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Abstract

In the semiclassical approach, inclusive and di�ractive quark and gluon distribu-

tions are expressed in terms of correlation functions of Wilson loops. Each Wilson

loop integrates the colour �eld strength in the area between the trajectories of

two fast partons penetrating the proton. We introduce a speci�c model for aver-

aging over the relevant colour �eld con�gurations. Within this model, all parton

distributions at some low scale Q

2

0

are given in terms of three parameters. Inclu-

sive and di�ractive structure functions at higher values of Q

2

are determined in a

leading-order QCD analysis. In both cases, the evolution is driven by a large gluon

distribution. A satisfactory description of the structure functions F

2

(x;Q

2

) and

F

D(3)

2

(�; �; Q

2

) is obtained. The observed rise of F

D(3)

2

with � is parametrized by

a non-perturbative logarithmic energy dependence, compatible with unitarity. In

our analysis, the observed rise of F

2

at small x is largely due to the same e�ect.



1 Introduction

Recently, precise measurements of inclusive [1] and di�ractive [2] structure functions

at small x have become available. Numerical analyses, based on di�erent theoretical

approaches, have been performed by many authors (see e.g. [3{6]).

In the present paper, a joint analysis of di�ractive and inclusive structure functions

based on the semiclassical calculations of [7,8] is performed. The idea of a close similarity

between di�ractive and non-di�ractive processes in deep inelastic scattering (DIS) lies

at the heart of the semiclassical approach. In both cases, a partonic uctuation of the

incoming virtual photon scatters o� a superposition of target colour �elds. If the scattered

partons emerge in an overall colour singlet con�guration, a di�ractive �nal state results.

Comparing the semiclassical description of structure functions with parton model

expressions, we de�ne inclusive and di�ractive [9] parton distributions in the semiclassical

approach. Higher order contributions in the semiclassical calculation exactly reproduce

the leading logarithmic corrections to the parton model, showing the consistency of both

approaches. The semiclassical method is therefore used at some low scale to derive initial

distributions. Starting from these distributions, a leading-order DGLAP analysis [10] of

experimental data is performed.

The calculation of the above initial distributions involves averaging over all relevant

colour �eld con�gurations. To perform this averaging, a simple non-perturbative model,

valid in the case of large hadronic targets [11], is used. It is based on the observation

that, for extended target colour �elds, the transverse size of partonic uctuations of the

photon remains small [12].

The energy dependence arising from the large-momentum cuto� applied in the pro-

cess of colour �eld averaging can not be calculated from �rst principles. It is described

by a ln

2

x ansatz, consistent with unitarity. In the semiclassical approach, this energy

dependence is expected to be universal for both the inclusive and di�ractive structure

functions [13].

Overall, a satisfactory description of inclusive and di�ractive small-x structure func-

tions, based on a minimal number of assumptions and only four �tted parameters, is

achieved. In our opinion, this lends support to the idea of a close similarity between

the mechanisms of inclusive and di�ractive scattering and its implementation in the

semiclassical approach.

The paper is organized as follows. In Sections 2 and 3, semiclassical formulae for

inclusive and di�ractive parton distributions are given, and the underlying physical pic-

ture is discussed. Section 4 deals with our model for the colour �eld averaging that is

responsible for the input distributions. The leading-order DGLAP analysis and the com-

parison with experimental data are the subject of Sect. 5, followed by conclusions in

Sect. 6. Appendix A contains some additional formulae relevant for the calculation of

the di�ractive parton distribution functions. Finally, we illustrate in Appendix B how

the di�ractive parton distributions of a small colour dipole, calculated in [14], can be

obtained using the semiclassical method.
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Figure 1: Inclusive DIS in the proton rest frame (left) and the Breit frame (right);

asymmetric uctuations correspond to quark scattering (a), symmetric uctuations to

boson-gluon fusion (b).

2 Inclusive structure functions

Small-x DIS can be conveniently discussed in terms of the q�q wave function of the virtual

photon (see e.g. [3]). In the semiclassical approach, the corresponding q�q states scatter

o� a `soft' target colour �eld (cf. the l.h. side of Fig. 1). As x! 0, the resulting inclusive

structure function F

T

(x;Q

2

) approaches a constant [7],

F

T

(x;Q

2

) =

2Q

2

e

2

q

(2�)

4

Z

1

0

d�(�

2

+ (1� �)

2

)N

2

Z

y

?

K

1

(yN)

2

Z

x

?

tr

�

W

F

x

?

(y

?

)W

Fy

x

?

(y

?

)

�

+O(x) : (1)

The light-like paths of quark and antiquark penetrate the colour �eld of the proton at

transverse positions x

?

and x

?

+ y

?

picking up non-Abelian phase factors U

F

(x

?

) and

U

Fy

(x

?

+ y

?

) (where F stands for the fundamental representation). The function

W

F

x

?

(y

?

) = U

F

(x

?

)U

Fy

(x

?

+ y

?

)� 1 (2)

is essentially a closed Wilson loop through the corresponding section of the proton, which

measures an integral of the proton colour �eld strength. Furthermore, � is the fraction

of the photon momentum carried by the quark, N

2

= �(1��)Q

2

, y = jy

?

j and e

q

is the

quark charge.

To map this calculation onto the conventional parton model framework, extract the

leading-twist contribution from Eq. (1) and identify it with F

T

(x;Q

2

) = 2e

2

q

xq(x;Q

2

).
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The resulting quark distribution reads

xq(x;Q

2

) =

2

(2�)

4

Z

�

2

0

N

2

dN

2

Z

y

?

K

1

(yN)

2

Z

x

?

tr

�

W

F

x

?

(y

?

)W

Fy

x

?

(y

?

)

�

+

2

3(2�)

3

 

ln

Q

2

�

2

� 1

!

Z

x

?

tr

�

@

y

?

W

F

x

?

(0)@

y

?

W

Fy

x

?

(0)

�

: (3)

Note that this expression is independent of �

2

, which has only been introduced to separate

the logarithmic Q

2

dependence explicitly. We have assumed that the hadronic structure,

encoded in the y

2

dependence of WW

y

, is dominated by the soft scale �

2

, which satis�es

�

2

� �

2

� Q

2

.

The corresponding gluon distribution at small x is most easily calculated as

xg(x;Q

2

) =

3�

�

s

e

2

q

�

@F

T

(x;Q

2

)

@ lnQ

2

=

1

2�

2

�

s

Z

x

?

tr

�

@

y

?

W

F

x

?

(0)@

y

?

W

Fy

x

?

(0)

�

: (4)

Equations (3) and (4) provide the basis for our analysis of inclusive DIS. Note that

the semiclassical approach predicts g(x;Q

2

) � 1=x, which is expected for a classical

bremsstrahlung spectrum of gluons.

To gain more physical insight into the correspondence of the semiclassical and the

parton model approach, return to our starting point, Eq. (1). It is instructive to view

F

T

as a sum of two terms: F

asym

T

, the contribution of asymmetric con�gurations where

quark or antiquark are slow, � < �

2

=Q

2

or 1 � � < �

2

=Q

2

(Fig. 1a), and F

sym

T

, the

contribution of symmetric con�gurations where both quark and antiquark are fast, �; 1�

� > �

2

=Q

2

(Fig. 1b). In an in�nite momentum frame of the proton, the asymmetric and

symmetric contribution to F

T

correspond to photon-quark scattering and photon-gluon

fusion respectively.

The symmetric part is dominated by small q�q pairs, i.e., by the short distance con-

tribution to the Wilson-loop trace,

Z

x

?

tr

�

W

F

x

?

(y

?

)W

Fy

x

?

(y

?

)

�

=

1

2

y

2

Z

x

?

tr

�

@

y

?

W

F

x

?

(0)@

y

?

W

Fy

x

?

