
*H
EP
-P
H/
98
09
48
5*

Revised Version  DESY 98-093

he
p-

ph
/9

80
94

85
 v

2 
  1

2 
N

ov
 1

99
8

DESY 98-093

hep-ph/9809485

September, 1998

Exact mass dependent two{loop �

s

(Q

2

) in

the background MOM renormalization

scheme

F. Jegerlehner and O.V. Tarasov

1

Deutsches Elektronen-Synchrotron DESY

Platanenallee 6, D{15738 Zeuthen, Germany

Abstract

A two-loop calculation of the renormalization group �{function in a momen-

tum subtraction scheme with massive quarks is presented using the background

�eld formalism. The results have been obtained by using a set of new generalized

recurrence relations proposed recently by one of the authors (O.V.T.). The be-

havior of the mass dependent e�ective coupling constant is investigated in detail.

Compact analytic results are presented.
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1 Introduction

Particle masses are amongst the most important physical parameters and in many cases

their meaning and de�nition by thresholds (e.g. lepton masses), symmetry breaking

parameters (current quark masses, neutrino masses) or scale parameters is quite clear.

For particles which exist as free or quasi{free states a de�nition by the pole mass is

most natural and has an unambiguous meaning. The de�nition of quark masses, in

particular for the light quarks, allows for a lot of freedom, mainly because the pole mass

is not directly observable due to the con�nement property of QCD. Nevertheless, quark

masses play a crucial role for the e�ective behavior of strong interactions at a given

scale. The purpose of the present calculation is a precise understanding of the quark

mass dependence of QCD, more speci�cally, of the e�ective coupling constant �

s

(Q

2

) =

g

2

s

=(4�), the most important quantity in the description of strong interactions. These

considerations are important for a better understanding of the decoupling of heavy

particles and of the relationship between QCD with massive quarks and QCD in the

MS scheme where e�ective theories with di�erent number of (light) avors [1{3] must

be matched at the di�erent quark thresholds.

When the on-shell renormalization scheme is not adequate we either may use a minimal

subtraction scheme (MS or MS ) or some version of a momentum subtraction scheme

(MOM ), de�ned by the condition that the radiative corrections of an appropriate set

of quantities vanish at a certain (o�{shell) momentum con�guration. While the MS

[4] scheme is technically simple and respects the Slavnov-Taylor identities the MOM

scheme is more physical since it respects the decoupling theorem [5]. A serious short

coming of the standard MOM schemes [6], however, is the fact that they spoil the

validity of the canonical form of the Slavnov-Taylor identities. An elegant way out

of this di�culty is the use of the so called background �eld method (BFM) [7]. The

latter takes advantage of the freedom to chose a gauge �xing function in a particular

way, namely, such that the canonical Slavnov-Taylor identities remain valid also after

momentum subtractions. The gauge invariant physical quantities are not a�ected by

the gauge �xing, however, the \background �eld gauge" selects a particular representa-

tive of the gauge variant o�{shell amplitudes. The restauration of the Slavnov-Taylor

identities in the BFM is achieved solely by changing the vertices with external gluons

appropriately. For further details and for the Feynman rules of QCD in the background

�eld (BF) formalism we refer to [8,9].

In Ref. [9] the renormalization group (RG) �{function of QCD was evaluated at one{

loop order in the background �eld approach using the MOM scheme. In the present

article we extend this analysis to a complete mass dependent two{loop calculation. Pre-

viously, the two-loop renormalization of the pure Yang-Mills theory in the background

�eld method was �rst considered in [8] using the MS scheme. Fermionic contributions

were added later in [10]. Calculations in the background formalism for an arbitrary

value of the gauge parameter were presented in [11]. In the standard approach the eval-

uation of the mass dependent QCD �{function at the two-loop level was performed

in [12]. In the latter publication only an approximate expression for the two{loop coef-

�cient was given. Because of the complexity of such calculations the result of [12] was

not con�rmed by any other group until now. The background �eld method provides

the easiest way to calculate a mass dependent �{function because here only propaga-

tor diagrams need to be evaluated. A general method for the evaluation of two-loop
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propagator type diagrams with arbitrary masses was recently proposed in [13,14].

Our paper is organized as follows: in Sec. 2 we describe the calculation of the back-

ground �eld propagator, from which we obtain the RG and the e�ective running cou-

pling in the BF�MOM scheme in Sec. 3. The relationship between the BF�MOM

and the MS coupling is presented in Sec. 4 (analytical) and Sec. 5 (numerical). For

completeness we include a formula for the bare BF propagator in Appendix A. The BF

Feynman rules and the BF propagator diagrams are included in Appendices B and C,

respectively.

