the exponent of the structure functions / (1�x)

p

near x = 1 [12] needs not to be integer.

2



It is the aim of the present paper to investigate the validity of the Drell{Levy{Yan (DLY)

relation, if applied to perturbatively calculable partonic structure functions and quantities related

to them up to the level of two{loop order. To establish this crossing relation between space{

and time{like processes one has to study scheme{invariant quantities which are the physical

evolution kernels for speci�c choices of observables as the unpolarized and polarized structure

and fragmentation functions or derivatives of themw.r.t. q

2

. Furthermore, conditions are derived

for the transformation of the splitting and coe�cient functions from the space{ to the time{like

case. For the coe�cient functions we extend the discussion to the NNLO level. Other relations

between the splitting functions such as supersymmetric relations and relations due to conformal

symmetry were discussed elsewhere, cf. e.g. [17, 18].

The paper is organized as follows. Basic relations for the deep inelastic structure and frag-

mentation functions are summarized in section 2. In section 3 scheme{invariant combinations

of coe�cient and splitting functions are constructed for the space{ and time{like processes both

for unpolarized and polarized deep inelastic reactions where we consider two principal examples.

The Drell{Levy{Yan relation is studied in detail in section 4. We also comment on a relation by

Gribov and Lipatov [19] which emerged in the same context. Section 5 contains the conclusions.

In the appendix we present the di�erences between to the space{ and time{like coe�cient func-

tions at O(�

2

s

) as well as the convolution relations which are needed for the investigation of the

DLY{relation.

2 Structure Functions and Fragmentation Functions

Deep inelastic scattering (DIS) of a lepton (l) o� a hadron target (P ) is described by the process

l(k

1

) + P (p) ! l(k

2

) + `X

0

; q = k

1

� k

2

; q

2

= �Q

2

< 0 : (2)

where `X

0

represents an inclusive �nal state. When a single gauge boson is exchanged between

the incoming lepton and the hadron the above process factorizes into the leptonic part and the

remaining hadronic part. In the case of forward scattering the scattering matrix element can be

written in terms of the leptonic tensor L

��

and the hadronic tensor W

��

by

jM j

2

= L

��

W

��

: (3)

The hadronic tensor [20] contains the unpolarized and polarized deep inelastic structure functions

F

i

and g

i

. If the process is mediated by photon only we have i = 1; 2 in both the polarized and

unpolarized case. Notice that instead of F

1

we can also take the longitudinal structure function

F

L

. At asymptotic values of the kinematic variables structure functions only depend on Q

2

and

the Bjorken scaling variable

x

B

=

Q

2

2p:q

; 0 � x

B

� 1 : (4)

In QCD the Q

2

dependence of the structure functions is only logarithmic and it accounts for the

violation of scaling. In the context of the parton model the structure functions can be expressed

in terms of quark and gluon densities and the corresponding spacelike coe�cient functions C

(S)

i;k

(k = q; g)

4

F

(S)

i

(x

B

; Q

2

) = x

B

N

f

X

j=1

e

2

j

Z

1

x

B

dz

z

"

1

N

f

f

S

q

�

x

B

z

; �

2

f

�

C

(S)S

i;q

 

z;

Q

2

�

2

f

!

+f

g

�

x

B

z

; �

2

f

�

4

Similar relations hold for the polarized structure functions g

1

(x;Q

2

) and g

2

(x;Q

2

) on the level of twist 2.
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� C

(S)

i;g

 

z;

Q

2

�

2

f

!

+ f

NS

q

j

�

x

B

z

; �

2

f

�

C

(S)NS

i;q

 

z;

Q

2

�

2

f

!#

;

i = 2; L ; (5)

where e

j

denotes the charge of the jth quark avor and N

f

represents the number of light avors.

The scale �

f

, appearing in the above equation, denotes the factorization scale which is introduced

while removing the collinear singularities from the partonic structure functions. In addition one

encounters a dependence on the renormalization scale �

r

which arises in the renormalization

procedure. For convenience this scale is put equal to the factorization scale in the following.

Notice that the structure functions F

i

and g

i

do not depend on these scales. However the parton

densities and the coe�cient functions, which do depend on these scales, satisfy renormalization

group equations which will be shown below.

In Eq. (5) the index (S) in the structure functions indicates the space{like nature of the

process (q

2

< 0). Furthermore in Eq. (5) appear the singlet `S' and non-singlet `NS' combinations

of parton densities which are de�ned by

f

S

q

�

z; �

2

f

�

=

N

f

X

i=1

"

f

q

i

�

z; �

2

f

�

+ f

�q

i

�

z; �

2

f

�

#

; (6)

and

f

NS

q

i

�

z; �

2

f

�

= f

q

i

�

z; �

2

f

�

+ f

�q

i

�

z; �

2

f

�

�

1

N

f

f

S

q

�

z; �

2

f

�

; (7)

respectively. Corresponding formulae hold for polarized scattering. In this case the polarized

parton densities and polarized coe�cient functions are denoted by �f

k

(z; �

2

f

) (k = q; g) and

�C

i;k

(z;Q

2

=�

2

f

) (i = 1; 2).

Whereas in deep inelastic scattering the constituent structure of the nucleons is studied,

hadroproduction at e

+

e

�

colliders provides us with information about the fragmentation process

of these constituents into the hadrons. This information is contained in the fragmentation

functions observed in the reaction [1]

l(k

1

) +

�

l(k

2

)!

�

P (p) + `X

0

; q = k

1

+ k

2

; q

2

� Q

2

> 0 ; (8)

where the symbols have he same meaning as in Eq. (2). These fragmentation functions are

the analogues of the DIS structure functions Therefore in the QCD improved parton model

these functions can be expressed in a similar way in terms of parton fragmentation densities D

k

(k = q; g) multiplied by timelike coe�cient functions i.e.

F

(T )

i

(x

E

; Q

2

) = x

E

n

f

X

j=1

e

2

j

Z

1

x

E

dz

z

"

1

N

f

D

S

q

�

x

E

z

; �

2

f

�

C

(T )S

i;q

 

z;

Q

2

�

2

f

!

+D

g

�

x

E

z

; �

2

f

�

� C

(T )

i;g

 

z;

Q

2

�

2

f

!

+D

NS

q

j

�

x

E

z

; �

2

f

�

C

(T )NS

i;q

 

z;

Q

2

�

2

f

! #

;

i = 2; L ; (9)

where the corresponding scaling variable for the process in Eq. (9) is de�ned by

x

E

=

2p:q

Q

2

; 0 � x

E

� 1 ; (10)
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The symbol T appearing within parentheses in Eq. (9) denotes that the fragmentation functions

are measured in time{like processes. The scales �

f

and �

r

are de�ned in the same way as in

Eq. (5) where like in DIS we set the renormalization scale equal to the factorization scale.

Furthermore the de�nitions for the singlet and non-singlet parton fragmentation functions are

the same as those for the parton densities given in Eqs. (6, 7). Similarly as in DIS one can also

study the annihilation processes in Eq. (8) where the hadron P is polarized. This entails the

de�nition of the polarized fragmentation functions denoted by g

(T )

1

and g

(T )

2

for which one can

present a similar formula as in Eq. (9). Very often one also encounters the transverse structure

function which in the timelike and spacelike case is given by

F

(R)

1

(x;Q

2

) =

1

2x

"

F

(R)

2

(x;Q

2

)� F

(R)

L

(x;Q

2

)

#

;

with R = S (x = x

B

) R = T (x = x

E

) : (11)

3 Scheme{invariant Combinations

In this section we give a short outline of the origin of the factorization scheme dependence

of the anomalous dimensions (splitting functions) and the coe�cient functions. We also show

how this dependence disappears in the evolution of the structure functions w.r.t. the kinematic

variable Q

2

. The discussion below deals with the DIS structure functions but the conclusions

also hold for the fragmentation functions. The partonic structure functions denoted by

^

F

i;k

(i = 1; 2; L, k = q; g), representing the QCD radiative corrections, contain various divergences.

