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Abstract

We present estimates of the direct (in decay amplitudes) and indirect (mixing-induced)

CP-violating asymmetries in the non-leptonic charmless two-body decay rates for B ! PP ,

B ! PV and B ! V V decays and their charged conjugates, where P (V ) is a light pseu-

doscalar (vector) meson. These estimates are based on a generalized factorization approach

making use of next-to-leading order perturbative QCD contributions which generate the re-

quired strong phases. No soft �nal state interactions are included. We study the dependence

of the asymmetries on a number of input parameters and show that there are at least two

(possibly three) classes of decays in which the asymmetries are parametrically stable in this

approach. The decay modes of particular interest are:

( )

B

0

! �

+

�

�

,

( )

B

0

! K

0

S

�

0

,

( )

B

0

! K

0

S

�

0

,

( )

B

0

! K

0

S

� and

( )

B

0

! �

+

�

�

. Likewise, the CP-violating asymmetry in the decays

( )

B

0

! K

0

S

h

0

with h

0

= �

0

;K

0

S

; �; �

0

is found to be parametrically stable and large. Measurements of these

asymmetries will lead to a determination of the phases sin 2� and sin 2� and we work out the re-

lationships in these modes in the present theoretical framework. We also show the extent of the

so-called \penguin pollution" in the rate asymmetry A

CP

(�

+

�

�

) and of the \tree shadow" in

the asymmetry A

CP

(K

0

S

�

0

) which will e�ect the determination of sin 2� and sin 2� from the re-

spective measurements. CP-violating asymmetries in B

�

decays depend on a model parameter

in the penguin-amplitudes and theoretical predictions require further experimental or theoret-

ical input. Of these, CP-violating asymmetries in B

�

! �

�

�

0

, B

�

! K

��

�, B

�

! K

��

�

0

and

B

�

! K

��

�

0

are potentially interesting and are studied here.
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1 Introduction

Recent measurements by the CLEO Collaboration [1,2] of a number of decays B ! h

1

h

2

, where

h

1

and h

2

are light hadrons such as h

1

h

2

= ��; �K; �

0

K;!K, have lead to renewed theoretical

interest in understanding hadronic B decays [3].

In a recent work [4] we have calculated the branching fractions of two-body non-leptonic

decays B ! PP , PV , V V , where P and V are the lowest lying light pseudoscalar and vector

mesons, respectively. The theoretical framework used was based on the next{to-leading log-

arithmic improved e�ective Hamiltonian and a factorization Ansatz for the hadronic matrix

elements of the four-quark operators [5]. We worked out the parametric dependence of the

decay rates using currently available information on the weak mixing matrix elements, form

factors, decay constants and quark masses. In total we considered seventy six decay channels

with a large fraction of them having branching ratios of order 10

�6

or higher which hopefully

will be measured in the next round of experiments on B decays. The recently measured decay

modes B

0

! K

+

�

�

, B

+

! K

+

�

0

, B

0

! K

0

�

0

, B

+

! �

+

K

0

and B

+

! !K

+

are shown to

be largely in agreement with the estimates based on factorization [4{6]. This encourages us

to further pursue this framework and calculate quantities of experimental interest in two-body

non-leptonic B decays.

Besides branching fractions, other observables which will help to test the factorization ap-

proach and give information on the Cabibbo-Kobayashi-Maskawa (CKM) matrix [7] are CP-

violating rate asymmetries in partial decay rates. In the past a large variety of ways has been

proposed to observe CP violation in B decays [8]. One method is to study CP-violating asym-

metries in the time-dependence of the neutral B meson decay rates in speci�c modes, which

involve an interference between two weak amplitudes. Asymmetries in charged B decays re-

quire an interference between two amplitudes involving both a CKM phase and a �nal state

strong interaction phase-di�erence. Such asymmetries occur also in decays of neutral B mesons

in which B

0

and

�

B

0

do not decay into common �nal states or where these states are not CP-

eigenstates. In these decays the weak phase di�erence arises from the superposition of various

penguin contributions and the usual tree diagrams in case they are present. The strong-phase

di�erences arise through the absorptive parts of perturbative penguin diagrams (hard �nal state

interaction) [9] and non-perturbatively (soft �nal state interaction).

When a B

0

and

�

B

0

decay to a common �nal state f , B

0

-

�

B

0

mixing plays a crucial role

in determining the CP-violating asymmetries, requiring time-dependent measurements. For

the �nal states which are both CP-eigenstates and involve only one weak phase in the decays,

the CP-violating asymmetry is independent of the hadronic matrix elements. This occurs

in the well studied

( )

B

0

! J= K

S

decays making it possible to extract the value of sin 2�

with no hadronic uncertainties. For neutral B decays into two light mesons such a direct

translation of the CP-violating asymmetries in terms of CP-violating phases �, � and 
 will not

be possible, in general. Hence, the predicted asymmetries are subject to hadronic uncertainties.

In principle, these uncertainties can be removed by resorting to a set of time-dependent and

time-independentmeasurements as suggested in the literature [10{13]. In practice, this program

requires a number of di�cult measurements. We pursue here the other alternative, namely we

estimate these uncertainties in a speci�c model, which can be tested experimentally in a variety

of decay modes.

CP-violating asymmetries are expected in a large number of B decays; in particular the

2



partial rate asymmetries in all the B ! h

1

h

2

decay modes and their charge conjugates stud-

ied in [4] are potentially interesting for studying CP violation. We recall that CP-violating

asymmetries in B ! h

1

h

2

decays have been studied earlier in the factorization framework

[8],[14{16]. With the measurement of some of the B ! h

1

h

2

decays [1,2], some selected modes

have received renewed interest in this approach [17{19]. These papers, however, make speci�c

assumptions about � � 1=N

c

(here N

c

is the number of e�ective colors) and certain other input

parameters; in particular, the earlier ones used CKM-parameter values which are now strongly

disfavored by recent unitarity �ts [20,21] and/or they do not include the anomaly contribu-

tions (or not quite correctly) and the latter ones make speci�c assumptions about �, which

may or may not be consistent with data on B ! h

1

h

2

decays. We think it is worthwhile to

study again these CP-violating asymmetries by including theoretical improvements [5,6] and

determine their N

c

-and other parametric dependences.

Following our previous work [4] we study this on the basis of the factorization approach.

We consider the same seventy six decay channels as in [4] and calculate the CP-violating asym-

metries for charged and neutral B decays with the classi�cation I to V as in [4] to distinguish

those channels which can be predicted with some certainty in the factorization approach. These

are the class-I and class-IV (and possibly some class-III) decays, whose decay amplitudes are

N

c

-stable and which do not involve delicate cancellations among components of the amplitudes.

In our study here, we invoke two models to estimate the form factor dependence of the asymme-

tries, study their dependence on the e�ective coe�cients of the QCD and electroweak penguin

operators in term of N

c

, the dependence on k

2

, the virtuality of the gluon, photon or Z in the

penguin amplitudes decaying into the quark-antiquark pair q�q

0

in b! qq

0

�q

0

and, of course, the

CKM parameters. The last of these is the principal interest in measuring the CP-violating

asymmetries. Our goal, therefore, is to identify, by explicit calculations, those decay modes

whose CP-violating asymmetries are relatively insensitive to the variations of the rest of the

parameters.

In this pursuit, the sensitivity of the asymmetries on k

2

is a stumbling block. As the branch-

ing ratios are relatively insensitive to the parameter k

2

, this dependence can be removed only

by the measurement of at least one of the CP-violating asymmetries sensitive to it (examples

of which are abundant), enabling us to predict quite a few others. A mean value of k

2

can also

be estimated in speci�c wave function models [14] - an alternative, we do not consider here.

However, quite interestingly, we show that a number of class-I and class-IV (hence N

c

-stable)

decays involving B

0

=

�

B

0

mesons have CP-violating asymmetries which are also stable against

variation in k

2

. Hence, in this limited number of decays, the asymmetries can be reliably cal-

culated within the factorization framework. We �nd that the CP-violating asymmetries in the

following decays are particularly interesting and relatively stable:

( )

B

0

! �

+

�

�

,

( )

B

0

! K

0

S

�

0

,

( )

B

0

! K

0

S

�,

( )

B

0

! K

0

S

�

0

and

( )

B

0

! �

+

�

�

. Likewise, the CP-violating asymmetry in the decays

( )

B

0

! K

0

S

h

0

with h

0

= �

0

;K

0

S

; �; �

0

is large as the individual decay modes have the same intrin-

sic CP-parity. The k

2

-dependences in the individual asymmetries in this sum, which are small

to start with but not negligible, compensate each other resulting in a CP-violating asymmetry

which is practically independent of k

2

. Ideally, i.e., when only one decay amplitude dominates,

the asymmetries in the mentioned decays measure one of the CP-violating phases � and �. In

actual decays, many amplitudes are present and we estimate their contribution in the asym-

metries. To quantify this more pointedly, we work out the dependence of the time-integrated
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partial rate asymmetry A

CP

(�

+

�

�

) in the decays

( )

B

0

! �

+

�

�

on sin 2� and show the extent

of the so-called \penguin pollution". Likewise, we work out the dependence of A

CP

(K

0

S

�

0

),

A

CP

(K

0

S

�

0

), A

CP

(K

0

S

�) and A

CP

(K

0

S

h

0

) on sin 2�. We also study the e�ect of the tree contri-

bution - which we call a \tree shadow" of the penguin-dominated amplitude, on A

CP

(K

0

S

�

0

).

The CP-violating asymmetries in B

�

decays are in general k

2

-dependent. Supposing that this

can be eventually �xed, as discussed above, the interesting asymmetries in B

�

! h

1

h

2

decays

in our approach are: B

�

! �

�

�

0

, B

�

! K

��

�, B

�

! K

��

�

0

and B

�

! K

��

�

0

. We study the

asymmetries in the mentioned decays and also in

( )

B

0

! �

�

�

�

in detail in this paper.

The e�ects of soft �nal state interactions (SFI) may in
uence some (or all) of the estimates

presented here for the asymmetries. By the same token, decay rates are also susceptible to

such non-perturbative e�ects [22{27], which are, however, notoriously di�cult to quantify. We

think that the role of SFI in B ! h

1

h

2

decays will be clari�ed already as the measurements of

the branching ratios become more precise and some more decays are measured. Based on the

\color transparency" argument [28], we subscribe to the point of view that the e�ects of SFI

are subdominant in decays whose amplitudes are not (color)-suppressed. However, it should be

noted that the e�ects of the so-called non-perturbative \charm penguins" [29] are included here

in the factorization approach in terms of the leading power (1=m

2

c

) corrections which contribute

only to the decays B ! h

1

h

2

involving an � or �

0

[6], as explained in the next section.

This paper is organized as follows: In section 2 we review the salient features of the general-

ized factorization framework used in estimating the B ! h

1

h

2

decay rates in [4]. In section 3 we

give the formulae from which the various CP-violating asymmetries for the charged and neutral

B decays are calculated. Section 4 contains the numerical results for the CP-violating coe�-

cients, required for time-dependent measurements of the CP-violating asymmetries in B

0

and

�

B

0

decays, and time-integrated CP-violating asymmetries. The numerical results are tabulated

for three speci�c values of the e�ective number of colors N

c

= 2; 3;1, varying k

2

in the range

k

2

= m

2

b

=2 � 2 GeV

2

, and two sets of the CKM parameters. We show the CKM-parametric

dependence of the CP-violating asymmetries for some representative decays belonging to the

class-I, class-III and class-IV decays, which have stable asymmetries and are estimated to be

measurably large in forthcoming experiments at B factories and hadron machines. Finally, in

this section we study some decay modes which have measurable but k

2

-dependent CP-violating

asymmetries, mostly involvingB

�

decays but also a couple of B

0

=

�

B

0

decays. Section 5 contains

a summary of our results and conclusions.

2 Generalized Factorization Approach and Classi�cation

of B ! h

1

h

2

Decays

The calculation of the CP-violating asymmetries reported here is based on our work described

in [4]. There, we started from the short-distance e�ective weak Hamiltonian H

eff

for b ! s

and b! d transitions. We write below H

eff

for the �B = 1 transitions with �ve active quark


avors by integrating out the top quark and the W

�

bosons:

H

eff

=

G

F

p

2

"

V

ub

V

�

uq

(C

1

O

u

1

+ C

2

O

u

2

) + V

cb

V

�

cq

(C

1

O

c

1

+ C

2

O

c

2

)� V

tb

V

�

tq

 

10

X

i=3

C

i

O

i

+ C

g

O

g

!#

;

(1)
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where q = d; s; C

i

are the Wilson coe�cients evaluated at the renormalization scale � and V

ij

are the CKM matrix elements for which we shall use the Wolfenstein parameterization [30].

The operators O

u

i

and O

c

i

with i = 1; 2 are the current-current four-quark operators inducing

the b ! uq�q and b ! cq�q transitions, respectively. The rest of the operators are the QCD

penguin operators (O

3

; :::; O

6

), electroweak penguin operators (O

7

; :::; O

10

), and O

g

represents

the chromo-magnetic penguin operator. The operator basis for H

eff

is given in [4] together

with the coe�cients C

1

, ..., C

6

, evaluated in NLL precision, and C

7

, ..., C

10

and C

g

, evaluated

in LL precision. E�ects of weak annihilation and W-exchange diagrams have been neglected.

Working in NLL precision, the quark level matrix elements of H

eff

are treated at the one-

loop level. They can be rewritten in terms of the tree-level matrix elements of the e�ective

operators with new coe�cients C

eff

1

; :::; C

eff

10

(For details see [4] and the references quoted

therein.). The e�ective coe�cients C

eff

1

, C

eff

2

, C

eff

8

= C

8

, and C

eff

10

= C

10

have no absorptive

parts to the order we are working. The e�ective coe�cient C

eff

3

, C

eff

4

, C

eff

5

, C

eff

6

, C

eff

7

and

C

eff

9

contain contributions of penguin diagrams with insertions of tree operator O

1;2

, denoted

by C

t

and C

e

in [4] and with insertions of the QCD penguin operators O

3

, O

4

and O

6

(denoted

by C

p

in [4]). These penguin-like matrix elements have absorptive parts which generate the

required strong phases in the quark-level matrix elements. The contributions C

t

and C

e

depend

on the CKM matrix elements. All three functions C

t

, C

p

and C

e

depend on quark masses, the

scale �, and k

2

, and are given explicitly in eqs. (10), (11) and (14), respectively, of ref. [4].