2 The background �eld propagator

To regularize divergences we will use the dimensional regularization procedure in

d = 4 � 2" dimensions. In the background �eld approach, we only need to calcu-

late the background �eld renormalization constant Z

A

in order to obtain the charge

renormalization constant. The complete list of two-loop diagrams as well as the Feyn-

man rules in the background �eld approach may be found in [8] { [11]. Z

A

is determined

by renormalizing the background �eld propagator according to

1

1 + �(Q

2

; �

2

; fm

2

i

g)

=

Z

A

1 + �

0

(Q

2

; �

2

; fm

2

i

g)

; (1)

where Q

2

= �q

2

and � is the subtraction point. Bare quantities carry an subscript

0

.

In the MOM scheme the condition

�(Q

2

; �

2

; fm

2

i

g) j

Q

2

=�

2
= 0 (2)

is imposed on the renormalized self{energy function. The renormalized mass m

i

in

our calculations is de�ned as a pole of the quark propagator. In the MOM scheme Z

A

and therefore also the RG �{function depend on the gauge parameter �. The gauge

parameter is renormalized by

�

0

= �Z

3

; (3)

where Z

3

is the renormalization constant of the quantum gluon �eld. To circumvent

problems connected with the renormalization of the gauge parameter we have chosen

the Landau gauge � = 0.

We repeated the calculation of all two-loop diagrams in the background formalism

keeping non{vanishing quark masses. All calculations have been performed with the

help of FORM [15] using the algorithm described in [13]. Our results agree with those

presented in [8,10,11] for the limit of massless quarks. The sum of all unrenormalized

diagrams for an arbitrary value of the gauge parameter is given in the Appendix.

The renormalized self{energy amplitude �(Q

2

) has the form:

�(Q

2

) =

�

�

s

4�

�

U

1

+

�

�

s

4�

�

2

U

2

+ � � � (4)

where

U

1

(Q

2

=�

2

; fm

2

i

=�

2

g) =

11

3

C

A

ln

Q

2

�

2

+ T

F

n

F

X

i=1

 

�

1

 

Q

2

m

2

i

!

��

1

 

�

2

m

2

i

!!

;

U

2

(Q

2

=�

2

; fm

2

i

=�

2

g) =

34

3

C

2

A

ln

Q

2

�

2

+ T

F

n

F

X

i=1

 

�

2

 

Q

2

m

2

i

!

��

2

 

�

2

m

2

i

!!

: (5)
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As usual, C

A

; C

F

and T

F

are the group coe�cients of the gauge group and n

F

is the

number of avors.

The results of our calculations for �

1;2

read

�

1

 

Q

2

m

2

!

=

4

3z

[1� (1 + 2z)(1� z)G(z)] ; (6)

�

2

 

Q

2

m

2

!

=

(1 + 2z)

3z

2

[(C

A

+ 4C

F

) �(z)� (C

A

� 2C

F

)(1� 2z) I(z)]

+

2

9z

n

39 + 3

~

I

(4)

3

(z)� [4z

2

+ 134z + 57 � 12(2 � 5z)zG(z)] (1� z)G(z)

+ 2[z

2

+ 18z + 9� 3(3 + 8z)(1 � z)G(z)] ln(�4z)

o

C

A

+

2

3z

n

13 � [6(3 + 2z) + (7 + 8z � 48z

2

)G(z)](1� z)G(z)

o

C

F

; (7)

where

Q

2

= �q

2

; z =

q

2

4m

2

; y =

q

1 � 1=z � 1

q

1 � 1=z + 1

; (8)

denote the kinematic variables and

G(z) =

2y ln y

y

2

� 1

; (9)

I(z) = 6[�

3

+ 4Li

3

(�y) + 2Li

3

(y)]� 8[2 Li

2

(�y) + Li

2

(y)] lny

� 2[2 ln(1 + y) + ln(1 � y)] ln

2

y ; (10)

~

I

(4)

3

(z) = 6�

3

� 6Li

3

(y) + 6 ln y Li

2

(y) + 2 ln(1 � y) ln

2

y ; (11)

�(z) =

1� y

2

y

�

2Li

2

(�y) + Li

2

(y) + [ln(1 � y) + 2 ln(1 + y)�

3

4

ln y] lny

�

(12)

are our basic integrals. The functions I(z),

~

I

(4)

3

(z) are master integrals considered

in [16,17].

Setting C

A

= 0; C

F

= T

F

= 1; n

F

= 1 and taking the limit �

2

! 0 we reproduce the

well known result for the photon propagator [17,18] in the on-shell scheme.

