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Leading order (in �

s

) perturbative QCD and power (1=m

2

b

) corrections to the hadronic invariant mass and hadron energy spectra in

the decay B ! X

s

`

+

`

�

are reviewed in the standard model using the heavy quark expansion technique (HQET). In particular, the

�rst two hadronic moments hS

n

H

i and hE

n

H

i, n = 1; 2, are presented working out their sensitivity on the HQET parameters �

1

and

�

�. Data from the forthcoming B facilities can be used to measure the short-distance contribution in B ! X

s

`

+

`

�

and determine

the HQET parameters from the moments hS

n

H

i. This could be combined with complementary constraints from the decay B ! X`�

`

to determine these parameters precisely.

1 Introduction

The semileptonic inclusive decays B ! X`

+

`

�

, where

`

�

= e

�

; �

�

; �

�

and X represents a system of light

hadronic states, o�er, together with the radiative electro-

magnetic penguin decays B ! X+
, presently the most

popular testing grounds for the standard model (SM) in

the 
avour sector. In this contribution, we summarize

the main steps in the derivation of the hadron spectra

and hadron spectral moments in B ! X

s

`

+

`

�

using per-

turbative QCD and the heavy quark expansion technique

HQET

1;2;3

, published recently by us

4;5

. This work,

which incorporates the leading order (in �

s

) perturbative

QCD and power (1=m

2

b

) corrections to the hadronic spec-

tra, complements the derivation of the dilepton invariant

mass spectrum and the forward-backward asymmetry of

the charged lepton

6

, calculated in the HQET framework

some time ago by us in collaboration with T. Morozumi

and L. Handoko

7

. (See, also Buchalla et al.

8

.) Both the

hadron and dilepton spectra are needed to distinguish the

signal (B ! X

s

`

+

`

�

) from the background processes and

in estimating the e�ects of the experimental selection cri-

terion. We shall concentrate here on the short-distance

contribution which can be extracted from data with the

help of judicious cuts, such as those employed recently by

the CLEO collaboration

9

. The residual e�ects from the

resonant (long-distance) contributions have been studied

in these distributions elsewhere

7;10

, to which we refer

for details and references to the earlier work.

We also underline the theoretical interest in measur-

ing the �rst few hadronic spectral moments hS

n

H

i and

hE

n

H

i (n = 1; 2). The former are sensitive to the HQET

parameters

�

� and �

1

; we work out this dependence nu-

merically and argue that a combined analysis of the mo-

ments and spectra in B ! X

s

`

+

`

�

and B ! X`�

`

will

allow to determine the HQET parameters with a high

precision. Since these parameters are endemic to a large

class of phenomena in B decays, their precise knowledge

is of great advantage in reducing the theoretical errors in

the determination of the CKM matrix elements V

td

, V

ts

,

V

cb

and V

ub

.

2 Kinematics and HQET Relations

We start with the de�nition of the kinematics of the de-

cay at the parton level, b(p

b

)! s(p

s

)(+g(p

g

))+`

+

(p

+

)+

`

�

(p

�

), where g denotes a gluon from the O(�

s

) correc-

tion. The corresponding kinematics at the hadron level

can be written as: B(p

B

)! X

s

(p

H

) + `

+

(p

+

) + `

�

(p

�

).

We de�ne by q the momentum transfer to the lepton pair

q = p

+

+ p

�

and s � q

2

is the invariant dilepton mass

squared. We shall also need the variable u de�ned as

u � �(p

b

� p

+

)

2

+ (p

b

� p

�

)

2

. The hadronic invariant

mass and the hadron energy in the �nal state is denoted

by S

H

and E

H

, respectively; corresponding quantities

at parton level are the invariant mass s

0

and the scaled

parton energy x

0

�

E

0

m

b

. From energy-momentum con-

servation, the following equalities hold in the b-quark,

equivalently B-meson, rest frame (v = (1; 0; 0; 0)):

x

0

= 1� v � q̂ ; ŝ

0

= 1� 2v � q̂ + ŝ ;

E

H

= m

B

� v � q ; S

H

= m

2

B

� 2m

B

v � q + s ; (1)

where dimensionless variables with a hat are scaled by

the b-quark mass, e.g., ŝ =

s

m

2

b

, m̂

s

=

m

s

m

b

etc. Here, the

4-vector v denotes the velocity of both the b-quark and

the B-meson, p

b

= m

b

v and p

B

= m

B

v.