Having de�ned H

eff

in terms of the four-quark operators O

i

and their e�ective coe�cients

C

eff

i

the calculation of the hadronic matrix elements of the type hh

1

h

2

jO

i

jBi proceeds with

the generalized factorization assumption [31]. The result of this calculation for the various

B ! PP , PV and V V decays are written down in detail in [4]. The hadronic matrix elements

depend on the CKM matrix elements, which contain the weak phases, the form factors and

decay constants of current matrix elements, various quark masses and other parameters. The

quantities a

i

, given in terms of the e�ective short-distance coe�cient C

eff

i

,

a

i

= C

eff

i

+

1

N

c

C

eff

i+1

(i = odd); a

i

= C

eff

i

+

1

N

c

C

eff

i�1

(i = even); (2)

where i runs from i = 1; :::; 10, are of central phenomenological importance. The terms in

eq. (2) proportional to � = 1=N

c

originate from �erzing the operators O

i

to produce quark

currents to match the quark content of the hadrons in the initial and �nal state after adopting

the factorization assumption. This well-known procedure results in general in matrix elements

with the right 
avor quantum number but involves both color singlet-singlet and color octet-

octet operators. In the naive factorization approximation, one discards the color octet-octet

operators. This amounts to having N

c

= 3 in (2). To compensate for these neglected octet-octet

and other non-factorizing contribution one treats � � 1=N

c

in eq. (2) as a phenomenological

parameter. In theory, � can be obtained only by fully calculating the octet-octet and other

non-factorizing contributions and can, in principle, be di�erent for each of the ten a

i

.

Starting from the numerical values of the ten perturbative short distance coe�cients C

eff

i

(i = 1; :::; 10) we investigated in [4] the N

c

dependence of the ten e�ective coe�cients a

i

for the

four types of current-current and penguin induced decays, namely b ! s (

�

b ! �s) and b ! d

(

�

b!

�

d). It was found, that a

1

, a

4

, a

6

, a

8

and a

9

are rather stable with respect to variations of

� in the usually adopted interval � 2 [0; 1=2] (or 2 < N

c

<1) for all four types of transitions,

whereas a

2

, a

3

, a

5

, a

7

and a

10

depend very much on �.
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Based on this result we introduced a classi�cation of factorized amplitudes which is an

extension of the classi�cation for tree decays in [32] relevant for B decays involving charmed

hadrons. These classes I, II, III, IV and V are fully described in [4] and will be used also in this

work. The classes I, II and III in the decaysB ! h

1

h

2

are de�ned as in previous work [32]. They

involve dominantly (or only) current-current transitions. Class IV and V involve pure penguin

or penguin-dominated decays. The classi�cation is such, that decays in classes I and IV are

stable against variations of N

c

, whereas decays in classes II and V depend strongly on � = 1=N

c

and decays in class III have an intermediate status, sometimes depending more, sometimes less

on �. We concluded in [4] that decay rates in the classes I and IV decays can be predicted

in the factorization approximation. The decays in class II and V have sometimes rather small

weak transition matrix elements, depending on the values of the e�ective N

c

and CKM matrix

elements. This introduces delicate cancellations which makes their amplitudes rather unstable

as a function of N

c

. Predicting the decay rates in these classes involves a certain amount of

theoretical �ne-tuning, and hence we are less sure about their estimates in the factorization

approach. Depending on the value of �, it is probable that other contributions not taken into

account in the factorization approach used in [4], like annihilation, W exchange or soft �nal

state interactions, are important. We expect that the matrix elements of the decays in class-I

and class-IV (and most class-III), being dominantly of O(1) as far as their N

c

-dependence is

concerned will be described, in the �rst approximation, by a universal value of the parameter

�. We are less sure that this will be the case for class-II and class-V decays. As we show

here, this �-sensitivity of the decay rates re
ects itself also in estimates of the CP-violating rate

asymmetries.

There is also an uncertainty due to the non-perturbative penguin contributions [29], as

we do not know how to include their e�ects in the amplitudes hh

1

h

2

jH

eff

jBi from �rst prin-

ciples. However, these e�ects can be calculated as an expansion in 1=m

2

c

in the factoriza-

tion approach. The dominant diagram contributing to the power corrections is the process

b ! s(c�c ! g(k

1

)g(k

2

)), which was calculated in the full theory (Standard Model) in [33]. In

the operator product language which we are using, this contribution can be expressed as a new

induced e�ective Hamiltonian [6]:

H

gg

eff

= �

�

s

2�

a

2

G

F

p

2

V

cb

V

�

cs

�i

5

 

q

2

m

2

c

!

1

k

1

:k

2

O

gg

; (3)

where the operator O

gg

is de�ned as:

O

gg

� G

��

a

(D

�

~

G

��

)

a

�s


�

(1 � 


5

)b ; (4)

with

~

G

��;a

= 1=2�

����

G

��

a

, and G

��

a

being the QCD �eld strength tensor. This formula holds

for on-shell gluons q

2

= (k

1

+ k

2

)

2

= 2k

1

:k

2

, and the sum over the color indices is understood.

The function �i

5

(z) is de�ned as [6]:

�i

5

(z) = �1 +

1

z

2

4

� � 2 arctan

�

4

z

� 1

�

1

2

3

5

2

for 0 < z < 4 : (5)

The H

gg

eff

gives a non-local contribution but one can expand the function �i

5

(z) in z for z < 1

and the leading term in this expansion can be represented as a higher dimensional local operator.

6



In fact, it is just the chromo-magnetic analogue of the operator considered by Voloshin [34] to

calculate the power (1=m

2

c

) corrections in the radiative decay B ! X

s

+ 
. Now comes the

observation made in [6] that in the assumption of factorization, only the states which have non-

zero matrix elements hM j�

s

G

��

a

(D

�

~

G

��

)

a

j0i contribute to the 1=m

2

c

corrections in the decay

rates for B !Mh. ForM = �; �

0

, this matrix element is determined by the QCD anomaly, and

q

2

also gets �xed with q

2

= m

2

�

(0)

which justi�es the expansion. For the decays B ! �

(0)

K

(�)

,

the 1=m

2

c

e�ects were calculated in [6] in the decay rates. For the two-body B ! h

1

h

2

decays,

these are the only 1=m

2

c

contributions in the factorization approach. They are included here in

the estimates of the rates and the asymmetries. Note that as the function �i

5

(m

2

�

(0)

=m

2

c

) has

no absorptive part, there is no phase generated by the anomaly contribution in B ! �

(0)

K

(�)

decays.

Concerning the actual estimates of the B ! h

1

h

2

matrix elements in the factorization ap-

proximation, we note that they are calculated as in [4] using two di�erent theoretical approaches

to calculate the form factors. First, we use the quark model due to Bauer, Stech and Wirbel

[32]. The second approach is based on lattice QCD and light-cone QCD sum rules. The speci�c

values of the form factors and decay constants used by us and the references to the literature

are given in [4]. The implementation of the � � �

0

mixing follows the prescription of [5,6].

Of particular importance for calculating the CP-violating asymmetries is the choice of the

parameter k

2

, which appears in the quantities C

t

, C

p

and C

e

in the e�ective coe�cients C

eff

i

.

Due to the factorization assumption any information on k

2

is lost when calculating two-body

decays, except for the anomaly contribution as discussed earlier. In a speci�c model and from

simple two-body kinematics the average k

2

has been estimated to lie in the range m

2

b

=4 < k

2

<

m

2

b

=2 [14]. In [4] it was found that the branching ratios (averaged over B and

�

B decays) are not

sensitively dependent on k

2

if varied in the vicinity of k

2

= m

2

b

=2. Based on earlier work [15],

we do not expect the same result to hold for the asymmetries. Therefore, we calculated the CP-

violating asymmetries by varying k

2

in the range k

2

= m

2

b

=2� 2 GeV

2

, which should cover the

expected range of k

2

in phenomenological models. Quite interestingly, we �nd that a number

of decay modes in the class-I and class-IV decays have asymmetries which are insensitive to

the variation of k

2

. These then provide suitable avenues to test the assumption that strong

interaction phases in these decays are dominantly generated perturbatively.

3 CP-Violating Asymmetries in B ! h

1

h

2

Decays - For-

malism

For charged B

�

decays the CP-violating rate-asymmetries in partial decay rates are de�ned as

follows:

A

CP

=

�(B

+

! f

+

) � �(B

�

! f

�

)

�(B

+

! f

+

) + �(B

�

! f

�

)

: (6)

As these decays are all self-tagging, measurement of these CP-violating asymmetries is essen-

tially a counting experiment in well de�ned �nal states. Their rate asymmetries require both

weak and strong phase di�erences in interfering amplitudes. The weak phase di�erence arises

from the superposition of amplitudes from various tree (current-current) and penguin diagrams.

The strong phases, which are needed to obtain non-zero values for A

CP

in (6), are generated by

�nal state interactions. For both b! s and b! d transitions, the strong phases are generated

7



in our model perturbatively by taking into account the full NLO corrections, following earlier

suggestions along these lines [9].

3.1 CP-violating Asymmetries Involving b! s Transitions

For the b! s, and the charge conjugated

�

b ! �s, transitions, the respective decay amplitudes

M andM, including the weak and strong phases, can be generically written as:

M = T�

u

� P

t

�

t

e

i�

t

� P

c

�

c

e

i�

c

� P

u

�

u

e

i�

u

;

M = T�

�

u

� P

t

�

�

t

e

i�

t

� P

c

�

�

c

e

i�

c

� P

u

�

�

u

e

i�

u

; (7)

where �

i

= V

ib

V

�

is

. Here we denote by T the contributions from the current-current operators

proportional to the e�ective coe�cients a

1

and/or a

2

; P

t

, P

c

and P

u

denote the contributions

from penguin operators proportional to the product of the CKM matrix elements �

t

, �

c

and

�

u

, respectively. The corresponding strong phases are denoted by �

t

, �

c

and �

u

, respectively.

Working in the standard model, we can use the unitarity relation �

c

= ��

u

� �

t

to simplify the

above equation (7),

M = T�

u

� P

tc

�

t

e

i�

tc

� P

uc

�

u

e

i�

uc

;

M = T�

�

u

� P

tc

�

�

t

e

i�

tc

� P

uc

�

�

u

e

i�

uc

; (8)

where we de�ne

P

tc

e

i�

tc

= P

t

e

i�

t

� P

c

e

i�

c

;

P

uc

e

i�

uc

= P

u

e

i�

u

� P

c

e

i�

c

: (9)

Thus, the direct CP-violating asymmetry is

A

CP

� a

�

0

=

A

�

A

+

; (10)

where

A

�

=

1

2

�

jMj

2

� jMj

2

�

= 2TP

tc

j�

�

u

�

t

j sin 
 sin �

tc

+ 2P

tc

P

uc

j�

�

u

�

t

j sin 
 sin(�

uc

� �

tc

); (11)

A

+

=

1

2

�

jMj

2

+ jMj

2

�

= (T

2

+ P

2

uc

)j�

u

j

2

+ P

2

tc

j�

t

j

2

� 2P

tc

P

uc

j�

�

u

�

t

j cos 
 cos(�

uc

� �

tc

)

�2TP

uc

j�

u

j

2

cos �

uc

+ 2TP

tc

j�

�

u

�

t

j cos 
 cos �

tc

: (12)

In the case of b! s transitions the weak phase entering in A

�

is equal to 
, as we are using the

Wolfenstein approximation [30] in which �

t

has no weak phase and the phase of �

u

is 
. Thus, the

weak phase dependence factors out in an overall sin 
 in A

�

. Despite this, the above equations

for the CP-violating asymmetry A

CP

are quite involved due to the fact that several strong

phases are present which are in general hard to calculate except in speci�c models such as the

8



ones being used here. However, there are several small parameters involved in the numerator

and denominator given above. Expanding in these small parameters, much simpli�ed forms for

A

�

and A

+

and hence A

CP

can be obtained in speci�c decays.

First, we note that j�

u

j � j�

t

j ' j�

c

j, with an upper bound j�

u

j=j�

t

j � 0:025. In some chan-

nels, such as B

+

! K

+

�

0

, K

�+

�

0

, K

�+

�

0

, B

0

! K

+

�

�

, K

�+

�

�

, K

�+

�

�

, typical value of the

ratio jP

tc

=T j is of O(0:1), with both P

uc

and P

tc

comparable with typically jP

uc

=P

tc

j = O(0:3).

The importance of including the contributions proportional to P

uc

has been stressed earlier in

the literature [35] (see, also [36,37]). These estimates are based on perturbation theory but the

former inequality jP

tc

=T j � 1 should hold generally as the top quark contribution is genuinely

short-distance. The other inequality can be in
uenced by non-perturbative penguin contribu-

tions. However, also in this case, for the mentioned transitions, we expect that jP

uc

=T j � 1

should hold. Using these approximations, eq. (11, 12) become simpli�ed:

A

�

' 2TP

tc

j�

�

u

�

t

j sin 
 sin �

tc

; (13)

A

+

' P

2

tc

j�

t

j

2

+ T

2

j�

u

j

2

+ 2TP

tc

j�

�

u

�

t

j cos 
 cos �

tc

: (14)

The CP-violating asymmetry in this case is

A

CP

'

2z

12

sin �

tc

sin 


1 + 2z

12

cos �

tc

cos 
 + z

2

12

; (15)

where z

12

= j�

u

=�

t

j �T=P

tc

, where we use the notation used in [4]. This relation was suggested

in the context of the decay B ! K� by Fleischer and Mannel [38]. Due to the circumstance

that the suppression due to j�

u

=�

t

j is stronger than the enhancement due to T=P

tc

, restricting

the value of z

12

, the CP-violating asymmetry for these kinds of decays are O(10%). To check the

quality of the approximation made in eq. (15), we have calculated the CP-violating asymmetry

using this formula for B

0

! K

+

�

�

, which yields A

CP

= �7:1% at N

c

= 2, very close to the

value �7:7% in Table 5 calculated using the full formula, with � = 0:12, � = 0:34 and k

2

= m

2

b

=2

in both cases. The results for other values of N

c

are similar. Thus, we conclude that eq. (15)

holds to a good approximation in the factorization framework for the decays mentioned earlier

on. However, the CP-violating asymmetries A

CP

in the mentioned decays are found to depend

on k

2

, making their theoretical predictions considerably uncertain. These can be seen in the

various tables for A

CP

. Of course, the relation (15) given above, and others given below, can

be modi�ed through SFI - a possibility we are not entertaining here.