(0)

�

+O(y

4

) : (5)

The corresponding contribution to the structure function is related to the second term on

the r.h. side of Eq. (3), which generates the gluon distribution, Eq. (4). It was evaluated

in [7] at leading order in �

2

=�

2

and �

2

=Q

2

,

F

sym

T

(0; Q

2

) =

e

2

q

2�

3

Z

1

0

dzP

qg

(z)

 

ln

Q

2

�

2

� 1

!

Z

x

?

tr

�

@

y

?

W

F

x

?

(0)@

y

?

W

Fy

x

?

(0)

�

: (6)

Here P

qg

(z) is the conventional gluon-quark splitting function.

The other splitting functions appear if �

s

corrections to F

T

and F

L

, associated with

higher Fock states of the virtual photon, are considered in the semiclassical approach.

For example, the q�qg parton con�guration involves, in the case where one of the quarks

carries a small fraction of the photon momentum, a lnQ

2

term associated with P

qq

(z).
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The splitting function P

gg

(z) is most easily derived by considering an incoming virtual

scalar which couples directly to the gluonic action term F

��

F

��

. Its lowest order Fock

state consists of two gluons. We have checked explicitly that the semiclassical calculation

of the corresponding high energy scattering process yields the usual gluon-gluon splitting

function.

Having shown that the leading logarithmic QCD corrections to the semiclassical ap-

proach exactly reproduce the well-known DGLAP splitting functions [10], we do not

pursue the calculation of higher order �

s

contributions along the lines discussed above.

Instead, the large logarithms ln (Q

2

=�

2

) are resummed in the conventional way, by means

of the renormalization group. To this end, the parton distributions q(x;Q

2

) and g(x;Q

2

)

are evaluated using DGLAP evolution equations, with the input distributions q(x;Q

2

0

)

and g(x;Q

2

0

) given by Eqs. (3) and (4). Here Q

2

0

is some small scale where logarith-

mic corrections are not yet important. The parton model description of the structure

function at leading order includes only photon-quark scattering. The leading logarithmic

term from the photon-gluon fusion process appears now as part of the resummed quark

distribution.

So far, we have considered electroproduction o� a �xed `soft' colour �eld. As a con-

sequence, the unevolved structure function F

T

(x;Q

2

0

) approaches a constant value as

x! 0. However, a proper treatment of the target requires the integration over all rele-

vant colour �eld con�gurations.

The qualitative features of the �eld averaging procedure are most conveniently dis-

cussed for the simple case of q�q pair production in the proton rest frame. Consider the

corresponding amplitude in a `mixed' representation, < q�q A j 

�

p >, where the �nal

state consists of the outgoing q�q pair and a colour �eld con�guration A. We neglect any

time evolution of the �eld between the actual scattering process and the moment at

which the �nal state �eld con�guration A is de�ned. The squared amplitude, summed

over all �elds A and normalized to the total space-time volume, reads

1

V T

Z

A

j < q�q A j 

�

p > j

2

= 4�m

p

�(k

0

q

+ k

0

�q

� q

0

)

Z

A

loc

�

�

��

p

[A

loc

]F [A

loc

]

�

�

�

2

: (7)

Here �

p

is the proton wave functional, F is de�ned by the amplitude for the scattering

o� a �xed �eld A,

< q�q j 

�

>

A

= 2��(k

0

q

+ k

0

�q

� q

0

)F [A] ; (8)

m

p

is the proton mass, and q, k

q

, k

�q

are the momenta of the incoming photon and the

outgoing quark and antiquark respectively. The index `loc' symbolizes that, on the r.h.

side of Eq. (7), the integration is restricted to �elds localized at, say, ~x = 0. This can

be justi�ed using translation covariance of the proton wave functional and of the matrix

element < q�q j 

�

>

A

(cf. Sect. 2 of [7]).

When writing W

F

x

?

(y

?

) we have, until now, always assumed the functional depen-

dence on the classical colour �eld con�guration A

cl

to be implicit, so that one should

really read W

F

x

?

(y

?

)[A

cl

]. As can be seen from Eq. (7), the full inclusive parton distribu-
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tions are obtained from the previous formulae by the substitution

tr

�

W

F

x

?

(y

?

)[A

cl

]W

Fy

x

?

(y

?

)[A

cl

]

�

!

Z

A

loc

�

�

��

p

[A

loc

]

�

�

�

2

tr

�

W

F

x

?

(y

?

)[A

loc

]W

Fy

x

?

(y

?

)[A

loc

]

�

:

(9)

The same applies to the di�ractive distributions of the next section. An explicit model

for the �eld average will be described in Sect. 4.

Decomposing the �eld A

loc

in Eq. (7) into its Fourier modes

~

A

loc

(

~

k), the path integral

can be written as

Z

A

loc

=

Y

j

~

kj�j~qj

Z

d

~

A

loc

(

~

k) ; (10)

where the cuto� j~qj is required to ensure that the basic precondition for the semiclassical

treatment, the softness of the target colour �eld with respect to the momenta of the

fast particles, is respected. This cuto� induces a non-trivial energy dependence of the

squared amplitude in Eq. (7).

We are not able to derive the explicit form of that energy dependence from �rst

principles. Nevertheless, based on the above qualitative discussion, we ascribe a soft,

non-perturbative energy growth to our input parton distributions used in the numerical

analysis of Sect. 5.

3 Di�ractive structure functions

The di�ractive cross sections obtained in the semiclassical approach [7] can be expressed

as convolution of the ordinary partonic cross sections and di�ractive parton distributions,

calculated in [8]. The q�q and q�qg con�gurations then yield

d�

T;L

d�

=

Z

�

x

dy

(

�

�̂

T;L

(y)



�

q!q

+ �̂

T;L

(y)



�

q!qg

�

dq(x=y; �)

d�

+ �̂

T;L

(y)



�

g!q�q

dg(x=y; �)

d�

)

: (11)

Here � is related to the di�ractive mass M by � = x

IP

= x=� and � = Q

2

=(Q

2

+M

2

).

The corresponding structure functions read

F

D

T

(�; �;Q

2

) = 2e

2

q

x

Z

1

�

db

b

( 

�(1� z) +

�

s

2�

 

P

qq

(z) ln

Q

2

�

2

+ : : :

!!

dq(b; �)

d�

+

�

s

2�

 

P

qg

(z) ln

Q

2

�

2

+ : : :

!

dg(b; �)

d�

)

; (12)

F

D

L

(�; �;Q

2

) = 2e

2

q

x

�

s

2�

Z

1

�

db

b

(

2C

F

z

dq(b; �)

d�

+ 4T

F

z(1� z)

dg(b; �)

d�

)

; (13)

where z = �=b, and C

F

and T

F

are the usual colour factors. The physical interpretation

of the di�ractive parton distributions in the Breit frame is analogous to the interpretation
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of the inclusive distributions. The function df(b; �)=d� (where f = q; g) is a conditional

probability distribution. It describes the probability of �nding a parton f , carrying a

fraction �b of the proton momentum, inside a colour-neutral cluster of partons that

carries in total a fraction � of the proton momentum.

From Eqs. (12) and (13), it is obvious that the di�ractive structure functions satisfy

the ordinary DGLAP evolution equations (cf. the more general discussion of [15]). The

perturbative evolution takes place in the variables � and Q

2

; � acts merely as a parameter.

The physical reason for this is intuitively clear: for an arbitrary DIS event the invariant

hadronic mass is W , and the quark which couples to the virtual photon can be radiated

by a parton whose fraction of the proton momentum varies from 1 to x = Q

2

=(Q

2

+W

2

).

In a di�ractive event, a colour-neutral cluster of `wee partons' is stripped o� the proton.

