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Abstract: We prove that any gauged WZNW model has a Lax pair repre-

sentation, and give explicitly the general solution of the classical equations of

motion of the SL(2,R)/U(1) theory. We calculate the symplectic structure of

this solution by solving a di�erential equation of the Gelfand-Dikii type with

initial state conditions at in�nity, and transform the canonical physical �elds

non-locally onto canonical free �elds. The results will, �nally, be collected in

a local B�acklund transformation. These calculations prepare the theory for

an exact canonical quantization.

God does not care about

our mathematical di�culties.

He integrates empirically.

Albert Einstein

1 Introduction

To get space-time structure from conformal Wess-Zumino-Novikov-Witten

(WZNW) theories is an especially tempting but mathematically non-trivial

problem. The standard procedure integrates out functionally the gauge �eld

of a gauged WZNW model and attempts a sigma-model interpretation of

the arising e�ective action. An outstanding example is the SL(2,R)/U(1)

coset theory which gives a space-time black hole metric [1]. However, that
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procedure neither preserves conformal invariance in a convincing manner [1,

2, 3] nor delivers an exact e�ective action [4] for dynamical calculations. The

path-integration left uncalculated a functional determinant of a di�erential

operator [5] which might inuence previous results.

Therefore, it would be desirable to have a mathematically well-de�ned

method. In this paper we take up again the discussion of the SL(2,R)/U(1)

gauged WZNW theory and follow an entirely classical approach based on

an exact e�ective action [6] obtained by eliminating the non-dynamical U(1)

gauge �eld algebraically instead of path-integrating it out. The arising coset

theory is conformal and integrable [7]. More generally, we prove that inte-

grability holds for any gauged WZNW theory by deriving a Lax pair for its

equation of motion. So far this was known only for nilpotent gauging which

yields Toda theories [8, 9]. We do not look here for algebraic coset current

constructions [10] but present the general analytic solution of the classical

equations of motion of the SL(2,R)/U(1) theory, and we derive the symplec-

tic structure for a �eld-theoretic situation by solving a Gelfand-Dikii type

second order di�erential equation with boundary conditions at in�nity. The

likewise solved problem with periodic boundary conditions is more involved

due to zero modes. This solution which describes a closed string moving

in the background of a black hole target-space metric will be prepared for

canonical quantization in a separate paper. Canonical quantization of the

SL(2,R)/U(1) model should be possible once we have derived from the sym-

plectic structure canonical transformations of the physical �elds onto free

�elds. These transformations are non-local, but this non-locality can be hid-

den super�cially in a local B�acklund transformation [7].

Since all considerations are classical there will be no dilaton here which

usually arises in pertubative �-function calculations due to the curved target-

space metric of the model [11]. We hope that quantization based on the given

exact analytical solution will help to clarify some of the discussions [1, 2, 3]

related to a possibly non-perturbative dilaton. Black hole radiation could

also appear in a new light once we have quantized the theory. However, it

seems to be reasonable to consider this Lagrangean coset model in its own

right as an integrable conformal �eld theory with space-time structure. First

results were published in ref. [7].

We begin our calculations by �rst proving that any G=H gauged WZNW

theory is integrable. It will be shown that the non-linear equations of motion

can be expressed by a linear Lax pair representation.
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2 The Integrability of the G/H Gauged

WZNW Theory

Wess-Zumino-Novikov-Witten models [12] are �-models

S

WZNW

[g] =

k

8�

Z

M



��

tr

�

g

�1

@

�

gg

�1

@

�

g

�

p

�d

2

� + kI

WZ

[g] (1)

which include the additional topological Wess-Zumino term

I

WZ

=

1

12�

Z

B; @B=M

tr

�

g

�1

dg ^ g

�1

dg ^ g

�1

dg

�

(2)

integrated over a volume B with the boundary @B =M . They describe

conformal and integrable theories which are globally invariant under left and

right multiplications with elements of the symmetry group G

S

WZNW

[g] = S

WZNW

[a

�1

gb]; a; b 2 G; a; b = const: (3)

The �eld g(�; �) takes values in the group G, 

��

is the Minkowskian metric

of the world surface M parametrized by � = f�; �g,  its determinant, and

k is the coupling parameter of the theory.

