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Abstract

We have performed a detailed investigation of total lifetimes for the �

++

cc

and �

+

cc

baryons in the framework of operator product expansion over the inverse mass of charmed

quark, whereas, to estimate matrix elements of operators obtained in OPE, some approx-

imations of nonrelativistic QCD are used. This approach allows one to take into account

the corrections to the spectator decays of c-quarks, which re
ect the fact, that these

quarks are bound, as well as the contributions, connected to the e�ects of both the Pauli

interference for the �

++

cc

-baryon and the weak scattering for the �

+

cc

-baryon. The real-

ization of such program leads to the following estimates for the total lifetimes of doubly

charmed baryons: �

�

++

cc

= 0:43� 0:1 ps and �

�

+

cc

= 0:11� 0:01 ps.
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1 Introduction

A study on weak decays of doubly charmed baryons is of great interest because of two

reasons. The �rst one is connected to the investigation on the basic properties of weak

interactions at the fundamental level, including the precise determination of CKMmatrix

parameters. The second reason is related to the possibility to explore QCD as it is

provided by the systems containing the heavy quarks. In the limit of a large scale given

by the heavy quark mass, some aspects in the dynamics of strong interactions become

simpler and one gets a possibility to draw de�nite model-independent predictions. Of

course, both these topics appear in the analysis of weak decays for the doubly charmed

baryons, whose dynamics is determined by an interplay between the strong and weak

interactions. That is why these baryons are the attractive and reasonable subjects for

the theoretical and experimental consideration.

The doubly charmed �

(�)

cc

-baryon represents an absolutely new type of objects in

comparison with the ordinary baryons containing light quarks only. The basic state of

such baryon is analogous to a (

�

Qq)-meson, which contains a single heavy antiquark

�

Q

and a light quark q. In the doubly heavy baryon the role of heavy antiquark is played

by the (cc)-diquark, which is in antitriplet color-state. It has a small size in comparison

with the scale of the light quark con�nement. Nevertheless the spectrum of (ccq)-system

states has to di�er essentially from the heavy meson spectra, because the composed (cc)-

diquark has a set of the excited states (for example, 2S and 2P ) in contrast to the heavy

quark. The energy of diquark excitation is twice less than the excitation energy of light

quark bound with the diquark. So, the representation on the compact diquark can be

straightforwardly connected to the level structure of doubly heavy baryon.

Naive estimates for the lifetimes of doubly charmed baryons were done by the authors

slightly early [1]. A simple consideration of quark diagrams shows, that in the decay of

�

++

cc

-baryons, the Pauli interference for the decay products of charmed quark and the

valent quark in the initial state takes place in an analogous way to the D

+

-meson decay.

In the decay of �

+

cc

, the exchange by the W -boson between the valence quarks plays

an important role like in the decay of D

0

. These speculations and the presence of two

charmed quarks in the initial state result in the following estimates for the lifetimes:

�(�

++

cc

) �

1

2

�(D

+

) ' 0:53 ps;

�(�

+

cc

) �

1

2

�(D

0

) ' 0:21 ps:

In this work we discuss the systematic approach to the evaluation of total lifetimes

for the doubly charmed baryons on the basis of both the optical theorem for the inclusive

decay width and the operator product expansion (OPE) for the transition currents in

accordance with the consequent nonrelativistic expansion of hadronic matrix elements

derived in OPE. Using OPE at the �rst step, we exploit the fact, that, due to the

presence of heavy quarks in the initial state, the energy release in the decay of both

quarks is large enough in comparison with the binding energy in the state. Thus, we

can use the expansion over the ratio of these scales. Technically, this step repeats an

analogous procedure for the inclusive decays of heavy-light mesons as it was reviewed in

[2]. Exploring the nonrelativistic expansion of hadronic matrix elements at the second

step, we use the approximation of nonrelativistic QCD [3, 4], which allows one to reduce

the evaluation of matrix elements for the full QCD operators, corresponding to the
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interaction of heavy quarks inside the diquark, to the expansion in powers of

p

c

m

c

, where

p

c

= m

c

v

c

� 1 GeV is a typical momentum of the heavy quark inside the baryon. The

same procedure for the matrix elements, determined by the strong interaction of heavy

quarks with the light quark, leads to the expansion in powers of

�

QCD

m

c

.

This way, taking into account the radiation of hard gluons in these decays, leads

to the expansion in powers of �

s

, v

c

=

p

m

c

and

�

QCD

m

c

. It is worth to note, that this

expansion would be well de�ned, provided the expansion parameters to be small. In

the c ! su

�

d transition, the ratio of typical momentum for the heavy quark inside the

hadron to the value of energy, released in the decay, is not so small. We would like

also to stress the important roles, played by both the Pauli interference and the weak

scattering, suppressed as

1

m

3

c

with respect to the leading spectator contribution, but the

former ones are enhanced by a numerical factor, caused by the ratio of two-particle

and three-particle phase spaces [5]. Numerical estimates show that the value of these

contributions is considerably large, and it is of the order of 40 � 140%. These e�ects

take place in the di�erent baryons, �

++

cc

and �

+

cc

, and, thus, they enhance the di�erence

of lifetimes for these baryons. The �nal result for the total lifetimes of doubly charmed

baryons is the following:

�

�

++

cc

= 0:43� 0:1 ps;

�

�

+

cc

= 0:11� 0:01 ps:

2 Operator product expansion

Now let us start the description of our approach for the calculation of total lifetimes

for the doubly charmed baryons. The optical theorem, taking into account the integral

quark-hadron duality, allows us to relate the total decay width of the heavy quark with

the imaginary part of its forward scattering amplitude. This relationship, applied to the

�

(�)

cc

-baryon total decay width �

�

(�)

cc

, can be written down as:

�

�

(�)

cc

=

1

2M

�

(�)

cc

h�

(�)

cc

jT j�

(�)

cc

i; (1)

where the �

(�)

cc

state in (1) has the ordinary relativistic normalization, h�

(�)

cc

j�

(�)

cc

i = 2EV ,

and the transition operator T is determined by the expression

T = =m

Z

d

4

x f

^

TH

eff

(x)H

eff

(0)g; (2)

where H

eff

is the standard e�ective hamiltonian, describing the low energy interactions

of initial quarks with the decays products, so that

H

eff

=

G

F

2

p

2

V

uq

1

V

�

cq

1

[C

+

(�)O

+

+ C

�

(�)O

�

] + h:c: (3)

where

O

�

= [�q

1�




�

(1� 


5

)c

�

][�u







�

(1� 


5

)q

2�

](�

��

�


�

� �

��

�


�

);

and

C

+

=

�

�

s

(M

W

)

�

s

(�)

�

6

33�2f

; C

�

=

�

�

s

(M

W

)

�

s

(�)

�

�12

33�2f

;
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where f is the number of 
avors.

Assuming that the energy release in the heavy quark decay is large, we can perform

the operator product expansion for the transition operator T in (1). In this way we �nd

a series of local operators with increasing dimension over the energy scale, wherein the

contributions to �

�

(�)

cc

are suppressed by the increasing inverse powers of the heavy quark

masses. This formalism has already been applied to calculate the total decay rates for the

hadrons, containing a single heavy quark [2] (for the most early work, having used similar

methods, see also [6, 7]). Here we would like to stress that the expansion, applied in this

paper, is simultaneously in the powers of the inverse heavy quark mass and the relative

velocity of heavy quarks inside the hadron. Thus, the latter points to the di�erence from

the description of both the heavy-light mesons (the expansion in powers of

�

QCD

m

c

) and

the heavy-heavy mesons [8] (the expansion in powers of relative velocity of heavy quarks

inside the hadron, where one can apply the scaling rules of nonrelativistic QCD [4]).

In this work we will extend this approach to the treatment of baryons, containing

two heavy quarks. The operator product expansion applied has the form:

T = C

1

(�)�cc+

1

m

2

c

C

2

(�)�cg�

��

G

��

c+

1

m

3

c

O(1): (4)

The leading contribution in OPE is determined by the operator �cc, corresponding to

the spectator decays of c-quarks. The use of the equation of motion for the heavy quark

�elds allows one to eliminate some redundant operators, so that no operators of dimension

four contribute. There is a single operator of dimension �ve, Q

GQ

=

�

Qg�

��

G

��

Q. As

we will show below, signi�cant contributions come from the operators of dimension six

Q

2Q2q

=

�

Q�q�q�

0

Q, representing the e�ects of Pauli interference and weak scattering for

�

++

cc

and �

+

cc

, correspondingly. Furthermore, there are also other operators of dimension

six Q

61Q

=

�

Q�

��




l

D

�

G

�l

Q and Q

62Q

=

�

QD

�

G

��

�

�

Q. In what follows, we do not

calculate the corresponding coe�cient functions for the latter two operators, so that the

expansion is certainly complete up to the second order of

1

m

, only.

Further, the di�erent contributions to OPE are given by the following

T

�

++

cc

= T

35c

+ T

6;P I

;

T

�

+

cc

= T

35c

+ T

6;WS

;

where the �rst terms account for the operators of dimension three O

3Q

and �ve O

GQ

, the

second terms correspond to the e�ects of Pauli interference and weak scattering. The

explicit formulae for these contributions have the following form:

T

35c

= 2 � (�

c;spec

�cc�

�

0c

m

2

c

[(2 +K

0c

)P

1

+K

2c

P

2

]O

Gc

); (5)

where �

0c

=

G

2

F

m

2

c

192�

3

and K

0c

= C

2

�

+ 2C

2

+

, K

2c

= 2(C

2

+

� C

2

�

). This expression has been

derived in [9] (see also [10]), and it is also discussed in [2]. The phase space factors P

i

look like [2, 11]:

P

1

= (1� y)

4

; P

2

= (1� y)

3

;

where y =

m

2

s

m

2

c

.