There are also some decays with vanishing tree contributions, such as B

+

! �

+

K

0

S

, �

+

K

�0

,

�

+

K

�0

. For these decays, T = 0, and j�

u

j � j�

t

j, then for these decays

A

�

= 2P

tc

P

uc

j�

�

u

�

t

j sin 
 sin(�

uc

� �

tc

); (16)

A

+

' P

2

tc

j�

t

j

2

� 2P

tc

P

uc

j�

�

u

�

t

j cos 
 cos(�

uc

� �

tc

) (17)

' P

2

tc

j�

t

j

2

: (18)

The CP-violating asymmetry is

A

CP

' 2

P

uc

P

tc

�

�

�

�

�

�

u

�

t

�

�

�

�

�

sin(�

uc

� �

tc

) sin 
: (19)

Without the T contribution, the suppression due to both P

uc

=P

tc

and j�

u

=�

t

j is much stronger

and the CP-violating asymmetries are only around �(1-2)%. This is borne out by the numerical

results obtained with the complete contributions, which can be seen in the Tables.
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3.2 CP-violating Asymmetries Involving b! d Transitions

For b! d transitions, we have

M = T�

u

� P

t

�

t

e

i�

t

� P

c

�

c

e

i�

c

� P

u

�

u

e

i�

u

;

M = T�

�

u

� P

t

�

�

t

e

i�

t

� P

c

�

�

c

e

i�

c

� P

u

�

�

u

e

i�

u

; (20)

where �

i

= V

ib

V

�

id

, and again using CKM unitarity relation �

c

= ��

t

� �

u

, we have

M = T�

u

� P

tc

�

t

e

i�

tc

� P

uc

�

u

e

i�

uc

;

M = T�

�

u

� P

tc

�

�

t

e

i�

tc

� P

uc

�

�

u

e

i�

uc

; (21)

A

�

= �2TP

tc

j�

�

u

�

t

j sin� sin �

tc

� 2P

tc

P

uc

j�

�

u

�

t

j sin� sin(�

uc

� �

tc

); (22)

A

+

= (T

2

+ P

2

uc

)j�

u

j

2

+ P

2

tc

j�

t

j

2

� 2P

tc

P

uc

j�

�

u

�

t

j cos� cos(�

uc

� �

tc

)

�2TP

uc

j�

u

j

2

cos �

uc

+ 2TP

tc

j�

�

u

�

t

j cos� cos �

tc

: (23)

For the tree-dominated decays involving b! d transitions, such as B

+

! �

+

�

(0)

, �

+

�

(0)

, �

+

!,

the relation P

uc

< P

tc

� T holds. This makes the formulae simpler, yielding

A

�

' �2TP

tc

j�

�

u

�

t

j sin� sin �

tc

; (24)

A

+

' T

2

j�

u

j

2

� 2TP

uc

j�

u

j

2

cos �

uc

+ 2TP

tc

j�

�

u

�

t

j cos� cos �

tc

' T

02

j�

u

j

2

+ 2TP

tc

j�

�

u

�

t

j cos� cos �

tc

; (25)

with T

02

� T

2

� 2TP

uc

cos �

uc

. The CP-violating asymmetry is now approximately given by

A

CP

'

�2z

1

sin �

tc

sin�

1 + 2z

1

cos �

tc

cos�

; (26)

with z

1

= j�

t

=�

u

j �TP

tc

=T

02

. Note, the CP-violating asymmetry is approximately proportional

to sin� in this case. Here the suppression due to P

tc

T=T

02

is accompanied with some enhance-

ment from j�

t

=�

u

j (the central value of this quantity is about 3 [20]), making the CP-violating

asymmetry in this kind of decays to have a value A

CP

= (10-20)%. We have calculated the

CP-violating asymmetry of B

�

! �

�

! using the approximate formula (26). The number we

got for N

c

= 2 is A

CP

= 9:2%, which is very close to the value A

CP

= 8:9% in Table 11

calculated using the exact formula, with � = 0:12, � = 0:34 and k

2

= m

2

b

=2.

For the decays with a vanishing tree contribution, such as B

+

! K

+

K

0

S

, K

+

�

K

�0

, K

�+

�

K

�0

,

we have T = 0. Thus,

A

�

= �2P

tc

P

uc

j�

�

u

�

t

j sin� sin(�

uc

� �

tc

); (27)

A

+

= P

2

tc

j�

t

j

2

+ P

2

uc

j�

u

j

2

� 2P

tc

P

uc

j�

�

u

�

t

j cos� cos(�

uc

� �

tc

): (28)

The CP-violating asymmetry is approximately proportional to sin� again,

A

CP

=

�2z

3

sin(�

uc

� �

tc

) sin�

1� 2z

3

cos(�

uc

� �

tc

) cos� + z

2

3

; (29)

with z

3

= j�

u

=�

t

j �P

uc

=P

tc

. As the suppressions from j�

u

=�

t

j and jP

uc

=P

tc

j are not very big, the

CP-violating asymmetry can again be of order (10-20)%. However, being direct CP-violating

asymmetries, the mentioned asymmetries in the speci�c B

�

! (h

1

h

2

)

�

modes depend on k

2

and are uncertain.
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3.3 CP-violating Asymmetries in Neutral B

0

Decays

For the neutral B

0

(

�

B

0

) decays, there is an additional complication due to B

0

- B

0

mixing.

These CP-asymmetries may require time-dependent measurements, as discussed in the litera-

ture [8],[40{42]. De�ning the time-dependent asymmetries as

A

CP

(t) =

�(B

0

(t)! f)� �(B

0

(t)!

�

f)

�(B

0

(t)! f) + �(B

0

(t)!

�

f )

; (30)

there are four cases that one encounters for neutral B

0

(

�

B

0

) decays:

� case (i): B

0

! f ,

�

B

0

!

�

f , where f or

�

f is not a common �nal state of B

0

and

�

B

0

, for

example B

0

! K

+

�

�

.

� case (ii): B

0

! (f =

�

f )  

�

B

0

with f

CP

= �f , involving �nal states which are CP

eigenstates, i.e., decays such as

�

B

0

(B

0

)! �

+

�

�

; �

0

�

0

;K

0

S

�

0

etc.

� case (iii): B

0

! (f =

�

f) 

�

B

0

with f , involving �nal states which are not CP eigenstates.

They include decays such as B

0

! (V V )

0

, as the V V states are not CP-eigenstates.

� case (iv): B

0

! (f&

�

f )  

�

B

0

with f

CP

6= f , i.e., both f and

�

f are common �nal

states of B

0

and

�

B

0

, but they are not CP eigenstates. Decays B

0

! �

+

�

�

, �

�

�

+

and

B

0

! K

�0

K

0

S

,

�

K

�0

K

0

S

are two examples of interest for us.

Here case (i) is very similar to the charged B

�

decays. For case (ii), and (iii), A

CP

(t) would

involve B

0

- B

0

mixing. Assuming j��j � j�mj and j��=�j � 1, which hold in the standard

model for the mass and width di�erences �m and �� in the neutral B-sector, one can express

A

CP

(t) in a simpli�ed form:

A

CP

(t) ' a

�

0

cos(�mt) + a

�+�

0

sin(�mt) : (31)

The quantities a

�

0

and a

�+�

0

, for which we follow the de�nitions given in [42], depend on the

hadronic matrix elements which we have calculated in our model.

a

�

0

=

1� j�

CP

j

2

1 + j�

CP

j

2

; (32)

a

�+�

0
=

�2Im(�

CP

)

1 + j�

CP

j

2

; (33)

where

�

CP

=

V

�

tb

V

td

V

tb

V

�

td

hf jH

eff

j

�

B

0

i

hf jH

eff

jB

0

i

: (34)

For case (i) decays, the coe�cient a

�

0

determinesA

CP

(t), and since no mixing is involved for

these decays, the CP-violating asymmetry is independent of time. We shall call these, together

with the CP-asymmetries in charged B

�

decays, CP-class (i) decays. For case (ii) and (iii), one

has to separate the sin(�mt) and cos(�mt) terms to get the CP-violating asymmetry A

CP

(t).

The time-integrated asymmetries are:

A

CP

=

1

1 + x

2

a

�

0

+

x

1 + x

2

a

�+�

0

; (35)
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with x = �m=� ' 0:73 for the B

0

- B

0

case [39].

Case (iv) also involves mixing but requires additional formulae. Here one studies the four

time-dependent decay widths for B

0

(t)! f ,

�

B

0

(t)!

�

f , B

0

(t)!

�

f and

�

B

0

(t)! f [40,41,42].

These time-dependent widths can be expressed by four basic matrix elements

g = hf jH

eff

jB

0

i; h = hf jH

eff

j

�

B

0

i;

�g = h

�

f jH

eff

j

�

B

0

i;

�

h = h

�

f jH

eff

jB

0

i;

(36)

which determine the decay matrix elements of B

0

! f&

�

f and of

�

B

0

!

�

f&f at t = 0. For

example, when f = �

�

�

+

the matrix element h is given in appendix B of [4] in eq. (99) and �g for

the decay

�

B

0

! �

+

�

�

is written down in eq. (100) in appendix B of [4]. The matrix elements

�

h and g are obtained from h and �g by changing the signs of the weak phases contained in

the products of the CKM matrix elements. We also need to know the CP-violating parameter

coming from the B

0

-

�

B

0

mixing. De�ning:

B

1

= pjB

0

i+ qj

�

B

0

i;

B

2

= pjB

0

i � qj

�

B

0

i; (37)

with jpj

2

+ jqj

2

= 1 and q=p =

q

H

21

=H

12

, with H

ij

= M

ij

� i=2�

ij

representing the j�Bj = 2

and �Q = 0 Hamiltonian [8]. For the decays of B

0

and

�

B

0

, we use, as before,

q

p

=

V

�

tb

V

td

V

tb

V

�

td

= e

�2i�

: (38)

So, jq=pj = 1, and this ratio has only a phase given by �2�. Then, the four time-dependent

widths are given by the following formulae (we follow the notation of [42]):

�(B

0

(t)! f) = e

��t

1

2

(jgj

2

+ jhj

2

) f1 + a

�

0

cos�mt+ a

�+�

0

sin�mtg ;

�(

�

B

0

(t)!

�

f ) = e

��t

1

2

(j�gj

2

+ j

�

hj

2

) f1 � a

��

0
cos�mt� a

�+��

0
sin�mtg ;

�(B

0

(t)!

�

f ) = e

��t

1

2

(j�gj

2

+ j

�

hj

2

) f1 + a

��

0

cos�mt+ a

�+��

0

sin�mtg ;

�(

�

B

0

(t)! f) = e

��t

1

2

(jgj

2

+ jhj

2

) f1 � a

�

0

cos�mt� a

�+�

0

sin�mtg ; (39)

where

a

�

0

=

jgj

2

� jhj

2

jgj

2

+ jhj

2

; a

�+�

0

=

�2Im

�

q

p

h

g

�

1 + jh=gj

2

;

a

��

0

=

j

�

hj

2

� j�gj

2

j

�

hj

2

+ j�gj

2

; a

�+��

0

=

�2Im

�

q

p

�g

�

h

�

1 + j�g=

�

hj

2

:

(40)

By measuring the time-dependent spectrum of the decay rates of B

0

and

�

B

0

, one can �nd

the coe�cients of the two functions cos�mt and sin�mt and extract the quantities a

�

0

, a

�+�

0

,

jgj

2

+ jhj

2

, a

��

0

, a

�+��

0

and j�gj

2

+ j

�

hj

2

as well as �m and �, which, however, are already well

measured [39]. The signature of CP violation is �(B

0

(t)! f) 6= �(

�

B

0

(t)!

�

f ) and �(

�

B

0

(t)!

f) 6= �(B

0

(t)!

�

f ) which means, that a

�

0

6= �a

��

0

and/or a

�+�

0

6= �a

�+��

0

. In the two examples,

f = �

+

�

�

and f = K

�0

K

0

S

, the amplitudes g and h contain contributions of several terms

similar to what we have written down above for the charged B decays. They have weak and

strong phases with the consequence that jgj 6= j�gj and jhj 6= j

�

hj.
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Table 1: CP-violating asymmetry parameters a

�

0

and a

�+�

0

(in percent) for the decays

( )

B

0

!

h

1

h

2

using � = 0:12, � = 0:34 and N

c

= 2; 3;1, for k

2

= m

2

b

=2� 2 GeV

2

.

a

�

0

a

�+�

0

Channel N

c

= 2 N

c

= 3 N

c

=1 N

c

= 2 N

c

= 3 N

c

=1

( )

B

0

! �

+

�

�

6:9

+1:6

�3:5

7:0

+1:6

�3:6

7:0

+1:7

�3:6

35:3

�1:6

+2:2

35:0

�1:6

+2:2

34:5

�1:7

+2:2

( )

B

0

! �

0

�

0

1:0

�2:2

+4:6

17:6

�2:0

+3:9

10:1

+0:9

�2:0

�89:7

+2:7

�2:9

�55:8

�4:0

+5:6

81:8

�2:9

+3:7

( )

B

0

! �

0

�

0

26:0

+5:6

�11:6

38:1

+3:9

�6:1

�17:2

�7:2

+16:0

62:8

�4:8

+16:0

78:0

�2:3

+3:6

�85:7

+4:5

�5:1

( )

B

0

! ��

0

22:9

+4:3

�8:5

23:3

+0:5

�0:4

�13:3

�6:6

+14:3

88:5

�2:5

+3:2

62:7

�1:0

+2:1

�96:5

+1:4

�2:3

( )

B

0

! �� 19:3

+3:0

�5:9

16:1

�0:6

+1:5

�10:1

�5:9

+12:5

97:7

�0:9

+1:2

50:6

�0:9

+1:8

�99:5

+0:9

�0:3

( )

B

0

! �

0

�

0

31:3

+0:7

�0:8

22:9

�3:0

+5:1

9:2

�7:3

+12:6

59:1

�2:3

+4:0

29:9

�3:2

+5:6

�20:1

�4:3

+7:6

( )

B

0

! �

0

� 17:2

�1:2

+2:4

13:8

�2:6

+5:0

7:4

�4:8

+9:0

43:1

�1:4

+2:6

21:8

�2:3

+3:8

�15:7

�3:3

+5:4

( )

B

0

! K

0

S

�

0

0:4

+0:6

�1:3

�1:2

+0:0

�0:2

�3:8

�0:9

+1:4

75:1

+0:2

�0:3

69:1

+0:1

�0:2

58:1

�0:3

+0:3

( )

B

0

! K

0

S

�

0

�2:4

�0:3

+0:5

�1:8

�0:1

+0:2

�0:9

+0:2

�0:4

64:7

�0:0

+0:1

66:9

�0:0

+0:0

70:2

+0:1

�0:2

( )

B

0

! K

0

S

� 1:1

+0:9

�1:6

�1:0

+0:1

�0:3

�4:3

�1:1

+1:8

78:0

+0:2

�0:5

69:7

+0:1

�0:1

54:1

�0:4

+0:5

( )

B

0

! K

0

�

K

0

12:5

�2:9

+5:5

12:3

�2:9

+5:5

12:0

�2:8

+5:5

15:7

�2:4

+4:0

15:6

�2:4

+3:9

15:3

�2:3

+3:9

( )

B

0

! �

0

�

0

�6:4

�4:6

+9:8

�3:1

�17:0

+30:0

7:8

+3:4

�7:0

�40:6

+3:6

�4:7

�99:5

+1:6

+5:1

36:0

�3:2

+4:5

( )

B

0

! !�

0

26:2

+2:6

�4:3

23:4

�0:6

+1:5

1:0

+0:2

�0:6

84:7

�0:5

+1:1

50:1

�1:7

+3:3

49:8

�0:2

+0:3

( )

B

0

! �

0

� �19:8

�3:2

+26:7

12:9

�8:8

+14:5

30:1

+5:4

�9:9

�97:9

+3:6

�0:7

�15:9

�4:9

+9:4

93:9

�2:4

+3:1

( )