First these divergences have to be regularized for which the most convenient way is to choose the

method of n{dimensional regularization. Using this method the singularities reveal themselves

in the form of pole terms of the type 1=�

j

, with n = 4 + �, in the quantity

^

F

i;k

. The infrared

divergences cancel between virtual and bremsstrahlung contributions by virtue of the Bloch{

Nordsieck theorem [13]. Due to the Kinoshita-Lee-Nauenberg theorem [21] all the �nal state

mass singularities are canceled too since the DIS structure function is an inclusive quantity.

Then one is left with only two types of singularities. The �rst one originates from the ultraviolet

region. This type of singularities is removed via a rede�nition of the parameters appearing in the

QCD Lagrangian. An example is the coupling constant which becomes equal to �

s

(�

2

r

) where

�

r

is the renormalization scale. After coupling constant renormalization the hadronic structure

function can be written as follows

F

i

(x;Q

2

) =

X

k=q;g

 

F

ik

�

�

s

(�

2

r

);

Q

2

�

2

;

�

2

�

2

r

; �

�




^

f

k

!

(x) ; (12)

where the symbol 
 denotes the Mellin{convolution de�ned by

(f 
 g)(z) =

Z

1

0

dz

1

Z

1

0

dz

2

f(z

1

)g(z

2

)�(z � z

1

z

2

) : (13)

Furthermore

^

f

k

is de�ned as the bare parton density which is scale independent and is an

unphysical object because of the singular behavior of F

ik

. Notice that the latter depends on

the scale �

r

and therefore on the renormalization scheme w.r.t. the coupling constant. The

parameter � originates from n{dimensional regularization because in this method the coupling

constant gets a dimension. The second type of singularity originates from the collinear region

5



which can be attributed to the vanishing mass of the initial state parton represented by either

the (anti-) quark or the gluon. Hence the � in Eq. (12) represents the collinear singularities

which are removed from the partonic structure function via mass factorization and transferred

to a transition function �

lk

as follows

^

F

ik

(z; �

s

(�

2

r

);

Q

2

�

2

;

�

2

�

2

r

; �) =

X

l=q;g

 

C

i;l

�

�

s

(�

2

r

);

Q

2

�

2

f

;

�

2

f

�

2

r

�


 �

lk

�

�

s

(�

2

r

);

�

2

f

�

2

;

�

2

f

�

2

r

; �

�

!

(z) : (14)

This procedure provides us with the coe�cient function denoted by C

i;l

. Substitution of Eq.

(14) into Eq. (12) leads to the result

F

i

(x;Q

2

) =

X

l=q;g

 

C

i;l

�

�

s

(�

2

r

);

Q

2

�

2

f

;

�

2

f

�

2

r

�


 f

l

�

�

s

(�

2

r

);

�

2

f

�

2

;

�

2

f

�

2

r

�

!

(x) ; (15)

where the renormalized parton density is de�ned as

f

l

�

z; �

s

(�

2

r

);

�

2

f

�

2

;

�

2

f

�

2

r

�

=

X

k=q;g

 

�

lk

�

�

s

(�

2

r

);

�

2

f

�

2

;

�

2

f

�

2

r

; �

�




^

f

k

!

(z) : (16)

Since the mass factorization can be carried out in various ways one is left with an additional

scheme dependence which comes on top of the renormalization scheme dependence entering

the coupling constant in Eq. (12). The former only shows up in the parton densities and

the coe�cient functions and it only disappears in speci�c combinations representing physical

quantities. Hence physical quantities are invariant under scheme transformation. Like in the

case of renormalization, mass factorization leads to the introduction of a scale �

f

called mass

factorization scale which is related to the factorization scheme dependence. Like in the latter case

�

f

drops out in physical quantities as the DIS structure functions or fragmentation functions.

The change of the parton densities and the coe�cient functions with respect to a variation

in the scales �

r

and �

f

is determined by the renormalization group equation (RGE) [22] The

renormalization group equation of the parton densities follow from the one presented for the

transition functions �

lk

. The latter takes the following form

 

hn

�

2

f

@

@�

2

f

+ �(a

s

(�

2

f

))

@

@a

s

(�

2

f

)

o

1�

lm

�

1

2

P

lm

(a

s

(�

2

f

); �)

i


 �

mk

�

a

s

(�

2

f

);

�

2

f

�

2

; 1; �

�

!

(z) = 0 ;

a

s

(�

2

f

) �

�

s

(�

2

f

)

4�

; 1 = �(1� z) ; (17)

where we have set �

r

= �

f

for simplicity. The functions P

ij

�

a

s

; �; z

�

appearing in the above

equation are the splitting functions. Furthermore the beta-function is de�ned by

�

2

r

d a

s

(�

2

r

)

d �

2

r

= ��

0

a

2

s

(�

2

r

)� �

1

a

3

s

(�

2

r

) � � � ; (18)

The same equation as in Eq. (17) also applies to the parton density because of the de�nition in

Eq. (16). The scale dependence of the coe�cient function in Eq. (15) is given by

 

hn

�

2

f

@

@�

2

f

+ �(a

s

(�

2

f

))

@

@a

s

(�

2

f

)

o

1�

lm

+

1

2

P

lm

(a

s

(�

2

f

); �)

i


 C

i;m

�

a

s

(�

2

f

);

Q

2

�

2

f

; 1

�

!

(z) = 0 :

(19)
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As has been mentioned above scheme transformations such as

�

lk

!

X

m=q;g

Z

lm




�

�

mk

; C

i;l

!

X

m=q;g

�

C

i;m


 Z

�1

ml

; (20)

will not alter the physical observable like e.g. the structure functions and fragmentation func-

tions. The relation between the splitting and coe�cient functions computed in two di�erent

schemes is found to be

P

lk

=

X

fm;ng=q;g

Z

lm




�

P

mn


 (Z

�1

)

nk

� 2�(a

s

)

X

m=q;g

Z

lm




d

da

s

(Z

�1

)

mk

; (21)

C

i;l

=

X

m=q;g

�

C

i;m


 (Z

�1

)

ml

: (22)

Below we present the relation between the coe�cient functions computed in two di�erent schemes

up to order a

2

s

(Q

2

). Notice that we have chosen here �

2

f

= Q

2

in order to get rid o� the logarithms

ln(Q

2

=�

2

f

) which usually appear. Up to O(a

2

s

) one obtains

C

i;q

= �(1� z) + a

s

�

�

C

(1)

i;q

+ Z

(1)

qq

�

+ a

2

s

�

�

C

(2)

i;q

+ Z

(2)

qq

+ (Z

(1)

qq

)

2

+ Z

(1)

qg


 Z

(1)

gq

+

�

C

(1)

i;q


 Z

(1)

qq

+

�

C

(1)

i;g


 Z

(1)

gq

�

+ � � � ; (23)

C

i;g

= a

s

�

�

C

(1)

i;g

+ Z

(1)

qg

�

+ a

2

s

�

�

C

(2)

i;g

+ Z

(2)

qg

+ Z

(1)

qg


 (Z

(1)

gg

+ Z

(1)

qq

)

+

�

C

(1)

i;q


 Z

(1)

qg

+

�

C

(1)

i;g


 Z

(1)

gg

�

+ � � � : (24)

In the subsequent part of the paper it is much more convenient to derive the expressions in the

Mellin transform representation so that one can avoid the convolution symbol 
. The Mellin

transform of a function f(z) is given by

f

(N)

=

Z

1

0

dz z

N�1

f(z) (25)

In this way Eq. (13) can be written as

(f 
 g)

N

=

Z

1

0

dz z

N�1

(f 
 g)(z) = f

N

� g

N

: (26)

Since the structure functions are scheme independent they become renormalization group invari-

ants. Hence they satisfy the RG equation

"

�

2

f

@

@�

2

f

+ �(a

s

(�

2

f

))

@

@a

s

(�

2

f

)

#

F

N

i

(x;Q

2

) = 0 (27)

The equation above follows from combining Eqs. (17, 19) and (15). However the independence of

the structure function on the scales �

f

and �

r

is not manifest when multiplying parton densities

with coe�cient functions. In particular when the perturbation series of a physical quantity is

computed up to �nite order there is a residual dependence on these unphysical scales (see e.g.

