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Nucleon form factors have been extensively studied both experimentally and theoretically for many

years. We report here on new results of a high statistics quenched lattice QCD calculation of vector and

axial-vector nucleon form factors at low momentum transfer within the Symanzik improvement programme.

The simulations are performed at three � and three � values allowing �rst an extrapolation to the chiral

limit and then an extrapolation in the lattice spacing to the continuum limit. The computations are all

fully non-perturbative. A comparison with experimental results is made.

1. INTRODUCTION

For many years experiments have been per-

formed with electron{nucleon scattering to ob-

tain information about the structure of the nu-

cleon. Form factors are de�ned from the gen-

eral decomposition of the proton, p (or neu-

tron, n) matrix element
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We have F

1

(0) = 1 as V is a conserved current,

while F

2

(0) = � � 1 measures the anomalous

magnetic moment (in magnetons). Usually we

de�ne the Sachs form factors:
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We have already re-written everything in euclidean

space, so that eg p = (iE

p

; ~p) and �q

2

� q

(M)2

> 0.

Experiments lead to phenomenological dipole

�ts:
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with m

V

� 0:82 GeV, �

p

� 2:79, �

n

� �1:91.

Neutrino{neutron scattering, n�

�

! p�

�

,

gives from the charged weak current the axial

form factor g

A

(�q

2

). In addition g

A

(0) is also

accurately obtained from �-decay, n! pe

�

�.

Upon using current algebra this form factor

can be related to the matrix element:
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The phenomenological �ts are:
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with g

A

(0) = 1:26, m

A

� 1:00 GeV.



2

2. THE LATTICE METHOD

Quenched con�gurations have been gener-

ated at � = 6:0 (O(500), 16

3

� 32 lattice)

� = 6:2 (O(300), 24

3

�48 lattice) and � = 6:4

(O(100), 32

3

�48 lattice), [1]. By forming the

ratio of three-to-two point functions, [2]:
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the appropriate matrix elements can be found.

(Only the quark line connected part of the

3-point function is considered.) For each �

we chose three � values and a variety of 3-

momenta: ~p = 2�=N

s

f (0; 0; 0), (1; 0; 0) g,

~q = 2�=N

s

f (0; 0; 0), (0; 1; 0), (0; 2; 0), (1; 0; 0),

(2; 0; 0), (1; 1; 0), (1; 1; 1), (0; 0; 1) g together

with the nucleon either unpolarised or po-

larised in the y direction. (Some combinations

were too noisy to be used though.) After sort-

ing the matrix elements into q

2

classes (de-

�ned by q

2

in the chiral limit), 4-parameter

�ts are made assuming that the form factors

are linear in the bare quark mass am

q

. O(a)

improved Symanzik operators are used:
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where Z

V

, Z

A

, b

V

, c

V

, c

A

(and c

sw

) have

been non-perturbatively calculated by the Al-

pha collaboration, [3]. All matrix elements

thus are correct to O(a

2

). We can check Z

V

as V

�

is a conserved current (ie F

1

(0) = 1).

In Fig. 1 we show a comparison of the two

determinations of Z

V

. Very good agreement

is seen. This is not the case when Wilson

fermions are used (see ref. [5]). Finally we

note that although we have included the im-

provement terms in our operators, numerically

they seem to have little in
uence on the value

of the matrix element.
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Figure 1. Z

V

for improved fermions. Shown is

the lowest order perturbation result together with a

tadpole-improved version (as given in [4]). The non-

perturbativedeterminations are shown as open circles,

[3], and �lled squares, this work.
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Figure 2. The proton form-factors G

p

e

(�q

2

) and

G

p

m

(�q

2

) against �q

2

showing experimental results

(open circles, taken from ref. [6]) and lattice results

(�lled circles, � = 6:2 only). The string tension is

used to �x the scale as in [4]. All �ts are dipole �ts.

3. RESULTS

In Fig. 2 we show G

p

e

(�q

2

) and G

p

m

(�q

2

)

for � = 6:2 together with experimental results

(also plotting the other � values tends to clut-

ter the picture). Making dipole �ts gives Fig. 3

for the continuum extrapolation. There seems

to be little inclination for m

V

to approach the

experimental result. (A roughly similar result

is obtained from G

p

m

, although due to larger

error bars the results are more compatible.)

For the axial current we �nd the results in

Figs. 4, 5. The form factor fall-o� is again too
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Figure 3. m

V

from � = 6:0, 6:2, 6:4 against a

2

. The

phenomenological value is also given at a

2

= 0.
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Figure 4. g

A

(�q

2

) against�q

2

, notation as in Fig. 2.

soft as m

A

is too large. However the impor-

tant g

A

(0) is faring better, see Fig. 6.

4. CONCLUSIONS

We have performed simulations at three �

values so that an attempt can be made to

take the continuum extrapolation, a ! 0.

While the lattice dipole masses seem to be too

large, g

A

(0) is in reasonable agreement with

the experimental result. The mass discrep-

ancies may be due to a quenching e�ect, al-

though only similar simulations using dynam-

ical fermions will be able to answer this.
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