The invariant mass of this cluster and the virtual photon is M . Hence, W is replaced

by M , and the quark which couples to the photon can be radiated by a parton whose

fraction of the cluster momentum varies from 1 to � = Q

2

=(Q

2

+M

2

).

The separation of the colour-neutral cluster of `wee partons' is non-perturbative and

independent of the perturbative evolution. It is, however, incorrect to visualize a two-

step process where the colour-neutral cluster is �rst emitted by the proton and then

probed by the virtual photon. If this was the case, the two-gluon or two-quark cluster

relevant in our calculation (cf. the r.h. side of Fig. 2) would necessarily lead to parton

distributions symmetric in � and 1 � �. A counter example to this is provided by the

model distributions derived in Sect. 4.

The di�ractive quark and gluon distributions have been determined in [8]. In terms

of Wilson loops in coordinate space, the quark distribution can be expressed as follows

(cf. Appendix A),

dq(b; �)

d�

=

2b

�

2

(1� b)

3

Z

d

2

k

0

?

k

04

(2�)

6

N

c

Z

y

?

;y

0

?

e

ik

0

?

(y

?

�y

0

?

)

y

?

y

0

?

y y

0

�K

1

(yN)K

1

(y

0

N)

Z

x

?

trW

F

x

?

(y

?

)trW

Fy

x

?

(y

0

?

) ; (14)

where N

c

is the number of colours and

N

2

= k

02

b

1� b

: (15)

The corresponding expression for the di�ractive gluon distribution is very similar. Be-

cause of the di�erent colour and spin of the gluon, the Wilson loop is now in the adjoint

representation, the tensor structure is di�erent and the modi�ed Bessel function K

2

appears

1

,

dg(b; �)

d�

=

b

�

2

(1 � b)

3

Z

d

2

k

0

?

k

04

(2�)

6

N

2

c

Z

y

?

;y

0

?

e

ik

0

?

(y

?

�y

0

?

)

t

ij

(y

?

)t

ij

(y

0

?

)

�K

2

(yN)K

2

(y

0

N)

Z

x

?

trW

A

x

?

(y

?

)trW

Ay

x

?

(y

0

?

) ; (16)

1

To simplify the colour algebra of Sect. 4, we use the large N

c

limit throughout this paper, with the

exception of the standard DGLAP evolution in Sect. 5.
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Figure 2: Di�ractive DIS in the proton rest frame (left) and the Breit frame (right);

asymmetric quark uctuations correspond to di�ractive quark scattering, asymmetric

gluon uctuations to di�ractive boson-gluon fusion.

where

t

ij

(y

?

) = �

ij

� 2

y

i

y

j

y

2

: (17)

The physical content of both expressions is rather transparent. The modi�ed Bessel

functions contain the kinematic e�ects due to the propagators of the partons penetrating

the colour �eld and the Wilson loops represent the interaction with the proton. Figure 2

illustrates the correspondence between the semiclassical and parton model view of the

leading-order processes testing di�ractive quark and gluon distributions.

To illustrate the close similarity of di�ractive and inclusive scattering in the semiclas-

sical approach, it is instructive to evaluate the di�ractive contribution to the inclusive

quark distribution. To achieve this, one sets x = b� and integrates over � keeping x �xed,

q

D

(x) =

Z

1

x

d�

dq(x=�; �)

d�

: (18)

After neglecting terms O(x) and exchanging the integration variable � for N

2

, the k

0

?

integration can be performed trivially. As a consequence, the integrand is evaluated at

y

?

= y

0

?

, giving the simple result

xq

D

(x) =

2

(2�)

4

N

c

Z

N

2

dN

2

Z

y

?

K

1

(yN)

2

Z

x

?

trW

F

x

?

(y

?

)trW

Fy

x

?

(y

?

) : (19)

This expression can also be obtained from Eq. (3) by the substitution

tr

�

W

F

x

?

(y

?

)W

Fy

x

?

(y

?

)

�

!

1

N

c

trW

F

x

?

(y

?

)trW

Fy

x

?

(y

?

) : (20)
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After this substitution, theN

2

integration in Eq. (3) becomes UV-�nite, so that the upper

limit �

2

can be dropped; the lnQ

2

term disappears since tr @

y

?

W

F

x

?

(0) = 0. The above

relation between the inclusive and di�ractive quark distribution illustrates most clearly

the basic idea of the semiclassical approach: di�ractive and non-di�ractive events are

both induced by the interaction of the soft proton colour �eld with a partonic uctuation

of the incoming virtual photon. The di�erent �nal states are realized by projecting the

outgoing partonic system onto di�erent colour con�gurations.

Let us �nally note that the semiclassical formulae for di�ractive parton distributions

[8] used in this paper are su�ciently general to accommodate di�erent models of the

hadron colour �eld. For example, they can serve as an alternative starting point for the

derivation of the perturbatively generated distributions of [14], where a heavy quark-

antiquark uctuation of a photon was used as a model for the target. Taking the colour

�eld responsible for trW trW

y

in Eqs. (14) and (16) to be the perturbative �eld of a small

dipole con�guration, the results of [14] are exactly reproduced (cf. Appendix B). However,

the analysis of the present paper is based on the fundamentally non-perturbative model

described in the next section.

4 A Model for the gluon �eld averaging

The averaging over the gluon �eld con�gurations of the target discussed in the two

previous sections is a complicated operation depending on the full details of the non-

perturbative hadronic state. However, in the special case of a very large target, a quan-

titative treatment becomes possible under minimal additional assumptions.

McLerran and Venugopalan have observed that the large size of a hadronic target,

realized, e.g., in an extremely heavy nucleus, introduces a new hard scale into the process

of DIS [11]. From the target rest frame point of view, this means that the typical trans-

verse size of the partonic uctuations of the virtual photon remains perturbative [12],

thus justifying the omission of higher Fock states in the semiclassical calculation. Note

that this does not imply a complete reduction to perturbation theory since the long

distance which the partonic uctuation travels in the target compensates for its small

transverse size, thus requiring the eikonalization of gluon exchange.

Within this framework, it is natural to introduce the additional assumption that the

gluonic �elds encountered by the partonic probe in distant regions of the target are not

correlated (cf. [16] and the somewhat simpli�ed discussion in [12]). Thus, one arrives at

the situation depicted in Fig. 3, where a colour dipole passes a large number of regions,

each one of size � 1=�, with mutually uncorrelated colour �elds A

1

... A

n

.

Consider the fundamental quantity W

x

?

(y

?

)

ij

[A]W

y

x

?

(y

0

?

)

kl

[A] which, after specify-

ing the required representation and appropriately contracting the colour indices ijkl, en-

ters the formulae for inclusive and di�ractive parton distributions. According to Eq. (2),

this quantity is the sum of four terms, the most complicated of which involves four U

9



A A AA1 2 3 n

x

 x + y

Figure 3: Colour dipole travelling through a large hadronic target.

matrices,

n

U

x

?

[A]U

y

x

?

+y

?

[A]

o

ij

n

U

x

?

+y

0

?

[A]U

y

x

?

[A]

o

kl

(21)

=

n

U

x

?

[A

n

] � � �U

x

?

[A

1

] U

y

x

?

+y

?

[A

1

] � � �U

y

x

?

+y

?

[A

n

]

o

ij

�

n

U

x

?

+y

0

?

[A

n

] � � �U

x

?

+y

0

?

[A

1

] U

y

x

?

[A

1

] � � �U

y

x

?

[A

n

]

o

kl

:

The crucial assumption that the �elds in regions 1 ... n are uncorrelated is implemented

by writing the integral over all �eld con�gurations as

Z

A

=

Z

A

1

� � �

Z

A

n

; (22)

i.e., as a product of independent integrals. Here the appropriate weighting provided by

the target wave functional is implicit in the symbol

R

A

.