7



[23]. Their inuence is expected to become smaller when higher order terms in the perturbation

series are taken into account [24]. To avoid the problem of the factorization scheme dependence

of the structure function when the perturbation series is truncated up to �xed order it is better

to study evolution equations for the structure functions with respect to a physical scale which is

represented by a kinematic variable like Q

2

. In these type of evolution equations the kernels are

factorization scheme independent order by order in perturbation theory. However the dependence

on the choice of renormalization scheme and therefore the dependence on �

r

remains so that

one is able to obtain a better estimate of the theoretical error on �

s

. For such an equation one

needs two di�erent structure functions called F

A

(x;Q

2

) and F

B

(x;Q

2

). Examples are A = 2 and

B = L or F

A

and Q

2

d F

A

=d Q

2

. Limiting ourselves to the singlet case, the evolution equation

for the non-singlet structure functions is even more simple, one can write

F

N

I

(Q

2

) = f

N

q

 

a

s

(�

2

f

);

�

2

f

Q

2

0

!

C

N

I;q

 

a

s

(�

2

f

);

Q

2

�

2

f

!

+ f

N

g

 

a

s

(�

2

f

);

�

2

f

Q

2

0

!

C

N

I;g

 

a

s

(�

2

f

);

Q

2

�

2

f

!

;

I = A;B ; (28)

Here one can view the C

N

I;l

(I = A;B, l = q; g) as matrix elements so that the equation above

has the form

 

F

N

A

F

N

B

!

=

 

C

N

Aq

C

N

Ag

C

N

Bq

C

N

Bg

! 

f

N

q

f

N

g

!

: (29)

The coe�cient functions satisfy the RG-equation in Eq. (19) and the solution is given by the

T-ordered exponential [25]

C

N

I;l

 

a

s

(�

2

f

);

Q

2

�

2

f

!

= C

N

I;m

�

a

s

(Q

2

); 1

�

 

T

a

s

"

exp

(

�

Z

a

s

(Q

2

)

a

s

(�

2

f

)

dx



N

(x)

2�(x)

)#!

ml

; (30)

where 

N

is the anomalous dimension matrix de�ned by



N

lk

= �

Z

1

0

dzz

N�1

P

lk

(z) : (31)

We will now di�erentiate the coe�cient functions w.r.t. Q

2

Q

2

@C

N

I;k

(a

s

(�

2

f

); Q

2

=�

2

f

)

@Q

2

= �(a

s

(Q

2

))

@C

N

I;k

(a

s

(�

2

f

); Q

2

=�

2

f

)

@a

s

(Q

2

)

=

"

�(a

s

(Q

2

)

@C

N

I;m

(a

s

(Q

2

); 1)

@a

s

(Q

2

)

�

C

N

�

�1

m;J

(a

s

(Q

2

); 1)

�

1

2

C

N

I;m

(a

s

(Q

2

); 1)

N

mn

(a

s

(Q

2

))

�

C

N

�

�1

n;J

(a

s

(Q

2

); 1)

#

C

N

J;k

(a

s

(�

2

f

);

Q

2

�

2

f

) : (32)

One can show that the expression above is invariant under scheme transformations. The latter

are given by



N

lk

=

X

fm;ng=q;g

Z

N

lm

�

N

mn

�

Z

N

�

�1

nk

+ 2�(a

s

)

X

m=q;g

Z

N

lm

@

@a

s

�

Z

N

�

�1

mk

; (33)

C

N

I;l

=

X

m=q;g

�

C

N

I;m

�

Z

N

�

�1

ml

;

�

C

N

�

�1

l;I

=

X

m=q;g

Z

N

lm

�

�

C

N

�

�1

m;I

: (34)
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Since the Q

2

-dependence only resides in the coe�cient function the same evolution equation as

in Eq. (32) also applies to F

N

I

in Eq. (28). For a short-hand notation we introduce the evolution

variable t

t = �

2

�

0

ln

 

a

s

(Q

2

)

a

s

(Q

2

0

)

!

; (35)

so that we obtain

@

@t

 

F

N

A

F

N

B

!

= �

1

4

 

K

N

AA

K

N

AB

K

N

BA

K

N

BB

! 

F

N

A

F

N

B

!

; (36)

where the physical (scheme invariant) kernel is given by

K

N

IJ

=

"

� 4

@C

N

I;m

(t)

@t

�

C

N

�

�1

m;J

(t)�

�

0

a

s

(Q

2

)

�(a

s

(Q

2

))

C

N

I;m

(t)

N

mn

(t)

�

C

N

�

�1

n;J

(t)

#

: (37)

The kernels K

N

IJ

depend both on the anomalous dimensions 

N

lk

and the coe�cient functions

C

N

I;l

(Q

2

) but the latter two quantities are combined in a factorization scheme independent way.

This factorization scheme independence of K

N

IJ

holds order by order in perturbation theory.

Using the series expansions for the anomalous dimensions and coe�cient functions in terms of

the strong coupling constant



N

lk

=

1

X

n=0

a

n+1

s

(Q

2

)

�



N

�

(n)

lk

; C

N

I;l

(Q

2

) =

1

X

n=0

a

n

s

(Q

2

)

�

C

N

�

(n)

I;l

; l; k = q; g ; I = A;B ;

(38)

one can compute order by order the coe�cients in the perturbation series of the kernel

K

N

IJ

=

1

X

n=0

a

n

s

(Q

2

)

�

K

N

�

(n)

IJ

: (39)

Notice that the coe�cients

�

K

N

�

(n)

IJ

are not invariant with respect to a �nite renormalization of

the coupling constant. This dependence is removed when the perturbation series in Eq. (39) is

resummed in all orders.

3.1 F

2

(x;Q

2

) and F

L

(x;Q

2

)

Let us consider now two speci�c examples, choosing the structure functions F

2

(x;Q

2

) and

F

L

(x;Q

2

) or the structure function F

2

(x;Q

2

) and its slope @F

2

(x;Q

2

)=@t as the observables

F

A;B

(x;Q

2

). in this combination of observables it is convenient to normalize the structure func-

tion F

L

(x;Q

2

) to its gluonic contribution in lowest order. This is because F

L

(x;Q

2

) vanishes

in zeroth order of �

s

due to the Callan{Gross relation, cf. Eq. (11), contrary to the structure

function F

2

(x;Q

2

). Therefore this normalization accounts for keeping the same order in the

coupling constant for the two quantities

F

N

A

(Q

2

) = F

N(S)

2

(Q

2

); F

N

B

(Q

2

) =

F

N

L

(Q

2

)

a

s

(Q

2

)C

N(1)

L;g

: (40)

Since both the coe�cient functions C

(1)

Lq

and C

(1)

Lg

are scheme invariants such a normalization is

possible. We expand now the kernels K

N

IJ

for this choice of observables into a series in a

s

. The

9



lowest order contribution is well-known, cf. e.g. [29],

K

N(0)

22

= 

N(0)

qq

�

C

N(1)

L;q

C

N(1)

L;g



N(0)

qg

K

N(0)

2L

= 

N(0)

qg

K

N(0)

L2

= 

N(0)

gq

�

0

@

C

N(1)

L;q

C

N(1)

L;g

1

A

2



N(0)

qg

K

N(0)

LL

= 

N(0)

gg

+

C

N(1)

L;q

C

N(1)

L;g



N(0)

qg

+

C

N(1)

L;q

C

N(1)

L;g

�



N(0)

qq

� 

N(0)

gg

�

:

(41)

To next-to-leading order in a

s

(Q

2

), one �nds

K

N(1)

22

= 

N(1)

qq

�

�

1

�

0



N(0)

qq

�

C

N(1)

L;q

C

N(1)

L;g

 



N(1)

qg

�

�

1

�

0



N(0)

qg

!

