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Abstract

It has recently been shown that by extending the minimal standard model to include

a right-handed partner to �

�

, it is possible to gauge the B � 3L

�

quantum number

consistently. If we add two scalar triplets, one trivial (�

1

) and one nontrivial (�

2

) under

B � 3L

�

, it is possible also to have desirable neutrino masses and mixing for neutrino

oscillations. At the same time, a lepton asymmetry can be generated in the early

universe through the novel mechanism of the decay of the heavier �

1

into the lighter �

2

plus a neutral singlet (�

0

). This lepton asymmetry then gets converted into a baryon

asymmetry at the electroweak phase transition.



It has recently been shown[1] that the minimal standard SU(3)

C

� SU(2)

L

� U(1)

Y

gauge model of quarks and leptons may be extended to include an anomaly-free gauge

factor U(1)

B�3L

�

if �

�

has a right-handed singlet partner, but not �

e

or �

�

. The scale of

symmetry breaking of this B�3L

�

gauge group may even be lower[2] than that of electroweak

symmetry breaking. In the minimal standard model, there are dimension-six baryon-number

nonconserving operators[3] of the form Q

3

L which would induce the proton to decay. In the

B � 3L

�

gauge model, the lowest dimensional baryon-number nonconserving operator is of

the formQ

9

L

�

, hence such processes are suppressed by 22 powers of some higher energy scale

and become totally negligible. To obtain a baryon asymmetry of the universe in this model,

it is natural to propose instead that a primordial lepton asymmetry is generated[4, 5] which

then gets converted into a baryon asymmetry during the electroweak phase transition[6].

In order to generate a lepton asymmetry in the early universe, we must have lepton-

number nonconserving interactions which also violate C and CP , as well as the existence

of an epoch when such processes are out of thermal equilibrium[7]. The canonical way[4] of

achieving this is to use heavy right-handed singlet neutrinos which also allow the known left-

handed neutrinos (�

e

; �

�

; �

�

) to acquire small seesaw masses. An equally attractive scenario

was recently proposed[5] where heavy Higgs triplets are used. In the B � 3L

�

gauge model,

since �

e

and �

�

have no right-handed singlet partners, the natural thing to do is to adopt a

variation of the latter mechanism. In fact, as we see below, the requirement of a desirable

neutrino mass matrix and the absence of an unwanted pseudo-Goldstone boson together

imply a successful leptogenesis scenario in this model without any further extension.

In the standard model, a general neutrino mass matrix may be obtained with the addi-

tion of one heavy Higgs triplet, but to generate a lepton asymmetry, two such triplets are

required[5]. In the minimalB�3L

�

gauge model, only �

�

gets a mass. Furthermore, because

B � 3L

�

is a gauge symmetry, it is not obvious a priori how that will a�ect the conversion
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of a primordial L

e

+ L

�

asymmetry into a baryon asymmetry during the electroweak phase

transition. In this paper we will address both issues, i.e. neutrino masses and baryogenesis,

and show how they may have a common solution.

The fermion content of our model is identical to that of the original model[1]. The quarks

and leptons transform under SU(3)

C

� SU(2)

L

� U(1)

Y

� U(1)

B�3L

�

as follows:

0

@

u

i

d

i

1

A

L

� (3; 2; 1=6; 1=3); u

iR

� (3; 1; 2=3; 1=3); d

iR

� (3; 1;�1=3; 1=3); (1)

0

@

�

e

e

1

A

L

;

0

@

�

�

�

1

A

L

� (1; 2;�1=2; 0); e

R

; �

R

� (1; 1;�1; 0); (2)

0

@

�

�

�

1

A

L

� (1; 2;�1=2;�3); �

R

� (1; 1;�1;�3); �

�R

� (1; 1; 0;�3): (3)

The U(1)

B�3L

�

gauge boson X does not couple to e or � or their corresponding neutrinos.

It can thus escape detection in most experiments. Although it does couple to quarks as in

a previously proposed model[8], such signatures are normally overwhelmed by the enormous

quantum-chromodynamics (QCD) background. On the other hand, X does couple to �

and �

�

, so it could be observed through its decay into �

+

�

�

pairs[2]. Furthermore, the

�

�

-quark interactions in this scenario may a�ect the oscillations of neutrinos inside the sun

and the earth and contribute[9] to the zenith-angle dependence of the atmospheric neutrino

de�cit[10]. Since the interactions of X violates e� � � � universality, present experimental

constraints limit its coupling and mass[2]. For example, g

X

< 0:1 is required for m

X

< 50

GeV.

