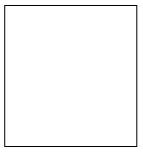
INCLUSIVE DIRECT CP-ASYMMETRIES IN CHARMLESS B[±]-DECAYS^a

Ulrich Nierste DESY - Theory group, Notkestrasse 85, D-22607 Hamburg, Germany



Direct CP-asymmetries in inclusive decay modes can be cleanly calculated by exploiting quark-hadron duality. This is in sharp contrast to CP-asymmetries in exclusive channels, where unknown strong phases prevent a clean extraction of CKM parameters from measured CP-asymmetries. We have calculated the inclusive CP-asymmetries in B^{\pm} -decays into charmless final states with strangeness one or strangeness zero. In our results large logarithms are properly summed to all orders. We find

 $a_{CP}(\Delta S = 0) = (2.0^{+1.2}_{-1.0})\%, \qquad a_{CP}(\Delta S = 1) = (-1.0 \pm 0.5)\%.$

The constraints on the apex $(\overline{\rho}, \overline{\eta})$ of the unitarity triangle obtained from these two CP-asymmetries define circles in the $(\overline{\rho}, \overline{\eta})$ -plane. $a_{CP} (\Delta S = 0)$ measures $\sin \gamma \cdot |V_{cb}/V_{ub}|$. The presented work has been done in collaboration with Gaby Ostermaier and Alexander Lenz.

First we define the average branching fraction in terms of the decay rate Γ :

$$\overline{Br} = \frac{\Gamma \left(B^+ \to X\right) + \Gamma \left(B^- \to \overline{X}\right)}{2\Gamma_{tot}}.$$
(1)

In the following we are interested in inclusive final states X containing no charmed particle. Further the total strangeness S of X must be known, we will consider the cases X = X (S = 0) and X = X (|S| = 1). Similarly we define the direct CP-asymmetries as

$$A_{CP} = \frac{1}{2} \left[Br \left(B^+ \to X \right) - Br \left(B^- \to \overline{X} \right) \right], \qquad a_{CP} = \frac{A_{CP}}{Br}.$$
(2)

The measurement of Br in (1) and of the CP-asymmetries in (2) requires a sum over semi-inclusive final states in which the Kaons and strange baryons must be identified. Direct CP-asymmetries in exclusive decay modes are hard to access theoretically. Non-perturbative rescattering effects induce strong phases, which are difficult to estimate. On the contrary for the case of inclusive final states local quark-hadron duality allows to calculate the quantities in (1) and (2) reliably within perturbation theory. Theorist have been considering inclusive direct CP-asymmetries since 1979¹. Up to now the inclusive a_{CP} 's were

^aTalk given at the *Recontre de Moriond* on QCD and High Energy Hadronic Interactions, March 21st to 28th, 1998, Les Arcs, France, to appear in the proceedings.

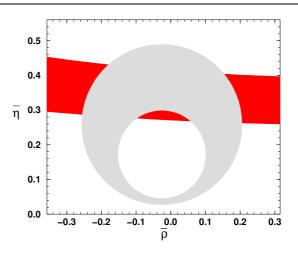


Figure 1: The lightly (darkly) shaded area shows the constraint on $(\overline{\rho}, \overline{\eta})$ stemming from $a_{CP} (\Delta S = 0) (a_{CP} (\Delta S = 1))$, if the a_{CP} 's are measured as in (3).

believed to be small, of the order of a few permille. Yet in the predictions of ¹ either large logarithms have not been summed to all orders or m_t was taken too small. This has been corrected for in our new paper², in which also the predictions for charmless branching ratios calculated before ³ have been improved by incorporating new QCD corrections. We find

$$a_{CP}(\Delta S = 0) = (2.0^{+1.2}_{-1.0})\%, \qquad a_{CP}(\Delta S = 1) = (-1.0 \pm 0.5)\%$$

Here the error bars stem from the uncertainty in m_c/m_b and $\overline{\rho}, \overline{\eta}$ and from the residual dependence on the renormalization scale μ . The μ -dependence can be reduced by calculating certain two-loop diagrams. This is possible with reasonable effort and will be done, once the inclusive direct CP-asymmetries receive experimental interest.

The dependence of the a_{CP} 's on $\overline{\rho}$ and $\overline{\eta}$ is welcome in order to constrain the apex of the unitarity triangle. For a model scenario with

$$a_{CP}(\Delta S = 0) = 2.0\%,$$
 $a_{CP}(\Delta S = 1) = -1.0\%$ (3)

and an assumed total error of 20 % the constraints on $\overline{\rho}, \overline{\eta}$ are shown in figure 1. They are nice circles in the $\overline{\rho}, \overline{\eta}$ -plane, whose information is complementary to the familiar circle from $B - \overline{B}$ -mixing and the hyperbola from ε_K^4 . The A_{CP} 's defined in (2) are simply proportional to $\overline{\eta}$.

References

- M. Bander, D. Silverman and A. Soni, Phys. Rev. Lett. 43 (1979) 242; J.-M. Gérard and W.-S. Hou, Phys. Rev. D43 (1991) 2909; H. Simma, G. Eilam and D. Wyler, Nucl. Phys. B352 (1991) 367; L. Wolfenstein, preprint no. NSF-ITP-90-29 (unpublished), and Phys. Rev. D43 (1991) 151; Yu. Dokshitser and N. Uraltsev, JETP. Lett. 52 (1990) 509; N. Uraltsev, hep-ph/9212233.
- 2. A. Lenz, U. Nierste and G. Ostermaier, DESY-97-208, hep-ph/9802202.
- 3. A. Lenz, U. Nierste and G. Ostermaier, Phys. Rev. D56 (1997) 7228.
- A. J. Buras, M. Jamin and P. H. Weisz, Nucl. Phys. B347 (1990) 491; S. Herrlich and U. Nierste, Phys. Rev. D52 (1995) 6505.