Under the integration speci�ed by Eq. (22), the U matrices on the r.h. side of Eq. (21)

can be rearranged to give the result

Z

A

n

U

x

?

[A]U

y

x

?

+y

?

[A]

o

ij

n

U

x

?

+y

0

?

[A]U

y

x

?

[A]

o

kl

(23)

=

Z

A

1

� � �

Z

A

n

n

U

x

?

[A

1

] U

y

x

?

+y

?

[A

1

] � � �U

x

?

[A

n

] U

y

x

?

+y

?

[A

n

]

o

ij

�

n

U

x

?

+y

0

?

[A

n

] U

y

x

?

[A

n

] � � �U

x

?

+y

0

?

[A

1

] U

y

x

?

[A

1

]

o

kl

:

To see this, observe that theA

1

integration acts on the integrand fU

x

?

[A

1

]U

y

x

?

+y

?

[A

1

]g

i

0

j

0

fU

x

?

+y

0

?

[A

1

]U

y

x

?

[A

1

]g

k

0

l

0

transforming it into an invariant colour tensor with the in-

dices i

0

j

0

k

0

l

0

. The neighbouring matrices U

x

?

[A

2

] and U

y

x

?

[A

2

] can now be commuted

through this tensor structure in such a way that the expression fU

x

?

[A

2

]U

y

x

?

+y

?

[A

2

]g

i

00

j

00

fU

x

?

+y

0

?

[A

2

]U

y

x

?

[A

2

]g

k

00

l

00

emerges. Subsequently, the A

2

integration transforms this ex-

pression into an invariant tensor with indices i

00

j

00

k

00

l

00

. Repeating this argument, one

eventually arrives at the structure displayed on the r.h. side of Eq. (23).

To evaluate Eq. (23) further, observe that it represents a contraction of n identical

tensors

F

ijkl

=

Z

A

m

fU

x

?

[A

m

]U

y

x

?

+y

?

[A

m

]g

ij

fU

x

?

+y

0

?

[A

m

]U

y

x

?

[A

m

]g

kl

; (24)

where the index m refers to any one of the regions 1 ... n into which the target is

subdivided. At this point, we make use of the fact that for a su�ciently large target the

10



transverse separations y

?

and y

0

?

are always small [12]. In fact, for a target of geometrical

size � n=� (where n� 1), the relevant transverse distances are bounded by y

2

� y

02

�

1=n�

2

.

Assuming that size and x

?

dependence of typical �eld con�gurations A

m

are charac-

terized by the scale �, it follows that the products U

x

?

U

y

x

?

+y

?

and U

x

?

+y

0

?

U

y

x

?

are close

to unit matrices for all relevant y

?

and y

0

?

. Therefore, it is justi�ed to write

U

x

?

[A

m

]U

y

x

?

+y

?

[A

m

] = exp fiT

a

f

a

(x

?

; y

?

)[A

m

]g ; (25)

where T

a

are the conventional group generators and f

a

are functions of x

?

and y

?

and

functionals of A

m

. Equation (25) and its y

0

?

analogue are expanded around y

?

= y

0

?

= 0

(which corresponds to f

a

(x

?

; 0) = 0) and inserted into Eq. (24). At leading non-trivial

order, the result reads

F

ijkl

= �

ij

�

kl

�

1 �

1

2

C

R

(y

2

+ y

02

)

�

+ (y

?

y

0

?

)T

a

ij

T

a

kl

; (26)

where C

R

is the Casimir number of the relevant representation (C

R

= C

F;A

) and  is

de�ned by

Z

A

f

a

(x

?

; y

?

)f

b

(x

?

; y

0

?

) = �

ab

(y

?

y

0

?

) +O(y

2

y

02

) : (27)

Note that the absence of terms linear in f

a

and the simple structure on the r.h. side of

Eq. (27) are enforced by colour covariance and transverse space covariance. The absence

of an explicit x

?

dependence is a consequence of the homogeneity that we assume to hold

over the large transverse size of the target. Neglecting boundary e�ects, we can account

for the x

?

integration by multiplying the �nal result with a parameter 
 � n

2

=�

2

that

characterizes the geometrical cross section of the target.

Substituting the n tensors F

ijkl

on the r.h. side of Eq. (23) by the expression given in

Eq. (26) and contracting the colour indices as appropriate for the inclusive and di�ractive

case respectively, one obtains, in the large-N

c

limit,

Z

A

n

U

x

?

U

y

x

?

+y

?

o

ij

n

U

x

?

+y

0

?

U

y

x

?

o

ji

= d

R

�

1 �

1

2

C

R

(y

?

� y

0

?

)

2

�

n

; (28)

Z

A

n

U

x

?

U

y

x

?

+y

?

o

ii

n

U

x

?

+y

0

?

U

y

x

?

o

jj

= d

2

R

�

1�

1

2

C

R

(y

2

?

+ y

02

?

)

�

n

; (29)

where d

R

is the dimension of the representation.

Since n is assumed to be large and the typical values of y

2

and y

02

do not exceed

1=n�

2

, the formula (1�x=n)

n

' exp[�x] can be applied to the r.h. sides of Eqs. (28) and

(29). Furthermore, contributions proportional to fU

x

?

U

y

x

?

+y

?

g

ij

�

kl

; �

ij

fU

x

?

+y

0

?

U

y

x

?

g

kl

and �

ij

�

kl

have to be added to obtain the complete expression for W

x

?

(y

?

)

ij

W

y

x

?

(y

0

?

)

kl

.

The corresponding calculations are straightforward and the result reads

Z

x

?

Z

A

tr

�

W

x

?

(y

?

)W

y

x

?

(y

0

?

)

�

= 
d

R

h

1 � e

�a

R

y

2

� e

�a

R

y

02

+ e

�a

R

(y

?

�y

0

?

)

2

i

; (30)

Z

x

?

Z

A

trW

x

?

(y

?

)trW

y

x

?

(y

0

?

) = 
d

2

R

h

1 � e

�a

R

y

2

i h

1 � e

�a

R

y

02

i

; (31)

11



where a

R

= nC

R

=2 plays the role of a saturation scale.

The above calculation, performed at large N

c

and for the case of a large target

subdivided into many uncorrelated regions, has no immediate application to realistic ex-

periments. However, it provides us with a set of non-perturbative inclusive and di�ractive

parton distributions which are highly constrained with respect to each other. Assuming

that some of the essential features of di�ractive and inclusive DIS are common to both

the above model and the realistic proton case, we use the basic formulae Eq. (30) and

(31) for a phenomenological analysis. For this purpose, 
 and a � nN

c

=4 are consid-

ered as new fundamental parameters, giving rise to the following formulae for the basic

hadronic quantities required in Sections 2 and 3,

Z

x

?

Z

A

tr

�

W

F

x

?

(y

?

)W

Fy

x

?

(y

0

?

)

�

= 
N

c

h

1 � e

�ay

2

� e

�ay

02

+ e

�a(y

?

�y

0

?

)

2

i

; (32)

1

N

c

Z

x

?

Z

A

trW

F

x

?

(y

?

)trW

Fy

x

?

(y

0

?

) = 
N

c

h

1 � e

�ay

2

i h

1 � e

�ay

02

i

; (33)

1

N

2

c

Z

x

?

Z

A

trW

A

x

?

(y

?

)trW

Ay

x

?

(y

0

?

) = 
N

2

c

h

1� e

�2ay

2

i h

1� e

�2ay

02

i

: (34)

A similar, Glauber type y

2

dependence has been recently used in the DIS analysis of [17].

Note that according to Eqs. (32){(34) the di�ractive structure function is not suppressed

by a colour factor relative to the inclusive structure function, as originally suggested

in [18].