+

C

N(1)

L;q

C

N(1)

L;g

C

N(1)

2;g



N(0)

qq

�

2

6

4

C

N(2)

L;q

C

N(1)

L;g

+

0

@

C

N(1)

L;q

C

N(1)

L;g

1

A

2

C

N(1)

2;g

�

C

N(1)

L;q

C

N(1)

L;g

C

N(2)

L;g

C

N(1)

L;g

3

7

5



N(0)

qg

+ C

N(1)

2;g



N(0)

gq

�

C

N(1)

L;q

C

N(1)

L;g

C

N(1)

2;g



N(0)

gg

+ 2�

0

0

@

C

N(1)

2;q

�

C

N(1)

L;q

C

N(1)

L;g

C

N(1)

2;g

1

A

(42)

K

N(1)

2L

= 

N(1)

qg

�

�

1

�

0



N(0)

qg

�C

N(1)

2;g

(

N(0)

qq

� 

N(0)

gg

) + 2�

0

C

N(1)

2;g

+

0

@

C

N(1)

2;q

+

C

N(1)

L;q

C

N(1)

L;g

C

N(1)

2;g

�

C

N(2)

L;g

C

N(1)

L;g

1

A



N(0)

qg

(43)

K

N(1)

L2

= 

N(1)

gq

�

�

1

�

0



N(0)

gq

+

C

N(1)

L;q

C

N(1)

L;g

 



N(1)

qq

�

�

1

�

0



N(0)

qq

!

�

0

@

C

N(1)

L;q

C

N(1)

L;g

1

A

2
 



N(1)

qg

�

�

1

�

0



N(0)

qg

!

�

C

N(1)

L;q

C

N(1)

L;g

 



N(1)

gg

�

�

1

�

0



N(0)

gg

!

+

2

6

4

C

N(2)

L;q

C

N(1)

L;g

�

C

N(1)

L;q

C

N(1)

L;g

C

N(1)

2;q

+

0

@

C

N(1)

L;q

C

N(1)

L;g

1

A

2

C

N(1)

2;g

3

7

5



N(0)

qq

�

2

6

4

0

@

C

N(1)

L;q

C

N(1)

L;g

1

A

3

C

N(1)

2;g

+ 2

C

N(1)

L;q

C

N(1)

L;g

C

N(2)

L;q

C

N(1)

L;g

�

0

@

C

N(1)

L;q

C

N(1)

L;g

1

A

2

C

N(2)

L;g

C

N(1)

L;g

�

0

@

C

N(1)

L;q

C

N(1)

L;g

1

A

2

C

N(1)

2;q

3

7

5



N(0)

qg

+

0

@

C

N(1)

L;q

C

N(1)

L;g

C

N(1)

2;g

�C

N(1)

2;q

+

C

N(2)

L;g

C

N(1)

L;g

1

A



N(0)

gq

10



�

2

6

4

C

N(2)

L;q

C

N(1)

L;g

+

0

@

C

N(1)

L;q

C

N(1)

L;g

1

A

2

C

N(1)

2;g

�

C

N(1)

L;q

C

N(1)

L;g

C

N(1)

2;q

3

7

5



N(0)

gg

+2�

0

0

@

C

N(2)

L;q

C

N(1)

L;g

�

C

N(1)

L;q

C

N(1)

L;g

C

N(2)

L;g

C

N(1)

L;g

1

A

(44)

K

N(1)

LL

= 

N(1)

gg

�

�

1

�

0



N(0)

gg

+

C

N(1)

L;q

C

N(1)

L;g

 



N(1)

qg

�

�

1

�

0



N(0)

qg

!

�

C

N(1)

L;q

C

N(1)

L;g

C

N(1)

2;g



N(0)

qq

+

2

6

4

C

N(2)

L;q

C

N(1)

L;g

�

C

N(1)

L;q

C

N(1)

L;g

C

N(2)

L;g

C

N(1)

L;g

+

0

@

C

N(1)

L;q

C

N(1)

L;g

1

A

2

C

N(1)

2;g

3

7

5


N(0)

qg

�C

N(1)

2;g



N(0)

gq

+

C

N(1)

L;q

C

N(1)

L;g

C

N(1)

2;g



N(0)

gg

+ 2�

0

C

N(2)

L;g

C

N(1)

L;g

(45)

It is evident that the representation in terms of Mellin{moments is of advantage when compared

to the corresponding x{space expressions. In the latter case one has to �nd the inverse Mellin

transforms of quantities where C

N

i;k

and 

N

kl

appear in the denominators of the expressions above

which in general is not possible.

3.2 F

2

(x;Q

2

) and @F

2

(x;Q

2

)=@t

A second example concerns the structure function F

2

(x;Q

2

) and its slope. Both quantities

are well measurable in the present{day deep inelastic scattering experiments. The observables

F

A;B

(x;Q

2

) are here

F

N

A

(Q

2

) = F

(S)N

2

(Q

2

); F

N

B

(Q

2

) =

@

@t

F

(S)N

2

(Q

2

) (46)

This example has been considered before in [27]. In leading order one obtains

K

N(0)

22

= 0 K

N(0)

2d

= �4

K

N(0)

d2

=

1

4

 



N(0)

qq



N(0)

gg

� 

N(0)

qg



N(0)

gq

!

K

N(0)

dd

= 

N(0)

qq

+ 

N(0)

gg

:

(47)

The next-to-leading order kernels read :

K

N(1)

22

= 0 (48)

K

N(1)

2d

= 0 (49)

K

N(1)

d2

=

1

4

"



N(0)

gg



N(1)

qq

+ 

N(1)

gg



N(0)

qq

� 

N(1)

qg



N(0)

gq

� 

N(0)

qg



N(1)

gq

#

�

�

1

2�

0

 



N(0)

qq



N(0)

gg

� 

N(0)

gq



N(0)

qg

!

+

�

0

2

C

N(1)

2;q

 



N(0)

qq

+ 

N(0)

gg

� 2�

0

!
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�

�

0

2

C

N(1)

2;g



N(0)

qg

"

(

N(0)

qq

)

2

� 

N(0)

qq



N(0)

gg

+ 2

N(0)

qg



N(0)

gq

� 2�

0



N(0)

qq

#

�

�

0

2

 



N(1)

qq

�



N(0)

qq



N(1)

qg



N(0)

qg

!

(50)

K

N(1)

dd

= 

N(1)

qq

+ 

N(1)

gg

�

�

1

�

0

 



N(0)

qq

+ 

N(0)

gg

!

�

2�

0



N(0)

qg

"

C

N(1)

2;g

�



N(0)

qq

� 

N(0)

gg

� 2�

0

�

� 

N(1)

qg

#

+ 4�

0

C

N(1)

2;q

� 2�

1

: (51)

For this combination in next-to-leading order the evolution depends on two evolution kernels

only. In the case of polarized deep inelastic scattering similar relations apply considering the

structure function g

1

(x;Q

2

) and its slope. The anomalous dimensions and coe�cient functions

of the unpolarized case have to be substituted by those for polarized scattering.

Although enforced by Eq. (36) one has still to show that the kernels (41-45, 47{51) are

scheme{independent by an explicit calculation, which we have done using Eqs. (33,34) for the

next-to-leading order contributions. In leading order the scheme{invariance is visible explicitly,

since the leading order anomalous dimensions and the lowest order coe�cient functions for

F

L

(x;Q

2

) are scheme invariants.

With the help of the evolution equation (36) we are now prepared to ask for the validity of

crossing relations between di�erent space{ and time{like quantities in perturbative QCD. Rela-

tions of this kind are henceforth called Drell{Levy{Yan (DLY) relations, although the original

reasoning of these and other authors was quite di�erent. One condition to ask such a question

at all is that the behavior of all contributing parts under crossing from space{ to time{like

momentum transfer are controlled. At large momentum transfers jq

2

j the single parton picture

applies and the non{perturbative parton densities factorize. This makes it possible to study the

respective evolutions kernels without reference to the non{perturbative input densities. Even if

a crossing relation for these quantities does not exist, one still may investigate whether it exists

for the perturbative evolution kernels. A further condition for this investigation is that the latter

quantities are scheme{invariant, as in Eq. (36).