�

c;spec

denotes the contribution to the total decay width of the free decay for one of

the two c-quarks, which is explicitly expressed below.
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For the e�ects of Pauli interference and weak scattering, we �nd the following for-

mulae:

T

PI

= �

2G

2

F

4�

m

2

c

(1�

m

u

m

c

)

2

([(

(1� z

�

)

2

2

�

(1� z

�

)

3

4

)(�c

i




�

(1� 


5

)c

i

)(�q

j




�

(1� 


5

)q

j

) +

(

(1� z

�

)

2

2

�

(1� z

�

)

3

3

)(�c

i




�




5

c

i

)(�q

j




�

(1� 


5

)q

j

)] (6)

[(C

+

+ C

�

)

2

+

1

3

(1� k

1

2

)(5C

2

+

+ C

2

�

� 6C

�

C

+

)] +

[(

(1� z

�

)

2

2

�

(1� z

�

)

3

4

)(�c

i




�

(1� 


5

)c

j

)(�q

j




�

(1� 


5

)c

i

) +

(

(1� z

�

)

2

2

�

(1� z

�

)

3

3

)(�c

i




�




5

c

j

)(�q

j




�

(1� 


5

)q

i

)]k

1

2

(5C

2

+

+ C

2

�

� 6C

�

C

+

));

T

WS

=

2G

2

F

4�

p

2

+

(1� z

+

)

2

[(C

2

+

+ C

2

�

+

1

3

(1� k

1

2

)(C

2

+

� C

2

�

))

(�c

i




�

(1� 


5

)c

i

)(�q

j




�

(1� 


5

)q

j

) + (7)

k

1

2

(C

2

+

� C

2

�

)(�c

i




�

(1� 


5

)c

j

)(�q

j




�

(1� 


5

)q

i

)];

where p

+

= p

c

+ p

q

, p

�

= p

c

� p

q

and z

�

=

m

2

c

p

2

�

, k = �

s

(�)=�

s

(m

c

).

In the numerical estimates for the evolution of coe�cients C

+

and C

�

, we have taken

into account the threshold e�ects, connected to the b-quark, as well as the threshold

e�ects, related to the c-quark mass in the Pauli interference and weak scattering.

In expression (5), the scale � is approximately equal tom

c

. For the Pauli interference

and weak scattering, this scale was chosen in the way to obtain an agreement between the

experimental di�erences in the lifetimes of �

c

, �

+

c

and �

0

c

-baryons and the theoretical

predictions, based on the e�ects, mentioned above. This problem is discussed below.

Anyway, the choice of these scales allows some variations, and a complete answer to this

question requires calculations in the next order of perturbative theory.

The contribution of the leading operator �cc corresponds to the imaginary part of

the diagram in Fig. 1, as it stands in expression (4). The coe�cient of �cc can be

obtained in the usual way by matching of the Fig. 1 diagram, corresponding to the

leading term in expression (4), with the operator �cc. This coe�cient is equivalent to the

free quark decay rate, and it is known in the next-to-leading logarithmic approximation

of QCD [12, 13, 14, 15, 16], including the strange quark mass e�ects in the �nal state

[16]. To calculate the next-to-leading logarithmic e�ects, the Wilson coe�cients in the

e�ective weak lagrangian are required at the next-to-leading accuracy, and the single

gluon exchange corrections to the diagram in Fig.1 must be considered. In our numerical

estimates we use the expression for �

spec

, including the next-to-leading order corrections,

s-quark mass e�ects in the �nal state, but we neglect the Cabibbo-suppressed decay

channels for the c-quark. The bulky explicit expression for the spectator c-quark decay

is placed in the Appendix.

Similarly, the contribution by O

GQ

is obtained, when an external gluon line is at-

tached to the inner quark lines in Fig. 1 in all possible ways. The corresponding co-

e�cients are known in the leading logarithmic approximation. Finally, the dimension

six operators and their coe�cients arise due to those contributions, wherein one of the

internal u or

�

d quark line is "cut" in the diagram of Fig. 1. The resulting graphs are

5



depicted in Figs. 2 and 3. These contributions correspond to the e�ects of Pauli inter-

ference and weak scattering. We have calculated the expressions for these e�ects with

account for both the s-quark mass in the �nal state and the logarithmic renormalization

of e�ective electroweak lagrangian at low energies.

Since the simultaneous account for the mass e�ects and low-energy logarithmic renor-

malization of such contributions has been performed in this work for the �rst time, we

would like to discuss this question in some details.

The straightforward calculation of diagrams of Figs. 2 and 3 with the account for

the s-quark mass yields the following expressions:

T

PI

= �

2G

2

F

4�

p

2

�

[(

(1� z

�

)

3

12

g

��

+ (

(1� z

�

)

3

2

�

(1� z

�

)

3

3

)

p

�

�

p

�

�

p

2

�

)]

[(C

+

+ C

�

)

2

(�c

i




�

(1� 


5

)c

i

)(q

j




�

(1� 


5

)q

j

) + (8)

(5C

2

+

� 6C

+

C

�

+ C

2

�

)(�c

i




�

(1� 


5

)c

j

)(q

j




�

(1� 


5

)q

i

)];

T

WS

=

2G

2

F

m

2

c

4�

p

2

+

(1� z

+

)

2

[(C

2

+

+ C

2

�

)(�c

i




�

(1� 


5

)c

i

)(q

j




�

(1� 


5

)q

j

) +

(C

2

+

� C

2

�

)(�c

i




�

(1� 


5

)c

j

)(q

j




�

(1� 


5

)q

i

)]: (9)

For p

+

and p

�

we use their threshold values:

p

+

= p

c

(1 +

m

q

m

c

); p

�

= p

c

(1�

m

q

m

c

);

taking into account that the logarithmic renormalization of e�ective low-energy la-

grangian has the following form [5, 6]:

L

eff;log

=

G

2

f

m

2

c

2�

f

1

2

[C

2

+

+ C

2

�

+

1

3

(1� k

1

2

)(C

2

+

� C

2

�

)](�c�

�

)(

�

d�

�

d) +

1

2

(C

2

+

� C

2

�

)k

1

2

(�c�

�

d)(

�

d�

�

c) +

1

3

(C

2

+

� C

2

�

)k

1

2

(k

�2

9

� 1)(�c�

�

t

a

c)j

a

�

� (10)

1

8

[(C

+

+ C

�

)

2

+

1

3

(1� k

1

2

)(5C

2

+

+ C

2

�

� 6C

+

C

�

)](�c�

�

c+

2

3

�c


�




5

c)(�u�

�

u)�

1

8

k

1

2

(5C

2

+

+ C

2

�

� 6C

+

C

�

)(�c

i

�

�

c

k

+

2

3

�c

i




�




5

c

k

)(�u

k

�

�

u

i

)�

1

8

[(C

+

� C

�

)

2

+

1

3

(1� k

1

2

)(5C

2

+

+ C

2

�

+ 6C

+

C

�

)](�c�

�

c+

2

3

�c


�




5

c)(�s�

�

s)�

1

8

k

1

2

(5C

2

+

+ C

2

�

+ 6C

+

C

�

)(�c

i

�

�

c

k

+

2

3

�c

i




�




5

c

k

)(�s

k

�

�

s

i

)�

1

6

k

1

2

(k

�2

9

� 1)(5C

2

+

+ C

2

�

)(�c�

mu

t

a

c+

2

3

�c


�




5

t

a

c)j

a�

g;

where �

�

= 


�

(1� 


5

), k = (�

s

(�)=�

s

(m

c

)) and j

a

�

= �u


�

t

a

u +

�

d


�

t

a

d + �s


�

t

a

s is the

color current of light quarks (t

a

= �

a

=2 being the color generators). Having performed

the manipulations, we have obtained formulae (6), (7).

Here we would like to make a note, concerning the terms of e�ective lagrangian,

containing the color current of light quarks. In the analysis below, we have omitted

these terms, because they contribute in the lagrangian with the strength factor k

�

2

9

� 1,

whose numerical value is equal to 0:054 (see below).

To calculate the contribution of semileptonic modes to the total decay width of �

(�)

cc

-

baryons (we have taken into account the electron and muon decay modes only) we use

6



the following expressions [10] (see also [16]):

�

sl

= 4�

c

(f1� 8�+ 8�

3

� �

4

� 12�

2

ln �g+

E

c

f5� 24�+ 24�

2

� 8�

3

+ 3�

4

� 12�

2

ln �g+ (11)

K

c

f�6 + 32�� 24�

2

� 2�

4

+ 24�

2

ln �g+

G

c

f�2 + 16�� 16�

3

+ 2�

4

+ 24�

2

ln �g);

where �

c

= jV

cs

j

2

G

2

F

m

5

c

192�

3

, � =

m

2

s

m

2

c

. The quantities E

c

= K

c

+ G

c

, K

c

and G

c

are given

by the expressions:

K

c

= �h�

(�)

cc

(v)j�c

v

(iD)

2

2m

2

c

c

v

j�

(�)

cc

(v)i;

G

c

= h�

(�)

cc

(v)j�c

v

gG

��

�

��

4m

2

c

c

v

j�

(�)

cc

(v)i; (12)

where the spinor �eld c

v

in the e�ective heavy quark theory is de�ned by the form:

c(x) = e

�im

c

v�x

h

1 +

iD

2m

c

i

c

v

(x): (13)

Thus, we can see, that the evaluation of total lifetimes for the doubly charmed baryons

is reduced to the problem of estimation for the matrix elements of operators, appearing

in the above expressions, which is the topic of next section.

3 Evaluation of matrix elements.

Let us calculate the matrix elements for the operators, obtained as the result of OPE

for the transitions under consideration. In general, it is a complicated nonperturbative

problem, but, as we will see below, in our particular calculation we can get some reliable

estimates for the matrix elements of required operators.

Using the equation of motion for the heavy quarks, the local operator �cc can be

expanded in the following series over the powers of

1

m

c

:

h�

(�)

cc

j�ccj�

(�)

cc

i

norm

= 1�

h�

(�)

cc

j�c[(i

~

D)

2

� (

i

2

�G)]cj�

(�)

cc

i

norm

2m

2

c

+O(

1

m

3

c

): (14)

Thus, this evaluation can be reduced to the calculation of matrix elements for the fol-

lowing operators:

�c(i

~

D)

2

c; (

i

2

)�c�Gc; �c


�

(1� 


5

)c�q


�

(1� 


5

)q; �c


�




5

c�q


�

(1� 


5

)q:

The �rst operator corresponds to the time dilation, connected to the motion of heavy

quarks inside the hadron, the second is related to the spin interaction of heavy quarks

with the chromomagnetic �eld of light quark and the other heavy quark. Further, the

third and fourth operators are the four-quark operators, representing the e�ects of Pauli

interference and weak scattering.