5 Numerical analysis

The model of the previous section provides an example for the relation between di�ractive

and inclusive parton distributions in the semiclassical approach. Although the derivation

was based on a large hadronic target (with radius much greater than 1=�), we expect

some qualitative features of the resulting distributions to apply to the proton as well.

The above model distributions are used as non-perturbative input at some small scale

Q

2

0

and are evolved to higher Q

2

using the leading-order DGLAP equations [10]. The

non-perturbative parameters of the model, as well as the scale Q

2

0

, are then determined

from a combined analysis of experimental data on inclusive and di�ractive structure

functions.

At �rst sight, the semiclassical description of parton distribution functions always

predicts an energy dependence corresponding to a classical bremsstrahlung spectrum:

q(x); g(x) � 1=x. However, this na��ve prediction assumes the averaging over the soft

�eld con�gurations inside the proton to be independent of the energy of the quark pair

used to probe these con�gurations. As already outlined in Sect. 2, one expects that, in a

more complete treatment, a non-trivial energy dependence is induced since the averaging

procedure encompasses more and moremodes of the proton �eld with increasing energy of

the probe. We are, however, unable to calculate this non-perturbative energy dependence

from �rst principles. Instead, we choose to parametrize it in the form of a soft, logarithmic

growth of the normalization of di�ractive and inclusive parton distributions with the
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collision energy � 1=x, consistent with the unitarity bound. This introduces one further

parameter, L, into the model:


! 
(L � lnx)

2

: (35)

Including this energy dependence, our model yields the following compact expressions

for the semiclassical inclusive parton distributions Eqs. (3),(4) at a low scale Q

2

0

:

xq(x;Q

2

0

) =

a
N

c

(L� lnx)

2

3�

3

 

ln

Q

2

0

a

� 0:6424

!

; (36)

xg(x;Q

2

0

) =

2a
N

c

(L � lnx)

2

�

2

�

s

(Q

2

0

)

: (37)

Being derived in the semiclassical approach, these expressions are only valid in the small-

x region, which we de�ne by x � 0:01. In our numerical analysis, we shall multiply the

above expressions with (1�x) to ensure vanishing of the distributions in the limit x! 1,

which is required for the numerical stability of the DGLAP evolution.

The corresponding expressions for the di�ractive distributions Eqs. (14),(16) can be

derived in a similar manner. The integrations over the momentum variables are outlined

in Appendix A. One is then left with the expressions

dq (�; �;Q

2

0

)

d�

=

a
N

c

(1 � �) (L� ln �)

2

2�

3

�

2

f

q

(�) ; (38)

dg (�; �;Q

2

0

)

d�

=

a
N

2

c

(1� �)

2

(L � ln �)

2

2�

3

��

2

f

g

(�) ; (39)

with the functions f

q;g

(�) being de�ned in Appendix A. The � spectrum of the di�rac-

tive parton distributions at Q

2

0

is independent of the unknown non-perturbative param-

eters. Note that our model does not specify whether, in the di�ractive case, the energy-

dependent logarithm should be a function of x or of �. However, both prescriptions di�er

only by terms proportional to ln�, which can be disregarded in comparison with lnx or

ln � in the small-x region. Like their inclusive counterparts, these distributions are only

valid in the region � � 0:01, where we believe the semiclassical approach to apply.

The above equations summarize our input distributions, depending on a, 
, L, and

on the scale Q

2

0

, at which these distributions will be used as boundary condition for

the leading-order DGLAP evolution. At this order, the measured structure function F

2

coincides with the transverse structure function discussed in Sects. 2 and 3. In de�ning

structure functions and parton distributions, we assume all three light quark avours to

yield the same contribution, such that the singlet quark distribution is simply six times

the quark distribution de�ned above, both in the inclusive and in the di�ractive case:

�(x;Q

2

) = 6 q(x;Q

2

) ;

d�(�; �;Q

2

)

d�

= 6

dq(�; �;Q

2

)

d�

: (40)

Valence quark contributions are absent in the semiclassical approach, which does not

account for the exchange of avour quantum numbers between the proton and the fast

moving virtual photon state.
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Charm quarks are treated entirely as massive quarks in the �xed avour number

scheme [19], which is appropriate since, in the Q

2

range under consideration, charm

threshold e�ects are far more important than the resummation of lnQ

2

=m

2

c

terms. We

thus �x n

f

= 3 in the DGLAP splitting functions and evolve only gluon and singlet

quark distribution. The structure functions F

2

and F

D(3)

2

are then given by the singlet

quark distribution and a massive charm quark contribution due to boson-gluon fusion.

Explicit formulae can, for example, be found in [5]. For our numerical studies we use

�

LO;n

f

=3

= 144 MeV (�

s

(M

Z

) = 0:118), m

c

= 1:5 GeV, m

b

= 4:5 GeV, and we evaluate

the massive charm quark contribution for a renormalization and factorization scale �

c

=

2m

c

.

The resulting structure functions can be compared with HERA data on the

inclusive structure function F

2

(x;Q

2

) [1] and on the di�ractive structure function

F

D(3)

2

(�; �;Q

2

) [2]. These data sets from the H1 and ZEUS experiments are used to

determine the unknown parameters of our model. We apply the following selection crite-

ria to the data: x � 0:01 and � � 0:01 are needed to justify the semiclassical description

of the proton colour �eld; with Q

2

0

being a �t parameter, we demand a su�ciently large

minimumQ

2

= 2 GeV

2

to avoid that the data selection is inuenced by the current value

of Q

2

0

; �nally we requireM

2

> 4 GeV

2

in the di�ractive case to justify the leading-twist

analysis.

We determine the optimum set of model parameters from a minimization of the total

�

2

(based on statistical errors only) of the selected data, using the MINUIT package [20].

The resulting set of parameters is

Q

2

0

= 1:23 GeV

2

;

L = 8:16 ;


 = (712 MeV)

�2

;

a = (74:5 MeV)

2

: (41)

The distributions obtained with these �tted parameters yield a good qualitative descrip-

tion of all data on inclusive and di�ractive DIS at small x, as illustrated in Figs. 4, 5

and 6. All parameters are given with a precision which allows to reproduce the plots, but

which is inappropriate with respect to the crudeness of the model. The starting scale Q

2

0

is in the region where one would expect the transition between perturbative and non-

perturbative dynamics to take place; the two other dimensionful parameters 
L

2

and a

are both of the order of typical hadronic scales.

Our approach fails to reproduce the data on F

D(3)

2

for low M

2

(open dots in Figs. 5

and 6). This might indicate the importance of higher twist contributions in this region, as

suggested in [6]. It is interesting to note that a breakdown of the leading twist description

is also observed for inclusive structure functions [21], where it occurs for similar invariant

hadronic masses, namely W

2

<

�

4 GeV

2

.

The perturbative evolution of inclusive and di�ractive structure functions is driven

by the gluon distribution, which is considerably larger than the singlet quark distribution

in both cases. The ratio of the inclusive singlet quark and gluon distributions can be read

o� from Eqs. (36) and (37). With the �t parameters obtained above, it turns out that the
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inclusive gluon distribution is about twice as large as the singlet quark distribution. In

contrast, the relative magnitude and the � dependence of the di�ractive distributions are

completely independent of the model parameters. Moreover, their absolute normalization

is, up to the slowly varying factor 1=�

s

(Q

2

0

), closely tied to the normalization of the

inclusive gluon distribution.