4 Drell-Levy-Yan relations

In the following we study in detail an interesting relation between deep inelastic lepton hadron

scattering and e

+

e

�

annihilation into a hadron and anything else, proposed by Drell, Levy and

Yan [1]. Here we �rst briey illustrate the idea behind the work of DLY for completeness. In

�eld theory, the deep inelastic e

+

e

�

annihilation can be related to matrix elements of hadronic

electromagnetic current operators similar to that of deep inelastic lepton{hadron scattering.

The crucial di�erence, apart from the ones which originate from the kinematics, is that the

annihilation process is not related to the forward Compton amplitude contrary to deep inelastic

scattering because in the former process the hadron is observed in the �nal state. Nevertheless,

both processes are related by crossing symmetry which any �eld theory enjoys. This motivated

DLY to study the process in detail and then relate it to the deep inelastic scattering process.
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From the structure of the hadronic tensors W

S

��

(q; p) (space{like) and W

T

��

(q; p) (time{like) and

using the standard reduction formalism one can infer that

W

T

��

(q; p) = �W

S

��

(q;�p) ; (52)

where the momenta within the respective parentheses of the above quantities are the same as

those de�ned in the beginning of the paper. In the Bjorken limit for both deep inelastic scattering

and deep inelastic annihilation for q

2

= �Q

2

; p:q !1 and q

2

= Q

2

; p:q !1, respectively the

scaling structure and fragmentation functions satisfy the following relation

5

:

F

(S)

i

(x

B

) = �(�1)

2(s

1

+s

2

)

x

E

F

(T )

i

�

1

x

E

�

; i = 1; 2; L : (53)

Here it has been assumed that non{perturbative input parton densities can be decoupled trivially

and are the same. In other words, the functions F

(T )

i

(x

E

) are the analytic continuations of the

corresponding functions F

(S)

i

(x

B

) from 0 < x

B

� 1 to 1 � x

E

<1. This is true only when the

continuation is smooth, i.e. if there are no singularities for example at x = 1 etc. This relation

is called DLY{relation in the literature.

In this section, we study this property in more detail extending earlier work [17]. It is par-

ticularly interesting to study the above transformation at the level of the splitting functions and

coe�cient functions which constitute the physical quantities such as the structure and fragmen-

tation functions. Then we show how these relations are preserved for the physical quantities by

looking at the kernels discussed in the previous section. Apart from scaling violation one also

encounters distributions of the type

�(1� z) ;

 

ln

i

(1� z)

1 � z

!

+

; i = 0; 1; 2; � � � ; (54)

which destroy the continuation through z = 1. Here the distribution (ln

i

(1 � z)=(1 � z))

+

is

represented by

 

ln

i

(1� z)

1 � z

!

+

= �(1� z)

ln

i+1

�

(i+ 1)

+ �(1 � � � z)

ln

i

(1 � z)

(1 � z)

; (55)

where � � 1. It turns out that the DLY{relation is violated for the coe�cient functions and

splitting functions separately because both are scheme dependent. This in particular happens

when we adopt the MS-scheme. Here the relation is already violated up to one-loop order for

the coe�cient functions. Although one can choose other schemes in which Eq. (53) is preserved

(see [17]) up to one-loop order we do not know whether this will hold up to any arbitrary order

in perturbation theory.

Let us start with the simplest examples and consider the scheme{invariant evolution kernels

Eq. (41, 47).

4.1 The Drell-Levy-Yan Relations at Leading Order

In the case of the scheme{independent evolution kernels describing the evolution of F

2

(x;Q

2

)

and @F

2

(x;Q

2

)=@t, respectively, or its polarized counterpart for the structure function g

1

(x;Q

2

),

5

Here we indicate the overall signs in case of the scattering of particles of di�erent spin, cf. [30]. In the

original work of DLY [1] the Yukawa-theory was discussed which does not contain gauge bosons.
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only the transformation of two combinations of the leading order anomalous dimensions has to be

considered, cf. (47). These are the determinant and the trace of the singlet anomalous dimension

matrix at leading order. In both quantities the color factors of the o�{diagonal elements enter

only as a product. The unpolarized and polarized leading order splitting functions read

P

(0)

qq

(z) = �P

(0)

qq

(z) = 4C

F

"

1 + z

2

(1 � z)

+

+

3

2

�(1� z)

#

(56)

P

(0)

qg

(z) = 8T

R

N

f

h

z

2

+ (1 � z)

2

i

(57)

�P

(0)

qg

(z) = 8T

R

N

f

h

z

2

� (1� z)

2

i

(58)

P

(0)

gq

(z) = 4C

F

1 + (1� z)

2

z

(59)

�P

(0)

gq

(z) = 4C

F

1� (1� z)

2

z

(60)

P

(0)

gg

(z) = 8C

A

"

z

(1 � z)

+

+

1� z

z

+ z(1� z)

#

+ 2�

0

�(1� z) (61)

�P

(0)

gg

(z) = 8C

A

"

1

(1 � z)

+

+ 1� 2z

#

+ 2�

0

�(1� z) : (62)

The crossing relations of the leading order splitting functions are

�

P

(0)

qq

= �zP

(0)

qq

�

1

z

�

�

P

(0)

qg

=

C

F

2N

f

T

f

zP

(0)

qg

�

1

z

�

�

P

(0)

gq

=

2N

f

T

f

C

F

zP

(0)

gq

�

1

z

�

�

P

(0)

gg

= �zP

(0)

gg

�

1

z

�

;

(63)

where one demands

�(1� z)!��(1� z) : (64)

Eq. (63) is easily veri�ed and implies the validity of the crossing relation from space{ to time{

like evolution kernels Eq. (47), i.e. the validity of the DLY{relation for this case. For the

second set of physical evolution kernels the DLY{relation follows at leading order referring to

the transformation relations for the leading order longitudinal coe�cient functions, Eqs. (78, 79)

in an analogous way.

4.2 NLO Splitting function

As we know, the splitting functions and coe�cient functions are not physical quantities due to

their factorization scheme dependence. Hence, the naive continuation rule for these quantities

may be violated, which is indeed the case in most of the schemes, e.g. in the MS scheme

characteristic of n-dimensional regularization. It was demonstrated by Curci, Furmanski and

Petronzio [33] that by an appropriate modi�cation of the continuation rule in the MS scheme

14



one can show that the time{like splitting functions are related to their space{like counter parts.

Since the modi�cation of the continuation rule has to do with the scheme one adopts, it simply

amounts to �nding �nite renormalization factors. It was shown that the �nite renormalization

factors can be constructed from the �{dependent part of the splitting function when computed

in dimensional regularization [34]. In addition to this, care should be taken when dealing with

quark and gluon states which was not the case in the work by DLY, where a color and avor

neutral �eld theory was discussed. The transformation rules are :

� The diagonal elements of the space{like avor singlet splitting functions P

qq

; P

gg

have to

be multiplied by (�1).

� The o�{diagonal elements of the singlet splitting functions matrix have to be multiplied

by C

F

=(2N

f

T

f

) for P

qg

and 2N

f

T

f

=C

F

for P

gq

, respectively, accounting for the interchange

of the initial and �nal state particles under crossing.