The relation between the B-meson and b-quark mass

is given by the HQET mass relation m

B

= m

b

+

�

� �

1=2m

b

(�

1

+ 3�

2

) + : : :, where the ellipses denote terms

higher order in 1=m

b

. The quantity �

2

is known precisely

from the B

�

� B mass di�erence, with �

2

' 0:12 GeV

2

.

The other two parameters are considerably uncertain at

present

11;12

and are of interest here.

The hadronic variables E

H

and S

H

can be expressed

in terms of the partonic variables x

0

and ŝ

0

by the

2



following relations

E

H

=

�

��

�

1

+ 3�

2

2m

B

+

�

m

B

�

�

� +

�

1

+ 3�

2

2m

B

�

x

0

+ : : : ;

S

H

= m

2

s

+

�

�

2

+ (m

2

B

� 2

�

�m

B

+

�

�

2

+ �

1

+ 3�

2

) (ŝ

0

� m̂

2

s

)

+ (2

�

�m

B

� 2

�

�

2

� �

1

� 3�

2

)x

0

+ : : : :

The dominant non-perturbative e�ect on the hadron

spectra is essentially determined by the binding energy

�

� = m

B

�m

b

+:::, in terms of which one has the following

transformation:

E

0

! E

H

=

�

� +E

0

+ : : : ;

s

0

! S

H

= s

0

+ 2

�

�E

0

+

�

�

2

+ : : : : (2)

Thus, changing the variables of integration (s

0

; E

0

) !

(s

H

; E

0

) and integrating over E

0

in the range

p

S

H

�

�

� <

E

0

< 1=2m

B

(S

H

� 2

�

�m

2

B

+m

2

B

), one gets an invariant

hadron mass spectrum d�=dS

H

in the kinematic range

�

�

2

< S

H

< m

2

B

. In particular, already for the partonic

decay b! s`

+

`

�

withm

s

= 0, and hence s

0

= 0, one gets

a non-trivial distribution in S

H

for

�

�

2

< S

H

<

�

�m

B

.

The kinematic boundary of the distribution d�=dS

H

is

extended by the bremsstrahlung process b ! s + g +

`

+

`

�

, where now

�

�m

B

< S

H

< m

2

B

(with m

s

= 0).

The O(�

s

) contribution leads to a double logarithmic

(but integrable) singularity at S

H

=

�

�m

B

. Perturbation

theory is valid for �

2

< S

H

< m

2

B

, with �

2

>

�

�m

B

.

3 Matrix Element for B ! X

s

`

+

`

�

in the E�ec-

tive Hamiltonian Approach

The e�ective Hamiltonian governing the decay B !

X

s

`

+

`

�

is given as

7

:

H

eff

(b! s) = �

4G

F

p

2

V

�

ts

V

tb

(3)

"

6

X

i=1

C

i

(�)O

i

+ C

7

(�)

e

16�

2

�s

�

�

��

(m

b

R+m

s

L)b

�

F

��

+C

9

(�)

e

2

16�

2

�s

�




�

Lb

�

�

`


�

`+ C

10

e

2

16�

2

�s

�




�

Lb

�

�

`


�




5

`

�

;

where G

F

is the Fermi coupling constant, L(R) = 1=2(1�




5

), and C

i

are the Wilson coe�cients. Note that the

chromo-magnetic operator does not contribute to the de-

cayB ! X

s

`

+

`

�

in the approximationwhich we use here.