In the system, containing the nonrelativistic heavy quark, the quark-antiquark pairs

with the same 
avor can be produced with a negligible rate, since the energy greater than

7



m

Q

is required. In this situation, it is useful to integrate out the small components of the

heavy-quark spinor �eld and to present the result in terms of the two component spinor

	

Q

. Following this approach, we �nd that all contributions from virtualities greater

than �, where m

c

> � > m

c

v

c

, can be explicitly taken into account in the perturbative

theory. This method is general and analogous to the e�ective heavy quark theory. So,

�cc = 	

+

c

	

c

�

1

2m

2

c

	

+

c

(i

~

D)

2

	

c

+

3

8m

4

c

	

+

c

(i

~

D)

4

	

c

�

1

2m

2

c

	

+

c

g~�

~

B	

c

�

1

4m

3

c

	

+

c

(

~

Dg

~

E)	

c

+ ::: (15)

�cg�

��

G

��

c = �2	

+

c

g~�

~

B	

c

�

1

m

c

	

+

c

(

~

Dg

~

E)	

c

+ ::: (16)

In these expressions we have omitted the term 	

+

c

~�(g

~

E �

~

D)	

c

, corresponding to the

spin-orbital interaction, because it vanishes in the ground states of doubly charmed

baryons. By de�nition, the two-component spinor 	

c

has the same normalization as Q,

Z

d

3

x	

+

c

	

+

c

=

Z

d

3

xQ

+

Q: (17)

Then, with the required accuracy, 	

c

can be expressed through the big components of

spinor Q

Q � e

�imt

�

�

�

�

(18)

due to the following formula

	

c

=

 

1 +

(i

~

D)

2

8m

2

c

!

�: (19)

(this can be checked with the use of the equation of motion). Let us note that the

covariant derivative should be taken in the adjoint representation, when it acts on the

chromoelectric �eld,

(

~

D

~

E) = (

~

@T

a

� gf

abc

T

b

~

A

c

)

~

E

a

: (20)

Radiative corrections modify the coe�cients of the chromomagnetic term (~�

~

B) and "Dar-

win" term in (15). However, in the situation at hand, these e�ects can be consistently

neglected.

Now let us consider the signi�cance of di�erent contributions to the expansions in

(15) and (16). Evaluating the contributions of chromomagnetic and "Darwin" terms, we

have to take into account the interaction of heavy quark with the light quark as well as

the interaction with the other heavy quark. In the �rst case, the procedure of calculation

is analogous to that for the heavy-light mesons. So, the "Darwin" term is suppressed by

a factor of

�

QCD

m

c

in comparison with the chromomagnetic term, and, thus, we neglect its

contribution. In the second case, the analysis is analogous to that for the heavy-heavy

mesons, so that we can use the scaling rules of nonrelativistic QCD [4]. In this approach,

the contributions of di�erent operators can be estimated, using the following relations

in Coulomb gauge:

	

c

� (m

c

v

c

)

3

2

;

~

D � m

c

v

c

; gE � m

2

c

v

3

c

; gB � m

2

c

v

4

c

; g � v

1

2

c

:

From these scaling rules for the heavy-heavy interaction, we can deduce that the contri-

bution of the "Darwin" term has the same order as that of chromomagnetic term.
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Let us now start the calculation of matrix elements with the use of potential models

for the bound states of hadrons. While estimating the matrix element value of the kinetic

energy, we note, that the heavy quark kinetic energy consists of two parts: the kinetic

energy of the heavy quark motion inside the diquark and the kinetic energy, related to the

diquark motion inside the hadron. According to the phenomenology of meson potential

models, in the range of average distances between the quarks: 0:1 fm < r < 1 fm, the

average kinetic energy of quarks is constant and independent of both the quark 
avors,

constituting meson, and the quantum numbers, describing the excitations of the ground

state. Therefore, we determine T = m

d

v

2

d

=2 + m

l

v

2

l

=2 as the average kinetic energy of

diquark and light quark, and T=2 = m

c1

v

2

c1

=2+m

c2

v

2

c2

=2 as the average kinetic energy of

heavy quarks inside the diquark (the coe�cient 1/2 takes into account the antisymmetry

of color wave function for the diquark). Finally, we have the following expression for the

matrix element of the heavy quark kinetic energy:

h�

(�)

cc

j	

+

c

(i

~

D)

2

	

c

j�

(�)

cc

i

2M

�

(�)

cc

m

2

c

' v

2

c

'

m

l

T

2m

2

c

+m

c

m

l

+

T

2m

c

: (21)

We use the value T ' 0:4 GeV, which results in v

2

c

= 0:146, where the dominant

contribution comes from the motion of heavy quarks inside the diquark.