In order to get from (1) the G=H gauged action, we have to embed the

subgroup H of G into the symmetry group G

L

�G

R

of left and right multi-

plications by homomorphisms

L : H ! G

L

; h 7! L(h);

R : H ! G

R

; h 7! R(h): (4)

Then the gauge transformations corresponding to (3) become

g ! L(h

�1

)gR(h); h 2 H: (5)

The homomorphic mappings L and R generate linear mappings L

0

und R

0

of

the Lie algebra of H into the Lie algebra of G

L

0

: Lie(H)! Lie(G); T

i

7! L

0

(T

i

) =

d

dt

L

�

exp(T

i

t)

�

�

�

�

�

t=0

;

R

0

: Lie(H)! Lie(G); T

i

7! R

0

(T

i

) =

d

dt

R

�

exp(T

i

t)

�

�

�

�

�

t=0

; (6)
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where T

i

are the elements of the Lie algebra of H. Then the in�nitesimal

gauge transformations of (5) become

�g = gR

0

(�h)� L

0

(�h)g: (7)

Usually the invariance under local gauge transformations �h(�; �) is found

by introducing an H gauge �eld A

�

with the transformation properties

A

�

! h

�1

A

�

h� h

�1

@

�

h (8)

or in�nitesimally

�A

�

= �@

�

�h+ [A

�

; �h] ; (9)

and replacing partial derivatives by covariant ones

@

�

g ! D

�

g � @

�

g � L

0

(A

�

)g + gR

0

(A

�

): (10)

But this does not guarantee the local gauge invariance of the WZ term (2)

unless the anomaly cancellation condition

tr (L

0


 L

0

�R

0


R

0

) = 0 (11)

is ful�lled. One could specialize this condition to a nilpotent gauge

L

0


 L

0

= 0; R

0


R

0

= 0; (12)

which reduces WZNW models to Toda theories. One could also choose a

vector gauge

L(h) = R(h) ) L

0

= R

0

; (13)

or for abelian gauge groups the axial gauge

L(h) = R(h

�1

) ) L

0

= �R

0

: (14)

Without any specialization, after some manipulations, the G=H gauged

WZNWmodel written in light cone coordinates z = �+�, �z = ��� becomes

S

WZNW;gauged

[g;A] = S

WZNW

[g] +

k

2�

Z

M

dzd�z �

�

h

tr

�

R

0

(A

z

)g

�1

@

�z

g

�

� tr

�

L

0

(A

�z

)@

z

gg

�1

�

�

� tr

�

R

0

(A

z

)g

�1

L

0

(A

�z

)g

�

+ tr (R

0

(A

z

)R

0

(A

�z

))

i

:

(15)
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The local gauge invariance of this action remains valid if the gauge �eld

A

�

, which behaves non-dynamically here and is, therefore, purely algebraically

determined by its �eld equation, is eliminated by this equation. Then the

equation of motion for the �eld g(�; �) follows by varying this action with

respect to g only. The variation of A

�

as a function of g does not contribute

due to the extremal pinciple. With the de�nitions

B � R

0

(A

z

);

�

B � g

�1

L

0

(A

�z

)g (16)

the equation of motion of g(�; �) becomes

@

z

�

g

�1

@

�z

g

�

�

�

B; g

�1

@

�z

g

�

� @

z

�

B + @

�z

B +

�

B;

�

B

�

= 0: (17)

These equations can be rewritten as a atness condition

�

@

z

�B; g

�1

@

�z

g

�

+

�

@

z

�B; @

�z

�

�

B

�

=

�

@

z

�B; @

�z

+ g

�1

@

�z

g �

�

B

�

= 0; (18)

which is the Lax pair representation we are looking for. The commutativity

of the linear Lax operators (@

z

�B) and

�

@

�z

+ g

�1

@

�z

g �

�

B

�

is the necessary

condition in order that the system of linear �rst order di�erential equations

(@

z

�B)	 = 0;

�

@

�z

+ g

�1

@

�z

g �

�

B

�

	 = 0 (19)

has a non-trivial solution. This proves the integrability of G=H gauged

WZNW models.

We should mention here that the equation of motion (17) is an equation

between elements of the Lie algebra G. It describes in components dimG

equations for dimG � dimH �elds. This becomes manifest by gauge trans-

forming the gauge covariant form of (17)

D

z

�

g

�1

D

�z

g

�

�R

0

(F

z�z

) = 0 (20)

into

R(h

�1

)

�

D

z

�

g

�1

D

�z

g

�

�R

0

(F

z�z

)

�

R(h) = 0; (21)

where

F

��

� @

�

A

�

� @

�

A

�

� [A

�

; A

�

] (22)

is the �eld strength with the gauge transformations

F

��

! h

�1

F

��

h: (23)

Parametrizing the group elements g analogously to a Gau�ian decomposition

g(x

�

; y

a

) = L(h(y

a

))

�1

g

0

(x

�

)R(h(y

a

)); � = 1; : : : ;dimG � dimH;

a = 1; : : : ;dimH;

(24)
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the equations of motions for the �elds x

�

, y

a

take the form

R(h(y

a

))

�1

�

D

z

�

g

0

(x

�

)

�1

D

�z

g

0

(x

�

)