The minimal scalar sector of this model consists of the standard Higgs doublet,

0

@

�

+

�

0

1

A

� (1; 2; 1=2; 0) (4)

which breaks the electroweak gauge symmetrySU(2)

L

�U(1)

Y

down to U(1)

em

and a neutral

singlet,

�

0

� (1; 1; 0; 6) (5)
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which couples to �

�R

�

�R

and breaks the U(1)

B�3L

�

gauge symmetry. The resulting theory

allows �

�L

to obtain a seesaw mass[11] of order 1 eV and retains B as an additively conserved

quantum number and L

�

as a multiplicatively conserved quantum number.

In the original model[1], the other two neutrinos (�

e

; �

�

) acquire masses and mix with �

�

radiatively. In our present work, we propose instead to use the mechanism of Ref.[5] and

add a couple of Higgs triplets:

0

B

B

@

�

++

1

�

+

1

�

0

1

1

C

C

A

� (1; 3; 1; 0) and

0

B

B

@

�

++

2

�

+

2

�

0

2

1

C

C

A

� (1; 3; 1; 3): (6)

Now �

1

will give small masses to �

e

and �

�

, and will also generate a �

2

-asymmetry of the

universe when it decays at a very high temperature. Furthermore, �

2

will mix �

e

and �

�

with �

�

, and its interactions will convert the �

2

-asymmetry into a L

e

+L

�

asymmetry of the

universe. Since B � 3L

�

may well be an unbroken gauge symmetry during the electroweak

phase transition, there may not be any B � 3L

�

asymmetry. In that case, the total B � L

asymmetry is the same as the �(L

e

+ L

�

) asymmetry, which will get converted into the

baryon asymmetry of the universe during the electroweak phase transition.

The above scalar sector contains a pseudo-Goldstone boson which comes about because

there are 3 global U(1) symmetries in the Higgs potential and only 2 local U(1) symmetries

which get broken. In addition, there is no CP -violating complex phase which is necessary

for generating a lepton asymmetry of the universe. However, if an extra neutral scalar �

0

�

(1; 1; 0;�3) is added, then the Higgs potential will have additional terms which eliminate the

unwanted global U(1) symmetry, and one of these couplings will also have to be complex,

allowing thus enough CP violation to generate a lepton asymmetry, as explained below.

The triplet scalar �elds �

a

; (a = 1; 2) do not acquire any vacuum expectation value (vev)

4



to start with. At the tree level, we can write down the relevant part of the Lagrangian as

� L =

X

a=1;2

M

2

a

�

y

a

�

a

+

X

i;j=e;�

f

1ij

[�

0

1

�

i

�

j

+ �

+

1

(�

i

l

j

+ l

i

�

j

)=

p

2 + �

++

1

l

i

l

j

]

+

X

i=e;�

f

2i�

[�

0

2

�

i

�

�

+ �

+

2

(�

i

� + l

i

�

�

)=

p

2 + �

++

2

l

i

� ] + f

�

�

�R

�

�R

�

0

+ �

1

[

�

�

0

1

�

0

�

0

+

p

2�

�

1

�

+

�

0

+ �

��

1

�

+

�

+

] + �

2

�

y

1

�

2

�

0

+ g�

0

�

0

�

0

+ h�

0�

[

�

�

0

2

�

0

�

0

+

p

2�

�

2

�

+

�

0

+ �

��

2

�

+

�

+

] + h:c: (7)

Interactions of the scalar triplets �

a

; (a = 1; 2) break the L

e

and L

�

numbers explicitly,

whereas L

�

is conserved. Since there is no spontaneous breaking of the lepton numbers,

there are no massless Goldstone bosons (majorons) which can contribute to the invisible

width of the Z boson. After electroweak symmetry breaking when the doublet acquires a

nonzero vev, and the breaking of B�3L

�

, there will be induced vev's for these scalar triplets,

h�

0

1

i '

��

1

v

2

M

2

1

and h�

0

2

i '

�hh�

0

iv

2

M

2

2

:

Since the masses of these scalar triplets and the would-be majorons are very large, they

cannot contribute to the width of the Z boson.