Now we would like to estimate the matrix element of chromomagnetic operator, cor-

responding to the interaction of heavy quarks with the chromomagnetic �eld of the light

quark. For this purpose, we will use the following de�nitions: O

mag

=

P

2

i=1

g

s

4m

c

�c

i

�

��

G

��

c

i

and O

mag

� �(j(j + 1)� s

d

(s

d

+ 1) � s

l

(s

l

+ 1)), where s

d

is the diquark spin (as was

noticed by the authors earlier [1], there is only the vector state of the cc-diquark in the

ground state of such baryons), s

l

is the light quark spin and j is the total spin of the

baryon. Since both c-quarks additively contribute to the total decay width of baryons,

we can use the diquark picture and substitute for the sum of c-quark spins the diquark

spin. This leads to the parameterization for O

mag

, as it is given above, and, moreover, it

allows us to relate the value of the matrix element for this operator to the mass di�erence

between the excited and ground state of baryons:

O

mag

= �

2

3

(M

�

�

(�)

cc

�M

�

(�)

cc

): (22)

The account for the interaction of heavy quarks inside the diquark leads to the following

expressions for the chromomagnetic and "Darwin" terms:

h�

(�)

cc

j	

+

c

g~� �

~

B	

c

j�

(�)

cc

i

2M

�

(�)

cc

=

2

9

g

2

j	(0)j

2

m

c

; (23)

h�

(�)

cc

j	

+

c

(

~

D � g

~

E)	

c

j�

(�)

cc

i

2M

�

(�)

cc

=

2

3

g

2

j	(0)j

2

: (24)

where 	(0) is the diquark wave function at the origin.

Collecting the results given above, we �nd the matrix elements of operators (15) and

(16):

h�

(�)

cc

j�ccj�

(�)

cc

i

2M

�

(�)

cc

= 1�

1

2

v

2

c

�

1

3

M

�

(�)

cc

�M

�

(�)

cc

m

c

�

g

2

9m

3

c

j	(0)j

2

�

9



1

6m

3

c

g

2

j	(0)j

2

+ :::

� 1� 0:074� 0:004� 0:003� 0:005 + : : : (25)

We can see that the largest contribution to the decrease of the decay width comes

from the time dilation, connected to the motion of heavy quarks inside the baryon. For

the matrix element of the operator �cg�

��

G

��

c, we get:

h�

(�)

cc

j�cg�

��

G

��

cj�

(�)

cc

i

2M

�

(�)

cc

= �

4

3

(M

�

�

(�)

cc

�M

�

(�)

cc

)

m

c

�

4g

2

9m

3

c

j	(0)j

2

�

g

2

3m

3

c

j	(0)j

2

: (26)

Now let us continue with the calculation of the matrix elements for the four-quark op-

erators, corresponding to the e�ects of Pauli interference and weak scattering. The

straightforward calculation in the framework of nonrelativistic QCD gives

(�c


�

(1� 


5

)c)(�q


�

(1� 


5

)q) = 2m

c

V

�1

(1� 4S

c

S

q

); (27)

(�c


�




5

c)(�q


�

(1� 


5

)q) = �4S

c

S

q

� 2m

c

V

�1

; (28)

where V

�1

= j	

1

(0)j

2

, and 	

1

(0) is the light quark wave function at the origin of two

c-quarks. We suppose, that j	

1

(0)j has the same value as that in the D-meson. So, we

�nd:

j	

1

(0)j

2

�

f

2

D

m

2

D

12m

c

: (29)

Then, again remembering that both c-quarks additively contribute to the total decay

width and using the diquark picture, we can substitute for S

c

1

+ S

c

2

the S

d

, where S

d

is

the diquark spin. Thus, we have

h�

(�)

cc

j(�c


�

(1� 


5

)c)(�q


�

(1� 


5

)q)j�

(�)

cc

i = 10m

c

� j	

1

(0)j

2

; (30)

h�

(�)

cc

j(�c


�




5

c)(�q


�

(1� 


5

)q)j�

c

c

(�)

i = 8m

c

� j	

1

(0)j

2

: (31)

The color antisymmetry of the baryon wave function results in relations between the

matrix elements of operators with the di�erent sums over the color indexes:

h�

(�)

cc

j(�c

i

T

�

c

k

)(�q

k




�

(1� 


5

)q

i

j�

(�)

cc

i = �h�

(�)

cc

j(�cT

�

c)(�q


�

(1� 


5

)qj�

(�)

cc

i;

where T

�

is any spinor structure. Thus, we completely derive the expressions for the

evaluation of the required matrix elements.

4 Numerical estimates

Now we are ready to collect the contributions, described above, and to estimate the total

lifetimes of baryons �

++

cc

and �

+

cc

. For the beginning, we list the values of parameters,

which we have used in our calculations, and give some comments on their choice.

m

c

= 1:6 GeV; m

s

= 0:45 GeV; jV

cs

j = 0:9745;

M

�

++

cc

= 3:56 GeV; M

�

+

cc

= 3:56 GeV; M

�

�

(�)

cc

�M

�

(�)

cc

= 0:1 GeV;

T = 0:4 GeV; j	(0)j = 0:17 GeV

3

2

; m

l

= 0:30 GeV:
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For the parameters M

�

++

cc

, M

�

+

cc

and M

�

�

(�)

cc

�M

�

(�)

cc

we use the mean values, given in

the literature. Their evaluation has been also performed by the authors in the potential

model for the doubly charmed baryons with the Buchm�uller-Tye potential, and also in

papers [17, 18, 19, 20]. For f

D

we use the value, given in [6, 21] and for T we take it from

[22]. The mass m

c

corresponds to the pole mass of the c-quark. For its determination we

have used a �t of theoretical predictions for the lifetimes and semileptonic width of the

D

0

-meson from the experimental data. This choice of c-quark mass seems e�ectively to

include unknown contributions of higher orders in perturbative QCD to the total decay

width of baryons under consideration.