At large Euclidean momentum Q

2

= �q

2

we �nd the asymptotic forms

�

1

 

Q

2

m

2

!

Q

2

!1

' �

4

3

ln

Q

2

m

2

� 8

 

m

2

Q

2

!

+ 8

 

m

2

Q

2

!

2

ln

Q

2

m

2

+ � � � ;

�

2

 

Q

2

m

2

!

Q

2

!1

' �

4

3

(5C

A

+ 3C

F

) ln

Q

2

m

2

+

2

9

(C

A

+ 36(C

A

� 2C

F

)�

3

)

� 6(3C

A

� 8C

F

)

 

m

2

Q

2

!

ln

Q

2

m

2

+ � � � : (13)

With these results at hand we are able now to obtain the mass{dependent two{loop

�{function.
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3 The RG equation and the e�ective coupling

In the BFM the RG �{function is given by

�

2

d

d�

2

�

�

s

4�

�

= lim

"!0

�

s

�

@

@�

lnZ

A

= ��

0

�

�

s

4�

�

2

� �

1

�

�

s

4�

�

3

� � � � (14)

and hence the coe�cients of the �{function may be simply obtained by di�erentiating

(6) and (7). The results read

�

0

=

11

3

C

A

�

4

3

T

F

n

F

X

i=1

b

0

 

�

2

m

2

i

!

;

�

1

=

34

3

C

2

A

� T

F

n

F

X

i=1

b

1

 

�

2

m

2

i

!

; (15)

where

b

0

 

�

2

m

2

!

= 1 +

3

2x

(1�G(x)) ;

b

1

 

�

2

m

2

!

= [16(1 � x

2

)C

F

+ (1 + 8x

2

)C

A

]

�(x)

6x

2

(1� x)

�

2

3x

2

(C

A

� 2C

F

)I(x)

+

2

3x

~

I

(4)

3

C

A

+ [(1 + 3x� 10x

2

+ 12x

3

)C

A

� 3(3 � 3x� 4x

2

+ 8x

3

)C

F

]

4

3x

G

2

(x)

� [(147 � 4x� 100x

2

+ 8x

3

)C

A

+ 168(1 � x)C

F

+ 6(9 + 4x) ln(�4x)C

A

]

1

9x

G(x)

+ [(99 + 62x)C

A

+ 12(11 + 3x)C

F

+ 2(27 + 24x� 2x

2

) ln(�4x)C

A

]

1

9x

; (16)

with x = ��

2

=(4m

2

). This is our main result.

In Ref. [12] the �{function for QCD ( C

A

= 3, C

F

= 4=3, T

F

= 1=2) was evaluated in

the standard approach with a renormalized coupling constant de�ned via the gluon-

ghost-ghost vertex in the Landau gauge taken at the symmetric Euclidean point. The

authors presented only an approximate result for the function

B

1

(r) =

34C

2

A

� 3�

1

4T

F

(5C

A

+ 3C

F

)

(17)

which corresponds to our function b

1

(r) and which they parametrized as

B

1

(r) =

(�0:45577 + 0:26995r)r

1 + 2:1742r + 0:26995r

2

(18)

with r = �

2

=m

2

. As asserted in [12] the parametrization (18) has the maximum

deviation from the true value in the entire range 0 � r � 1 smaller than 0.005. We

�nd that the di�erence between our expression and (18) in the same region is less than

0.015, which is also very small. This is somewhat surprising, since we are comparing

couplings in di�erent schemes.
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For a mass{dependent renormalization schemes the RG equations

�

d

d�

g

s

(�) = �[g

s

(�);m

j

(�)=�] ; �

d

d�

m

i

(�) = �

m

[g

s

(�);m

j

(�)=�]m

i

(�) (19)

in general can be solved only by numerical integration. However, an approximate solu-

tion for the mass dependent e�ective QCD coupling was proposed in [19, 20]. Indeed,

at the two-loop level the expression

�

s

(Q

2

) =

�

s

1 + �

s

=(4�)U

1

+ �

s

=(4�)(U

2

=U

1

) ln(1 + �

s

=(4�)U

1

)

; (20)

with U

1;2

given in (5), correctly sums up all leading as well as \next-to-leading" terms

�

s

U

2

(�

s

U

1

)

n

though it is not an exact solution of the two-loop di�erential RG equation.

We will compare (20) with the result of the numerical integration of the RG equation

below.