B

0

! �

0

�

0

�52:7

�6:6

+26:3

�55:0

�1:9

+79:7

38:3

+8:9

�19:1

37:8

+10:0

�15:7

�43:5

+35:2

�50:4

31:8

�9:4

+13:2

( )

B

0

! !� 16:3

+3:3

�6:8

25:1

+3:4

�6:1

1:8

+0:5

�1:0

74:6

�2:4

+3:3

94:8

�0:6

+1:0

9:5

�0:4

+0:7

( )

B

0

! !�

0

17:7

+4:0

�8:5

43:5

+9:5

�19:2

1:9

+0:4

�1:0

46:0

�3:9

+5:2

55:6

�9:1

+12:3

37:8

�0:5

+0:6

( )

B

0

! ��

0

16:2

�3:4

+6:2

1:0

�0:4

+0:7

10:5

�2:6

+5:1

19:0

�2:9

+5:0

1:6

�0:3

+0:4

13:8

�2:1

+3:5

( )

B

0

! �� 16:2

�3:4

+6:2

1:0

�0:4

+0:7

10:5

�2:6

+5:1

19:0

�2:9

+5:0

1:6

�0:3

+0:4

13:8

�2:1

+3:5

( )

B

0

! ��

0

16:2

�3:4

+6:2

1:0

�0:4

+0:7

10:5

�2:6

+5:1

19:0

�2:9

+5:0

1:6

�0:3

+0:4

13:8

�2:1

+3:5

( )

B

0

! �

0

K

0

S

2:1

+0:5

�1:4

0:9

+0:1

�0:4

�2:0

�0:8

+1:8

18:7

+0:6

�0:9

58:0

+0:2

�0:2

98:6

�0:2

+0:2

( )

B

0

! �K

0

S

�1:7

�0:1

+0:1

�1:8

�0:1

+0:1

�2:7

�0:1

+0:1

67:5

+0:0

�0:1

67:5

+0:0

�0:1

67:9

+0:2

�0:3

( )

B

0

! !K

0

S

�5:3

�1:5

+2:4

�24:0

�7:9

+13:3

�3:8

�0:9

+1:6

50:7

�0:5

+0:7

19:2

�0:0

+1:1

54:8

�0:3

+0:5

( )

B

0

! �

+

�

�

4:1

+1:0

�2:2

4:2

+1:0

�2:3

4:2

+1:0

�2:3

17:1

�1:1

+1:5

16:9

�1:1

+1:5

16:5

�1:1

+1:5

( )

B

0

! �

0

�

0

�8:0

�3:9

+8:5

1:9

�4:0

+7:8

12:1

+2:2

�4:5

�97:0

+1:2

�1:3

�41:4

�2:6

+4:1

88:2

�1:2

+1:6

( )

B

0

! !! 20:8

+3:6

�6:9

22:0

+1:6

�2:5

4:7

+1:1

�2:5

95:2

�1:5

+1:9

78:6

�0:3

+0:8

24:4

�1:1

+1:6

( )

B

0

! K

�0

�

K

�0

15:2

�3:3

+6:1

14:5

�3:2

+5:9

13:4

�3:1

+5:7

18:1

�2:8

+4:7

17:5

�2:7

+4:5

16:5

�2:5

+4:2

( )

B

0

! �

0

! 8:2

�6:7

+12:0

4:5

�0:8

+1:6

8:3

�3:4

+6:5

�21:4

�4:1

+7:1

22:8

�0:6

+0:9

�2:1

�2:6

+4:1

( )

B

0

! �

0

� 16:2

�3:4

+6:2

1:0

�0:4

+0:7

10:5

�2:6

+5:1

19:0

�2:9

+5:0

1:6

�0:3

+0:4

13:8

�2:1

+3:5

( )

B

0

! !� 16:2

�3:4

+6:2

1:0

�0:4

+0:7

10:5

�2:6

+5:1

19:0

�2:9

+5:0

1:6

�0:3

+0:4

13:8

�2:1

+3:5
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Table 2: CP-violating asymmetry parameters a

�

0

and a

�+�

0

(in percent) for the decays

( )

B

0

! h

1

h

2

using � = 0:23, � = 0:42 and N

c

= 2; 3;1, for k

2

= m

2

b

=2.

a

�

0

a

�+�

0

Channel N

c

= 2 N

c

= 3 N

c

=1 N

c

= 2 N

c

= 3 N

c

=1

( )

B

0

! �

+

�

�

4:9 4:9 5:0 29:3 29:1 28:7

( )

B

0

! �

0

�

0

�0:7 20:3 8:8 �72:2 �70:7 68:2

( )

B

0

! �

0

�

0

19:3 42:3 �14:0 50:8 88:3 �66:3

( )

B

0

! ��

0

18:6 28:8 �11:8 75:4 78:7 �82:2

( )

B

0

! �� 17:2 21:0 �9:7 90:2 66:7 �92:3

( )

B

0

! �

0

�

0

38:9 31:2 13:0 74:2 41:1 �28:4

( )

B

0

! �

0

� 22:8 19:2 10:5 57:9 30:5 �22:3

( )

B

0

! K

0

S

�

0

0:4 �1:5 �4:9 90:7 85:7 75:1

( )

B

0

! K

0

S

�

0

�3:0 �2:2 �1:1 81:8 83:8 86:6

( )

B

0

! K

0

S

� 1:3 �1:2 �5:6 92:7 86:3 70:9

( )

B

0

! K

0

�

K

0

17:5 17:3 16:9 22:2 22:0 21:7

( )

B

0

! �

0

�

0

�3:6 1:9 4:8 �26:1 �97:0 30:7

( )

B

0

! !�

0

28:7 30:4 0:7 94:5 65:6 40:1

( )

B

0

! �

0

� �19:3 18:3 26:3 �92:3 �22:5 85:2

( )

B

0

! �

0

�

0

�39:0 �69:2 27:6 32:1 �53:6 27:2

( )

B

0

! !� 12:4 24:7 1:3 60:6 96:0 11:1

( )

B

0

! !�

0

12:7 32:6 1:3 37:3 45:7 31:1

( )

B

0

! ��

0

22:7 1:4 14:8 26:7 2:3 19:6

( )

B

0

! �� 22:7 1:4 14:8 26:7 2:3 19:6

( )

B

0

! ��

0

22:7 1:4 14:8 26:7 2:3 19:6

( )

B

0

! �

0

K

0

S

2:9 1:1 �2:0 26:3 75:1 98:7

( )

B

0

! �K

0

S

�2:1 �2:2 �3:4 84:3 84:3 84:6

( )

B

0

! !K

0

S

�7:0 �33:3 �4:9 67:1 26:8 71:7

B

0

! �

+

�

�

2:9 2:9 3:0 16:4 16:2 15:9

( )

B

0

! �

0

�

0

�7:1 2:6 9:7 �82:5 �56:8 74:2

( )

B

0

! !! 17:8 25:3 3:3 84:8 91:7 21:5

( )

B

0

! K

�0

�

K

�0

21:3 20:3 18:8 25:4 24:6 23:3

( )

B

0

! �

0

! 11:6 6:3 11:8 �30:4 32:1 �3:0

( )

B

0

! �

0

� 22:7 1:4 14:8 26:7 2:3 19:6

( )

B

0

! !� 22:7 1:4 14:8 26:7 2:3 19:6
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Table 3: CP-violating asymmetry parameters a

�

0

, a

��

0

, a

�+�

0

, a

�+��

0

de�ned in eq. (40) for the

decays

( )

B

0

! �

�

�

+

,

( )

B

0

! �

+

�

�

, and

( )

B

0

!

�

K

�0

K

0

S

,

( )

B

0

! K

�0

K

0

S

, (in percent), using

� = 0:12, � = 0:34 and k

2

= m

2

b

=2� 2 GeV

2

.

Channel N

c

a

�

0

a

��

0

a

�+�

0

a

�+��

0

N

c

= 2 �54:9

+0:6

�1:3

58:6

+0:4

�0:8

6:0

�0:4

+0:4

6:2

�0:7

+1:2

( )

B

0

! �

�

�

+

; �

+

�

�

N

c

= 3 �54:9

+0:6

�1:3

58:7

+0:3

�0:9

5:8

�0:4

+0:5

6:0

�0:7

+1:3

N

c

=1 �54:9

+0:6

�1:3

58:7

+0:3

�0:9

5:6

�0:5

+0:4

5:8

�0:8

+1:2

N

c

= 2 99:3

�0:2

+0:2

�99:1

+0:4

�0:5

�5:3

�2:9

+4:8

10:0

+2:2

�3:9

( )

B

0

!

�

K

�0

K

0

S

;K

�0

K

0

S

N

c

= 3 99:9

�0:1

+0:0

�99:6

+0:1

�0:2

�3:2

�2:3

+3:9

8:8

+1:5

�2:6

N

c

=1 99:8

�0:1

+0:0

�99:1

�0:1

+0:2

�0:4

�1:5

+2:7

7:2

+0:5

�0:9

Table 4: CP-violating asymmetry parameters a

�

0

, a

��

0

, a

�+�

0

, a

�+��

0

de�ned in eq. (40) for the

decays

( )

B

0

! �

�

�

+

,

( )

B

0

! �

+

�

�

, and

( )

B

0

!

�

K

�0

K

0

S

,

( )

B

0

! K

�0

K

0

S

, (in percent), using

� = 0:23, � = 0:42 and k

2

= m

2

b

=2.

Channel N

c

a

�

0

a

��

0

a

�+�

0

a

�+��

0

N

c

= 2 �55:5 58:1 7:8 8:1

( )

B

0

! �

�

�

+

; �

+

�

�

N

c

= 3 �55:5 58:1 7:6 8:0

N

c

=1 �55:5 58:1 7:5 7:8

N

c

= 2 99:4 �99:0 �4:4 11:1

( )

B

0

!

�

K

�0

K

0

S

;K

�0

K

0

S

N

c

= 3 99:9 �99:5 �2:2 10:3

N

c

=1 99:8 �98:8 0:8 9:0

4 Numerical Results for CP-Violating Coe�cients and

A

CP

Given the amplitudesM andM, one can calculate the CP-violating asymmetryA

CP

for all the

B ! PP , B ! PV and B ! V V decay modes and their charged conjugates whose branching

ratios were calculated by us recently in the factorization approach [4]. The asymmetries depend

on several variables, such as the CKM parameters, N

c

, the virtuality k

2

discussed earlier, and

the scale �. The scale dependence of A

CP

is important in only a few decays and we shall

estimate it by varying � between � = m

b

=2 and � = m

b

at the end of this section for these

decays and �x the scale at � = m

b

=2. The dependence on the rest of the parameters is worked

out explicitly. We show the results for N

c

= 2; 3;1, for two representative choices of the CKM

parameters in the tables:

� Central values emerging from the CKM unitarity �ts of the existing data, yielding: � =

0:12; � = 0:34 [20].

� For values of � and � which correspond to their central values +1�, yielding � = 0:23 and
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Table 5: CP-violating asymmetries A

CP

in

( )

B ! PP decays (in percent) using � = 0:12,

� = 0:34 and N

c

= 2; 3;1, for k

2

= m

2

b

=2 � 2 GeV

2

.

Channel Class CP-Class N

c

= 2 N

c

= 3 N

c

=1

( )

B

0

! �

+

�

�

I (ii) 21:3

+0:3

�1:2

21:2

+0:3

�1:2

21:0

+0:3

�1:3

( )

B

0

! �

0

�

0

II (ii) �42:0

�0:2

+1:6

�15:1

�3:1

+5:3

45:5

�0:8

+0:4

( )

B

0

! �

0

�

0

II (ii) 46:9

+1:4

�4:5

62:0

+1:4

�2:3

�52:0

�2:6

+8:0

( )

B

0

! ��

0

II (ii) 57:1

+1:6

�4:1

45:1

�0:2

+0:7

�54:6

�3:1

+8:3

( )

B

0

! �� II (ii) 59:0

+1:6

�3:2

34:6

�0:8

+1:8

�53:9

�3:5

+8:0

B

�

! �

�

�

0

III (i) 0:1

+0:0

�0:1

0:0

+0:1

�0:0

0:0

+0:0

�0:0

B

�

! �

�

�

0

III (i) 12:0

+2:6

�5:9

14:5

+3:2

�6:7

21:3

+4:2

�8:4

B

�

! �

�

� III (i) 11:8

+2:4

�5:3

14:0

+2:8

�5:9

19:1

+3:3

�6:4

( )

B

0

! �

0

�

0

V (ii) 48:6

�0:7

+1:4

29:2

�3:5

+6:0

�3:6

�6:7

+11:9

( )

B

0

! �

0

� V (ii) 31:7

�1:4

+2:9

19:4

�2:8

+5:0

�2:6

�4:8

+8:4

B

�

! K

�

�

0

IV (i) �7:1

�2:1

+3:7

�6:3

�1:8

+3:2

�4:9

�1:3

+2:3

( )

B

0

! K

�

�

�

IV (i) �7:7

�2:3

+4:0

�7:9

�2:3

+4:2

�8:2

�2:4

+4:4

( )

B

0

! K

0

S

�

0

IV (ii) 36:0

+0:5

�1:0

32:0

+0:1

�0:2

25:1

�0:7

+1:1

B

�

! K

�

�

0

IV (i) �4:9

�1:2

+2:1

�4:1

�1:0

+1:6

�3:0

�0:5

+1:0

( )

B

0

! K

0

S

�

0

IV (ii) 29:2

�0:2

+0:4

30:7

�0:1

+0:0

32:8

+0:1

�0:3

B

�

! K

�

� IV (i) 8:5

+3:4

�6:3

6:2

+2:6

�4:8

2:8

+1:4

�2:6

( )

B

0

! K

0

S

� IV (ii) 37:8

+0:7

�1:3

32:5

+0:1

�0:3

22:9

�0:9

+1:5

B

�

! �

�

K

0

S

IV (i) �1:4

�0:1

+0:0

�1:4

�0:1

+0:0

�1:4

�0:0

+0:1

B

�

! K

�

K

0

S

IV (i) 12:5

�2:9

+5:5

12:3

�2:9

+5:5

12:0

�2:8

+5:5

( )

B

0

! K

0

�

K

0

IV (ii) 15:6

�3:0

+5:6

15:5

�3:1

+5:4

15:1

�2:9

+5:5

� = 0:42. [20].

For each decay mode and given a value of N

c

, the errors shown on the numbers in the tables

re
ect the uncertainties due to the variation of k

2

in the range k

2

= (m

2

b

=2 �2) GeV

2

. For some

selected CP-asymmetries, we show in �gures, however, the dependence on the CKM parameters

for a wider range of � and � which are allowed by the present 95% C.L. unitarity �ts [20].