Figure 7 displays the di�ractive distributions (multiplied by � and thus reecting

the distribution of momentum carried by the partons) for �xed � = 0:003 and di�erent

values of Q

2

. The � dependences of the quark and the gluon distribution at Q

2

0

are

substantially di�erent: the quark distribution �d�=d� is peaked around � � 0:65, thus

being harder than the distribution �(1��) suggested in [22]. It vanishes like � for � ! 0

and like (1��) at large �; the gluon distribution �dg=d�, on the other hand, approaches a

constant for � ! 0 and falls o� like (1��)

2

at large �. This asymptotic behaviour in the

small- and large-� region is in agreement with the results obtained in the perturbative

approach of [14]. In spite of the (1 � �)

2

behaviour, gluons remain important even at

large �, simply due to the large total normalization of this distribution (the � integral

over �dg=d� at Q

2

0

is approximately three times the � integral over �d�=d�). As a result,

the quark distribution does not change with increasing Q

2

for � � 0:5 and is only slowly

decreasing for larger values of �.

The dependence of the di�ractive structure function on � and Q

2

is illustrated in

Fig. 8, where we compare our predictions with data from the H1 and ZEUS experi-

ments [2] at �xed � = 0:003 (H1) and � = 0:0042 (ZEUS). It must be pointed out that

these data points are based on a combination of data taken at various values of � (in-

cluding � > 0:01), which have been extrapolated to �xed �. The energy dependence of

the di�ractive structure function used for this extrapolation is di�erent from the energy

dependence employed in our model, so that a detailed comparison of the data with our

results should only be made with some caution. Disregarding the large-� region, our

model gives a good description of the � dependence of the di�ractive structure function

for all values of Q

2

.

The validity of our approach can be tested by studying DIS observables other than

the di�ractive structure function F

D(3)

2

used to �t our model parameters. In particular, it

would be of interest to study quantities which are directly proportional to the di�ractive

gluon distribution, such as the charm content of F

D(3)

2

. The dashed lines in Fig. 8 show

our prediction for the di�ractive charm structure function due to photon-gluon fusion.

Moreover, this structure function is predicted to have the same, non-perturbative � de-

pendence as F

D(3)

2

(�; �;Q

2

). The charm contribution is sizeable in the small-� region.

Since the full di�ractive cross section at �xed x is obtained after integration with the

measure d�=�, this region yields a substantial di�ractive charm cross section.

The � dependence of di�ractive parton distributions used in the present numerical

analysis is a direct result of our speci�c model for the colour �eld averaging. It would

therefore be very interesting to repeat the analysis with more sophisticated models, such

as the stochastic vacuum model that was utilized for di�ractive meson production in [23].
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6 Conclusions

In the target rest frame, DIS at small x can be viewed as the interaction of a partonic

uctuation of the virtual photon with the proton colour �eld. The semiclassical approach

assumes this proton �eld to be dominated by soft modes, which have the sole e�ect of

introducing a non-Abelian phase factor for each parton. In this approach, a very similar

description of inclusive and di�ractive events emerges, the latter being realized if the

partonic uctuation leaves the proton in a colour singlet state. Inclusive and di�ractive

structure functions are therefore calculated by evaluating di�erent colour contractions of

the same soft scattering amplitudes.

Matching the semiclassical and partonic description of structure functions at some

low scale Q

2

0

, where logarithmic corrections are still small, a set of semiclassical parton

distribution functions for inclusive and di�ractive processes is de�ned. The evolution to

higher scales is then determined by the conventional leading-order DGLAP equations.

Initial quark and gluon distributions are expressed in terms of averages over the proton

colour �eld.

In the semiclassical framework, a very special role is played by the inclusive gluon

distribution. In contrast to both the inclusive quark distribution and the di�ractive quark

and gluon distributions, it is only sensitive to the short distance structure of the proton

�eld, and it is enhanced by an explicit factor 1=�

s

. As a result, the observed dominance

of the inclusive over the di�ractive DIS cross section emerges.

To study the semiclassical distributions in more detail, we introduce a non-

perturbative model for the proton colour �eld. This model is derived for a very large

hadronic target, which can be subdivided into di�erent zones of uncorrelated colour �eld

strengths. A non-trivial example of a non-perturbative set of semiclassical distributions

results. In spite of its lacking theoretical justi�cation in the case of a proton target, this

set of distributions can serve as a basis of a phenomenological analysis. Our model de-

pends on two free parameters which are related to the average �eld strength in a zone

and to the total geometrical size of the target. A further parameter has to be introduced

to account for the unknown energy dependence induced by the averaging over the �eld

con�gurations. Thus, our model describes all semiclassical parton distributions by three

unknown non-perturbative parameters and the matching scale Q

2

0

.

These three model parameters and Q

2

0

are determined from a combined �t to mea-

surements of inclusive [1] and di�ractive [2] structure functions at small x. The resulting

distributions yield a satisfactory description of the structure functions F

2

(x;Q

2

) and

F

D(3)

2

(�; �;Q

2

). It turns out that the Q

2

evolution of both structure functions is mainly

driven by large gluon distributions.

The good agreement of our model with the experimental data allows us to conclude

that both inclusive and di�ractive DIS at small x can be described in a uni�ed picture

in the semiclassical approach. A simple model for the colour �eld averaging, adopted

from a large target, is used to compute the semiclassical parton distributions at some

initial scale Q

2

0

. The behaviour above Q

2

0

is then determined by perturbative evolution

at leading order in �

s

and leading twist.
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The rise of F

2

(x;Q

2

) and of F

D(3)

2

(�; �;Q

2

) at small x have the same, non-perturbative

origin in the energy dependence of the average over soft �eld con�gurations in the pro-

ton. With increasing Q

2

, this rise is enhanced by perturbative evolution in the case of

the inclusive structure function, while it remains unchanged in the di�ractive structure

function.

The obtained parton distributions can be used to predict a broad spectrum of ob-

servables in di�ractive and inclusive processes using standard methods of perturbative

QCD. The qualitative relation between di�ractive and inclusive DIS and the universal

� dependence of large-mass di�raction are genuine predictions of the semiclassical ap-

proach. By contrast, the � dependence of the di�ractive distributions is a result of our

speci�c model for the colour �eld averaging. Crucial tests of this model can be performed

in future measurements of di�ractive �nal states. At the same time, other models for the

averaging procedure can be tested in the present framework.

We would like to thank M.F. McDermott, B.R. Webber and H. Weigert for valuable

discussions and comments.

Appendix A: Di�ractive parton distributions

In the following, we collect several formulae which are useful in connection with the

semiclassical expressions for the di�ractive parton distributions (Sect. 3) and with their

explicit evaluation within our model of the proton colour �eld (Sect. 4).

In Ref. [8], the di�ractive quark distribution was given in the form

dq(b; �)

d�

=

2

�

2

(1 � b)

2

Z

d

2

k

0

?

k

02

(2�)

8

N

c

Z

x

?

�

�

�

�

�

Z

d

2

k

?

k

?

uk

02

+ k

2

Z

y

?

e

i(k

0

?

�k

?

)y

?

trW

F

x

?

(y

?

)

�

�

�

�

�

2

; (42)

where u = b=(1 � b). Starting from this result, Eq. (14) of Sect. 3 can be derived using

the identity

Z

d

2

k

?

(2�)

2

k

i

e

ik

?

y

?

N

2

+ k

2

?

=

i

2�

y

i

y

NK

1

(yN) : (43)

For the phenomenological analysis, we use the speci�c model of Sect. 4. Inserting for

trW

F

x

?

(y

?

)trW

Fy

x

?

(y

0

?

) in Eq. (42) the expression from Eq. (33), the y

?

integration and

some of the momentum integrations can be carried out. The result reads

dq(b; �)

d�

=

a
N

c

(1� b)

2�

3

�

2

f

q

(b) ; (44)

where f

q

(b) is an integral over two Feynman-type parameters,

f

q

(b) = 4

Z

1

0

dxdx

0

 

p

b+ x

(1� b+ (

p

b+ x)

2

)

2

!  

p

b+ x

0

(1 � b+ (

p

b+ x

0

)

2

)

2

!