At low energies, we can integrate out the heavier triplet �elds and write down an e�ective

neutrino mass matrix in the basis f��

eL

��

�L

��

�L

�

�R

g as,

M

�

=

0

B

B

B

B

@

f

1ee

h�

0

1

i f

1e�

h�

0

1

i f

2e�

h�

0

2

i 0

f

1e�

h�

0

1

i f

1��

h�

0

1

i f

2��

h�

0

2

i 0

f

2e�

h�

0

2

i f

2��

h�

0

2

i 0 m

D

�

0 0 m

D

�

f

�

h�

0

i

1

C

C

C

C

A

(8)

where m

D

�

is the Dirac mass term for �

�

and f

�

h�

0

i is the Majorana mass of �

�R

. The left-

handed �

�L

will then get a seesaw mass, which can be of order 1 eV. The out-of-equilibrium

condition for the generation of a lepton asymmetry dictates that the mass of the triplet �

1

be of order 10

13

GeV, which implies that the e and � mass elements are also of order 1 eV or

less. As we will see later, �

e

and �

�

may mix with �

�

to form a desirable phenomenological
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mass matrix for neutrino oscillations. The constraints on these elements come from the

consideration of a realistic baryon asymmetry of the universe as we show below.

Around the time of the electroweak phase transition, we assume that B�3L

�

is conserved;

hence there cannot be any B � 3L

�

asymmetry. In particular, L

�

is exactly conserved.

However, L

e

and L

�

numbers are broken explicitly at some high scale M

1

in the decays of

the triplets �

1

. At such high energies, SU(2)

L

gauge invariance means that we need only

consider one of its components, say �

++

1

, which has the following decay modes:

�

++

1

!

8

>

>

<

>

>

:

l

+

i

l

+

j

(L

e

+ L

�

= �2; n

�

2

= 0)

�

++

2

�

0

(L

e

+ L

�

= �1; n

�

2

= 1)

�

+

�

+

(L

e

+ L

�

= 0; n

�

2

= 0):

(9)

Here we assumed that most of the time �

++

2

! l

+

i

l

+

�

; and the other decay mode of �

2

never

comes to equilibrium so that L

e

+ L

�

= �1 for �

2

. We will discuss this point later. In the

following we will �rst explain how �

1

decay generates a �

2

asymmetry.

The �rst decay mode does not play any role in the generation of a lepton asymmetry.

Here CP violation comes from the interference of the tree-level and one-loop diagrams of

Figures 1 and 2. The scalar potential has one CP -violating phase in the product �

�

1

�

2

h,

which cannot be absorbed by rede�nitions and produces a �

2

-asymmetry when �

1

decays.

As a result, the decays of �

++

1

and �

��

1

will create more �

++

2

than �

��

2

or vice versa; hence

a �

2

-asymmetry � = (n

�

2

� n

�

y

2

)=n




will be created, given by

� '

Im [�

�

1

�

2

h]

16�

2

g

�

M

2

1

�

M

1

�

1

�

; (10)

where g

�

is the total number of relativistic degrees of freedom and

�

1

=

1

8�

0

@

j�

1

j

2

+ j�

2

j

2

M

1

+

X

i;j

jf

1ij

j

2

M

1

1

A

(11)

is the decay rate of the triplet �

1

. This �

2

-asymmetry will also have an apparent charge

asymmetry, which will be compensated by an asymmetry in �

+

and �

�

. In earlier models
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of leptogenesis, a lepton asymmetry is generated when the heavy particles decay into light

leptons and CP violation enters in the vertex corrections[4] or in the mass matrix[5, 12]. In

contrast, we generate in the present scenario an asymmetry in �

2

through the quartic scalar

couplings, which then generate a lepton asymmetry.