�

�R

0

(F

z�z

[g

0

(x

�

)])

�

R(h(y

a

)) = 0: (25)

Indeed, due to gauge invariance we have equations of motion for the �elds

x

�

only. But we can also derive the dimH identities among the dimG com-

ponents of the equation of motion by varying the action (15) with respect to

the pure gauge transformations (7), and using the decomposition

A

z

= A

a

z

H

a

; A

�z

= A

a

�z

H

a

(26)

as well as the mapping (6) in the form

R

0

(H

a

) = R

a

; L

0

(H

a

) = L

a

; R

a

; L

a

2 Lie(G): (27)

Thus there are dimH identities

tr

��

D

z

�

g

�1

D

�z

g

�

�R

0

(F

z�z

)

� �

R

a

� g

�1

L

a

g

��

= 0: (28)

The Lax pair representation (18) is likewise overdetermined, and it can

be reduced as well by equations (28) to an independent set of conditions.

In the following we shall restrict ourselves exclusively to the SL(2,R)/U(1)

gauged WZNW theory.

3 The Classical E�ective Action of the

SL(2,R)/U(1) Gauged WZNW Theory

We parametrize the group SL(2,R) in accordance with (24) by

g = g(r; t; �) = exp ((2�� t)I=2) exp(rJ) exp ((2�+ t)I=2)

=

�

cosh r cos 2� + sinh r cos t cosh r sin 2� + sinh r sin t

� cosh r sin 2� + sinh r sin t cosh r cos 2� � sinh r cos t

�

;

0 � r <1; 0 � t < 2�; 0 � � < �; (29)

where the Lie algebra elements I and J are the matrices

I =

�

0 1

�1 0

�

; J =

�

1 0

0 �1

�

; (30)

and gauge the subgroup U(1) with group elements h and generator i

h(�) = exp (i�) ; � 2 R (31)
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according to the recipe (4), (6)

L;R : H ! G; h = exp (i�) 7! L(h) = exp (��I) ; R(h) = exp (�I) (32)

in the axial gauge

� L

1

= �L

0

(H

1

) = R

1

= R

0

(H

1

) = I: (33)

Then (15) becomes the SL(2,R)/U(1) gauged WZNW action

S

WZNW;gauged

[r; t; �;A] =

k

2�

Z

M

dzd�z

�

@

z

r@

�z

r + tanh

2

r @

z

t@

�z

t� (34)

�4 cosh

2

r

�

A

1

z

+ @

z

�+

1

2

tanh

2

r @

z

t

��

A

1

�z

+ @

�z

� �

1

2

tanh

2

r @

�z

t

��

;

which can be considered as a Lagrangean formulation of the algebraic coset

current construction [10], in case, we make use of the gauge �eld A

�

as a

Lagrangean multiplier. This is possible because, as was mentioned before,

the gauge �eld is non-dynamical. It is purely algebraically determined by

the �eld equations

A

1

z

= �@

z

��

1

2

tanh

2

r @

z

t and A

1

�z

= �@

�z

�+

1

2

tanh

2

r @

�z

t (35)

which imply in connection with the equations of motions of the �elds r; t a

vanishing �eld strength [6]

F

1

z�z

= @

z

A

1

�z

� @

�z

A

1

z

= 0: (36)

Since the �eld � of (29) behaves in accordance with (25) as well non-dyna-

mically, we choose the gauge � = 0.

These considerations allow us to de�ne, entirely classically, the e�ective

action of the SL(2,R)/U(1) gauged WZNW theory in a gauge invariant man-

ner by eliminating the gauge �eld through the algebraic equation (35) [6].

The result

S

WZNW;gauged

[r; t] =

k

2�

Z

M

dzd�z

�

@

z

r@

�z

r + tanh

2

r @

z

t@

�z

t

�

(37)

is conformal and it describes an integrable theory. It yields, as we know, the

same equations of motion for the �elds r, t as the action (34). We could also

get this action by formally Gau�-integrating over the gauge �eld and while

7



doing so neglecting possible anomalies. The more reasonable path-integration

over the gauge �eld decomposed in terms of scalar �elds �, �

A

�

= @

�

�+ �

�

�

@

�

� (38)

yields quantum contributions to the e�ective action, but it is incomplete as

well [4] because the functional determinant Det(M) of the operator [5]

M = �

�

@

2

+ @

�

g@

�

�

��

@

�

g@

�

��

��

@

�

g@

�

@

2

+ @

�

g@

�

�

; g = ln cosh

2

r + ln

k

�

: (39)

resists exact calculation so far.