4 BF�MOM coupling in terms of the MS coupling

Let us de�ne the auxiliary functions

z

1i

= ��

1

(r

i

)�

20

9

�

4

3

l

i

;

z

2i

= ��

2

(r

i

)�

�

52

3

+

20

3

l

i

�

C

A

�

�

55

3

+ 4l

i

�

C

F

; (21)

where

l

i

= ln r

i

; r

i

=

�

2

m

2

i

:

For later use we note that for light fermions, utilizing the expansion (13), we obtain

z

1i

= �

20

9

+O(m

2

i

=�

2

) ;

z

2i

= �

�

158

9

+ 8 �

3

�

C

A

�

�

55

3

� 16 �

3

�

C

F

+O(m

2

i

=�

2

) : (22)

The relationship between the renormalized coupling constants may then be written in

the form

�

h =

�

sMOM

4�

= H(h; �

2

) = h+ k

1

(�

2

)h

2

+ (k

2

(�

2

) + k

2

1

(�

2

))h

3

+ � � � (23)

where

k

1

(�

2

) =

205

36

C

A

+ T

F

n

F

X

i=1

z

1i

;

k

2

(�

2

) =

�

2687

72

�

57

8

�

3

�

C

2

A

+ T

F

n

F

X

i=1

z

2i

; (24)
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and

h � h

MS

=

�

sMS

4�

:

Di�erentiating the relation with respect to �

2

we obtain:

�

2

d

�

h

d�

2

= �

MOM

(

�

h) =

@H(h; �

2

)

@h

�(h) + �

2

@H(h; �

2

)

@�

2

= ��

0MOM

�

h

2

� �

1MOM

�

h

3

� � � � ; (25)

where �(h) is the � function in the MS scheme:

�(h) = ��

0

h

2

� �

1

h

3

� � � � ; (26)

with

�

0

=

11

3

C

A

�

4

3

T

F

n

F

;

�

1

=

34

3

C

2

A

�

20

3

C

A

T

F

n

F

� 4C

F

T

F

n

F

: (27)

From the above equation we obtain

�

0MOM

= �

0

� �

2

@

@�

2

k

1

(�

2

);

�

1MOM

= �

1

� �

2

@

@�

2

k

2

(�

2

): (28)

As it should be, in the massless limit the �{functions agree.

5 BF�MOM versus MS coupling: numerical aspects

For numerical studies we use the following pole quark masses [23]

m

u

� m

d

� m

s

� 0 ; m

c

= 1:55GeV ; m

b

= 4:70GeV ; m

t

= 173:80GeV :

For the strong interaction coupling we take �

(5)

s MS

= 0.12�0:003 at scale M

Z

=91.19

GeV [24]. In Fig. 1 we show that Shirkov's formula (20) provides an excellent ap-

proximation to the exact solution of the two{loop RG equation. At su�ciently large

scales the mass e�ects in the �{function are small and we expect no large numerical

di�erences between di�erent schemes. This is illustrated in Fig. 2, where the evolution

of the running couplings is shown for a common start value of �

s

= 0.12 at the scale

M

Z

= 91.19 GeV. Only the space{like E =

p

�q

2

is considered. We see that the mass

e�ects are of comparable size as the 3{loop contribution [21, 22] in the MS scheme

(see Tab. 1 given below). The MS results were obtained by adopting the Bernreuther{

Wetzel (BW) [2] matching scheme between the e�ective theories with di�erent avors.

We checked that utilizing Marciano (M) matching [3], instead, leads to answers some-

what closer to our MOM results. Only the latter one exhibit the correct physical mass

behavior.
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Figure 1: Evolution of �

s

in the BF�MOM scheme normalized to �

s

= 0.12 at the scale

M

Z

= 91.19 GeV. The dotted line represents the approximation by Shirkov's formula.

Figure 2: Comparison of the �

s

evolution in the space{like region normalized to a common

value �

s

= 0.12 at scaleM

Z

= 91.19 GeV. The dotted, dashed, dash{dot and the dash{dot{

dot{dot curves show, respectively, the one{loop, two{loop, three{loop and the four{loop

MS evolution for BW{matching. The full line represents the exact BF�MOM running

coupling.
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Although BW{matching seems to be better justi�ed from a �eld theoretical point of

view, it leads to \threshold jumps" which of course are not physical in the space{like

region. In contrast M{matching assumes continuity of �

s

across the matching scale

(\thresholds").

While there are no really large numerical di�erences in the �{functions, i.e., the deriva-

tives of �

s

with respect to �, down to moderately low scales, there are large �{ and

hence mass{independent terms in the relationship between the coupling constants (23),

as follows from (24) and (22), and as we can see in Fig. 3. A large constant shift in

Figure 3: Comparison of �

s

in the BF�MOM and the MS schemes with �

(5)

s MS

= 0.12 at

scale M

Z

=91.19 GeV and �

s BF�MOM

at this scale calculated using (23). The dotted line

is the MS coupling calculated from �

s BF�MOM

(E) by inverting (23).