For the generation of the �

2

-asymmetry, this decay rate should also satisfy the out-of-

equilibrium condition[13]

�

1

<

q

1:7g

�

T

2

M

P l

at T = M

1

; (12)

where M

P l

is the Planck scale. We assume M

1

� M

2

, so that when M

1

decays, �

2

is

essentially massless. Taking �

1;2

=M

1

� 0:1, f

1ij

� 1, the out-of-equilibrium condition is

satis�ed with M

1

> 10

14

GeV. However, even if we choose M

1

� 10

13

GeV, the generated

�

2

-asymmetry will be only less by a factor S � 10

�2

, which is still large enough to explain

the baryon asymmetry of the universe for a value of h � 10

�4

. This gives us the e and �

neutrino mass matrix elements to be of order 1 eV.

At a temperature T < M

1

, there will be a �

2

-asymmetry. The decays of �

2

also break

lepton number,

�

++

2

!

8

<

:

l

+

i

l

+

�

(L

e

+ L

�

= �1)

�

+

�

+

�

0�

(L

e

+ L

�

= 0):

(13)

If both of these decay modes are in equilibrium at any time, that will erase the lepton

asymmetry of the universe[6, 13, 14]. We must therefore require that at least one of these

interactions and the scattering process,

l

+

i

l

+

�

! �

+

�

+

�

0�

to satisfy the out-of-equilibrium condition till the electroweak symmetry breaking phase

transition is over.

For the choice h � 10

�4

, we may take M

2

> 10

5

GeV to ensure that

�

2

(�

2

! ���

�

) =

h

2

16�

2

M

2

8�

<

q

1:7g

�

T

2

M

P l

at T �M

2

(14)
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so that �

2

can hardly decay into three scalars at any time. However, we would like the other

decay mode of �

2

to be fast, so that the �

2

-asymmetry generated during the �

1

decay gets

converted into a lepton asymmetry. In other words, since the number of �

2

is di�erent from

the numbers of �

y

2

, the number of leptons generated in decays of �

2

will be di�erent from the

number of antileptons generated in decays of �

y

2

.

We take f

2i

� 0:1, so that the two-lepton decay mode of �

2

is in equilibrium for most of

the time,

�

2

(�

2

! l

i

l

�

) =

P

i

jf

2i�

j

2

8�

M

2

>

q

1:7g

�

T

2

M

P l

during M

c

� T �M

2

(15)

whereM

c

' 10

9

GeV. During this period fromM

c

toM

2

, the �

2

-asymmetry will get converted

into a L

e

+L

�

asymmetry of the universe. The interaction �

2

L

i

L

�

will also be in equilibrium,

which will relate their chemical potentials: �

�

2

= �

L

i

+�

L

�

(notations will be explained later).

The generated L

e

+ L

�

asymmetry is accompanied by an equal amount of L

�

asymmetry.

However, that is compensated exactly by the �-asymmetry created at the time of �

1

decay.

This �-asymmetry generates an equal and opposite amount of L

�

asymmetry through �+� !

�

�

! �

�R

+ �

�R

, which compensates the L

�

asymmetry in �

2

decay. As a result, there will

not be any net L

�

asymmetry as expected, since B � 3L

�

is exactly conserved at this time.

The generated L

e

and L

�

asymmetries together give the B � L asymmetry

n

L

=

1

2

�S:

The above choice of parameter values will give us the neutrino mass mixing of the e and the

� to the � neutrinos of order 1 eV.

We will now see how this lepton asymmetry can get converted into the baryon asymmetry

of the universe during the electroweak phase transition[6]. We consider all the particles to be

ultrarelativistic, which is the case above the electroweak scale, but at lower energies, although

we understand that a careful analysis has to include the mass corrections, we ignore them

8



since they are small and cannot change the conclusion drastically. The particle asymmetry,

i.e. the di�erence between the number of particles (n

+

) and the number of antiparticles (n

�

)

can be given in terms of the chemical potential of the particle species � (for antiparticles the

chemical potential is ��) as

n

+

� n

�

= n

d

gT

3

6

�

�

T

�

; (16)

where n

d

= 2 for bosons and n

d

= 1 for fermions.

In the rest of this discussion we will assume that after the triplets �

1

and �

2

have decayed,

enough lepton asymmetry was generated. This will give nonvanishing �

�e

and �

��

, which are

directly related to n

L

. When these neutrinos interact with other particles in equilibrium, the

chemical potentials get related by simple additive relations, and that will allow us to relate

this lepton asymmetry n

L

to the baryon asymmetry during the electroweak phase transition.