The classical action (37) is, therefore, a reliable basis for an exact dis-

cussion of the SL(2,R)/U(1) theory, and we hope that it is a useful one for

quantization. It also has a nice �-model interpretation [1]: the target-space

metric

ds

2

= dr

2

+ tanh

2

r dt

2

(40)

shows in light cone coordinates

u = � sinhr e

it

; �u = sinhr e

�it

(41)

after Wick rotation t! it a two-dimensional black hole singularity

ds

2

= �

dud�u

1� u�u

(42)

with singular curvature tensor. And as a conformal theory the action de-

scribes a string moving in the background of a black hole.

4 Equations of Motion, Conservation Laws

and the Gelfand-Dikii Equation

The equations of motion of the action (37) (or (34))

@

z

@

�z

r =

sinhr

cosh

3

r

@

z

t @

�z

t;

@

z

@

�z

t = �

1

sinhr coshr

(@

z

r @

�z

t+ @

z

t @

�z

r) : (43)

guarantee conservation of the chiral component of the energy-momentum

tensor (we will not indicate, whenever possible, the similar anti-chiral parts)

( =

p

2�=k)

T � T

zz

=

1



2

�

(@

z

r)

2

+ tanh

2

r (@

z

t)

2

�

; (44)
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and vanishing trace

T

z�z

+ T

�zz

= 0 (45)

shows the conformal invariance of the theory.

Moreover, by multiplying currents of the ungauged SL(2,R)/U(1)WZNW

model with Wilson-line factors [6] there arise two further conserved chiral

quantities on shell

V

�

=

1



2

e

�i�

(@

z

r � i tanhr @

z

t) ; (46)

if � satis�es

@

z

� = (1 + tanh

2

r )@

z

t; @

�z

� = cosh

�2

r @

�z

t: (47)

Since the integrability conditions of these equations just yield the second

equation of (43), it will be easy to integrate them, once we have got the

general solution of the equations of motion.

Surprisingly, as in the ungauged theory, the energy-momentum tensor has

a Sugawara form

T = 

2

V

+

V

�

; (48)

although the conformal spin-one quantities V

�

are no usual Kac-Moody cur-

rents.

After gauging there remains the local symmetry of the ungauged WZNW

action

t! t+ �" (49)

with non-chiral Noether currents

J

z

=

1



2

tanh

2

r @

z

t; J

�z

=

1



2

tanh

2

r @

�z

t: (50)

But the continuity equation

@

�z

J

z

+ @

z

J

�z

= 0 (51)

is equivalent, again, to the second of the equations of motion of (43).

For the calculation of the symplectic structure a di�erential equation of

the Gelfand-Dikii type

y

00

� (@

z

V

�

=V

�

)y

0

� 

2

Ty = 0 (52)

becomes important. This follows from the conserved quantities (44, 46),

and we shall show that their solutions will usefully parametrize the general

solution of the equtions of motion (43).
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5 The General Solutions of the Equations

of Motion and Gelfand-Dikii Equations

The general solution of the equations of motion (43) is given by [7]

sinh

2

r = X

�

X;

t = i(B �

�

B) +

i

2

ln

X

�

X

; (53)

where

X = A+

�

B

0

�

A

0

(1 +A

�

A);

�

X =

�

A+

B

0

A

0

(1 +A

�

A); (54)

and it is parametrized as in other non-linear theories by arbitrary chiral

(anti-chiral) functions A(z), B(z) (

�

A(�z),

�

B(�z)) and their derivatives A

0

(z),

B

0

(z) (

�

A

0

(�z),

�

B

0

(�z)), respectively. This solution is invariant under internal

GL(2; C ) transformations

A ! T [A] =

aA� b

cA+ d

;

B ! T [B] = B + ln(cA+ d);

�

A ! T [

�

A] =

d

�

A� c

b

�

A+ a

;

�

B ! T [

�

B] =

�

B + ln(b

�

A+ a); (55)

�

a �b

c d

�

2 GL(2; C ):

But it does not factorize into a chiral and anti-chiral part as for ungauged

WZNW theories. This solution allows us to integrate the equation for � (47)

� = t+ i(B +

�

B) + i ln(1 +A

�

A)�

i

2

ln(1 +X

�

X) + �

0

; (56)

and the GL(2; C ) invariance is respected if the integration constant �

0

trans-

forms as

�

0

! �

0

� i ln(ad+ bc): (57)

It is worth mentioning here that this general solution is asymptotically

related [13] to the solution of a non-abelian Toda theory [9, 14] which arises

by nilpotent gauging a corresponding WZNW model.
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Now it is easy to solve the Gelfand-Dikii equation (52). We rewrite their

coe�cients using the general solution (53, 54) as

T =

1



2

�

B

00

�B

02

�

A

00

A

0

B

0

�

; (58)

and

V

+

=

1



2

�

B

00

A

0

�

B

02

A

0

�

A

00

B

0

A

02

�

e

i�

0

�2B

; V

�

=

1



2

A

0

e

�i�

0

+2B

; (59)

and �nd for the Gelfand-Dikii eqution the two independent solutions

y

1

= e

B

; y

2

= Ae

B

: (60)