�

s

of about plus 14% at M

Z

is obtained when we go from the MS to the MOM scheme.

In principle, this does not a�ect the prediction of physical observables. However, the

scheme dependence which is due to truncation errors of the perturbation expansion is

di�erent for di�erent renormalization schemes. The shaded area of Fig. 3 reects the

theoretical uncertainty at the two{loop level which shows up in the comparison of the

two schemes. Below about 1.15(2.92) GeV the one{loop correction k

1

(�

2

) h in (23)

exceeds the leading trivial term by 100(50)% and the perturbation expansion cannot

be applied any longer (see Fig. 3).

The occurrence of the disturbing large numerical constants in the relationship between

the renormalized couplings belonging to di�erent renormalization schemes is not a
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peculiar feature in the relation between the MOM and MS schemes. Similar worrying

lare terms, long time ago, were the reason for replacing the original MS by the MS

scheme [4], which are related by a simple rescaling of the scale parameter �. Other,

more sophisticated, examples of eliminating leading terms by rescaling were proposed

in Ref. [25]. Also, for the comparison of non-perturbative calculations of running

couplings in lattice QCD with perturbative results, the adequate choice of a relative

scale factor turns out to be crucial [26]. The rescaling usually leads to dramatically

improved agreement. A condition for the rescaling to make sense is that the �{functions

of the two schemes under consideration do not di�er too much numerically. For our

two schemes this condition is fairly well satis�ed (see Fig. 2). In fact at higher energies

the �{functions become identical. Such a rescaling procedure thus looks natural if we

tune the running couplings to agree with good accuracy at high energies. This can be

achieved as follows: While (23) reads (

~

k

2

= k

2

+ k

2

1

)

�

h(�

2

) = h(�

2

) + k

1

h

2

(�

2

) +

~

k

2

h

3

(�

2

) +O(h

4

) (29)

we may absorb the disturbing large term k

1

into a rescaling of � by a factor x

0

such

that [26]

�

h((x

0

�)

2

) = h(�

2

) + 0 +O(h

3

) : (30)

Expanding the RG solution (20) we have (

~

U

2

= U

2

� U

2

1

)

�

h((x

0

�)

2

) =

�

h(�

2

)� U

1

(x

2

0

; fm

2

i

=�

2

g)

�

h

2

(�

2

)�

~

U

2

(x

2

0

; fm

2

i

=�

2

g)

�

h

3

(�

2

) +O(

�

h

4

)

= h(�

2

) +

�

k

1

� U

1

(x

2

0

; fm

2

i

=�

2

g)

�

h

2

(�

2

) (31)

+

�

~

k

2

� 2U

1

(x

2

0

; fm

2

i

=�

2

g)k

1

�

~

U

2

(x

2

0

; fm

2

i

=�

2

g)

�

h

3

(�

2

) +O(h

4

)

and the rescaling factor x

0

is determined by the equation

k

1

= U

1

(x

2

0

; fm

2

i

=�

2

g) : (32)

In our mass dependent scheme we require this to be true only at very large scales

�

2

� m

2

f

for all avors f including the top quark. This convention is simple and most

importantly, it does not conict with the manifest decoupling property of the MOM

scheme. As a consequence we obtain a running coupling which depends very little on

the scheme at large energies, a property which looks most natural in an asymptotically

free theory like QCD. For the BF�MOM scheme the rescaling factor x

0

is determined

by

ln(x

2

0

) =

�

205

36

C

A

�

20

9

T

F

n

F

�

=

�

11

3

C

A

�

4

3

T

F

n

F

�

= 125=84 (33)

for QCD with n

F

= 6 avors. Numerically we �nd x

0

' 2:0144.

In order to check whether the above rescaling makes sense, we must inspect the change

of the 2{loop coe�cient in the rescaled relationship (32) between MOM and MS .

Indeed, the rescaling changes the coe�cients from k

1

' 10:42;

~

k

2

' 126:35 to

k

1 e�

= 0;

~

k

2 e�

' �32:46 and thus we get a substantial improvement for the next

to leading coe�cient too, as it should be. We note that the rescaling improved MOM

10



perturbation expansion at low energies does not any longer deviate substantially from

the MS results. Of course, only the appropriate higher order calculations of observ-

ables in the BF�MOM scheme could reveal the true convergence properties of the

perturbation series in this scheme.