At energies near the electroweak phase transition, most of the interactions are in equi-

librium. These include the sphaleron[15] induced electroweak B + L violating interaction

arising due to the nonperturbative axial-vector anomaly[16]. In Table 1, we give the interac-

tions and the corresponding relations between the chemical potentials. In the third column

we give the chemical potential which we eliminate using the given relation. We start with

chemical potentials of all the quarks (�

uL

; �

dL

; �

uR

; �

dR

); the e and � leptons (�

aL

; �

�aL

; �

aR

,

where a = e; �); the � leptons (�

�L

; �

��L

; �

�R

; �

��R

); the gauge bosons (�

W

for W

�

, and 0

for all others); and the Higgs scalars (�

�

�

; �

�

0

; �

�

; �

�

). The triplets have decayed away much

before the electroweak phase transition and have decoupled; hence they do not contribute

to the present analysis.

We can then express all the chemical potentials in terms of the following independent

chemical potentials only,

�

0

= �

�

0

; �

W

; �

u

= �

uL

; �

a

= �

�eL

= �

��L

; �

�

= �

��L

: (17)
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Table 1: Relations among the chemical potentials

Interactions � relations � eliminated

D

�

�

y

D

�

� �

W

= �

�

�

+ �

�

0

�

�

�

q

L




�

q

L

W

�

�

dL

= �

uL

+ �

W

�

dL

l

L




�

l

L

W

�

�

iL

= �

�iL

+ �

W

�

iL

; i = e; �; �

q

L

u

R

�

y

�

uR

= �

0

+ �

uL

�

uR

q

L

d

R

� �

dR

= ��

0

+ �

dL

�

dR

l

aL

e

aR

� �

aR

= ��

0

+ �

aL

�

aR

; a = e; �

l

�L

e

�R

� �

�R

= ��

0

+ �

�L

�

�R

�

�R

c

�

�R

� �

�

= �2�

��R

�

�

l

�L

�

�R

�

y

�

��R

= �

0

+ �

�L

�

��R

���

0

�

�

= 2�

�

�

�

We can further eliminate one of these �ve potentials by making use of the relation given

by the sphaleron processes. Since the sphaleron interactions are in equilibrium, we can

write down the following B + L violating relation among the chemical potentials for three

generations,

9�

u

+ 6�

W

+ 2�

a

+ �

�

= 0: (18)

We then express the baryon number, lepton numbers and the electric charge and the hyper-

charge number densities in terms of these independent chemical potentials,

B = 12�

u

+ 6�

W

(19)

L

e

= L

�

= 3�

a

+ 2�

W

� �

0

(20)

L

�

= 4�

�

+ 2�

W

(21)

Q = 24�

u

+ (12 + 2m)�

0

� (4 + 2m)�

W

(22)

Q

3

= �(10 +m)�

W

(23)

where m is the number of Higgs doublets �.

10



At temperatures above the electroweak phase transition, T > T

c

, both Q and Q

3

must

vanish. In addition, since B � 3L

�

is also a gauge symmetry, this charge must also vanish.

These three conditions and the sphaleron inducedB�L conserving, B+L violating condition

can be expressed as

< Q >= 0 =) �

0

=

�12

6 +m

�

u

(24)

< Q

3

>= 0 =) �

W

= 0 (25)

< B � 3L

�

>= 0 =) �

�

= �

u

(26)

Sphaleron transition =) �

a

= �5�

u

(27)

Using these relations we can now write down the baryon number, lepton number, and their

combinations in terms of the B � L number density, which remains invariant under all

electroweak phase transitions. They are

B =

36 + 6m

102 + 19m

(B � L) (28)

L

e

= L

�

=

�78� 15m

204 + 38m

(B � L) (29)

L

�

=

12 + 2m

102 + 19m

(B � L) (30)

B + L =

�30 � 7m

102 + 19m

(B � L) (31)

We will now consider two possibilities. In the �rst, the B�3L

�

gauge symmetry is broken

after the electroweak phase transition. Then, at temperatures below the electroweak phase

transition, the other relations remain the same, but it is no longer neccessary to make Q

3

vanishing. Since � acquires a vev, we require �

0

= 0: With this change we can now relate

all the chemical potentials in terms of �

u

as

< Q >= 0 =) �

W

=

12

2 +m

�

u

(32)

h�

0

i 6= 0 =) �

0

= 0 (33)