(x+ x

0

)

p

b+ (1 � b)

�

x

p

b+ x

+

x

0

p

b+ x

0

�

: (45)
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We were not able to obtain an analytical expression for this integral. It is, however, easily

evaluated at b = 0 and b = 1 yielding f

q

(0) = 1=2 and f

q

(1) = 3�

2

=8 � 2.

Similar formulae hold for the di�ractive gluon distribution. The result of [8] reads

dg(b; �)

d�

=

b

�

2

(1 � b)

3

Z

d

2

k

0

?

k

04

(2�)

8
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Z
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?
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uk

02

+ k

2

Z
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e

i(k
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trW

A

x

?
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�

�

�

�

�

2

; (46)

where

t

ij

= �

ij

+ 2

k

i

k

j

uk

02

: (47)

Using

Z

d

2

k

?

(2�)

2
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N
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�
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� 2

y

i
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2

!

K

2

(yN) ; (48)

one obtains Eq. (16) in Sect. 3. Inserting for trW

A

x

?

(y

?

)trW

Ay

x

?

(y

0

?

) the expression in

Eq. (34) of Sect. 4, the y

?

integration and some of the momentum integrations can be

carried out. The result has the same structure as the di�ractive quark distribution,

dg(b; �)

d�

=

a
N

2

c

(1� b)

2

2�

3

�

2

b

f

g

(b) ; (49)

where f

g

(b) is given by the two-dimensional integral

f

g

(b) = 2

Z

1

0

dxdx

0
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(1� b+ (1 + x)
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�
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1 + x
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1 + x
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�
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(50)

This integral is easily evaluated for b = 0 and b = 1 yielding f

g

(0) = 4 ln 2 and f

g

(1) =

45�

2

=32 � 17=2. For general b, we have evaluated f

q

(b) and f

g

(b) only numerically, the

results can be inferred from the solid curves in Fig. 7.

Appendix B: Comparison with a perturbative model

It is the purpose of this appendix to outline how the perturbative results of [14] can

be derived on the basis of the semiclassical formulae for di�ractive parton distributions

of [8] (cf. Eqs. (42) and (46) of this paper).

The authors of [14] study di�raction as quasi-elastic scattering o� a special target

photon that couples to only one avour of very massive (M � �) quarks. The large

quark mass justi�es a completely perturbative treatment of the target and the di�ractive

system. In this situation, the required t channel colour singlet exchange is realized by two

gluons coupling to the massive quark loop of the target. In the semiclassical approach,

these two gluons are understood to be radiated by the massive quark loop and are treated

as the colour �eld generating trW trW

y

. The semiclassical calculation proceeds as follows.
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Equations (42) and (46) have the structure

df

a

d�

= F

a

�

Z

x

?

trW

x

?

trW

y

x

?

�

; (51)

where F

a

(with a = q; g) is a linear functional depending on

R

trW

x

?

(y

?

) trW

y

x

?

(y

0

?

),

interpreted as a function of y

?

and y

0

?

. To be di�erential in t, one simply writes

df

a

d� dt

=

1

4�

F

a

"

Z

x

?

Z

x

0

?

trW

x

?

trW

y

x

0

?

e

iq

?

(x

0

?

�x

?

)

#

; (52)

with q

2

?

= �t.

The �eld responsible for trW is created by a small colour dipole which, in turn, is

created by the special photon that models the target. At leading order in perturbation

theory, the colour �eld of a static quark is analogous to its electrostatic Coulomb �eld.

The �eld of a quark travelling on the light cone in x

�

direction (x

�

= x

0

� x

3

) at

transverse position 0

?

has therefore the following line integral along the x

+

direction,

�

ig

2

Z

A

�

dx

+

= �ig

2

Z

d

2

k

?

(2�)

2

�

e

ik

?

x

?

k

2

?

: (53)

It is exactly this type of line integral that appears in the exponents of the non-Abelian

phase factors U and U

y

that form W (cf. Eq. (3) of [8]). A straightforward calculation

shows that the function trW produced by a dipole consisting of a quark at �

?

and an

antiquark at 0

?

reads

trW
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?
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?

) = �

g

4
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� 1)T
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; (54)

where T

F

= 1=2 and T

A

= N

c

have to be used for the fundamental and adjoint represen-

tation respectively.

The �nal formulae for the di�ractive parton distributions of the target are obtained

after integrating over the transverse sizes of the colour dipoles with a weight given by

the q�q wave functions of the incoming and outgoing target photon. They read

df

a

d� dt

=

Z

dz d

2

�

?

Z

dz

0
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2

�

0
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1
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(55)
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0
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0

?

; 0
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)

i

;

where trW

x

?

(y

?

) is produced by the �eld of a quark at �

?

and an antiquark at 0

?

, and

trW

x

0

?

(y

0

?

) is produced by the �eld of a quark at �

0

?

and an antiquark at 0

?

, as detailed

in Eq. (54).
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The wave function  



(z; �

?

; 0

?

; �

?

) characterizes the amplitude for the uctuation

of the incoming target photon with polarization � and transverse momentum 0

?

into a

q�q pair with momentum fractions z and 1 � z and transverse separation �

?

. Similarly,

the wave function  

�



(z; �

?

; p

0

?

; �

0

?

) characterizes the amplitude for the recombination of

this q�q pair into a photon with polarization �

0

and transverse momentum p

0

?

= �q

?

. The

summation over the helicities of the intermediate quark states, which are conserved by

the high-energy gluonic interaction, is implicit.

The required product of photon wave functions can be calculated following the lines

of [7,24]. It reads explicitly
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; �
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; 0
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) (56)

=

N

c

e

2

e

2

q

2(2�)

5

Z

k

?

;k

0

?

tr�

y

(z; k

0

?

;M; �

0

?

)�(z; k

?

;M; �

?

)e

i�

?

(k

0

?
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;

where we have used the notation of [14],

�(z; k

?

;M; �

?

) =

1

(k

2

?

+M

2

)

[ (1 � z) �

?

� � k

?

� � � z k

?

� � �

?

� � + iM �

?

� � ] ; (57)

M is the quark mass and �

1;2

are the �rst two Pauli matrices. Note that for p

0

?

= 0,

the average of the diagonal elements (�

?

= �

0

?

) in Eq. (56) reproduces the well known

formula for the square of the photon wave function [3].

Inserting Eq. (56) into Eq. (55) and introducing explicitly the required functionals

F

a

speci�ed by Eqs. (42) and (46), the formulae of [14] for di�ractive quark and gluon

distribution are exactly reproduced.

References

[1] H1 Collab., S. Aid et al., Nucl. Phys. B470 (1996) 3;

ZEUS Collab., M. Derrick et al., Z. Phys. C72 (1996) 399

[2] H1 Collab., C. Adlo� et al., Z. Phys. C76 (1997) 613;

ZEUS Collab., J. Breitweg et al., preprint DESY-98-084 (hep-ex/9807010)

[3] N.N. Nikolaev and B.G. Zakharov, Z. Phys. C49 (1991) 607

[4] K. Golec-Biernat and J. Kwieci�nski, Phys. Lett. B353 (1995) 329;

A. Edin, G. Ingelman and J. Rathsman, Z. Phys. C75 (1997) 57;

E. Gotsman, E. Levin and U. Maor, Nucl. Phys. B493 (1997) 354;

A. Bialas, R. Peschanski and C. Royon, Phys. Rev. D57 (1998) 6899

[5] T. Gehrmann and W.J. Stirling, Z. Phys. C70 (1996) 89

[6] J. Bartels, J. Ellis, H. Kowalski and M. W�ustho�, preprint CERN-TH-98-67, DESY

98-034 and DTP-98-02 (hep-ph/9803497)