For the corresponding anti-chiral Gelfand-Dikii equation we get

�y

1

= e

�

B

; �y

2

=

�

Ae

�

B

: (61)

Thus, the general solution of the equations of motion (53, 54) can be re-

parametrized by the solutions of the Gelfand-Dikii equations y

k

(z) and �y

k

(�z)

(k = 1; 2). A very symmetrical expression arises for the transformed �elds

u, �u (41)

u =

�y

1

y

0

1

+ �y

2

y

0

2

y

1

y

0

2

� y

0

1

y

2

; �u =

y

1

�y

0

1

+ y

2

�y

0

2

�y

1

�y

0

2

� �y

0

1

�y

2

; (62)

where for simplicity we shall restrict ourselves in the following to the regular

solutions by assuming that for �nite z, �z

y

1

y

0

2

� y

0

1

y

2

6= 0; �y

1

�y

0

2

� �y

0

1

�y

2

6= 0: (63)

The GL(2; C ) invariance (55) now becomes

�

y

2

y

1

�

!

�

a �b

c d

��

y

2

y

1

�

;

�

�y

2

�y

1

�

!

�

d �c

b a

��

�y

2

�y

1

�

; (64)

�

a �b

c d

�

2 GL(2; C ):

These results are useful to �nd the complete symplectic structure of the

theory, which is de�ned by the canonical Poisson brackets of the physical

�elds r(�; �), t(�; �) at equal � (writing up here and in the following the

non-vanishing brackets only!)

fr(�; �); _r(�; �

0

)g = 

2

�(� � �

0

); ft(�; �);

_

t(�; �

0

)g = 

2

coth

2

r �(� � �

0

);

f _r(�; �);

_

t(�; �

0

)g = 2

2

_

t(�; � )

sinh r(�; �) cosh r(�; �)

�(� � �

0

): (65)
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According to this the canonical conjugated momenta �

r

and �

t

are

�

r

(�; �) =

1



2

_r; �

t

(�; �) =

1



2

tanh

2

r

_

t: (66)

The corresponding Poisson brackets of the u, �u �elds become

fu(�; �);

_

�u(�; �

0

)g = f�u(�; �); _u(�; �

0

)g = 2

2

(1 + u�u)�(� � �

0

);

f _u(�; �);

_

�u(�; �

0

)g = 2

2

( _u�u� u

_

�u)�(� � �

0

): (67)

It is a non-trivial problem to calculate the di�erent (anti-)chiral functions of

the theory in terms of the physical �elds. This could be done by solving the

Gelfand-Dikii equtions. However, because of the GL(2; C ) invariance these

functions are determined up to four complex constants only, and we have

to �x the GL(2; C ) invariance in order to be able to solve this initial state

problem uniquely.

6 The Solution of an Initial State Problem

We assume that the physical �elds at the 'time' �

0

take the initial values

r(�

0

; �) = r

0

(�); t(�

0

; �) = t

0

(�); _r(�

0

; �) = r

1

(�);

_

t(�

0

; �) = t

1

(�):

(68)

This also �xes the initial state of the u, �u �elds. Then the A(z), B(z),

�

A(�z),

�

B(�z) are completely determined through the solutions of the Gelfand-Dikii

equations y

k

(z), �y

k

(�z) (60, 61), in case, the GL(2; C ) invariance (55, 64) is

�xed by four additional initial values. But this solves the initial state problem

of the two Gelfand-Dikii equations only if we take into consideration that

these two chiral respectively anti-chiral second order di�erential equations

are equivalent to the four non-chiral �rst order di�erential eqations

y

0

1

=

@

z

�u

1 + u�u

(uy

1

� �y

2

) ; y

0

2

=

@

z

�u

1 + u�u

(uy

2

+ �y

1

) ;

�y

0

1

=

@

�z

u

1 + u�u

(�u�y

1

� y

2

) ; �y

0

2

=

@

�z

u

1 + u�u

(�u�y

2

+ y

1

) ; (69)

which follow from the general solution (62).