The results are presented taking into account the following considerations. For decays

belonging to the CP class-(i), the CP-asymmetry is time-independent. Hence for this class,

A

CP

= a

�

0

. For the CP class-(ii) and CP class-(iii) decays, the measurement of A

CP

will be

done in terms of the coe�cients a

�

0

and a

�+�

0

, which are the measures of direct and indirect

(or mixing-induced) CP-violation, respectively. In view of this, we give in Tables 1 and 2

these coe�cients for the thirty decay modes of the B

0

and

�

B

0

mesons, which belong to these

classes, for the two sets of CKM parameters given above. For the four decays belonging to

the CP class-(iv) decays, one would measure by time-dependent decay rates the quantities a

�

0

,

a

�+�

0

, a

��

0

and a

�+��

0

. They are given in Tables 3 and 4 for the two sets of CKM parameters,
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Table 6: CP-violating asymmetries A

CP

in

( )

B ! PP decays (in percent) using � = 0:23,

� = 0:42 and N

c

= 2; 3;1 for k

2

= m

2

b

=2.

Channel Class CP-Class N

c

= 2 N

c

= 3 N

c

=1

( )

B

0

! �

+

�

�

I (ii) 17:2 17:1 16:9

( )

B

0

! �

0

�

0

II (ii) �34:8 �20:4 38:2

( )

B

0

! �

0

�

0

II (ii) 36:8 69:7 �40:7

( )

B

0

! ��

0

II (ii) 48:0 56:3 �46:8

( )

B

0

! �� II (ii) 54:2 45:4 �50:2

B

�

! �

�

�

0

III (i) 0:0 0:0 0:0

B

�

! �

�

�

0

III (i) 8:5 10:5 16:7

B

�

! �

�

� III (i) 8:7 10:6 16:2

( )

B

0

! �

0

�

0

V (ii) 60:7 39:9 �5:0

( )

B

0

! �

0

� V (ii) 42:5 27:1 �3:7

B

�

! K

�

�

0

IV (i) �9:8 �8:6 �6:5

( )

B

0

! K

�

�

�

IV (i) �10:5 �10:8 �11:2

( )

B

0

! K

0

S

�

0

IV (ii) 43:4 39:8 32:5

B

�

! K

�

�

0

IV (i) �6:3 �5:3 �3:8

( )

B

0

! K

0

S

�

0

IV (ii) 36:9 38:4 40:5

B

�

! K

�

� IV (i) 8:4 6:4 3:1

( )

B

0

! K

0

S

� IV (ii) 45:0 40:2 30:0

B

�

! �

�

K

0

S

IV (i) �1:8 �1:7 �1:7

B

�

! K

�

K

0

S

IV (i) 17:5 17:3 16:9

( )

B

0

! K

0

�

K

0

IV (ii) 22:1 21:8 21:4

respectively. Having worked out these quantities, we then give the numerical values of the

CP-violating asymmetries for all the seventy six decays B ! PP , B ! PV (b! d transition),

B ! PV (b! s transition) and B ! V V in Tables 5 - 12.

4.1 Parametric Dependence of CP-violating Parameters and A

CP

We now discuss the CP-asymmetries given in Tables 1 - 12 and their parametric dependence.

� Form factor dependence of A

CP

: The CP-violating asymmetries depend very weakly

on the form factors. We have calculated the CP-violating asymmetries for the form factors

based on both the BSW [32] and the hybrid Lattice-QCD/QCD-SR models. The form

factor values used are given in [4]. However, the dependence of A

CP

on the form factors

is weak. Hence, we show results only for the former case.
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Table 7: CP-violating asymmetries A

CP

in

( )

B ! PV decays (b ! d transition) (in percent)

using � = 0:12, � = 0:34 and N

c

= 2; 3;1 for k

2

= m

2

b

=2 � 2 GeV

2

.

Channel Class CP-Class N

c

= 2 N

c

= 3 N

c

=1

B

0

=

�

B

0

! �

�

�

+

=�

+

�

�

I (iv) 3:6

�0:7

+1:2

3:5

�0:7

+1:2

3:3

�0:7

+1:2

B

0

=

�

B

0

! �

+

�

�

=�

�

�

+

I (iv) 6:0

+0:7

�1:9

5:9

+0:8

�1:8

5:9

+0:7

�1:9

( )

B

0

! �

0

�

0

II (ii) �23:5

�1:3

+4:2

�49:4

�10:3

+22:1

22:2

+0:7

�2:4

( )

B

0

! !�

0

II (ii) 57:5

+1:4

�2:3

39:2

�1:3

+2:5

24:3

+0:1

�0:2

( )

B

0

! �

0

� II (ii) �59:5

�7:0

+17:1

0:9

�8:1

+14:0

64:4

+2:4

�5:0

( )

B

0

! �

0

�

0

II (ii) �16:5

+0:4

+9:7

�56:7

+15:5

+28:2

40:2

+1:4

�6:2

( )

B

0

! !� II (ii) 46:2

+0:9

�2:9

61:5

+1:9

�3:5

5:7

+0:1

�0:3

( )

B

0

! !�

0

II (ii) 33:5

+0:8

�3:1

54:9

+1:9

�6:7

19:2

+0:1

�0:4

B

�

! �

0

�

�

III (i) �3:9

�1:1

+2:6

�5:2

�1:5

+3:5

�11:0

�3:8

+8:8

B

�

! �

�

�

0

III (i) 2:7

+0:6

�1:5

3:0

+0:7

�1:6

3:6

+0:9

�1:9

B

�

! !�

�

III (i) 9:8

+2:2

�4:8

7:9

+1:9

�4:0

�1:8

�0:6

+1:2

B

�

! �

�

� III (i) 3:9

+0:9

�2:2

4:4

+1:1

�2:4

5:7

+1:4

�3:0

B

�

! �

�

�

0

III (i) 3:8

+1:0

�2:2

4:3

+1:2

�2:5

5:6

+1:4

�3:2

( )

B

0

!

�

K

�0

K

0

S

=K

�0

K

0

S

IV (iv) 15:9

�3:4

+6:2

15:3

�3:3

+6:0

14:3

�3:2

+5:9

( )

B

0

! K

�0

K

0

S

=

�

K

�0

K

0

S

V (iv) �12:2

+3:0

�5:7

�10:6

+2:6

�5:2

�8:2

+2:2

�4:3

B

�

! K

�

( )

K

�0

IV (i) 15:2

�3:3

+6:1

14:5

�3:2

+5:9

13:4

�3:1

+5:7

B

�

! K

��

K

0

S

V (i) �1:2

+5:6

�32:8

46:8

�13:2

�3:3

48:1

�5:6

+4:8

B

�

! ��

�

V (i) 16:2

�3:4

+6:2

1:0

�0:4

+0:7

10:5

�2:6

+5:1

( )

B

0

! ��

0

V (ii) 19:6

�3:6

+6:5

1:4

�0:3

+0:7

13:4

�2:7

+5:0

( )

B

0

! �� V (ii) 19:6

�3:6

+6:5

1:4

�0:3

+0:7

13:4

�2:7

+5:0

( )

B

0

! ��

0

V (ii) 19:6

�3:6

+6:5

1:4

�0:3

+0:7

13:4

�2:7

+5:0

� N

c

-dependence of A

CP

: The classi�cation of theB ! h

1

h

2

decays usingN

c

-dependence

of the rates that we introduced in [4] is also very useful in discussing A

CP

. We see that the

CP-asymmetries in the class-I and class-IV decays have mild dependence on N

c

, re
ecting

very much the characteristics of the decay rates. As already remarked, this can be traced

back to the N

c

-dependence of the e�ective coe�cients. However, in some decays classi�ed

as class-IV decays in [4], we have found that A

CP

shows a marked N

c

dependence. All

these cases are on the borderline as far as the N

c

-sensitivity of the decay rates is concerned

due to the presence of several competing amplitudes. The decays, which were classi�ed

in [4] as class-IV decays but are now classi�ed as class-V decays, are as follows:

B ! PP decays: B

0

! �

0

�

(0)

.

B ! PV decays involving b! s transitions: B

0

! K

�0

�. (The decay mode B

0

! K

�0

�

0

was already classi�ed in [4] as a class-V decay.)
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Table 8: CP-violating asymmetries A

CP

in

( )

B ! PV decays (b ! d transition) (in percent)

using � = 0:23, � = 0:42 and N

c

= 2; 3;1 for k

2

= m

2

b

=2.

Channel Class CP-Class N

c

= 2 N

c

= 3 N

c

=1

B

0

=

�

B

0

! �

�

�

+

=�

+

�

�

I (iv) 5:3 5:2 5:1

B

0

=

�

B

0

! �

+

�

�

=�

�

�

+

I (iv) 5:4 5:4 5:4

( )

B

0

! �

0

�

0

II (ii) �14:8 �44:9 17:8

( )

B

0

! !�

0

II (ii) 63:7 51:1 19:5

( )

B

0

! �

0

� II (ii) �56:5 1:3 57:7

( )

B

0

! �

0

�

0

II (ii) �10:2 �70:8 31:0

( )

B

0

! !� II (ii) 36:9 61:8 6:1

( )

B

0

! !�

0

II (ii) 26:1 43:0 15:7

B

�

! �

0

�

�

III (i) �2:7 �3:7 �8:3

B

�

! �

�

�

0

III (i) 1:9 2:1 2:6

B

�

! !�

�

III (i) 7:0 5:6 �1:3

B

�

! �

�

� III (i) 2:7 3:1 4:0

B

�

! �

�

�

0

III (i) 2:7 3:0 3:9

B

0

=

�

B

0

!

�

K

�0

K

0

S

=K

�0

K

0

S

IV (iv) 22:3 21:4 20:1

B

0

=

�

B

0

! K

�0

K

0

S

=

�

K

�0

K

0

S

V (iv) �17:0 �14:9 �11:5

B

�

! K

�

( )

K

�0

IV (i) 21:3 20:3 18:8

B

�

! K

��

K

0

S

V (i) �1:6 54:6 62:5

B

�

! ��

�

V (i) 22:7 1:4 14:8

( )

B

0

! ��

0

V (ii) 27:5 2:0 19:0

( )

B

0

! �� V (ii) 27:5 2:0 19:0

( )

B

0

! ��

0

V (ii) 27:5 2:0 19:0

B ! V V decays: B

0

! K

�0

�

0

.

With this, we note that the N

c

-dependence of A

CP

in the class-I and class-IV decays is

at most �20%, as one varies N

c

in the range N

c

= 2 to N

c

=1.

Concerning class-III decays, in most cases A

CP

is found to vary typically by a factor 2

as N

c

is varied, with one exception: B

+

! !�

+

, in which case the estimate for A

CP

is

uncertain by an order of magnitude. This is in line with the observation made on the

decay rate for this process in [4]. Both CP-violating asymmetries and decay rates for the

class-II and class-V decays are generally strongly N

c

-dependent. We had shown this for

the decay rates in [4] and for the CP-violating asymmetries this feature can be seen in

the tables presented here.

� k

2

-dependence of A

CP

: The CP-violating asymmetries depend on the value of k

2

, as

discussed in the literature [15]. The value of k

2

relative to the charm threshold, i.e.,

k

2

� (�) 4m

2

c

, plays a central role here. For the choice k

2

� 4m

2

c

, the c�c loop will
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Table 9: CP-violating asymmetries A

CP

in

( )

B ! PV decays (b ! s transition) (in percent)

using � = 0:12, � = 0:34 and N

c

= 2; 3;1 for k

2

= m

2

b

=2 � 2 GeV

2

.

Channel Class CP-Class N

c

= 2 N

c

= 3 N

c

=1

( )

B

0

! �

�

K

�

I (i) �16:4

�3:9

+9:7

�16:4

�3:9

+9:8

�16:3

�3:9

+9:7

B

�

! K

��

�

0

III (i) �72:6

�5:1

+35:9

�84:3

�8:6

+44:0

�61:5

�16:1

+36:5

( )

B

0

! K

��

�

�

IV (i) �15:5

�5:0

+8:9

�15:9

�5:2

+9:2

�16:6

�5:4

+9:6

( )

B

0

! K

�0

�

0

V (i) 1:4

+1:2

�2:2

�1:3

+0:1

�0:4

�4:9

�1:3

+2:0

B

�

! K

��

�

0

IV (i) �12:8

�3:9

+7:3

�12:0

�3:7

+6:8

�10:5

�3:2

+5:8

B

�

! �

0

K

�

IV (i) �13:2

�3:2

+6:8

�12:8

�3:2

+6:7

�7:5

�2:0

+3:8

B

�

! K

��

� IV (i) �9:1

�2:7

+5:1

�9:3

�2:8

+5:2

�9:6

�2:9

+5:3

( )

B

0

!

( )

K

�0

� V (i) �2:4

�0:5

+0:9

�1:4

�0:1

+0:2

0:6

+0:5

�1:1

B

�

!

( )

K

�0

�

�

IV (i) �1:7� 0:1 �1:6� 0:1 �1:5

�0:1

+0:0

( )

B

0

! �

0

K

0

S

V (ii) 10:2

+0:7

�1:3

28:2

+0:1

�0:3

45:5

�0:5

+1:4

B

�

! �

�

K

0

S

V (i) 3:0

�0:4

+0:8

4:6

�1:1

+4:8

�4:4

+0:6

�0:5

( )

B

0

!

( )

K

�0

�

0

V (i) �44:0

+11:9

�48:0

�13:3

+2:1

+0:5

8:0

+4:6

�7:5

B

�

! �K

�

V (i) �1:7� 0:1 �1:8� 0:1 �2:7

�0:1

+0:1

( )

B

0

! �K

0

S

V (ii) 31:0

�0:1

+0:0

30:9

�0:0

+0:0

30:5

+0:0

�0:1

( )

B

0

! !K

0

S

V (ii) 20:6

�1:2

+1:9

�6:6

�5:2

+9:2

23:6

�0:8

+1:3

B

�

! !K

�

V (i) �13:1

�4:1

+7:4

�19:6

�4:7

+11:1

0:9

+0:7

�1:3

not generate a strong phase. We treat k

2

as a variable parameter and have studied the

sensitivity of the CP-asymmetries by varying it in the range k

2

= m

2

b

=2 � 2 GeV

2

. This

range may appear somewhat arbitrary, however, it is large enough to test which of the

asymmetries are sensitive to the choice of k

2

. One sees from the tables, that A

CP

as

well as the CP-violating parameters are sensitive to k

2

in most cases. Fortunately, there

are some decays which have large A

CP

with only moderate theoretical errors from the

k

2

-dependence.