In the MOM scheme the energy scale comes in by a momentum subtraction and the

location of the thresholds of course cannot depend on the rescaling \reparametriza-

tion". This means that actually the scale must be changed in the MS scheme, where

the scale parameter � enters in a purely formal way and \thresholds" are put in by

hand for switching between the e�ective theories of di�erent numbers of avors. Since,

conventionally, � in the MS scheme has already been identi�ed with the c.m. energy,

for example, in the LEP determination of �

s

(M

Z

) which we use as an input, we have

to apply the rescaling to the MOM calculation. As the thresholds must stay at their

\physical" location, i.e., 4m

2

=q

2

must remain invariant, we have to perform the scaling

simultaneously to the energy and the masses.

The result from utilizing this rescaling procedure is displayed in Fig. 4. The large

deviations seen in Fig. 3 have disappeared now. The sizes of e�ects are still illustrated

by what we observe in Fig. 2 except that the initial values at M

Z

di�er. In Fig. 4 we

have recalculated the input values of �

(5)

s

(M

Z

) as a function of the perturbative order,

assuming the observable R(s) to have a given experimental value. R(s) is the ratio of

hadronic to leptonic e

+

e

�

{annihilation cross sections at su�ciently large s, from which

a precise determinations of �

s

(s) is possible. At our reference scale M

Z

we may use

perturbative QCD in the massless approximation [27]

R(s) = 3

X

f

Q

2

f

�

1 + a+ c

1

a

2

+ c

2

a

3

+ � � �

�

(34)

where Q

f

denotes the charge of the quark, a = 4h = �

s

(s)=�, and

c

1

= 1:9857 � 0:1153 n

F

c

2

= �6:6368 � 1:2002 n

F

� 0:0052 n

2

F

� 1:2395 (

X

Q

f

)

2

=(3

X

Q

2

f

)

in the MS scheme, with n

F

= 5 active avors.

Some concluding remarks: We have investigated a MOM renormalization scheme in

the background �eld gauge at the two{loop order in QCD and shown that a substantial

scheme dependence is observed relative to the MS scheme, unless we apply a suitable

rescaling. These �ndings are in accord with earlier investigations at the one{loop [6,28]

and two{loop [12] level. Mass e�ects in any case are non-negligible at a level of pre-

cision where also higher order corrections are relevant. The calculation in full QCD

includes the exact mass e�ects and is smooth and analytic at all scales and in particular

across thresholds. It thus avoids problems with the MS scheme addressed in a recent

article by Brodsky et al. [29] which were cured by an analytic extension of the MS

renormalization scheme.

We note that the use of the BF�MOM scheme, particularly when using the compact

form obtained for Shirkov's approximation, is much easier in practice because decou-

11



pling is manifest at any threshold and there are no matching conditions to be imposed.

Figure 4: Comparison of �

s

((x

0

E)

2

) in the BF�MOM and �

s

(E

2

) in the MS scheme with

input values �

(5)

s MS

= 0.120 at scale M

Z

=91.19 GeV and �

s BF�MOM

= 0.1189 obtained for

the rescaled energy x

0

M

Z

'190.90 GeV (x

0

' 2:1044).

12



We emphasize that the scheme and scale dependence of perturbativ QCD predictions

is not a matter of the order of perturbation theory alone but may depend substantially

on other details like the kind of matching condition applied in the mass independent

MS schemes or the threshold and mass e�ects in MOM schemes. The following table

(Tab. 1) may illustrate the kind of uncertainties we expect to encounter. We �nd that

Table 1: Comparison of predicted �

s

values at the masses of the �, J= and � . Here

we adopt a common input value �

s

(M

Z

) = 0:12 for the MS scheme independent of the

perturbative order.

scheme �

s

(M

Z

) (input) �

s

(M

�

) �

s

(M

J= 

) �

s

(M

�

)

MS 2-loop (BW) 0.120 0.179 0.260 0.354

MS 3-loop (BW) 0.120 0.179 0.262 0.364

MS 4-loop (BW) 0.120 0.179 0.263 0.368

MS 2-loop (M) 0.120 0.179 0.258 0.348

MS 2-loop via BF�MOM 0.120 0.168 0.211 0.254

(BF�MOM 2-loop 0.120 0.180 0.265 0.358)

BF�MOM 2-loop 0.137 0.222 0.372 0.605

BF�MOM 2-loop rescaled 0.121 0.181 0.260 0.345

the 2{loop MS value at the �{mass M

�

is �

s

= 0.254 when we switch from MS to

BF�MOM at the Z{massM

Z

use BF�MOM evolution down to M

�

and switch back

from BF�MOM to MS . Standard (direct) MS evolution depends on the matching

scheme utilized (BW or M) and for BW(M){matching yields �

s

= 0.354(0.348), such

that via BF�MOM we get a value which is lower by 0.100(0.094). However, the

BF�MOM value obtained with the rescaling is 0.345, not very di�erent from its MS

value. The Particle Data Group [23] quotes �

s

(M

�

) = 0:35� 0:03 for the experimental

value obtained from �{decays (see also [30]).