We �x here the GL(2; C ) invariance by the asymptotic boundary condi-

tions

y

k

j

�=�1

= C

k

; �y

k

j

�=�1

=

�

C

k

; (70)

C

k

;

�

C

k

2 C ; k 2 f1; 2g:
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These boundary conditions solve the �rst order di�erential equations (69)

uniquely. Taking into consideration that the integration of (47) in terms of

r, t

�(�; �) = t(�; �) +

Z

�

�1

d�

0

tanh

2

r(�; �

0

)

_

t(�; �

0

) (71)

is de�ned if

lim

�!�1

r(�; �) = 0; lim

�!�1

t(�; �) = const; (72)

respectively

lim

�!�1

u(�; �) = lim

�!�1

�u(�; �) = 0; (73)

then the initial values for the derivatives are determined by eq. (69)

y

0

1

j

�!�1

� �@

z

�u

�

C

2

; y

0

2

j

�!�1

� @

z

�u

�

C

1

;

�y

0

1

j

�!�1

� �@

�z

uC

2

; �y

0

2

j

�!�1

� @

�z

uC

1

; (74)

so that the solutions of the Gelfand-Dikii equations y

k

, �y

k

, and likewise the

A(z), B(z),

�

A(�z),

�

B(�z), are given uniquely as functions of the physical �elds.

These boundary conditions also �x the integration constants �

0

, ��

0

of (56)

�

0

= ���

0

= �i ln(C

1

�

C

1

+ C

2

�

C

2

); (75)

and the conserved V

�

,

�

V

�

are de�ned as well.

However, in order to calculate Poisson brackets it is not necessary to get

y

k

(z), �y

k

(�z) explicitely as functions of r, t, respectively u, �u. We only need

functional relations among their variations.

7 Calculation of the Symplectic Structure

of the SL(2,R)/U(1) Field Theory

As a consequence of the solved initial state problem, the Poisson brackets

of the (anti-) chiral �elds are determined uniquely by those of the physical

�elds (65, 67). To get the Poisson brackets of the y

k

, �y

k

we shall calculate the

variations �y

k

(z), ��y

k

(�z), e.g., as functions of the variations �u(�; �), ��u(�; �),

��

u

(�; �) and ��

�u

(�; �) by varying the Gelfand-Dikii equations (neglecting the

anti-chiral part again)

�y

00

k

� (@

z

V

�

=V

�

)�y

0

k

� 

2

T�y

k

= �(@

z

V

�

=V

�

)y

0

k

+ 

2

�Ty

k

; (76)
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and the initial state conditions (using again the argument of (73) that also

�u, ��u are non-zero only in a �nite but arbitrary large region)

�y

k

j

�=�1

= �C

k

= 0;

�y

0

1

j

�!�1

= �y

0

2

j

�!�1

= 0: (77)

We have to solve, �nally, the initial state problem of these inhomogeneous

di�erential equations. For its homogeneous part we take the solutions of

the Gelfand-Dikii equations y

k

(z) and solve the inhomogeneous equation by

standard methods with the initial values (77). The result becomes

�y

k

(z) =

Z

z

�1

dz

0


(z; z

0

)

�

�(@V

�

=V

�

)(z

0

)y

0

k

(z

0

) + 

2

�T (z

0

)y

k

(z

0

)

�

;


(z; z

0

) �

y

1

(z

0

)y

2

(z)� y

2

(z

0

)y

1

(z)

y

1

(z

0

)y

0

2

(z

0

)� y

2

(z

0

)y

0

1

(z

0

)

: (78)

The Poisson brackets

fy

k

(z); y

l

(z

0

)g =

Z

z

�1

d~z

Z

z

0

�1

d~z

0


(z; ~z)
(z

0

; ~z

0

)�

�(f(@V

�

=V

�

)(~z); (@V

�

=V

�

)(~z

0

)gy

0

k

(~z)y

0

l

(~z

0

) +

+

2

fT (~z); (@V

�

=V

�

)(~z

0

)gy

k

(~z)y

0

l

(~z

0

) +

+

2

f(@V

�

=V

�

)(~z); T (~z

0

)gy

0

k

(~z)y

l

(~z

0

) +

+

4

fT (~z); T (~z

0

)gy

k

(~z)y

l

(~z

0

)) (79)

can now be calculated directly from the canonical brackets of the physi-

cal �elds (65, 67). The result looks rather simple after integration over

�-functions

fy

k

(z); y

l

(z

0

)g =



2

2

(y

k

(z)y

l

(z

0

)� y

l

(z)y

k

(z

0

)) �(z � z

0

): (80)

�(z) is the sign function

�(z) �

8

<

:

�1 for z < 0;

0 for z = 0;

1 for z > 0:

(81)

From this and (60) the non-vanishing Poisson brackets of A(z) and B(z)

easily follow as

fA(z); A(z

0

)g =



2

2

(A(z)�A(z

0

))

2

�(z � z

0

);

fA(z); B(z

0

)g =



2

2

(A(z)�A(z

0

)) �(z � z

0

): (82)
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Our calculations are not �nished before we have found a free-�eld real-

ization of this symplectic structure.