� �-dependence of A

CP

: It should be remarked that the CP-asymmetries depend on the

renormalization scale �. Part of this dependence is due to the fact that the strong phases

are generated only by the explicit O(�

s

) corrections. This can be seen in the numerator

A

�

given in eq. (11). In other words, NLO corrections to A

CP

, which are of of O(�

2

s

)

remain to be calculated. Despite this, the scale-dependence of A

CP

in B ! h

1

h

2

decays

is not very marked, except for a few decays for which the relevant Wilson coe�cients do

show some scale dependence. We give a list of these decays in Table 13. This feature is

quantitatively di�erent from the scale-dependence of A

CP

in the inclusive radiative decays

B ! X

s


 and B ! X

d


 [43], for which the �-dependence of the Wilson coe�cient in

the electromagnetic penguin operator introduces quite signi�cant scale dependence in the

CP-asymmetries. In contrast, the Wilson coe�cients contributing to A

CP

in the decays

B ! h

1

h

2

are less �-dependent. Of course, there is still some residual scale dependence
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Table 10: CP-violating asymmetries A

CP

in

( )

B ! PV decays (b! s transition) (in percent)

using � = 0:23, � = 0:42 and N

c

= 2; 3;1 for k

2

= m

2

b

=2.

Channel Class CP-Class N

c

= 2 N

c

= 3 N

c

=1

( )

B

0

! �

�

K

�

I (i) �11:5 �11:5 �11:4

B

�

! K

��

�

0

III (i) �55:2 �71:7 �75:2

( )

B

0

! K

��

�

�

IV (i) �22:1 �22:6 �23:6

( )

B

0

!

( )

K

�0

�

0

V (i) 1:6 �1:6 �6:3

B

�

! K

��

�

0

IV (i) �18:2 �17:1 �14:8

B

�

! �

0

K

�

IV (i) �14:5 �15:9 �10:7

B

�

! K

��

� IV (i) �13:0 �13:3 �13:5

( )

B

0

!

( )

K

�0

� V (i) �3:1 �1:7 0:7

B

�

!

( )

K

�0

�

�

IV (i) �2:1 �2:0 �1:9

( )

B

0

! �

0

K

0

S

V (ii) 14:4 36:4 45:6

B

�

! �

�

K

0

S

V (i) 3:7 5:6 �5:3

( )

B

0

!

( )

K

�0

�

0

V (i) �47:7 �16:3 9:0

B

�

! �K

�

V (i) �2:1 �2:2 �3:4

( )

B

0

! �K

0

S

V (ii) 38:7 38:7 38:0

( )

B

0

! !K

0

S

V (ii) 27:3 �9:1 30:9

B

�

! !K

�

V (i) �18:6 �15:1 1:1

in the quark masses. For all numbers and �gures shown here, we use � = m

b

=2, a scale

suggested by NLO corrections in the decay rates for B ! X

s


 and B ! X

d


 [43], for

which NLO corrections are small.

4.2 Decay Modes with Stable A

CP

in the Factorization Approach

We use the parametric dependence of A

CP

just discussed to pick out the decay modes which are

stable against the variation of N

c

, k

2

and the scale �. As only class-I and class-IV (and some

class III) decays are stable against N

c

, we need concentrate only on decays in these classes.

With the help of the entries in Tables 5-13, showing the k

2

and � dependence, we �nd that

the following decay modes have measurably large asymmetries, i.e., jA

CP

j � 20% (except for

A

CP

(�

+

�

�

) which is estimated to be more like O(10%)) with large branching ratios, typically

O(10

�5

) (except for B

0

! K

0

S

�, which is estimated to be of O(10

�6

) [4]).

�

( )

B

0

! �

+

�

�

,

( )

B

0

! K

0

S

�

0

,

( )

B

0

! K

0

S

�

0

,

( )

B

0

! K

0

S

� and

( )

B

0

! �

+

�

�

.

We discuss these cases in detail showing the CKM-parametric dependence of A

CP

in each case.

Since these decays measure, ideally, one of the phases in the unitarity triangle, we shall also

plot A

CP

as a function of the relevant phase, which is sin 2� for A

CP

(�

+

�

�

), and sin 2� for

A

CP

(K

0

S

�

0

), A

CP

(K

0

S

�) and A

CP

(K

0

S

�

0

).

21



Table 11: CP-violating asymmetries A

CP

in

( )

B ! V V decays (in percent) using � = 0:12,

� = 0:34 and N

c

= 2; 3;1 for k

2

= m

2

b

=2 � 2 GeV

2

.

Channel Class CP-Class N

c

= 2 N

c

= 3 N

c

=1

( )

B

0

! �

+

�

�

I (iii) 10:8

+0:2

�0:7

10:8

+0:1

�0:8

10:6

+0:1

�0:8

( )

B

0

! �

0

�

0

II (iii) �51:4

�1:9

+5:0

�18:5

�3:8

+7:1

49:9

+0:8

�2:2

( )

B

0

! !! II (iii) 58:9

+1:6

�3:6

51:8

+0:9

�1:2

14:7

+0:2

�0:9

B

�

! �

�

�

0

III (i) 0:2

+0:1

�0:1

0:2

+0:1

�0:0

0:3

+0:0

�0:1

B

�

! �

�

! III (i) 8:9

+1:9

�4:4

7:7

+1:7

�3:9

4:0

+1:0

�2:2

( )

B

0

! K

��

�

�

IV (i) �15:5

�5:0

+8:9

�15:9

�5:2

+9:2

�16:6

�5:4

+9:6

( )

B

0

!

( )

K

�0

�

0

V (i) 5:1

+2:8

�4:8

�0:8

+0:5

�0:9

�9:2

�2:8

+4:8

B

�

! K

��

�

0

IV (i) �11:8

�3:6

+6:6

�10:3

�3:1

+5:7

�7:3

�2:1

+3:8

B

�

! �

�

( )

K

�0

IV (i) �1:7� 0:1 �1:6 � 0:1 �1:5

�0:1

+0:0

B

�

! K

��

( )

K

�0

IV (i) 15:2

�3:3

+6:1

14:5

�3:2

+5:9

13:4

�3:1

+5:7

( )

B

0

! K

�0

�

K

�0

IV (iii) 18:6

�3:5

+6:2

17:8

�3:4

+6:0

16:6

�3:2

+5:7

( )

B

0

! �

0

! V (iii) �4:8

�6:4

+11:2

13:8

�0:8

+1:5

4:4

�3:5

+6:2

( )

B

0

!

( )

K

�0

! V (i) �3:1

�0:7

+1:1

�2:1

�0:3

+0:4

�11:7

�3:7

+6:8

B

�

! K

��

! V (i) �9:6

�2:9

+5:2

�14:3

�4:6

+8:2

7:2

+2:6

�5:1

B

�

! K

��

� V (i) �1:7� 0:1 �1:8 � 0:1 �2:7

�0:1

+0:1

( )

B

0

!

( )

K

�0

� V (i) �1:7� 0:1 �1:8 � 0:1 �2:7

�0:1

+0:1

B

�

! �

�

� V (i) 16:2

�3:4

+6:2

1:0

�0:4

+0:7

10:5

�2:6

+5:1

( )

B

0

! �

0

� V (iii) 19:6

�3:6

+6:5

1:4

�0:3

+0:7

13:4

�2:7

+5:0

( )

B

0

! !� V (iii) 19:6

�3:6

+6:5

1:4

�0:3

+0:7

13:4

�2:7

+5:0

� CP-violating asymmetry in

( )

B

0

! �

+

�

�

We show in Fig. 1(a) and 1(b) the CP-asymmetry parameters a

�

0

and a

�+�

0

, de�ned in

eq. (32) and (33), respectively, plotted as a function of the CKM-Wolfenstein parameter

� with the indicated values of �. The shadowed area in this and all subsequent �gures

showing the �-dependence corresponds to the range 0 < � < 0:23, which is the �1�

allowed values of this parameter from the unitarity �ts [20]. The three curves in Fig. 1(a)

and 1(b) represent three di�erent values of the CKM-Wolfenstein parameter: � = 0:26

(solid curve), � = 0:34 (dashed curve) and � = 0:42 (dotted curve). The time-integrated

asymmetry A

CP

calculated with the help of eq. (35) is shown for three values of � (� =

0:42, 0:34, 0:26) with k

2

= m

2

b

=2 in Fig. 2(a). One notes that the CKM-dependence of

A

CP

is very signi�cant. The k

2

-dependence of A

CP

(�

+

�

�

) is found to be very weak as

shown is Fig. 2(b), where we plot this quantity as a function of � for � = 0:34 by varying

k

2

in the range k

2

= m

2

b

=2� 2 GeV

2

. Hence, there is a good case for A

CP

(�

+

�

�

) yielding

information on the CKM parameters.

22



Figure 1: CP-violating asymmetry parameters a

�

0
(a) and a

�+�

0
(b) for the decay

( )

B

0

! �

+

�

�

as a function of the CKM parameter � with k

2

= m

2

b

=2. The dotted, dashed and solid curves

correspond to the CKM parameter values � = 0:42, � = 0:34 and � = 0:26, respectively.

Figure 2: CP-violating asymmetry A

CP

in

( )

B

0

! �

+

�

�

as a function of the CKM parameter �.

(a) k

2

= m

2

b

=2. The dotted, dashed and solid curves correspond to the CKM parameter values

� = 0:42, � = 0:34 and � = 0:26, respectively; (b) � = 0:34. The dotted, dashed and solid lines

correspond to k

2

= m

2

b

=2 + 2 GeV

2

, k

2

= m

2

b

=2 and k

2

= m

2

b

=2 � 2 GeV

2

, respectively.
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Table 12: CP-violating asymmetries A

CP

in

( )

B ! V V decays (in percent) using � = 0:23,

� = 0:42 and N

c

= 2; 3;1 for k

2

= m

2

b

=2.

Channel Class CP-Class N

c

= 2 N

c

= 3 N

c

=1

( )

B

0

! �

+

�

�

I (iii) 9:7 9:6 9:5

( )

B

0

! �

0

�

0

II (iii) �43:9 �25:3 41:6

( )

B

0

! !! II (iii) 52:0 60:2 12:4

B

�

! �

�

�

0

III (i) 0:2 0:2 0:2

B

�

! �

�

! III (i) 6:3 5:4 2:8

( )

B

0

! K

��

�

�

IV (i) �22:1 �22:6 �23:6

( )

B

0

!

( )

K

�0

�

0

V (i) 5:7 �1:0 �12:3

B

�

! K

��

�

0

IV (i) �16:8 �14:6 �10:1

B

�

! �

�

( )

K

�0

IV (i) �2:1 �2:0 �1:9

B

�

! K

��

( )

K

�0

IV (i) 21:3 20:3 18:8

( )

B

0

! K

�0

�

K

�0

IV (iii) 26:1 25:0 23:4

( )

B

0

! �

0

! V (iii) �6:8 19:4 6:3

( )

B

0

!

( )

K

�0

! V (i) �4:0 �2:6 �16:7

B

�

! K

��

! V (i) �13:3 �20:4 6:6

B

�

! K

��

� V (i) �2:1 �2:2 �3:4

( )

B

0

!

( )

K

�0

� V (i) �2:1 �2:2 �3:4

B

�

! �

�

� V (i) 22:7 1:4 14:8

( )

B

0

! �

0

� V (iii) 27:5 2:0 19:0

( )

B

0

! !� V (iii) 27:5 2:0 19:0

To have a closer look at this, we plot in Fig. 3(a) and 3(b), the asymmetry A

CP

(�

+

�

�

)

as a function of sin 2� to study the e�ect of the penguin contribution (called in the

jargon \penguin pollution") and the dependence on jV

ub

j, respectively. The lower (up-

per) curve in Fig. 3(a) corresponds to keeping only the tree contribution in the decays

( )

B

0

! �

+

�

�

(tree + penguin). We see that in the entire �1� expected range of sin 2�,

depicted as a shadowed region, the \penguin pollution" is quite signi�cant, changing

both A

CP

(�

+

�

�

) and its functional dependence on sin 2�. Based on 3(b), we estimate

�10% � A

CP

(�

+

�

�

) � +45%, with A

CP

(�

+

�

�

) = 0 as an allowed solution, varying

sin 2� in the �1� range: �0:40 � sin 2� � 0:53 [20].

� CP-violating asymmetry in

( )

B

0

! K

0

S

�

0

The parameters a

�

0

and a

�+�

0

for the decays

( )

B

0

!

K

0

S

�

0

are shown in Fig. 4(a) and 4(b), respectively, for � = 0:42, 0:34, 0:26 with �xed

k

2

= m

2

b

=2. As can be seen from these �gures, the time-integrated CP-violating asym-

metry A

CP

(B

0

! K

0

S

�

0

) is completely dominated by the a

�+�

0

term. The CP-violating

asymmetry A

CP

(K

0

S

�

0

) is shown in Fig. 5(a) for three values of � (� = 0:42, 0:34, 0:26).
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Figure 3: CP-violating asymmetry A

CP

in

( )

B

0

! �

+

�

�

as a function of sin 2� for k

2

= m

2

b

=2.

(a) E�ect of the \penguin pollution": the lower (upper) curve corresponds to keeping only

the tree contribution (the complete amplitude, tree + penguin). Note that jV

ub

j = 0:003. (b)

Dependence on jV

ub

j: jV

ub

j = 0:002 (solid curve), jV

ub

j = 0:003 (dashed curve), jV

ub

j = 0:004

(dotted curve)

Figure 4: CP-asymmetry parameters a

�

0

(a) and a

�+�

0

(b) for

( )

B

0

! K

0

S

�

0

as a function of the

CKM parameter �. The dotted, dashed and solid curves correspond to the CKM parameter

values � = 0:42, � = 0:34 and � = 0:26, respectively.

25



Table 13: CP-violating asymmetries A

CP

in

( )

B ! h

1

h

2

decays (in percent) using � = 0:12,

� = 0:34 and N

c

= 2; 3;1, k

2

= m

2

b

=2 for � = m

b

=2 and � = m

b

.

N

c

= 2 N

c

= 3 N

c

=1

Channel � = m

b

=2 � = m

b

� = m

b

=2 � = m

b

� = m

b

=2 � = m

b

( )

B

0

! �

0

�

0

�42:0 �37:8 �15:1 �32:2 43:9 45:5

B

�

! K

�

� 8:5 12:2 6:2 9:0 2:8 4:4

( )

B

0

! �

0

�

0

�23:5 �18:3 �49:4 �49:9 22:2 20:1

( )

B

0

! !�

0

57:5 61:5 39:2 48:4 24:3 23:4

( )

B

0

! �

0

� �59:5 �61:0 0:9 �21:4 64:4 64:7

( )

B

0

! �

0

�

0

�16:5 �10:0 �56:7 �59:3 40:2 35:8

( )

B

0

! !�

0

33:5 29:1 54:9 41:3 19:2 17:9

B

�

! K

��

K

0

S

�1:2 �0:9 46:8 35:0 48:1 46:8

( )

B

0

!

( )

K

�0

�

0

1:4 3:5 �1:3 �0:3 �4:9 �5:3

( )

B

0

! !K

0

S

20:6 18:3 �6:6 �14:6 23:6 23:3

( )

B

0

! �

0

�

0

�51:4 �49:5 �18:5 �33:5 49:9 50:5

( )

B

0

!