Experience with many physical applications of the MS scheme somehow established

this scheme as a preferred one, in the spirit that this prescription is better than others

in the sense that it leads to reliable perturbative predictions for many physical observ-

ables. In our opinion it remains unclear whether a prefered scheme exist. The problem

is the appropriate choice of scale. We advocate here to take more serious the physical

mass dependence. In order to get a better understanding of the scheme dependences

we need more calculations in di�erent schemes.
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Appendix A: Bare BF propagator

(d� 1)(d� 4)U

2 bare

=

c

1

16(d� 4)(d� 6)

C

2

A

J

111

(0; 0; 0)+

q

2

c

2

64

C

2

A

G

2

11

(0; 0)

+T

F

n

F

X

i=1

�

32z

i

m

4

i

(d� 4) C

A

~

I

(d)

3

(z

i

) +

4f

1

(z

i

)

1� z

i

(C

A

� 2C

F

) m

2

i

G

2

11

(m

2

i

; m

2

i

)

+ 2(d� 4)f

2

(z

i

) C

A

m

2

i

G

11

(0; 0)G

11

(m

2

i

; m

2

i

)

+

4

1� z

i

�

d� 2

d� 3

f

3

(z

i

)C

F

+ 2f

4

(z

i

)C

A

�

G

11

(m

2

i

; m

2

i

)G

10

(m

2

i

; 0)

+

f

5

(z

i

)

15

(d� 2)(d� 4) C

A

G

11

(0; 0)G

10

(m

2

i

; 0)

+

�

4f

6

(z

i

)

d� 3

C

F

+

f

7

(z

i

)C

A

15z

i

(1� z

i

)

�

4m

2

i

J

112

(0; m

2

i

; m

2

i

)

+

�

4(d� 1)(d� 2)(d� 4)C

F

+

f

8

(z

i

)C

A

15z

i

(1� z

i

)

�

J

111

(0; m

2

i

; m

2

i

) (35)

�

�

f

9

(z

i

)C

A

30z

i

(d� 5)

+ 2 f

10

(z

i

)C

F

�

(d� 2)

(1� z

i

)(d� 3)m

2

i

G

2

10

(m

2

i

; 0)

)

:

c

1

= (3d� 8)�

h

�(d� 1)(d

2

� 9d+ 22)(d� 4)

2

�

2

� (15d

5

� 256d

4

+ 1685d

3

�5292d

2

+ 7744d� 3960)�+ 33d

5

� 542d

4

+ 3311d

3

� 9378d

2

+ 12448d� 6608

i

+ 27112d� 8128� 33312d

2

� 51d

6

+ 916d

5

+ 20016d

3

� 6169d

4

;

c

2

= (d� 1)(d� 4)

2

[(d� 4)� + 6(2d� 7)]�

3

+ 2(11d

4

� 144d

3

+ 677d

2

� 1296d+ 743)�

2

� (84d

4

� 854d

3

+ 2994d

2

� 4304d+ 2384)� + 49d

4

� 403d

3

+ 1106d

2

� 1392d+ 664;

f

1

= (d� 2)[(d

2

� 7d+ 16)z � (d� 5)(d� 4)]z � 2;

f

2

= (d� 2)[(d� 4)�

2

� 7d+ 12]z + (d� 4)�

2

+ 2((d� 2)z + 4)(3d� 10)� � 7d+ 16;

f

3

= 2(d� 2)(d

2

� 5d+ 8)z

2

+ (d� 1)(d� 3)(d� 4)

2

z + d

3

� 6d

2

+ 5d+ 8;

f

4

= (d� 2)(1� 2z)[(d� 2)z + 1];

f

5

= 4[(d� 1)� + 3d� 7](d� 4)z

2

� 10[(d� 1)(3d� 8)� � 7d

2

+ 23d� 28]z

� 15(d� 4)�

2

� 30(3d� 10)� + 15(7d� 16)

f

6

= (d� 2)[(d

2

� 5d+ 8)z � d

2

+ 7d� 10];

f

7

= 2(d� 4)