The matrix element for the decay B ! X

s

`

+

`

�

can

be factorized into a leptonic and a hadronic part as

M(B ! X

s

`

+

`

�

) =

G

F

�

p

2�

V

�

ts

V

tb

�

�

L

�

L

L

�

+ �

R

�

L

R

�

�

;

(4)

with

L

L=R

�

�

�

` 


�

L(R) ` ; (5)

�

L=R

�

� �s

"

R


�

 

C

e�

9

(ŝ) �C

10

+ 2C

e�

7

^

6 q

ŝ

!

+2m̂

s

C

e�

7




�

^

6 q

ŝ

L

#

b ; (6)

with C

e�

7

� C

7

� C

5

=3� C

6

. The e�ective Wilson coef-

�cient C

e�

9

(ŝ) receives contributions from various pieces.

The resonant c�c states also contribute to C

e�

9

(ŝ); hence

the contribution given below is just the perturbative part:

C

e�

9

(ŝ) = C

9

�(ŝ) + Y (ŝ) : (7)

Here �(ŝ) and Y (ŝ) represent, respectively, the O(�

s

)

correction

13

and the one loop matrix element of the

Four-Fermi operators

14;15

.

With the help of the above expressions, the di�eren-

tial decay width becomes on using p

�

= (E

�

;p

�

),

d� =

1

2m

B

G

F

2

�

2

2�

2

jV

�

ts

V

tb

j

2

d

3

p

+

(2�)

3

2E

+

d

3

p

�

(2�)

3

2E

�

�

�

W

L

��

L

L

��

+W

R

��

L

R

��

�

; (8)

where W

L;R

��

and L

L;R

��

are the hadronic and leptonic ten-

sors, respectively, and can be seen in the literature

7

.

The hadronic tensor W

L=R

��

is related to the discontinuity

in the forward scattering amplitude, denoted by T

L=R

��

,

through the relation W

L=R

��

= 2 ImT

L=R

��

. Transforming

the integration variables to ŝ, û and v � q̂, one can express

the triple di�erential distribution in B ! X

s

`

+

`

�

as:

d�

dûdŝ d(v � q̂)

=

1

2m

B

G

F

2

�

2

2�

2

m

b

4

256�

4

jV

�

ts

V

tb

j

2

� 2 Im

�

T

L

��

L

L

��

+ T

R

��

L

R

��

�

: (9)

Using Lorentz decomposition, the tensor T

��

can be ex-

panded in terms of three structure functions T

i

,

T

L=R

��

= �T

L=R

1

g

��

+ T

L=R

2

v

�

v

�

+ T

L=R

3

i�

����

v

�

q̂

�

;

(10)

where the ones which do not contribute to the amplitude

for massless leptons have been neglected.

4 Hadron Spectra in B ! X

s

`

+

`

�

We discuss �rst the perturbative O(�

s

) corrections re-

calling that only the matrix element of the operator

O

9

� e

2

=(16�

2

)�s

�




�

Lb

�

�

`


�

` is subject to such correc-

tions. The corrected hadron energy spectrum in B !

3



X

s

`

+

`

�

can be obtained by using the existing results in

the literature on the decay B ! X`�

`

by decomposing

the vector current in O

9

as V = (V �A)=2+ (V +A)=2.

The (V �A) and (V +A) currents yield the same hadron

energy spectrum

16

and there is no interference term

present in this spectrum for massless leptons. So, the

correction for the vector current case can be taken from

the corresponding result for the charged (V �A) case

13

.

The O(�

s

) perturbative QCD correction for the

hadronic invariant mass is discussed next. As already

mentioned, the decay b ! s + `

+

+ `

�

yields a delta

function at ŝ

0

= m̂

2

s

and hence only the bremsstrahlung

diagrams b! s+g+`

+

+`

�

contribute in the range m̂

2

s

<

ŝ

0

� 1. The resulting distribution dB(B ! X

s

`

+

`

�

)=ds

0

in the parton model in the O(�

s

) approximation and

the Sudakov exponentiated form can be seen in our pa-

per

5

. We remark that the Sudakov exponentiated dou-

ble di�erential distribution for the decay B ! X

u

`�

`

has been derived by Greub and Rey

17

, which we have

checked and used after changing the normalization for

B ! X

s

`

+

`

�

. The hadronic invariant mass spectrum

dB(B ! X

s

`

+

`

�

)=dS

H

, shown in Fig. 1 depends rather

sensitively onm

b

(or equivalently

�

�). An analogous anal-

ysis for the decay B ! X

u

`�

`

has been performed earlier,

with very similar qualitative results

18

.