20

http://xxx.lanl.gov/abs/hep-ex/9807010
http://xxx.lanl.gov/abs/hep-ph/9803497


[7] W. Buchm�uller, M.F. McDermott and A. Hebecker, Nucl. Phys. B487 (1997) 283;

ibid. B500 (1997) 621 (E)

[8] A. Hebecker, Nucl. Phys. B505 (1997) 349

[9] G. Ingelman and P.E. Schlein, Phys. Lett. B152 (1985) 256;

L. Trentadue and G. Veneziano, Phys. Lett. B323 (1994) 201;

A. Berera and D.E. Soper, Phys. Rev D50 (1994) 4328

[10] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438, 675;

G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977) 298;

Yu.L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641

[11] L. McLerran and R. Venugopalan, Phys. Rev. D49 (1994) 2233

[12] A. Hebecker and H. Weigert, Phys. Lett. B432 (1998) 215

[13] W. Buchm�uller, Phys. Lett. B353 (1995) 335;

W. Buchm�uller and A. Hebecker, Nucl. Phys. B476 (1996) 203

[14] F. Hautmann, Z. Kunszt and D.E. Soper, preprint CERN-TH-98-168, ETH-TH/98-

14 and OITS 648 (hep-ph/9806298)

[15] J.C. Collins, Phys. Rev. D57 (1998) 3051

[16] J. Jalilian-Marian, A. Kovner, L. McLerran and H. Weigert, Phys. Rev. D55 (1997)

5414

[17] K. Golec-Biernat and M. W�ustho�, preprint DTP/98/50 (hep-ph/9807513)

[18] W. Buchm�uller and A. Hebecker, Phys. Lett. B355 (1995) 573

[19] M. Gl�uck, E. Reya and M. Stratmann, Nucl. Phys. B422 (1994) 37

[20] F. James, MINUIT, CERN Program Library Long Writeup D506 (1994)

[21] A. Milsztajn and M. Virchaux, Phys. Lett. B274 (1992) 221;

A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, preprint DTP-98-52

(hep-ph/9808371)

[22] A. Donnachie and P.V. Landsho�, Phys. Lett. B191 (1987) 309; ibid. B198 (1987)

590 (E)

[23] H.G. Dosch, O. Nachtmann and M. Rueter, preprint HD-THEP-98-22 and TAUP-

2502-98 (hep-ph/9806342)

[24] M. W�ustho�, Phys. Rev. D56 (1997) 4311

21

http://xxx.lanl.gov/abs/hep-ph/9806298
http://xxx.lanl.gov/abs/hep-ph/9807513
http://xxx.lanl.gov/abs/hep-ph/9808371
http://xxx.lanl.gov/abs/hep-ph/9806342


0

0.5

1

1.5

F 2

Q2 = 1.5 GeV2 Q2 = 2.0 GeV2 Q2 = 2.5 GeV2 Q2 = 3.5 GeV2 Q2 = 4.5 GeV2 Q2 = 5 GeV2

0

0.5

1

1.5
Q2 = 6.5 GeV2 Q2 = 8.5 GeV2 Q2 = 10 GeV2 Q2 = 12 GeV2 Q2 = 15 GeV2 Q2 = 18 GeV2

0

0.5

1

1.5
Q2 = 20 GeV2 Q2 = 22 GeV2 Q2 = 25 GeV2 Q2 = 27 GeV2 Q2 = 35 GeV2 Q2 = 45 GeV2

0

0.5

1

1.5
Q2 = 60 GeV2 Q2 = 70 GeV2 Q2 = 90 GeV2 Q2 = 120 GeV2 Q2 = 150 GeV2 Q2 = 200 GeV2

0

0.5

1

1.5

10
-4

10
-3

10
-2

Q2 = 250 GeV2

10
-4

10
-3

10
-2

Q2 = 350 GeV2

10
-4

10
-3

10
-2

Q2 = 450 GeV2

10
-4

10
-3

10
-2

Q2 = 650 GeV2

10
-4

10
-3

10
-2

x

Q2 = 800 GeV2

Figure 4: The inclusive structure function F

2

(x;Q

2

) at small x computed in the semi-

classical approach, using the �tted parameters given in the text. Data taken from [1].

The data with Q

2

= 1:5 GeV

2

are not included in the �t.

22



0

0.1ξF
2D

(3
)

β = 0.04

Q2 = 4.5 GeV2

β = 0.1

Q2 = 4.5 GeV2

β = 0.2

Q2 = 4.5 GeV2

β = 0.4

Q2 = 4.5 GeV2

β = 0.65

Q2 = 4.5 GeV2

β = 0.9

Q2 = 4.5 GeV2

0

0.1
β = 0.04

Q2 = 7.5 GeV2
β = 0.1

Q2 = 7.5 GeV2
β = 0.2

Q2 = 7.5 GeV2
β = 0.4

Q2 = 7.5 GeV2
β = 0.65

Q2 = 7.5 GeV2
β = 0.9

Q2 = 7.5 GeV2

0

0.1
β = 0.04

Q2 = 9 GeV2

β = 0.1

Q2 = 9 GeV2

β = 0.2

Q2 = 9 GeV2

β = 0.4

Q2 = 9 GeV2

β = 0.65

Q2 = 9 GeV2

β = 0.9

Q2 = 9 GeV2

0

0.1
β = 0.04

Q2 = 12 GeV2

β = 0.1

Q2 = 12 GeV2

β = 0.2

Q2 = 12 GeV2

β = 0.4

Q2 = 12 GeV2

β = 0.65

Q2 = 12 GeV2

β = 0.9

Q2 = 12 GeV2

0

0.1
β = 0.1

Q2 = 18 GeV2
β = 0.2

Q2 = 18 GeV2
β = 0.4

Q2 = 18 GeV2
β = 0.65

Q2 = 18 GeV2
β = 0.9

Q2 = 18 GeV2

0

0.1
β = 0.1

Q2 = 28 GeV2

β = 0.2

Q2 = 28 GeV2

β = 0.4

Q2 = 28 GeV2

β = 0.65

Q2 = 28 GeV2

β = 0.9

Q2 = 28 GeV2

0

0.1
β = 0.2

Q2 = 45 GeV2
β = 0.4

Q2 = 45 GeV2
β = 0.65

Q2 = 45 GeV2
β = 0.9

Q2 = 45 GeV2

0

0.1

10
-3

10
-2

β = 0.4

Q2 = 75 GeV2

10
-3

10
-2

β = 0.65

Q2 = 75 GeV2

10
-3

10
-2

ξ

β = 0.9

Q2 = 75 GeV2

Figure 5: The di�ractive structure function F

D(3)

2

(�; �;Q

2

) at small � computed in the

semiclassical approach, using the �tted parameters given in the text. H1 data taken

from [2]. The open data points correspond to M

2

� 4 GeV

2

and are not included in the

�t.

23



0

0.05

ξF
2D

(3
)

β = 0.062

Q2 = 8 GeV2

β = 0.242

Q2 = 8 GeV2

β = 0.667

Q2 = 8 GeV2

0

0.05

β = 0.104

Q2 = 14 GeV2

β = 0.359

Q2 = 14 GeV2

β = 0.778

Q2 = 14 GeV2

0

0.05

β = 0.182

Q2 = 27 GeV2

β = 0.519

Q2 = 27 GeV2

β = 0.871

Q2 = 27 GeV2

0

0.05

10
-3

10
-2

β = 0.331

Q2 = 60 GeV2

10
-3

10
-2

β = 0.706

Q2 = 60 GeV2

10
-3

10
-2

ξ

β = 0.938

Q2 = 60 GeV2

Figure 6: The di�ractive structure function F

D(3)

2

(�; �;Q

2

) at small � computed in the

semiclassical approach, using the �tted parameters given in the text. ZEUS data taken

from [2]. The open data points correspond to M

2

� 4 GeV

2

and are not included in the

�t.
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