11



< B � 3L

�

>= 0 =) �

�

= �

u

(34)

Sphaleron transition =) �

a

= �3�

W

� 5�

u

(35)

This will then allow us to write down the baryon number, lepton number, and their combi-

nations in terms of the B � L number density as

B =

48 + 6m

146 + 19m

(B � L) (36)

L

e

= L

�

=

�114 � 15m

292 + 38m

(B � L) (37)

L

�

=

16 + 2m

146 + 19m

(B � L) (38)

B + L =

�50 � 7m

292 + 38m

(B � L) (39)

Thus after the electroweak phase transition, the L

e

+ L

�

asymmetry n

L

generated after

the scalar triplets �

1

and then �

2

have decayed, which is equal to the B � L asymmetry at

that time, will get converted into a B asymmetry during the electroweak phase transition.

Although any existing B + L asymmetry gets washed out, we still get a non-zero B + L

asymmetry after the electroweak phase transition from the same B � L asymmetry. For

consistency we check that the B � L asymmetry remains the same during the electroweak

phase transition and there is no B � 3L

�

asymmetry.

We will now consider the other possibility when B�3L

�

is broken before the electroweak

phase transition. In this case the electroweak symmetry is unbroken and we still have

< Q

3

>= 0, but < B � 3L

�

>6= 0 so that �

�

= 0. The constraints in this case are

< Q >= 0 =) �

0

=

�12

6 +m

�

u

(40)

< Q

3

>= 0 =) �

W

= 0 (41)

h�i 6= 0 =) �

�

= 0) �

�

�R

= 0; �

�

= ��

0

(42)

Sphaleron transition =) �

a

= �

0

�

9

2

�

u

(43)
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The baryon and lepton asymmeties are now related by

B =

24 + 4m

66 + 13m

(B � L) (44)

L

e

= L

�

=

�58� 9m

132 + 26m

(B � L) (45)

L

�

=

16

66 + 13m

(B � L) (46)

B + L =

�18 � 5m

66 + 13m

(B � L) (47)

Finally we give the relations between the baryon and lepton asymmetries after both the

electroweak symmetry and the B � 3L

�

symmetry are broken. The �nal asymmetry will

not depend on whether the electroweak symmetry was broken before or after the B � 3L

�

symmetry is broken. Now we have �

�

= 0 but < B � 3L

�

>6= 0 and h�i = 0 ) �

0

= 0 )

�

�

= 0. We can then express the other chemical potentials in terms of �

u

as

< Q >= 0 =) �

W

=

12

2 +m

�

u

(48)

h�i 6= 0 =) �

0

= 0 (49)

h�i 6= 0 =) �

�

= 0) �

�

�R

= 0; �

�

= ��

0

= 0 (50)

Sphaleron transition =) �

a

= �3�

W

�

9

2

�

u

(51)

which then let us write the baryon and lepton numbers as some combinations of B � L as

B =

32 + 4m

98 + 13m

(B � L) (52)

L

e

= L

�

=

�74� 9m

196 + 26m

(B � L) (53)

L

�

=

8

98 + 13m

(B � L) (54)

B + L =

�34 � 5m

98 + 13m

(B � L) (55)

The �nal baryon asymemtry of the universe is about 1/3 that of the B � L asymmetry.

Hence in the present scenario, the generated B � L asymmetry n

L

will get converted into

13



a baryon asymmetry after the electroweak and B � 3L

�

symmetries are broken, and the

present baryon asymmetry of the universe will be given by

n

b

�

1

6

S� (56)

which is of the order of 10

�10

, for the choice of parameter values we have considered earlier.

To summarize, we studied an extension of the standard model to include a B � 3L

�

gauge symmetry, which may be broken below the electroweak symmetry breaking scale. The

Higgs structure is modi�ed to explain the baryon asymmetry of the universe, which comes

about in an unconventional way. We �rst generate an asymmetry in the number of scalars

(n

�

2

), through only scalar interactions. This n

�

2

generates the L

e

+ L

�

asymmetry when

these scalars decay. During the electroweak phase transition, the latter gets converted into

a baryon asymmetry of the universe. Neutrino masses and mixing are obtained naturally in

this scenario.
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