Next, we discuss the power corrections to the

hadronic spectra. The structure functions T

L=R

i

in the

hadronic tensor in Eq. (10) can be expanded in inverse

powers ofm

b

with the help of the HQET techniques

1;2;3

.

The leading term in this expansion, i.e., O(m

0

b

), repro-

duces the parton model result

14;15

. In HQET, the next

to leading power corrections are parameterized in terms

of �

1

and �

2

. After contracting the hadronic and lep-

tonic tensors and with the help of the kinematic identi-

ties given in Eq. (1), we can make the dependence on x

0

and ŝ

0

explicit,

T

L=R

��

L

L=R

��

= m

b

2

n

2(1� 2x

0

+ ŝ

0

)T

1

L=R

+

�

x

2

0

�

1

4

û

2

� ŝ

0

�

T

2

L=R

� (1� 2x

0

+ ŝ

0

)û T

3

L=R

�

:

(11)

By integrating Eq. (9) over û, the double di�erential

power corrected spectrum can be expressed as

5

:

d

2

B

dx

0

dŝ

0

= �

8

�

B

0

Im

q

x

2

0

� ŝ

0

f(1� 2x

0

+ ŝ

0

)T

1

(ŝ

0

; x

0

)

+

x

2

0

� ŝ

0

3

T

2

(ŝ

0

; x

0

)

�

+O(�

i

�

s

) : (12)

The structure function T

3

does not contribute to the dou-

ble di�erential distribution and we do not consider it any

further. The functions T

1

(ŝ

0

; x

0

) and T

2

(ŝ

0

; x

0

), together

Figure 1: The di�erential branching ratio dB(B ! X

s

`

+

`

�

)=dS

H

in the hadronic invariant mass, S

H

, shown for three values of m

b

in the range where only bremsstrahlung diagrams contribute.

with other details of the calculations, have been given by

us elsewhere

5

.

The branching ratio for B ! X

s

`

+

`

�

is usually ex-

pressed in terms of the measured semileptonic branching

ratio B

sl

for the decay B ! X

c

`�

`

. This �xes the nor-

malization constant B

0

to be,

B

0

� B

sl

3�

2

16�

2

jV

�

ts

V

tb

j

2

jV

cb

j

2

1

f(m̂

c

)�(m̂

c

)

; (13)

where f(m̂

c

) is the phase space factor for �(B ! X

c

`�

`

)

and �(m̂

c

) accounts for both the O(�

s

) QCD correction

to the semileptonic decay width

19

and the leading order

(1=m

b

)

2

power correction

1

. The hadron energy spectrum

can now be obtained by integrating over ŝ

0

with the kine-

matic boundaries: max(m̂

2

s

;�1+ 2x

0

+ 4m̂

2

l

) � ŝ

0

� x

2

0

,

m̂

s

� x

0

�

1

2

(1 + m̂

2

s

� 4m̂

2

l

). The hadron energy spec-

trum dB(B ! X

s

`

+

`

�

)=dE

0

in the parton model (dotted

line) and including leading power corrections (solid line)

are shown in Fig. 2. For m

b

=2 < E

0

< m

b

the two distri-

butions coincide. Note that the 1=m

2

b

-expansion breaks

down near the lower end-point of the hadron energy spec-

trum and at the c�c threshold. Hence, only suitably aver-

aged spectra are useful for comparison with experiments

in these regions. Apart from these regions, the HQET

and parton model spectra are remarkably close to each

other.

5 Hadron Spectral Moments in B ! X

s

`

+

`

�

The lowest spectral moments in the decay B !