8 The Canonical Free-Field Transformation

There are several methods to �nd relations between y

k

(z), �y

k

(�z) and chiral,

respectively anti-chiral components �

k

(z),

�

�

k

(�z) of canonical free �elds (k =

1; 2)

 

k

(�; � ) = �

k

(z) +

�

�

k

(�z): (83)

The most easiest and straight forward approach identi�es energy-momentum

tensors

T (z) = (@

z

�

1

)

2

+ (@

z

�

2

)

2

=

1



2

y

00

1

y

0

2

� y

0

1

y

00

2

y

1

y

0

2

� y

0

1

y

2

; (84)

and the same holds for the anti-chiral component.

Here it is appropriate to introduce complex free �elds

 =  

1

+ i 

2

;

�

 =  

1

� i 

2

; (85)

which factorize the components of the energy-momentum tensor

T (z) = @

z

 @

z

�

 ;

�

T (z) = @

�z

 @

�z

�

 : (86)

Eq. (83) gives a corresponding chiral decomposition of  and

�

 

 (�; � ) = �(z) + ��(�z);

�

 (�; � ) = �(z) +

�

�(�z); (87)

with

�(z) = �

1

(z) + i�

2

(z);

�

�(�z) =

�

�

1

(�z)� i

�

�

2

(�z);

�(z) = �

1

(z)� i�

2

(z); ��(�z) =

�

�

1

(�z) + i

�

�

2

(�z): (88)

Now we assume that the free �elds are local functions of the y

k

, �y

k

, which is

true for all other quantities of the theory. The most general solution of the

ansatz (84) parametrizes the complex free �elds as a function of y

k

, �y

k

by

eight arbitrary complex constants �, �, ��,

�

�, C,

�

C, D and

�

D [5]

� =

1

C

�

ln

�y

0

1

+ �y

0

2

y

1

y

0

2

� y

0

1

y

2

+D

�

; � =

C



ln (�y

1

+ �y

2

) ;

�

� =

1



�

C

�

ln

���y

0

1

+

�

��y

0

2

�y

1

�y

0

2

� �y

0

1

�y

2

+

�

D

�

; �� =

�

C



ln

�

���y

1

+

�

��y

2

�

: (89)
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This solution provides, indeed, a canonical free-�eld transformation, in case,

the constants do not depend on physical �elds. We �nd from the Poisson

brackets of the y

k

, �y

k

the relations

f�(z); �(z

0

)g = �

1

2

�(z � z

0

);

�

�

�(�z); ��(�z

0

)

	

= �

1

2

�(�z � �z

0

);

f�(z); �(z

0

)g = f�(z); �(z

0

)g = 0; (90)

�

�

�(�z);

�

�(�z

0

)

	

= f��(�z); ��(�z

0

)g = 0:

But these Poisson brackets follow from (88) if the �

k

,

�

�

k

satisfy the canonical

free-�eld Poisson brackets

f�

k

(z); �

l

(z

0

)g = �

1

4

�(z � z

0

)�

kl

;

�

�

�

k

(�z);

�

�

l

(�z

0

)

	

= �

1

4

�(�z � �z

0

)�

kl

; (91)

�

�

k

(z);

�

�

l

(�z)

	

= 0:

This proves that the solutions of the Gelfand-Dikii equations mediate canon-

ical transformations between physical and free �elds.

The many free parameters of (89) can be further restricted [5] by tak-

ing into account invariance properties of the energy-momentum tensor, the

GL(2; C ) invariance, the chosen boundary conditions, and, �nally, by choos-

ing special values for remaining parameters, and the free-�eld relations (89)

simplify to

� =

1



ln

y

0

1

y

1

y

0

2

� y

0

1

y

2

; � =

1



ln y

1

;

�

� =

1



ln

�y

0

1

�y

1

�y

0

2

� �y

0

1

�y

2

; �� =

1



ln �y

1

: (92)

Solving these relations with respect to y

k

(z) and �y

k

(�z), we obtain the

non-local free-�eld realizations

y

1

(z) = exp (�(z)) ;

y

2

(z) = exp (�(z))

0

@

z

Z

�1

dz

0

�

0

(z

0

) exp (��(z

0

)� �(z

0

)) + e

2�i=3

1

A

;

�y

1

(�z) = exp ( ��(�z)) ; (93)

�y

2

(�z) = exp ( ��(�z))

0

@

�z

Z

+1

d�z

0

 ��

0

(�z

0

) exp

�

�

�

�(�z

0

)�  ��(�z

0

)

�

+ e

2�i=3

1

A

:
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It is easy to show that the free-�eld Poisson brackets yield, consistently,

the Poisson brackets of the y

k

(z), �y

k

(�z), and we could show that these results

also follow from the Gelfand-Dikii equations, in case, their coe�cients are

expressed in terms of the free �elds and the initial state problem is solved

anew.