( )

K

�0

�

0

5:1 10:0 �0:8 1:3 �9:2 �11:2

( )

B

0

! �

0

! �4:8 �14:8 13:8 18:5 4:4 2:8

The upper curve for each value of � is obtained by neglecting the tree contribution in

( )

B

0

! K

0

S

�

0

and the lower curves represent the corresponding full (tree + penguin) con-

tribution. Fig. 5(b) shows the k

2

-dependence of A

CP

(K

0

S

�

0

) with the three (almost)

overlapping curves corresponding to k

2

= m

2

b

=2 and k

2

= m

2

b

=2 � 2 GeV

2

for �xed

value, � = 0:34. As we see from this set of �gures, the CKM-parametric dependence of

A

CP

(K

0

S

�

0

) is marked and the e�ect of the \tree shadow" is relatively small. To illus-

trate this further, we plot in Figs. 6(a) and 6(b) this asymmetry as a function of sin 2�,

showing the e�ect of the \tree-shadowing" and dependence of A

CP

(K

0

S

�

0

) on jV

td

j, re-

spectively. Restricting to the range 0:48 � sin 2� � 0:78, which is the �1� range for this

quantity from the unitarity �ts [20], we �nd that A

CP

(K

0

S

�

0

) has a value in the range

20% < A

CP

< 36%. This decay has been measured by the CLEO Collaboration with a

branching ratio B(B

0

! K

0

S

�

0

) = (4:7

+2:7

�2:0

� 0:9) � 10

�5

and is well accounted for in the

factorization-based approach [4{6]. As the \tree shadow' is small in the decay B

0

! K

0

S

�

0

and the electroweak penguin contribution is also small [4], A

CP

(K

0

S

�

0

) is a good measure

of sin 2�. This was anticipated by London and Soni [44], who also advocated A

CP

(K

0

S

�)

as a measure of the angle �, following the earlier suggestion of the same in ref. [45].

The CP-asymmetry for this decay, like A

CP

(K

0

S

�

0

), is dominated by the a

�+�

0

term. The

quantity A

CP

(K

0

S

�) is found to be stable against variation in N

c

and k

2

(see Tables 9 and

10). However, being a class-V decay, the branching ratio for B

0

! K

0

S

� (and its charged

conjugate) is very sensitively dependent on N

c

, with B(B

0

! K

0

S

�) = (0:2 � 9) � 10

�6

,

26



Figure 5: CP-violating asymmetry A

CP

in

( )

B

0

! K

0

S

�

0

decays as a function of the CKM

parameter �. (a) k

2

= m

2

b

=2. The dotted, dashed and solid curves correspond to the CKM

parameter values � = 0:42, � = 0:34 and � = 0:26, respectively; In all three groups, the upper

(lower) curve corresponds to neglecting the tree contributions (with the complete amplitude).

(b) � = 0:34. The dotted, dashed and solid curves correspond to k

2

= m

2

b

=2 + 2 GeV

2

,

k

2

= m

2

b

=2 and k

2

= m

2

b

=2� 2 GeV

2

, respectively.

with the lower (higher) range corresponding to N

c

=1 (N

c

= 2) [4]. Moreover, the elec-

troweak penguin e�ect in this decay is estimated to be rather substantial. The present

upper bound on this decay is B(B

0

! K

0

S

�) < 6:2 � 10

�5

[2]. Depending on N

c

, the

above experimental bound is between one and two orders of magnitude away from the

expected rate. Despite the large and stable value of A

CP

(K

0

S

�), it may turn out not to

be measurable in the �rst generation of B factory experiments.

� CP-violating asymmetry in

( )

B

0

! K

0

S

�

0

The decay B

0

! K

0

S

�

0

is dominated by the penguins, with signi�cant electroweak

penguin contribution [4]. The estimated decay rate in the factorization approach is

B(B

0

! K

0

S

�

0

) = (2:5 � 5) � 10

�6

, with the present experimental bound being B(B

0

!

K

0

S

�

0

) < 4:1� 10

�5

[1], with these numbers to be understood as averages over the charge

conjugated decays. We expect that with 10

8

B

�

B events, several hundred K

0

S

�

0

decays

will be measured. The CP-asymmetry A

CP

(K

0

S

�

0

) is dominated by the a

�+�

0

term (see

Tables 1 and 2), which is large, stable against variation in k

2

and shows only a mild

dependence on N

c

. The quantities a

�

0

and a

�+�

0

for this decay (together with the others

in the B ! ��;K

�

K and B

�

! (K�)

�

decays) were worked out by Kramer and Palmer

in [15]. As remarked already, there are detailed di�erences in the underlying theoretical

framework used here and in [15] and also in the values of the CKM and other input

parameters, but using identical values of the various input parameters for the sake of

comparison, the agreement between the two is fair. We show in Fig. 7(a), A

CP

(K

0

S

�

0

) as

a function of � for three values of �: � = 0:42, 0:34, 0:26 and note that this dependence

is quite marked. The k

2

-dependence of A

CP

(K

0

S

�

0

) is found to be small, as shown in

Fig. 7(b). Thus, we expect that A

CP

(K

0

S

�

0

) is also a good measure of sin 2�. This is
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Figure 6: CP-violating asymmetry A

CP

in

( )

B

0

! K

0

S

�

0

as a function of sin 2� for k

2

= m

2

b

=2.

(a) \Tree shadow": The solid (dashed) curve correspond to the full amplitude (neglecting the

tree contribution). (b) jV

td

j dependence: Dashed curve (jV

td

j = 0:004), dashed-dotted curve

(jV

td

j = 0:008), dotted curve (jV

td

j = 0:012).

Figure 7: CP-violating asymmetry A

CP

in

( )

B

0

! K

0

S

�

0

decays as a function of the CKM

parameter �. (a) k

2

= m

2

b

=2. The dotted, dashed-dotted and dashed curves correspond to the

CKM parameter values � = 0:42, � = 0:34 and � = 0:26, respectively; (b) � = 0:34. The

dotted, dashed-dotted and dashed curves correspond to k

2

= m

2

b

=2 + 2 GeV

2

, k

2

= m

2

b

=2 and

k

2

= m

2

b

=2 � 2 GeV

2

, respectively.
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Figure 8: CP-violating asymmetry A

CP

in

( )

B

0

! K

0

S

�

0

as a function of sin 2� for k

2

= m

2

b

=2.

The three curves correspond to the following values of the CKM matrix element jV

td

j: dashed

curve (jV

td

j = 0:004), dashed-dotted curve (jV

td

j = 0:008), dotted curve (jV

td

j = 0:012).

Figure 9: CP-violating asymmetry A

CP

in

( )

B

0

! K

0

S

� decays as a function of the CKM

parameter �. (a) k

2

= m

2

b

=2. The dotted, dashed-dotted and dashed curves correspond to the

CKM parameter values � = 0:42, � = 0:34 and � = 0:26, respectively; (b) � = 0:34. The

dotted, dashed-dotted and dashed lines correspond to k

2

= m

2

b

=2 + 2 GeV

2

, k

2

= m

2

b

=2 and

k

2

= m

2

b

=2 � 2 GeV

2

, respectively.

shown in Fig. 8, with the three curves showing the additional dependence of A

CP

(K

0

S

�

0

)

on jV

td

j. Restricting the value of sin 2� in the �1� range shown by the shadowed region,

we �nd 24% � A

CP

(K

0

S

�

0

) � 44%.

� CP-violating asymmetry in

( )

B

0

! K

0

S

�

The decay B

0

! K

0

S

�, like the preceding decay, is dominated by the penguins with
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Figure 10: CP-violating asymmetry A

CP

in

( )

B

0

! K

0

S

� as a function of sin 2� for k

2

= m

2

b

=2.

The three curves correspond to the following values of the CKM matrix element jV

td

j: jV

td

j =

0:004 (dashed curve), jV

td

j = 0:008 (dashed-dotted curve), jV

td

j = 0:012 (dotted curve).

signi�cant electroweak penguin contribution [4]. The branching ratio for this mode is

estimated to be about a factor 3 too small compared to B

0

! K

0

S

�

0

, with B(B

0

!

K

0

S

�) ' (1 � 2) � 10

�6

. The CP-violating asymmetry A

CP

(K

0

S

�) is, however, found to

be very similar to A

CP

(K

0

S

�

0

). This is shown in Fig. 9(a) where we plot A

CP

(K

0

S

�) as

a function of � for the three indicated values of �, keeping k

2

= m

2

b

=2 �xed. The k

2

-

dependence of A

CP

(K

0

S

�) is shown in Fig. 9(b) and is found to be moderately small in

the range k

2

= m

2

b

=2 � 2 GeV

2

. We show in Fig. 10 A

CP

(K

0

S

�) as a function of sin 2�,

with the three curves showing three di�erent values of jV

td

j. Restricting again to the �1�

range of sin 2�, we estimate: 24% � A

CP

(K

0

S

�) � 46%.

� CP-violating asymmetry in

( )

B

0

! K

0

S

h

0

, with h

0

= �

0

;K

0

S

; �; �

0

As the CKM-parametric dependence of the CP-violating asymmetriesA

CP

(K

0

S

�

0

),A

CP

(K

0

S

�),

A

CP

(K

0

S

�

0

) are very similar, one could combine these asymmetries. We estimate B(B

0

!

K

0

S

h

0

) ' (2:7 � 4:6) � 10

�5

, with A

CP

(K

0

S

h

0

) ' (22 � 36)%, for h

0

= �

0

; � and �

0

.

As the branching ratio for the decay B

0

! K

0

S

�

K

0

is estimated to be small, typically

B(B

0

! K

0

S

�

K

0

) ' 5 � 10

�7

, the above estimates of B(B

0

! K

0

S

h

0

) and A

CP

(K

0

S

h

0

)

hold also to a very good approximation if we now also include K

0

S

in h

0

. The depen-

dence of A

CP

(K

0

S

h

0

) on the CKM parameters � and � is shown in Fig. 11(a) and the

k

2

-dependence in Fig. 11(b). Interestingly, the k

2

-dependence in various components

which is already small gets almost canceled in the sum, yielding A

CP

(K

0

S

h

0

) which is

practically independent of k

2

. We show the dependence of A

CP

(K

0

S

h

0

) on sin 2� in

Fig. 12, with the three curves representing each a di�erent value of jV

td

j. Thus, we

predict A

CP

(K

0

S

h

0

) ' (22� 36)%, for h

0

= �

0

, K

0

S

, � and �

0

for the �1� range of sin 2�.

� CP-violating asymmetry in

( )

B

0

! �

+

�

�
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Figure 11: CP-violating asymmetry A

CP

in

( )

B

0

! K

0

S

h

0

decays with h

0

= �

0

;K

0

S

; �; �

0

as a

function of the CKM parameter �. (a) k

2

= m

2

b

=2. The dotted, dashed-dotted and dashed

curves correspond to the CKM parameter values � = 0:42, � = 0:34 and � = 0:26, respectively.

(b) � = 0:34. The overlapping curves correspond to k

2

= m

2

b

=2 + 2 GeV

2

, k

2

= m

2

b

=2 and

k

2

= m

2

b

=2 � 2 GeV

2

.

Figure 12: CP-violating asymmetry A

CP

in

( )

B

0

! K

0

S

h

0

decays with h

0

= �

0

;K

0

S

; �; �

0

as a

function of sin 2� for k

2

= m

2

b

=2. The three curves correspond to the following values of the

CKM matrix element jV

td

j: dashed curve (jV

td

j = 0:004), dashed-dotted curve (jV

td

j = 0:008),

dotted curve (jV

td

j = 0:012).
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Figure 13: Time-dependent branching ratio for the decays B

0

! �

�

�

+

(left) and

�

B

0

! �

+

�

�

(right) as a function of the decay time. The dashed, dashed-dotted and dotted curves correspond

to the contributions from the exponential decay term e

��t

, e

��t

cos�mt and e

��t

sin�mt in

eq. (39), respectively. The solid curve is the sum of the three contributions.

As another example of the decay whose A

CP

is stable against variation in N

c

and k

2

, we

remark that the decay mode B

0

! �

+

�

�

is estimated to have an asymmetryA

CP

' 10%,

as can be seen in Table 11 and 12. This decay mode is dominated by the tree amplitudes

(like B

0

! �

+

�

�

) and belongs to the CP class (iii) decays. Estimated branching ratio

for this mode is B(B

0

! �

+

�

�

) ' (2� 3) � 10

�5

.

4.3 The Decays B

0

! �

+

�

�

, B

0

! �

�

�

+

and CP-Violating Asymme-

tries

Next, we discuss decay modes which belong to the CP class (iv) decays. There are four of them

B

0

!

�

K

�0

K

0

S

, B

0

! K

�0

K

0

S

, B

0

! �

+

�

�

and B

0

! �

�

�

+

. Of these the decay B

0

! K

�0

K

0

S

belongs to the Class-V decay and is estimated to have a very small branching ratio in the

factorization approach B(B

0

! K

�0

K

0

S

) ' O(10

�9

) [4]. The other B

0

!

�

K

�0

K

0

S

is a Class-

IV decay but is expected to have also a small branching ratio, with B(B

0

!

�

K

�0

K

0

S

) '

(2 � 3) � 10

�7

. In view of this, we concentrate on the decays B

0

! �

+

�

�

and B

0

! �

�

�

+

.

With f = �

+

�

�

and

�

f = �

�

�

+

, the time evolution of the four branching ratios is given in

eq. (40). They have each three components with characteristic time-dependences proportional

to e

��t

, e

��t

cos�mt and e

��t

sin�mt, with the relative and overall normalization explic-

itly stated there. The time dependence of the branching ratio B(B

0

(t) ! �

�

�

+

) and of the

branching ratio for the charge conjugate decay B(B

0

(t) ! �

+

�

�

) is shown in Fig. 13(a) and

13(b), respectively. The time dependence of the branching ratio B(B

0

(t) ! �

+

�

�

) and of

B(B

0

(t) ! �

�

�

+

) is shown in Fig. 14(a) and 14(b), respectively. The three components and

the sum are depicted by the four curves.

32



Figure 14: Time-dependent branching ratio for the decays B

0

! �

+

�

�

(left) and

�

B

0

! �

�

�

+

(right) as a function of the decay time. The dashed, dashed-dotted and dotted curves correspond

to the contributions from the exponential decay term e

��t

, e

��t

cos�mt and e

��t

sin�mt in

eq. (39), respectively. The solid curve is the sum of the three contributions.

Figure 15: Time-dependent CP-violating asymmetry A

CP

(t; �

�

�

+

) (solid curve) and

A

CP

(t; �

+

�

�

) (dashed curve) as a function of the decay time, with � = 0:12; � = 0:34 and

k

2

= m

2

b

=2.