X

s

`

+

`

�

at the parton level are worked out by taking into

account the two types of corrections discussed earlier,

namely the leading power 1=m

b

and the perturbative

4



Figure 2: Hadron energy spectrum dB(B ! X

s

`

+

`

�

)=dE

0

in the

parton model (dotted line) and including leading power corrections

(solid line). For m

b

=2 < E

0

< m

b

the two distributions coincide.

O(�

s

) corrections. To that end, we de�ne the moments

for integers n and m:

M

(n;m)

l

+

l

�

�

1

B

0

Z

(ŝ

0

� m̂

2

s

)

n

x

m

0

dB

dŝ

0

dx

0

dŝ

0

dx

0

; (14)

which obey hx

m

0

(ŝ

0

� m̂

2

s

)

n

i =

B

0

B

M

(n;m)

l

+

l

�

. These mo-

ments can be expanded as a double Taylor series in �

s

and 1=m

b

:

M

(n;m)

l

+

l

�

= D

(n;m)

0

+

�

s

�

C

9

2

A

(n;m)

+

^

�

1

D

(n;m)

1

+

^

�

2

D

(n;m)

2

; (15)

with a further decomposition of D

(n;m)

i

, i = 0; 1; 2, into

pieces from di�erent Wilson coe�cients:

D

(n;m)

i

= �

(n;m)

i

C

e�

7

2

+ �

(n;m)

i

C

2

10

+ 


(n;m)

i

C

e�

7

+ �

(n;m)

i

:

(16)

The terms 


(n;m)

i

and �

(n;m)

i

in Eq. (16) result from

the terms proportional to Re(C

e�

9

)C

e�

7

and jC

e�

9

j

2

in

Eq. (12), respectively. The explicit expressions for

�

(n;m)

i

; �

(n;m)

i

; 


(n;m)

i

; �

(n;m)

i

are given in our paper

5

.

The leading perturbative contributions for the

hadronic invariant mass and hadron energy moments can

be obtained analytically,

A

(0;0)

=

25� 4�

2

9

; A

(1;0)

=

91

675

; A

(2;0)

=

5

486

;

A

(0;1)

=

1381� 210�

2

1350

; A

(0;2)

=

2257� 320�

2

5400

: (17)

The zeroth moment n = m = 0 is needed for the normal-

ization; the result for A

(0;0)

was �rst derived by Cabibbo

and Maiani

19

. Likewise, the �rst mixed moment A

(1;1)

can be extracted from the results for the decay B ! X`�

`

20

after changing the normalization, A

(1;1)

= 3=50. For

the lowest order parton model contribution D

(n;m)

0

, we

�nd, in agreement with

20

, that the �rst two hadronic

invariant mass moments hŝ

0

� m̂

2

s

i; h(ŝ

0

� m̂

2

s

)

2

i and the

�rst mixed moment hx

0

(ŝ

0

�m̂

2

s

)i vanish: D

(n;0)

0

= 0, for

n = 1; 2 and D

(1;1)

0

= 0 .

Using the expressions for the HQET moments de-

rived by us

5

, we present the numerical results for the

hadronic moments in B ! X

s

`

+

`

�

. The parame-

ters used are : m

s

= 0:2 GeV;m

c

= 1:4 GeV;m

b

=

4:8 GeV;m

t

= 175 � 5 GeV; � = m

b

+m

b

�m

b

=2

; �

s

(m

Z

) =

0:117�0:005 ; �

�1

= 129. We �nd for the short-distance

hadronic moments, valid up to O(�

s

=m

2

B

; 1=m

3

B

):

hS

H

i = m

2

B

(

m

2

s

m

2

B

+ 0:093

�

s

�

� 0:069

�

�

m

B

�

s

�

+0:735

�

�

m

B

+ 0:243

�

�

2

m

2

B

+ 0:273

�

1

m

2

B

� 0:513

�

2

m

2

B

) ;