Note that these transformations are automatically accounted for in the case of the leading order

physical evolution kernels discussed in the previous paragraph. Keeping this in mind and using

the known splitting functions [31, 33, 35] and the continuation rules

ln(1� z)! ln(1 � z)� ln(z) + i� ; (65)

ln(�)! ln(�) + i� ; (66)

one �nds that

�

P

(1)(S)

qq

� P

(1)(T )

qq

= �2�

0

Z

(T )(1)

qq

+ Z

(T )(1)

qg




�

P

(0)

gq

� Z

(T )(1)

gq




�

P

(0)

qg

; (67)

�

P

(1)S

qg

� P

(1)(T )

gq

= �2�

0

Z

(T )(1)

qg

+ Z

(T )(1)
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 (

�

P

(0)

gg

�

�

P

(0)

qq

) +

�

P

(0)

qg


 (Z

(T )(1)

qq

� Z

(T )(1)

gg

) ; (68)

�

P

(1)S

gq

� P

(1)(T )

qg

= �2�

0

Z

(T )(1)

gq

+ Z

(T )(1)
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 (

�

P

(0)

qq

�

�

P

(0)

gg

) +

�

P

(0)

gq


 (Z

(T )(1)

gg

� Z

(T )(1)

qq

) ; (69)

�

P

(1)S

gg

� P

(1)(T )

gg

= �2�

0

Z

(T )(1)

gg

+ Z

(T )(1)

gq




�

P

(0)

qg

� Z

(T )(1)

qg




�

P

(0)

gq

; (70)

where the quantities with a bar denote that they are continued from z! 1=z with the appropriate

factors in front. These quantities read in explicit form :

�

P

(n)

qq

(z) = �zP

(n)

qq

�

1

z

�

�

P

(n)

qg

(z) =

C

F

2N

f

T

f

zP

(n)

qg

�

1

z

�

�

P

gq

(z)

(n)

=

2N

f

T

f

C

F

zP

(n)

gq

�

1

z

�

�

P

gg

(z)

(n)

= �zP

(n)

gg

�

1

z

�

:

(71)

The relations given in Eqs. (67{71) remain true for the polarized splitting functions [32, 34] as

well. The renormalization factors appearing in the Eqs. (67{70) are given by

Z

T (1)

ij

= P

(0)

ji

�

ln(z) + a

ji

�

: (72)

The constants a

ij

are di�erent in the unpolarized and polarized case. For unpolarized scattering

they read

a

qq

= a

gg

= 0 ; a

qg

= �

1

2

; a

gq

=

1

2

; (73)
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whereas in the polarized case

a

ij

= 0 : (74)

The logarithms in the renormalization factors originate from the kinematics. In dimensional

regularization, when one continues the partonic structure function

^

F

i;k

in Eq. (12) from the

space{like to the time{like region one obtains an additional factor z

�

which when multiplied

with the pole in � yields ln(z). Since the pole is always associated with the splitting functions,

one has the function P

(0)

ij

along with ln(z). The z{independent constant a

ij

, which is also

multiplied by the splitting function, results from the polarization average. For deep inelastic

scattering one averages the processes with one gluon in the initial state by a factor 1=(� + 2).

Such an average is not needed for the annihilation process since here the gluon appears in the

�nal state. Notice that the average over the polarization sum does not show up in the polarized

structure functions. Therefore in this case the constants a

ij

are zero.

The transformation behavior of the non{singlet splitting functions in NLO have been worked

out in [33] where also the relations for the NLO non{singlet coe�cient functions were presented.

4.3 NLO Coe�cient Functions

Now, let us study how space{like and time{like coe�cient functions are related. The coe�cient

functions are expected to violate the DLY{relation due to their scheme dependence. Here we

�rst present the relations between the space{like and time{like coe�cient functions C

i;k

(z) (i =

1; L; k = q; g). The leading order transverse coe�cient functions are identical. At next-to-leading

order, in the MS scheme [36], the coe�cient functions are related by the Z{factors in Eq. (72)

as follows :

C

(T )(1)

1;q

(z) +

�

z C

(S)(1)

1;q

�

1

z

��

= Z

(T )(1)

qq

(75)

1

2

"

C

(T )(1)

1;g

(z)�

C

F

2N

f

T

f

�

2zC

(S)(1)

1;g

�

1

z

��

#

= Z

(T )(1)

qg

: (76)

Since the coe�cient functions depend on the hard scale of the process, one has to replace the

space{like q

2

by the time{like q

2

in addition to Eqs. (65{66). This leads to the following contin-

uation rule

ln

 

Q

2

�

2

f

!

space�like

! ln

 

Q

2

�

2

f

!

time�like

� i� : (77)

The Z{factors get contributions from two sources. The �rst one is z{dependent and comes from

the phase space integrals. The time{like phase space acquires an extra factor z

�

which gives a

�nite contribution when being multiplied with the pole terms 1=�. The pole term originates from

the collinear divergence in n{dimensional regularization. The second term originates from the

polarization average which is again absent in the time{like case. The continuation rules given in

Eqs. (65{64, 77) are essential to get the constant �(2) right when one goes from the space{like to

the time{like region. Notice that the space{like coe�cient function contains �4�(2)�(1� z) and

the time{like one contains 8�(2)�(1 � z). The di�erence which is 12�(2) can be understood to

originate from the one-loop vertex correction when one continues from the space{like to time{like

region inQ

2

. The same also holds when other regularization methods for the collinear divergences

are chosen. It is worth noticing that if one would replace ln(1� z)! ln(1� z)� ln(z) contrary
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to the prescription in Eq. (65) one would obtain an additional term 12�(2) on the righthand side

of Eq. (75).

The zeroth order longitudinal coe�cient functions are identically zero so that the �rst order

contributions are scheme independent. This implies that there are no pole terms in the corre-

sponding partonic structure function

^

F

L;k

. Hence, there is no left{over �nite piece which could

arise from the z

�

{ or n�dimensional polarization average. We �nd

C

(T )(1)

L;q

(z)�

z

2

C

(S)(1)

L;q

�

1

z

�

= 0 ; (78)

1

2

"

C

(T )(1)

L;g

(z) +

C

F

2N

f

T

f

�

z C

(S)(1)

L;g

�

1

z

��

#

= 0 : (79)

4.4 NNLO Coe�cient Functions

4.4.1 Longitudinal Coe�cient Functions

We consider the NNLO correction to the longitudinal coe�cient function. We follow the results

given in [37, 39, 40] for the space{like and [42, 43] for the time{like case. It turns out that the

coe�cient functions are related by the Z{factors through the matrix{valued convolutions

C

(T )(2)
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2
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; (80)
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+Z
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(1)S

L;g

�

1
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: (81)

The right hand side of the above equation contains the convolutions of Z{factors with the

continued NLO longitudinal space{like coe�cient functions. We have found this pattern by

comparing the scheme transformation which we derived in the last section. The reason for this

structure relies on the fact that C

L;i

is obtained as the di�erence between C

2;i

and C

1;i

. Since

the NLO coe�cient functions involve various Nielsen{integrals, we used the following identities

to simplify the expressions :

Li

2

�

�

1

z

�

= �Li

2

(�z)�

1

2

ln

2

(z)� �(2) ; (82)

Li

2
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1 �

1

z
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= �

1

2

ln

2

(z)� Li

2

(1 � z) ; (83)
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1 �

1

z

�

= �

1

6
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(z) + S
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(1� z) ; (84)
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(�z)� ln(z)Li
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(�z)�
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6

ln

3

(z) + �(3) : (87)

If we do not continue ln(1 � z) and replace ln(1 � z) ! ln(1 � z) � ln(z), then terms propor-

tional to �(2) are not compensated between space{like and time{like coe�cient functions and

hence the relations given in Eqs. (80, 81) are no longer true. Although formally of NNLO, the

coe�cient functions C

(2)S;T

Lq(G)

(z) may be combined to physical evolution kernels together with the

NLO splitting functions as shown in section 3.1. In Section 4.5. we will show that because of

the transformation in Eqs. (80, 81) the physical evolution kernels in sections 3.1 and 3.2 remain

DLY{invariant.

4.4.2 Transverse Coe�cient Functions

In NNLO physical evolution kernels for the transverse structure and fragmentation function can

only be constructed when the space{like and time{like three-loop splitting functions are known.

If they become available one can extend Eqs. (47{51) up to second order. Here we consider the

relation between the space{ and time{like coe�cient functions using the transformation relations

(64, 65, 66) and (77) for unpolarized and polarized scattering.