The renormalization scale � is chosen in the following way: �

1

= m

c

in the estimate of

Wilson coe�cients C for the e�ective four-fermion weak lagrangian with the c-quarks at

low energies and �

2

= 1:2 GeV for the Pauli interference and weak scattering (k-factor).

The latter value of renormalization scale has been obtained from the �t of theoretical

predictions for the lifetimes di�erences of baryons �

c

, �

+

c

, �

0

c

over the experimental

data. Here we would like to note, that the theoretical approximations used in [5] include

the e�ect of logarithmic renormalization and do not take into account the mass e�ects,

related to the s-quark in the �nal state. For the corresponding contributions to the decay

widths of baryons with the di�erent quark content we have:

4�

nl

(�

c

) = c

d

hO

d

i

�

c

+ c

u

hO

u

i

�

c

;

4�

nl

(�

+

c

) = c

s

hO

s

i

�

+

c

+ c

u

hO

u

i

�

+

c

; (32)

4�

nl

(�

0

c

) = c

d

hO

d

i

�

0

c

+ c

s

hO

s

i

�

0

c

;

where hO

q

i

X

c

= hX

c

jO

q

jX

c

i, O

q

= (�c


�

c)(�q


�

q) and q = u; d; s. The coe�cients c

q

(�)

are equal to:

c

d

=

G

2

f

m

2

c

4�

[C

2

+

+ C

2

�

+

1

3

(4k

1

2

� 1)(C

2

�

� C

2

+

)];

c

u

= �

G

2

f

m

2

c

16�

[(C

+

+ C

�

)

2

+

1

3

(1� 4k

1

2

)(5C

2

+

+ C

2

�

� 6C

+

C

�

)]; (33)

c

s

= �

G

2

f

m

2

c

16�

[(C

+

� C

�

)

2

+

1

3

(1� 4k

1

2

)(5C

2

+

+ C

2

�

+ 6C

+

C

�

)]:

We use the spin averaged value of the D-meson mass for the estimation of the e�ective

light quark mass m

l

as it stands below:

m

D

= m

c

+m

l

+

T �m

l

m

c

+m

l

� 1:98 GeV: (34)

The s-quark mass can be written down as:

m

s

= m

l

+ 0:15 GeV: (35)

As we have already mentioned, the spectator decay width of c-quark �

c;spec

is known in

the next-to-leading order of perturbative QCD [12, 13, 14, 15, 16]. The most complete

calculation, including the mass e�ects, connected to the s-quark in the �nal state, is

given in [16]. In the present work we have used the latter result for the calculation of

the spectator contribution to the total decay width of doubly charmed baryons. In the

calculation of the semileptonic decay width, we neglect the electron and muon masses in

the �nal state. Moreover, we neglect the � -lepton mode.

11



Now, let us proceed with the numerical analysis of contributions by the di�erent

decay modes into the total decay width. In table 1 we have listed the results for the

�xed values of parameters, described above. From this table one can see the signi�cance

of e�ects caused by both the Pauli interference and the weak scattering in the decays

of doubly charmed baryons. The Pauli interference gives the negative correction about

36% for the �

++

cc

-baryons, and the weak scattering increases the total width by 144% for

�

+

cc

. As it has been already noted in the Introduction, these e�ects take place di�erently

in the baryons, and, thus, they enhance the di�erence of lifetimes for these hadrons.

It is worth here to recall that the lifetime di�erence ofD

+

and D

0

-mesons is generally

explained by the Pauli interference of c-quark decay products with the antiquark in the

initial state, while in the current consideration, we see the dominant contribution of weak

scattering. This could not be surprising, because under a more detailed consideration we

will �nd, that the formula for the Pauli interference operator for the D-meson coincides

with that for the weak scattering in the case of baryons, containing, at least, a single

c-quark.

Finally, collecting the di�erent contributions for the total lifetimes of doubly charmed

baryons, we obtain the following values:

�

�

++

cc

= 0:43 ps; �

�

+

cc

= 0:12 ps:

Rather broad variations of both the c-quark mass in the range of 1:6� 1:65 GeV and

the mass di�erence for the strange and ordinary light quarks in (35) in the range of

0:15 � 0:2 GeV , lead to the uncertainties in the lifetimes: ��

�

++

cc

= �0:1 ps, ��

�

+

cc

=

�0:01 ps:

5 Conclusion

In this work we have performed a detailed investigation on the lifetimes of doubly

charmed baryons �

++

cc

, �

+

cc

on the basis of the operator product expansion for the transi-

tion currents. For the �rst time, we have presented the formulae with the simultaneous

account for both the mass e�ects and low-energy logarithmic renormalization for the con-

tributions to the total decay width of baryons, containing heavy quarks, as it is caused

by the e�ects of Pauli interference and weak scattering. The usage of the diquark picture

has allowed us to evaluate the matrix elements of operators derived. Further, we have

discussed the procedure to choose the values of parameters for the total lifetimes of these

baryons. The obtained results show the signi�cant role of both the Pauli interference

and the weak scattering.

In conclusion, the authors would like to express their gratitude to Prof. S.S.Gershtein

for usefull discussions and, especially, to Prof. M.B.Voloshin for clear explanations to

some questions appeared during a walking along this work. We want also to thank for

the hospitality of DESY-Theory group, where a part of this work was done.
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Appendix

In this appendix we present the explicit formulae [16] for the spectator decay of the c-

quark in next-to-leading order of the perturbation theory with the account for the mass

e�ects, related to the s-quark in the �nal state.