hS

2

H

i = m

4

B

(0:0071

�

s

�

+ 0:138

�

�

m

B

�

s

�

+0:587

�

�

2

m

2

B

� 0:196

�

1

m

2

B

) ; (18)

hE

H

i = 0:367m

B

(1 + 0:148

�

s

�

� 0:352

�

�

m

B

�

s

�

+ 1:691

�

�

m

B

+0:012

�

�

2

m

2

B

+ 0:024

�

1

m

2

B

+ 1:070

�

2

m

2

B

) ;

hE

2

H

i = 0:147m

2

B

(1 + 0:324

�

s

�

� 0:128

�

�

m

B

�

s

�

+ 2:954

�

�

m

B

+2:740

�

�

2

m

2

B

� 0:299

�

1

m

2

B

+ 0:162

�

2

m

2

B

) ;

where the numbers shown correspond to the central val-

ues of the parameters.

The dependence of the hadronic moments given in

Eq. (18) on the HQET parameters �

1

and

�

� has been

worked out numerically. In doing this, the theoretical

errors on these moments following from the errors on the

input parameters m

t

, �

s

and the scale � have been esti-

mated by varying these parameters in the indicated �1�

ranges, one at a time, and adding the individual errors

in quadrature. The correlations on the HQET param-

eters �

1

and

�

� which follow from (assumed) �xed val-

ues of the hadronic invariant mass moments hS

H

i and

hS

2

H

i (calculated using

�

� = 0:39GeV, �

1

= �0:2GeV

2

and �

2

= 0:12GeV

2

) are shown in Fig. 3 (for the de-

cay B ! X

s

�

+

�

�

). The (�

1

-

�

�) correlation from the

analysis of Gremm et al.

11

for the electron energy spec-

trum in B ! X`�

`

is shown as an ellipse in this �g-

ure. With the measurements of hS

H

i and hS

2

H

i in the

5



Figure 3: hS

H

i (solid bands) and hS

2

H

i (dashed bands) correlation

in (�

1

-

�

�) space for the decay B ! X

s

`

+

`

�

. The correlation from

the analysis of the decay B ! X`�

`

by Gremm et al.

11

is shown

as an ellipse.

decay B ! X

s

`

+

`

�

, one has to solve the experimen-

tal numbers on the l.h.s. of Eq. (18) for �

1

and

�

�. It

is, however, clear that the constraints from the decays

B ! X

s

`

+

`

�

and B ! X`�

`

are complementry. Us-

ing the CLEO cuts on hadronic and dileptonic masses

9

,

we estimate that O(200) B ! X

s

`

+

`

�

(` = e; �) events

will be available per 10

7

B

�

B hadrons

5

. So, there will

be plenty of B ! X

s

`

+

`

�

decays in the forthcoming B

facilities to measure the correlation shown in Fig. 3.

Of course, the utility of the hadronic moments calcu-

lated above is only in conjunction with the experimental

cuts which could e�ectively remove the resonant (long-

distance) contributions. The optimal experimental cuts

in B ! X

s

`

+

`

�

remain to be de�ned, but for the cuts

used by the CLEO collaboration we have studied the ef-

fects in the HQET-like Fermi motion (FM) model

21

. We

�nd that the hadronic moments in the HQET and FM

model are very similar and CLEO-type cuts remove the

bulk of the c�c resonant contributions

5

.

In summary, we have calculated the dominant con-

tributions to the hadron spectra and spectral moments

in B ! X

s

`

+

`

�

including contributions up to terms of

O(�

s

=m

2

B

; 1=m

3

B

). We have presented the results on the

spectral hadronic moments hE

n

H

i and hS

n

H

i for n = 1; 2

and have worked out their dependence on the HQET pa-

rameters

�

� and �

1

. The correlations in B ! X

s

`

+

`

�

are

shown to be di�erent than the ones in the semileptonic

decay B ! X`�

`

. This complementarity allows, in prin-

ciple, a powerful method to determine them precisely

from data on B ! X`�

`

and B ! X

s

`

+

`

�

in forthcoming

high luminosity B facilities.
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