This proves, �nally, that the non-local free-�eld transformations of the

physical �elds r, t, respectively u, �u are canonical transformations, and we

can show they are one to one.

Before collecting these transformations in local B�acklund transformations,

we shall add a remarkable consequence of the symplectic structure. The

conserved V

�

(z) which are related to the SL(2,R)/U(1) coset currents satisfy

non-linear Poisson brackets

fV

�

(�; �); V

�

(�; �

0

)g = 

2

V

�

(�; �)V

�

(�; �

0

)�(� � �

0

);

fV

�

(�; �); V

�

(�; �

0

)g = �

2

V

�

(�; �)V

�

(�; �

0

)�(� � �

0

) +

1



2

�

0

(� � �

0

); (94)

which provides the Virasoro algebra, and conformal weight one for the V

�

fT (�; �); V

�

(�; �

0

)g = � (@

�

0

V

�

(�; �

0

)�(� � �

0

)� V

�

(�; �

0

)�

0

(� � �

0

)) : (95)

The algebra (94) is characteristic for parafermions [15, 6], which are used

in the literature for the discussion of quantum properties of gauged WZNW

theories. But our intention here is to emphasize especially the dynamics of

the theory governed by the general solution of its equations of motion.

9 The B�acklund Transformation of the

SL(2,R)/U(1) WZNW Field Theory

Rewriting the relations (87) in terms of (92)

 (�; � ) =

1



ln

y

0

1

(z)

y

1

(z)y

0

2

(z)� y

0

1

(z)y

2

(z)

+

1



ln �y

1

(�z);

�

 (�; � ) =

1



ln

�y

0

1

(�z)

�y

1

(�z)�y

0

2

(�z)� �y

0

1

(�z)�y

2

(�z)

+

1



ln y

1

(z) (96)
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using (62), and eliminating the functions y

k

(z), �y

k

(�z) and their derivatives

gives the B�acklund transformation between the physical and the free �elds

@

z

u =



2

e

 

�

P +

p

P

2

� 4Q

�

@

z

 ; @

�z

u =



2

e

 

�

P �

p

P

2

� 4Q

�

@

�z

 ;

@

z

�u =



2

e



�

 

�

P �

p

P

2

� 4Q

�

@

z

�

 ; @

�z

�u =



2

e



�

 

�

P +

p

P

2

� 4Q

�

@

�z

�

 :

(97)

P and Q are

P (u; �u;  ;

�

 ) � u e

� 

+�u e

�

�

 

+e

� �

�

 

; Q(u; �u;  ;

�

 ) � (1+u�u) e

� �

�

 

:

(98)

The integrability conditions for the �elds u and �u

0 = @

�z

@

z

u� @

z

@

�z

u = e

 

p

P

2

� 4Q @

z

@

�z

 

0 = @

�z

@

z

�u� @

z

@

�z

�u = �e



�

 

p

P

2

� 4Q @

z

@

�z

�

 (99)

correspond to the free �eld equations whereas the integrability conditions for

the free �elds just give the equations of motion for the �elds u and �u

0 = @

�z

@

z

 � @

z

@

�z

 = �

1

1 + u�u

p

P

2

� 4Q

�

@

z

@

�z

u�

�u@

z

u@

�z

u

1 + u�u

�

;

0 = @

�z

@

z

�

 � @

z

@

�z

�

 = �

1

1 + u�u

p

P

2

� 4Q

�

@

z

@

�z

�u�

u@

z

�u@

�z

�u

1 + u�u

�

: (100)

This completes the general discussion of the SL(2,R)/U(1) gauged WZNW

�eld theory, and we expect that the canonical free-�eld transformation pre-

pares the theory for a canonical quantization.

10 Conclusion

We have given a proof that any gauged WZNW model is an integrable con-

formal theory, which was known so far for nilpotent gauging. We have,

furthermore, completely solved the SL(2,R)/U(1) theory and calculated its

symplectic structure by solving an initial state problem of a Gelfand-Dikii

type equation, instead of suggesting this structure only. On this basis we

have derived a non-local canonical free-�eld transformation of the non-linear

�elds of the theory and we have, �nally, collected these transformations in a

local B�acklund transformation.

The calculations were done for a �eld-theoretic situation with asymptotic

boundary conditions. Similar calculations for the periodic case, which include

zero modes, will be published elsewhere.
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Although the classical solution of the SL(2,R)/U(1) gauged WZNWmodel

bears strong resemblance to Liouville or Toda theories its quantum structure

might be di�erent because its energy-momentum tensor does not have a

`central charge' term classically. But an arising dilaton might compensate

for these di�erences. Thus, an exact quantization of the SL(2,R)/U(1) theory

on this basis will be a challange, in particular, with respect to the space-time

black hole interpretation of the theory.
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