The resulting time-dependent CP-violating asymmetry A

CP

(t) for B

0

! �

�

�

+

de�ned as

A

CP

(t; �

�

�

+

) �

�(B

0

(t)! �

�

�

+

)� �(B

0

(t)! �

+

�

�

)

�(B

0

(t)! �

�

�

+

) + �(B

0

(t)! �

+

�

�

)

; (41)

is shown in Fig. 15 through the solid curve. The corresponding asymmetryA

CP

(t; �

+

�

�

) de�ned

in an analogous way as for A

CP

(t; �

�

�

+

) is given by the dashed curve in this �gure.
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Figure 16: CP-violating asymmetry A

CP

in the decays B

�

! K

��

�

0

as a function of the CKM

parameter �. (a) k

2

= m

2

b

=2. The dotted, dashed-dotted and dashed curves correspond to the

CKM parameter values � = 0:42, � = 0:34 and � = 0:26, respectively. (b) � = 0:34. The

dotted, dashed-dotted and dashed curves correspond to k

2

= m

2

b

=2 + 2 GeV

2

, k

2

= m

2

b

=2 and

k

2

= m

2

b

=2 � 2 GeV

2

, respectively.

We recall that the decay rate for B

0

! �

+

�

�

averaged over its charge conjugated decay

B

0

! �

�

�

+

is estimated to have a value in the range B(B

0

! �

+

�

�

) ' (2-4) � 10

�5

[4];

the time-integrated CP-asymmetry is estimated to be A

CP

(�

+

�

�

) ' (4-7)%. Being a Class-I

decay, both the branching ratio B(B

0

! �

+

�

�

) and A

CP

(�

+

�

�

) are N

c

-stable. In addition,

A

CP

(�

+

�

�

) is also k

2

-stable, as shown in Table 7.

The branching ratio for the decay B

0

! �

�

�

+

, averaged over its charge conjugate decay

B

0

! �

+

�

�

, is expected to be B(B

0

! �

�

�

+

) ' (6-9) � 10

�6

[4], i.e., typically a factor 4

smaller than B(B

0

! �

+

�

�

). Also, A

CP

(�

�

�

+

) is estimated somewhat smaller for the central

value of the CKM-parameter � = 0:12, � = 0:34. For these CKM parameter, we estimate

A

CP

(�

�

�

+

) ' (3-4)%. For � = 0:23, � = 0:42, A

CP

(�

�

�

+

) ' A

CP

(�

+

�

�

) ' O(5%) (see Table

8).

We note that our estimate of the ratio B(B

0

! �

+

�

�

)=B(B

0

! �

+

�

�

) ' 2:3 derived

in [4] is in reasonable agreement with the corresponding ratio estimated in [41] but we also

�nd B(B

0

! �

�

�

+

)=B(B

0

! �

+

�

�

) ' 0:27, which is drastically di�erent from the estimates

presented in [41].

4.4 Decay Modes with Measurable but k

2

-dependent A

CP

In addition to the decay modes discussed above, the following decay modes have A

CP

which are

N

c

- and �- stable but show signi�cant or strong k

2

-dependence. However, we think that further

theoretical work and/or measurements of A

CP

in one or more of the following decay modes will

greatly help in determining k

2

and hence in reducing the present theoretical dispersion on A

CP

.

� B

�

! �

�

�

0

,

( )

B

0

! K

��

�

�

, B

�

! K

��

�

0

, B

�

! K

��

�, B

�

! K

��

�

0

,

( )

B

0

! K

��

�

�

,

B

�

! K

��

�

0

.
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Figure 17: CP-violating asymmetry A

CP

in B

�

! K

��

�

0

decays as a function of the CKM

parameter �. (a) k

2

= m

2

b

=2. The dotted, dashed-dotted and dashed curves correspond to the

CKM parameter values � = 0:42, � = 0:34 and � = 0:26, respectively. (b) � = 0:34. The

dotted, dashed-dotted and dashed curves correspond to k

2

= m

2

b

=2 + 2 GeV

2

, k

2

= m

2

b

=2 and

k

2

= m

2

b

=2 � 2 GeV

2

, respectively.

These decays have branching ratios which are estimated to be several multiples of 10

�5

to

several multiples of 10

�6

and may have jA

CP

j at least of O(5%), but being uncertain due to

the k

2

-dependence may reach rather large values. The CP-violating asymmetries in these cases

belong to the class (i), i.e., they are direct CP-violating asymmetries.

In Fig. 16(a) and 16(b), we show the CP-violating asymmetryA

CP

(K

��

�

0

) as a function of

�. The three curves in Fig. 16(a) correspond to the three choices of �, with k

2

= m

2

b

=2, whereas

the three curves in Fig. 16(b) correspond to using k

2

= m

2

b

=2+2 GeV

2

(dotted curve), k

2

= m

2

b

=2

(dashed-dotted curve), k

2

= m

2

b

=2 � 2 GeV

2

(dashed curve) with � = 0:34. Depending on the

value of k

2

, A

CP

(K

��

�

0

) could reach a value �25%. The branching ratio is estimated to lie in

the range B(B

+

! K

�+

�

0

) ' (4 � 7) � 10

�6

. The decay mode B

+

! K

�+

�

0

has very similar

CKM and k

2

-dependence, which is shown in Fig. 17(a) and (b), respectively, where we plot

the CP-asymmetry A

CP

(K

��

�

0

). Also, the branching ratio B(B

+

! K

�+

�

0

) ' (5� 8) � 10

�6

estimated in [4] is very similar to B

+

! K

�+

�

0

.

In Fig. 18(a) and 18(b), we show the CP-violating asymmetry A

CP

(K

��

�

0

) in the decays

B

�

! K

��

�

0

. This is a Class-III decay dominated by the tree amplitude and is expected

to have a branching ratio B(B

+

! K

�+

�

0

) ' 3 � 10

�7

, where an average over the charge

conjugated decays is implied. However, depending on the value of k

2

this decay mode may

show a large CP-violating asymmetry, reaching A

CP

(K

�+

�

0

) ' �90% for � = 0:12, � = 0:34

and k

2

= m

2

b

=2 + 2 GeV

2

. For k

2

= m

2

b

=2 � 2 GeV

2

, the CP-asymmetry comes down to a

value A

CP

(K

��

�

0

) ' �20%. All of these values are signi�cantly higher than the ones reported

in [19]. Large but k

2

-sensitive values of this quantity have also been reported earlier in [15].

We also mention here the decay modes B

�

! K

��

�, whose branching ratio is estimated as

B(B

+

! K

�+

�) ' (2 � 3) � 10

�6

[5,6,4] and which may have CP-violating asymmetry in the

range A

CP

(K

��

�) ' �(4-15)% depending on the CKM parameters and k

2

(see Tables 9 and

10).
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Figure 18: CP-violating asymmetry A

CP

in B

�

! K

��

�

0

decays as a function of the CKM

parameter �. (a) k

2

= m

2

b

=2. The dotted, dashed-dotted and dashed curves correspond to the

CKM parameter values � = 0:42, � = 0:34 and � = 0:26, respectively. (b) � = 0:34. The

dotted, dashed-dotted and dashed curves correspond to k

2

= m

2

b

=2 + 2 GeV

2

, k

2

= m

2

b

=2 and

k

2

= m

2

b

=2 � 2 GeV

2

, respectively.

Figure 19: CP-violating Asymmetry A

CP

in

( )

B

0

! K

��

�

�

decays as a function of the CKM

parameter �. (a) k

2

= m

2

b

=2. The dotted, dashed-dotted and dashed curves correspond to the

CKM parameter values � = 0:42, � = 0:34 and � = 0:26, respectively. (b) � = 0:34. The

dotted, dashed-dotted and dashed curves correspond to k

2

= m

2

b

=2 + 2 GeV

2

, k

2

= m

2

b

=2 and

k

2

= m

2

b

=2 � 2 GeV

2

, respectively.

Finally, we mention two more decay modes B

0

! K

�+

�

�

and B

0

! K

�+

�

�

which are

both Class-IV decays, with branching ratios estimated as B(B

0

! K

�+

�

�

) ' (6 � 9) � 10

�6

and B(B

0

! K

�+

�

�

) ' (5 � 8) � 10

�6

[4]. The CP-violating asymmetries in these decays are

estimated to lie in the range A

CP

(K

��

�

�

) = A

CP

(K

��

�

�

) ' �(6-30)%. In Fig. 19(a) and

19(b), we show A

CP

(K

��

�

�

) as a function of � by varying � and k

2

, respectively.
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5 Summary and Conclusions

Using the NLO perturbative framework and a generalized factorization approach discussed in

detail in [4], we have calculated the CP-violating asymmetries in partial decay rates of all the

two-body non-leptonic decays B ! h

1

h

2

, where h

1

and h

2

are the light pseudoscalar and vector

mesons. Our results can be summarized as follows:

� We �nd that the decay classi�cation scheme presented in [4] for the branching ratios is

also very useful in discussing the CP-violating asymmetries. In line with this, Class-

I and class-IV decays yield asymmetries which are stable against the variation of N

c

.

There are two exceptions, A

CP

(K

�

�) and A

CP

(K

0

S

�), which vary by a factor 3 and 1.65,

respectively, for 2 � N

c

� 1.

� Estimates of CP-violating asymmetries in Class-II and class-V decays depend rather sen-

sitively on N

c

and hence are very unreliable. There is one notable exception A

CP

(�K

0

S

),

which is parametrically stable and large. However being a class-V decay, the branching

ratio B(B

0

! �K

0

S

) is uncertain in the factorization approach by at least an order of

magnitude [4].

� The CP-asymmetries in Class-III decays vary by approximately a factor 2, as one varies

N

c

in the range 2 � N

c

�1, with the exception of A

CP

(!�

�

) and A

CP

(�

0

�

�

) which are

much more uncertain. The N

c

-sensitivity of B(B

�

! !�

�

) was already pointed out in

[4].

� The CP-violating asymmetries worked out here are in most cases relatively insensitive to

the scale �, i.e., this dependence is below �20%, for m

b

=2 � � � m

b

, except in some

decays which we have listed in Table 13.

� As opposed to the branching ratios, asymmetries do not depend in the �rst approxima-

tion on the form factors and decay constants. However, in most cases, they depend on

the parameter k

2

, the virtuality of the g; 
 and Z

0

decaying into q�q from the penguin

contributions. This has been already studied in great detail in [15], a behavior which we

have also con�rmed.

� Interestingly, we �nd that a number of B ! h

1

h

2

decays have CP-violating asymmetries

which can be predicted within a reasonable range in the factorization approach. They

include: A

CP

(�

+

�

�

), A

CP

(K

0

S

�

0

), A

CP

(K

0

S

�

0

), A

CP

(K

0

S

�) and A

CP

(�

+

�

�

). The decay

modes involved have reasonably large branching ratios and the CP-violating asymmetries

are also measurably large in all these cases. Hence, their measurements can be used to put

constraints on the CKM parameters � and �. Likewise, these decay modes are well suited

to test the hypothesis that strong phases in these decays are generated dominantly by

perturbative QCD. This, in our opinion, is di�cult to test in class-II and class-V decays.

Of particular interest is A

CP

(K

0

S

�

0

), which is expected to have a value A

CP

(K

0

S

�

0

) ' (20-

36)%. This decay mode has already been measured by the CLEO collaboration [1] and

estimates of its branching ratio in the factorization approach are in agreement with data

[4{6].
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� The CP-asymmetryA

CP

(K

0

S

h

0

), where h

0

= �

0

;K

0

S

; �; �

0

is found to be remarkably stable

in k

2

, due to the compensation in the various channels. The resulting CP-asymmetry is

found to be large, with A

CP

(K

0

S

h

0

) ' (20-36)%, with the range re
ecting the CKM-

parametric dependence.

� We have studied the dependence of A

CP

(�

+

�

�

) on sin 2�, studying the e�ect of the

\penguin pollution", which we �nd to be signi�cant. The e�ect of the \tree-shadowing"

in A

CP

(K

0

S

�

0

) is, however, found to be small. Thus, A

CP

(K

0

S

�

0

), likewise A

CP

(K

0

S

�

0

),

A

CP

(K

0

S

�) and A

CP

(K

0

S

h

0

) are good measures of sin 2�.

� We have studied time-dependent CP-violating asymmetriesA

CP

(t; �

+

�

�

) andA

CP

(t; �

�

�

+

),

working out the various characteristic components in the time evolution of the individ-

ual branching ratios. With the branching ratio averaged over the charge-conjugated

modes B(B

0

! �

+

�

�

) = (2 � 4) � 10

�5

and time-integrated CP-violating asymmetry

A

CP

(�

+

�

�

) = (4� 7)%, for the central values � = 0:12 and � = 0:34, it is an interesting

process to measure, as stressed in [41]. The branching ratio B(B

0

! �

�

�

+

) is estimated

by us as typically a factor 4 below B(B

0

! �

+

�

�

) and hence A

CP

(�

�

�

+

) is a relatively

more di�cult measurement.

� There are several class-IV decays whose CP-asymmetries are small but stable against

variation in N

c

, k

2

and �. They include: A

CP

(K

�

�

0

), A

CP

(�

�

K

0

S

) and A

CP

(�

�

( )

K

�0

).

CP-asymmetries well over 5% in these decay modes can arise through SFI and/or new

physics. We argue that the role of SFI can be disentangled already in decay rates and

through the measurements of a number of CP-violating asymmetries which are predicted

to be large. As at this stage it is hard to quantify the e�ects of SFI, one can not stress

too strongly that a measurement of CP-violating asymmetry in any of these partial rates

signi�cantly above the estimates presented here will be a sign of new physics.

� There are quite a few other decay modes which have measurably large CP-violating asym-

metries, though without constraining the parameter k

2

experimentally, or removing this

dependence in an improved theoretical framework, they are at present rather uncertain.

A good measurement of the CP-asymmetry in any one of these could be used to determine

k

2

. We list these potentially interesting asymmetries below:

A

CP

(K

��

�

�

), A

CP

(K

��

�

0

), A

CP

(K

��

�), A

CP

(K

��

�

0

), A

CP

(K

��

�

�

) and A

CP

(K

��

�

0

).

In conclusion, by systematically studying the B ! h

1

h

2

decays in the factorization ap-

proach, we hope that we have found classes of decays where the factorization approach can be

tested as it makes predictions within a reasonable range. If the predictions in the rates in these

decays are borne out by data, then it will strengthen the notion based on color transparency that

non-factorization e�ects in decay rates are small and QCD dynamics in B ! h

1

h

2

decays can be

largely described in terms of perturbative QCD and factorized amplitudes. This will bring in a

number of CP-violating asymmetries under quantitative control of the factorization-based the-

ory. If these expectations did not stand the experimental tests, attempts to quantitatively study

two-body non-leptonic decays would have to wait for a fundamental step in the QCD technol-

ogy enabling a direct computation of the four-quark matrix elements in the decays B ! h

1

h

2

.

However, present data on B ! h

1

h

2

decays are rather encouraging and perhaps factorization

approach is well poised to becoming a useful theoretical tool in studying non-leptonic B decays
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- at least in class-I and class-IV decays. We look forward to new experimental results where

many of the predictions presented here and in [4] will be tested in terms of branching ratios

and CP-violating asymmetries in partial decay rates.
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