The space{like coe�cient functions for unpolarized scattering are computed in [39, 40]

whereas the time{like ones can be found in [42, 43]. The transverse coe�cient functions are

related by (see appendix 6.1) :
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For the polarized NNLO coe�cient functions which were derived in [39, 40] and [42, 43], we �nd

that the form of Eqs. (88) is the same but the term

1

8

�

P

(0)

gq




�

P

(0)

qg

does not occur.

Similarly for the gluonic coe�cient functions we �nd
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For the polarized case, the terms
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in Eq. (89) are absent. Since we do not have to average over the initial state gluon polarization

in the case of polarized scattering the term ln(z) + 1=2 multiplying the �rst bracket in Eq. (89)

is replaced by ln(z), cf. also Eq. (72, 74).

4.5 NLO Physical Evolution Kernels

After having found the relations between space{like and time{like splitting and coe�cient func-

tions, we investigate the DLY-transformation for the physical evolution kernels presented in

sections 3.1 and 3.2. In order to do this, we de�ne the di�erence between the time{like quanti-

ties K
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IJ

and the continued space{like quantities
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where

�

K

S
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is obtained by transforming K

S

IJ

to the time{like region using the continuation

rules (65, 66, 64, 77). Application of the DLY{transformations provides us with the follow-

ing results
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= �

N(1)

qq

� 2�

0

Z

(T )N(1)

qq

� �

N(0)

gq

Z

(T )N(1)

qg

+ �

N(0)

qg

Z

(T )N(1)

gq

+

�

C

N(1)

L;q

�

C

N(1)

L;g

(��

N(1)

gq

+ 2�

0

Z

(T )N(1)

qg

� Z

(T )N(1)

qg

�

N(0)

qq

+ Z

(T )N(1)

qq

�

N(0)

qg

�Z

(T )N(1)

gg

�

N(0)

qg

+ Z

(T )N(1)

qg

�

N(0)

gg

) : (91)

19



Substituting the expressions for �

N(1)

qq

and �

N(1)

gq

using Eqs. (67, 69), we get

�K

N(1)

22

= 0 : (92)

For the remaining evolution kernels one obtains

�K

N(1)

2L

= �

N(1)

gq

� 2�

0

Z

(T )N(1)

qg

+ Z

(T )N(1)

qg

(�

N(0)

qq

� �

N(0)

gg

)� �

N(0)

qg

(Z

(T )N(1)

qq

� Z

(T )N(1)

gg

) ; (93)

�K

N(1)

LL

= �

N(1)

gg

� 2�

0

�

N(0)

gg

+ Z

(T )N(1)

qg

�

N(0)

gq

� Z

(T )N(1)

gq

�

N(0)

qg

+

�

C

N(1)

L;q

�

C

N(1)

L;g

h

�

N(1)

gq

� 2�

0

Z

(T )N(1)

qg

+ Z

(T )N(1)

qg

�

N(0)

qq

� Z

(T )N(1)

qg

�

N(0)

gg

� Z

(T )N(1)

qq

�

N(0)

qg

+Z

(T )N(1)

gg

�

N(0)

qg

i

; (94)

�K

N(1)

L2

= �

N(1)

qg

+

�

C

N(1)

L;q

�

C

N(1)

L;g

�

N(1)

qq

�

0

@

�

C

N(1)

L;q

�

C

N(1)

L;g

1

A

2

�

N(1)

gq

�

�

C

N(1)

L;q

�

C

N(1)

L;g

�

N(1)

gg

�2�

0

Z

(T )N(1)

gq

� Z

(T )N(1)

gq

�

N(0)

qq

+ Z

(T )N(1)

qq

�

N(0)

gq

� Z

(T )N(1)

gg

�

N(0)

gq

+ Z

(T )N(1)

gq

�

N(0)

gg

+

�

C

N(1)

L;q

�

C

N(1)

L;g

h

�2�

0

Z

(T )N(1)

qq

� Z

(T )N(1)

qg

�

N(0)

gq

+ Z

(T )N(1)

gq

�

N(0)

qg

i

+

0

@

�

C

N(1)

L;q

�

C

N(1)

L;g

1

A

2

h

2�

0

Z

(T )N(1)

qg

� Z

(T )N(1)

qg

�

N(0)

qq

� Z

(T )N(1)

gg

�

N(0)

qg

+ Z

(T )N(1)

qq

�

N(0)

qg

+Z

(T )N(1)

qg

�

N(0)

gg

i

+

�

C

N(1)

L;q

�

C

N(1)

L;g

h

2�

0

Z

(T )N(1)

gg

� Z

(T )N(1)

qg

�

N(0)

gq

+ Z

(T )N(1)

gq

�

N(0)

qg

i

: (95)

The explicit expressions for the di�erences in the coe�cient function are given in appendix 6.1 as

well as a series of involved Mellin{convolutions leading to Nielsen{integrals (see appendix 6.2),

which are necessary in the explicit calculation.

Using Eqs. (67{70), leads to

�K

N(1)

L2

= 0 ; (96)

�K

N(1)

2L

= 0 ; (97)

�K

N(1)

LL

= 0 : (98)

The physical evolution kernels K

I;J

for the evolution of the structure functions F

2

and F

L

are

thus DLY{invariant to next-to-leading order if continued from the space{like to the time{like

region.

We turn now to the physical evolution kernels in next-to-leading order where we choose the

physical quantities F

2

, @F

2

=@t as a basis. Here only two evolution kernels are contributing, which
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change under the DLY-transformation as follows :

�K

d2

=

�

0

2

 

�C

N(1)

2q

� Z

(T )N(1)

qq

!

�

�

N(0)

qq

+ �

N(0)

gg

� 2�

0

�

�

�

0

2�

N(0)

gq

 

�C

N(1)

2g

� Z

(T )N(1)

qg

! 

(�

N(0)

qq

)

2

� �

N(0)

qq

�

N(0)

gg

+2�

N(0)

qg

�

N(0)

gq

� 2�

0

�

N(0)

qq

!

(99)

�K

dd

= � 2

�

0

�

N(0)

gq

 

�C

N(1)

2g

� Z

(T )N(1)

qg

!

�

�

N(0)

qq

� �

N(0)

gg

� 2�

0

�

+4�

0

�

�C

N(1)

1q

� Z

(T )N(1)

qq

�

: (100)

From Eqs. (75, 76, 78, 79) we can derive that

�K

d2

= 0 ; (101)

�K

dd

= 0 : (102)

From these results it is clear that the time{like physical evolution kernels K

T

ij

can be directly

derived from the space{like physical evolution kernels using the continuations in Eqs. (65, 66,

64, 77) where one has to account for the corresponding changes in the overall color factors. The

Z

T

{factors which are needed for the transformation of the splitting and coe�cient functions

cancel in the expression above. In the future one can extend the investigation performed in

this section to physical evolution kernels at the NNLO-level, provided the 3{loop anomalous

dimensions are calculated. For the choice of observables (F

2

; F

L

) one also needs the three-loop

coe�cient functions.

We �nally would like to comment on a relation derived by Gribov and Lipatov in [19] for the

leading order kernels for a pseudoscalar and a vector �eld theory.

6

One may write it in the form

K(x

E

; Q

2

) = K(x

B

; Q

2

) ; (103)

where K and K denote the time{ and space{like evolution kernels, respectively, and x

B

= 1=x

E

.

One veri�es, that this relation holds in leading order for the space{ and time{like splitting

functions of QCD, Eqs. (56{62), without changing the �{function, Eq. (64).

Starting with next-to-leading order, this relation is not preserved. For the physical non{

singlet evolution kernels this was shown in [33, 35] and for some singlet combinations in [35]. We

�nd, that also for the physical singlet combinations, Eqs. (42{45, 48{51), this relation is violated

as well.

5 Conclusions

The old question, whether the scattering cross sections of deep inelastic scattering e

�

+P ! e

�

+

`X

0

are related to the annihilation cross section e

+

+e

�

!