2

[(d� 1)� + 3d� 7]z

4

�

h

3(7d� 20)(d� 1)(d� 4)� � 172d� 17d

3

+ 81d

2

+240] z

3

� [(637d

2

� 2331d� 54d

3

+ 2708)� � 713d

2

+ 2025d+ 78d

3

� 1924]z

2

� [(d� 6)(53d

2

� 398d+ 729)� + 2202� 81d

3

+ 800d

2

� 2447d]z

+ (2d� 7)(d� 7)(9d� 41)� � 26d

3

+ 275d

2

� 892d+ 787;
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f

8

= 2(d� 3)(d� 4)(3d� 8)[(d� 1)� + 3d� 7]z

3

� [(3d� 8)(19d

3

� 214d

2

+ 715d� 712)� � 3891d

2

+ 7392d� 5248 + 880d

3

� 69d

4

]z

2

+ (d� 4)[(5d� 17)(7d� 39)(3d� 8)� � 165d

3

+ 1424d

2

� 3819d+ 3192]z

� (d� 7)(9d� 41)(2d� 7)(3d� 8)� + (3d� 8)(26d

3

� 275d

2

+ 892d� 787);

f

9

= 2(d� 5)(d� 3)(d� 4)

2

[(d� 1)� + 3d� 7]z

3

�

h

(d� 1)(d� 4)(19d

3

� 208d

2

+ 711d� 754)� � 6266d+ 345d

4

+ 2888� 23d

5

+5095d

2

� 1943d

3

�

z

2

+ (d� 2)

h

(d� 6)(35d

3

� 401d

2

+ 1521d� 1923)�

�(55d

4

� 817d

3

+ 4375d

2

� 9799d+ 7434)

i

z � [(d� 7)(2d� 7)(9d� 41)�

�(26d

3

� 275d

2

+ 892d� 787)

i

(d� 2)(d� 5);

f

10

= (d� 2)[(d

2

� 5d+ 8)z + d

3

� 7d

2

+ 16d� 14]: (36)

In the above formulae we have used the following notation:

~

I

(d)

3

=

Z Z

d

d

k

1

d

d

k

2

�

d

k

2

1

(k

2

2

�m

2

)(k

1

� q)

2

((k

2

� q)

2

�m

2

)((k

1

� k

2

)

2

�m

2

)

;

J

��

(m

2

1

;m

2

2

;m

2

3

) =

Z Z

d

d

k

1

d

d

k

2

�

d

(k

2

1

�m

2

1

)

�

((k

2

� q)

2

�m

2

2

)

�

((k

1

� k

2

)

2

�m

2

3

)



;

G

��

(m

2

1

;m

2

2

) =

Z

d

d

k

1

�

d=2

1

(k

2

1

�m

2

1

)

�

((k

1

� q)

2

�m

2

2

)

�

: (37)

All parameters are the bare one's, z

i

= q

2

=(4m

2

i

) and the coe�cient functions f

n

=

f

n

(z

i

) are functions of z

i

.
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Appendix B: The BF Feynman rules.

In addition to the conventional QCD Feynman rules we have:

a,�

b,� c,�

p

r

q

gf

abc

h

g

��

(p � r �

1

�

q)

�

+ g

��

(r � q)

�

+g

��

(q � p+

1

�

r)

�

i

A

(� =1 standard triple vertex)

a,�

b,� c,�

d,�

�ig

2

[f
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f

xcd
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��

g

��

� g

��

g

��
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f

xbc

(g
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g

��

� g

��

g

��
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+f

acx

f

xbd

(g

��

g

��

� g

��

g

��
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A

( = standard quartic vertex)

a,�

b,�

c,�

d,�

�ig

2

h

f

abx

f

xcd

(g

��

g

��

� g

��

g

��

+

1

�

g

��

g

��

)

+f

adx

f

xbc

(g

��

g

��

� g

��

g

��

�

1

�

g

��

g

��

)

+f

acx

f

xbd
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��

g

��
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��
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A

A

(� =1 standard quartic vertex)

a

b

p

q

c,�

�gf

abc

(p � q)

�

A

>

<

(q

�

= 0 standard gluon{ghost vertex)

a

c,�

d,�

b

�ig

2

f

acx

f

xdb

g

��
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a

c,�

d,�

b

�ig

2

g

��
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acx

f

xdb

+ f

adx

f
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)
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<

<

All momenta are taken to be outgoing.
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Appendix C: BF propagator diagrams.

a) Pure Yang{Mills contributions to the BF propagator [8]

A A

>

<

A A

>

<

A A A A
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<

A A A A
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<
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>

<
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>

<

A A

>

<
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>

<

A A A A

>

<

A A A A

>

<

A A A A

>

<
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A A A A

>
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>

<

<
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•

A A A A

• •A A A A

b) Fermionic contributions to BF propagator [10]
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