The coe�cients C

+

and C

�

in the e�ective lagrangian with the account for the next-

to-leading order in perturbative QCD acquire the additional multiplicative factors:

F

�

(�) = 1 +

�

s

(m

W

)� �

s

(�)

4�




(0)

�

2�

0

0

@




(1)

�




(0)

�

�

�

1

�

0

1

A

+

�

s

(m

W

)

4�

B

�

;
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where 


(i)

�

is the coe�cients of anomalous dimensions for the operators O

�

:




�

= 


(0)

�

�

s

4�

+ 


(1)

�

�

�

s

4�

�

2

+O(�

3

s

);

with




(0)

+

= 4; 


(0)

�

= �8; 


(1)

+

= �7 +

4

9

n

f

; 


(1)

�

= �14�

8

9

n

f

;

in the naive dimensional regularization (NDR) with the anticommutating 


5

, and n

f

is a number of 
avours taken into account. �

i

is the initial two coe�cients of QCD

�-function,

� = �g

s

f�

0

�

s

4�

+ �

1

�

�

s

4�

�

2

+O(�

3

s

)g;

�

0

= 11�

2

3

n

f

; �

1

= 102�

38

3

n

f

:

The coe�cients B

�

are written down in accordance to the requirement of agreement

between the e�ective lagrangian, evaluated at the scale � = m

W

, and the Standard

Model one up to terms of the order of �

2

s

(m

W

):

B

�

= �B

N

c

� 1

2N

c

;

where N

c

= 3 is the number of colors. In the NDR scheme for B, we �nd B = 11.

Using the e�ective lagrangian in the next-to-leading order of perturbative QCD and

calculating the one-gluon corrections, we get the following expression for the spectator

c-quark decay:

�(c! su

�

d) = �

0

[2C

2

+

(�) + C

2

�

(�) +

�

s

(m

W

)� �

s

(�)

2�

f2C

2

+

(�)R

+

+ C

2

�

(�)R

�

g+

�

s

(�)

2�

f2C

2

+

(�)B

+

+ C

2

�

(�)B

�

g+

3

4

fC

+

(�) + C

�

(�)g

2

2

3

�

s

(�)

�

fG

a

+G

b

g+

3

4

fC

+

(�)� C

�

(�)g

2

2

3

�

s

(�)

�

fG

c

+ G

d

g+ (36)

1

2

fC

2

+

(�)� C

2

+

(�)g

2

3

�

s

(�)

�

fG

a

+G

b

+ Geg];

where

�

0

=

G

2

f

m

5

c

192�

3

jV

cs

j

2

f

1

(m

2

s

=m

2

c

);

f

1

(a) = 1� 8a+ 8a

3

� a

4

� 12a

2

ln a;

and

R

�

= B

�

+




(0)

�

2�

0

0

@




(1)

�




(0)

�

�

�

1

�

0

1

A

:
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For G

a

; G

b

; G

c

; G

d

and G

e

we have found:

(G

a

+G

b

)f

1

(a) =

31

4

� �

2

� a[80� ln a] + 32a

3=2

�

2

�a

2

[273 + 16�

2

� 18 ln a+ 36 ln

2

a] + 32a

5=2

�

2

�

8

9

a

3

[118� 57 lna] + O(a

7=2

); (37)

(G

c

+G

d

)f

1

(a) =

31

4

� �

2

� 8a[10� �

2

+ 3 lna]� a

2

[117� 24�

2

+

(30� 8�) lna+ 36 ln

2

a]�

4

3

a

3

[79 + 2�

2

�62 ln a+ 6 ln

2

a] + O(a

4

); (38)

(G

a

+G

b

+ G

e

+ B)f

1

(a) = (6 ln

m

2

c

�

2

+ 11)f

1

(a)�

51

4

� �

2

+ 8a[21� �

2

� 3 ln a]

+32a

3=2

�

2

� a

2

[111 + 40�

2

� 258 lna+ 36 ln

2

a]

+32a

5=2

�

2

�

4

9

a

3

[305 + 18�

2

+ 30 ln a� 54 ln

2

a]

+O(a

7=2

): (39)

These approximations can be used in the range of a values: a < 0:15, where a = (

m

s

m

c

)

2

,

which, indeed, takes place in the calculations under consideration.
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Mode or decay

mechanism

Width, ps

�1

Contribution in %

(�

++

cc

)

Contribution in %

(�

+

cc

)

c

spec

! s

�

du 2:894 124 32

c! se

+

� 0:380 16 4

PI �1:317 -56 {

WS 5:254 { 59

�

�

++

cc

2:337 100 {

�

�

+

cc

8:909 { 100

Table 1: The contributions of di�erent modes to the total decay width of doubly charmed

baryons.

c cs

u, l

�

d, ��

Figure 1: The spectator contribution to the total decay width of doubly charmed baryons.

c

u

c

u

s

�

d

Figure 2: The Pauli interference of c-quark decay products with the valence quark in the

initial state for the �

++

cc

-baryon.

c

d

c

d

s

u

Figure 3: The weak scattering of the valence quarks in the initial state for the �

+

cc

-baryon.
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