�

P+`X

0

by a crossing relation changing

6

See also [44] for related work.
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from t{ to s{channel was newly discussed. Since in both reactions non{perturbative quantities

such as the structure and fragmentation functions contribute the above question cannot be

answered by means of perturbation theory for the process as a whole. However, since both the

parton densities involved in the space{ and time{like process factorize if the virtuality Q

2

=

jq

2

j of the four{momentum transfer is large a related question can be asked for the crossing

behavior of the respective evolution kernels, which are computable within perturbation theory.

In the calculation of both inclusive processes only two types of singularities occur, the collinear

singularity and the ultraviolet singularity. These divergences are absorbed into the bare parton

densities and the coupling constant, respectively. Two distinct renormalization group equations

are implied. They quantify the impact of the factorization and the renormalization scale on the

DIS structure functions and fragmentation functions when the perturbation series is truncated

up to a given order. However one can construct factorization{scale independent evolution kernels

which describe the scheme{invariant evolution of these physical quantities in terms of a kinematic

variable given by Q

2

. This scheme invariant evolution is guaranteed up to any �nite order in

perturbation theory. Notice that in �nite order this method does not remove the dependence

of the physical quantities on the renormalization scheme of the strong coupling constant or its

scale �

r

.

The �rst example of the application of the physical evolution kernels is the coupled structure

functions F

2

(x;Q

2

) and F

L

(x;Q

2

) associated with the corresponding fragmentation functions in

e

+

e

�

{annihilation. A second example is given by F

2

(x;Q

2

) and @F

2

(x;Q

2

)=@ ln(Q

2

). Contrary

to the splitting functions (anomalous dimensions) and coe�cient functions the evolution kernels

of the examples above are factorization scheme independent. For that purpose transformation

relations have been derived for the splitting functions up to NLO and the coe�cient functions

up to NNLO. We have also shown that these kernels are invariant under the Drell{Levy{Yan{

transformation up to next{to{leading order. On the other hand the Gribov{Lipatov relation,

which is valid in leading order, is already violated at next-to-leading order. It remains to be

seen how the physical evolution kernels behave under the DLY crossing relation at NNLO, which

presumes the knowledge of the yet unknown three-loop splitting functions (space{ and time{like)

as well the three{loop longitudinal coe�cient functions in the �rst example above.
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6 Appendix

6.1 Coe�cient Functions

In this appendix we list the di�erence of the space- and time{like coe�cient functions in the

MS scheme, which are used in section 4 to study the validity of the DLY{relation. Here the

expressions also contain the logarithms

L

�

f

= ln(Q

2

=�

2

f

) (104)

which arise when the factorization scale �

2

f

is chosen to be di�erent from Q

2

.

The di�erence between the longitudinal non{singlet coe�cient functions corresponding to

the processes 

�

+ q ! q + g + g and 

�

! `�q

0

+ q + g + g respectively are given by

�C

(2)NS

L;q

= C

2

F

h

4

�

2z � ln(z)

�

ln(z)� 16Li

2

(1 � z) + 8� 8z

i

(105)
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where `q

0

denotes the quark in the �nal state which undergoes fragmentation into a hadron

P (see Eq. (8)). The di�erence between the longitudinal purely singlet coe�cient functions

corresponding to the processes 

�

+ q ! q+ q+ �q and 

�

! `�q

0

+ q+ q+ �q respectively are given

by

�C

(2)PS

L;q

= N

f

T

f

C

F

�

�8

�

6 + 4z �

4

3

z

2

�

ln(z) + 16 ln

2

(z)� 16

�

304

9z

+ 64z �

128

9

z

2

�

(106)

The same is done for the longitudinal gluonic coe�cient functions corresponding to the processes



�

+g ! g+q+�q and 

�

! `g

0

+g+q+�q, respectively. The di�erence in the coe�cient function

is given by

�C

(2)

L;g

= C

2

F

�

8

�

1 +

2

z

� z

�

ln(z) + 8 ln

2

(z)� 28 +

24

z

+ 4z

�

+C

A

C

F

�

16

�

4�

2

z

+ z �

1

3

z

2

�

ln(z)� 16

�

1 +

1

z

�

ln

2

(z)

+32

�

1�

1

z

�

Li

2

(1 � z)� 8 +

248

9z

� 24z +

40

9

z

2

�

: (107)

Notice that for the computation of the coe�cients functions above and the ones following here-

after one also needs the virtual contributions to the zeroth and �rst order partonic processes.

The di�erences between the transverse coe�cient functions emerge from the same processes as

mentioned above Eqs. (105, 106, 107). In the non{singlet case we have

�C

(2)NS

1;q

=

�

C

2

F

�

1

2

C

A

C

F

�

"

8

ln(z)

1 + z

 

� 2�(2) � 4 ln(z) ln(1 + z) + ln

2

(z)

!

+ 4

 

2(1 � z)�(2) + 4(1 � z) + 4(1 � z) ln(z) ln(1 + z)

+2(1 + z) ln(z)� (1� z) ln

2

(z)

!

ln(z)� 16Li

2

(�z) ln(z)

�

�

2

1 + z

� 1 + z

��

+N

f

T

f

C

F

�

8

9

�

�

10

1 � z

� 1 + 11z

�

ln(z)

�

+C

A

C

F

"

4

ln(z)

1 � z

�

67

9

+ ln

2

(z)� 2�(2)

�

+ 2

 

53

9

�

187

9

z

+2(1 + z) ln(z)� (1 + z) ln

2

(z)

!

ln(z) + 4�(2)(1 + z) ln(z)

#

+C

2

F

"

4

ln(z)

1 � z

 

�

8L

�

f

� 6 + 4 ln(1� z)

�

ln(1� z) + 6L

�

f

� 18
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+

�

� 4L

�

f

+ 6 �

16

3

ln(z)

�

ln(z)

!

+ 4

 

� 4(1 + z)L

�

f

+ 1 + 5z

�2(1 + z) ln(1 � z)

!

ln(z) ln(1� z) + 2

 

� 2(5 + z)L

�

f

+ 14 + 40z

+2(1 + z) ln(z) ln(1� z) + 6(1 + z)L

�

f

ln(z)� 8(2 + z) ln(z)

+7(1 + z) ln

2

(z)

!

ln(z) + 2Li

2

(1� z)

 

4

�

�

12

1� z

+ 7 + 7z

�

ln(z)

�10 + 22z

!

+ 8

�

�

24

1� z

+ 13 + 13z

�

S

1;2

(1� z) + 36(1 � z)

+32�(2)

�

2

1� z

� 1� z

�

ln(z) + 12�(2)(9 � 12L

�

f

+ 4L

2

�

f

)�(1� z)

�

: (108)

For the purely singlet di�erence we obtain

�C

(2)PS

1;q

= N

f

T

f

C

F

��

�8

�

4 + 6z +

8

3

z

2

��

L

�

f

+ ln(1 � z)

�

� 16

�

1�

2

3z

+ 2z

�

� ln(z)� 160 �

160

9z

� 112z �

368

9

z

2

+ 4(1 + z)

�

4 ln(1� z) + 4L

�

f

+

10

3

ln(z)

�

ln(z)

�

ln(z)� 8

�

1 +

38

9z

� z �

38

9

z

2

�

 

L

�

f

+ ln(1� z)

!

+16

�

2(1 + z) ln(z)� 2� 3z �

4

3

z

2

�

Li

2

(1� z) + 32(1 + z)S

1;2

(1 � z)

�

1168

9

�

224

27z

+

640

9

z +

1808

27

z

2

�

: (109)

The di�erence between the gluonic coe�cient functions equals

�C

(2)

1;g

= 2C

A

C

F

��
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9z

+ 66z +

184

9

z

2

+

�

48 �

24

z

+ 16z +
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3

z

2

�

L

�
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�

�4 �

100
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�
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40 �
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�
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�
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�
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�
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: (110)

We have computed the same di�erences between the coe�cient functions corresponding to the

structure function g

1

(x;Q

2

) which describes polarized scattering. The analogues of Eqs. (108,

109, 110) are given by
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6.2 Convolutions

Here we list the convolutions of a series of functions, which are needed for the investigation of

the DLY{relation in section 4. Using the de�nition in Eq. (13) we obtain
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