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Abstract

We compute the leading order (in �

s

) perturbative QCD and power (1=m

2

b

) corrections to

the hadronic invariant mass and hadron energy spectra in the decay B ! X

s

`

+

`

�

in standard

model. The computations are carried out using the heavy quark expansion technique (HQET)

and a perturbative-QCD improved Fermi motion (FM) model which takes into account B-meson

wave-function e�ects. The corrections in the hadron energy (E

H

) spectrum are found to be small

over a good part of this spectrum in both methods. However, the expansion in 1=m

b

in HQET

fails near the lower kinematic end-point and at the c�c threshold. The hadronic invariant mass

(S

H

) spectrum is calculable only over a limited range S

H

>

�

�m

B

in the heavy quark expansion,

where

�

� ' m

B

�m

b

. We also present results for the �rst two hadronic moments hS

n

H

i and hE

n

H

i,

n = 1; 2, working out their sensitivity on the HQET and FM model parameters. For equivalent

values of these parameters, the moments in these methods are remarkably close to each other. The

constraints following from assumed values of hS

n

H

i on the HQET parameters �

1

and

�

� are worked

out. Data from the forthcoming B facilities could be used to measure the short-distance contribution

in B ! X

s

`

+

`

�

and constrain the HQET parameters �

1

and

�

�. This could be combined with

complementary constraints from the decay B ! X`�

`

to determine these parameters precisely. We

also study the e�ect of the experimental cuts, used recently by the CLEO collaboration in searching

for the decay B ! X

s

`

+

`

�

, on the branching ratios, hadron spectra and hadronic invariant mass

moments using the FM model.
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1 Introduction

The semileptonic inclusive decays B ! X

s

`

+

`

�

, where `

�

= e

�

; �

�

; �

�

, o�er, together with the

radiative electromagnetic penguin decay B ! X

s

+ , presently the most popular testing grounds for

the standard model (SM) in the avor sector. This is reected by the impressive experimental and

theoretical activity in this �eld, reviewed recently in [1] and [2], respectively. We shall concentrate

here on the decay B ! X

s

`

+

`

�

for which the �rst theoretical calculations were reported a decade

ago [3{5], emphasizing the sensitivity of the dilepton mass spectrum and decay rate to the top quark

mass in the short-distance contribution. With the discovery of the top quark and a fairly accurate

measurement of its mass [6], theoretical emphasis has changed from predicting the top quark mass

using this decay to using its measured value as input and making theoretically accurate predictions

for the decay rates and spectra. This will help confront the predictions in the SM with experiment

more precisely and will allow to search for new phenomena, such as supersymmetry [7{11].

Since these early papers, considerable theoretical work has been done on the decay B ! X

s

`

+

`

�

in

the context of the standard model. This includes, among other aspects, the calculation of the complete

leading order perturbative corrections in the QCD coupling constant �

s

to the dilepton invariant

mass spectrum [12,13], forward-backward (FB) asymmetry of the leptons [14,15], and, additionally,

leading order power corrections in 1=m

2

b

to the decay rate, dilepton invariant mass spectrum and FB

asymmetry [15], using the heavy quark expansion technique (HQET) [16{18]. We recall that the 1=m

2

b

corrections to the dilepton spectrum and decay rate in B ! X

s

`

+

`

�

were calculated in ref. [18] but

their results were at variance with the ones derived later in ref. [15]. The power corrected dilepton

mass spectrum and FB asymmetry have been rederived for the massless s-quark case recently [19],

con�rming the results in ref. [15]. Corrections of order 1=m

2

c

to the dilepton mass spectrum away from

the (J= ;  

0

; :::)-resonant regions have also been worked out [20,21], making use of earlier work on

similar power corrections in the decay rate for B ! X

s

+ [22,23]. The 1=m

2

b

power corrections to the

left-right asymmetry [24,25] have been presented in [19] correcting an earlier calculation of the same

[25]. Likewise, the longitudinal polarization of the lepton, P

L

, in B ! X

s

�

+

�

�

at the partonic level

has been worked out [26]; the other two orthogonal polarization components P

T

(the component in

the decay plane) and P

L

(the component normal to the decay plane) were subsequently worked out in

ref. [27]. As an alternative to HQET, B-meson wave-function e�ects in the decay B ! X

s

`

+

`

�

have

also been studied for the dilepton invariant mass spectrum and FB asymmetry [15], using the Fermi

motion (FM) model [28]. Some of the cited works have also addressed the long-distance aspect of the

decay B ! X

s

`

+

`

�

having to do with the resonant structure of the dilepton invariant mass spectrum.

We shall leave out the J= ;  

0

; :::-resonant contributions in this paper and will present a detailed

phenomenological study including them elsewhere [29].
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This theoretical work, despite some uncertainties associated with the LD-part, will undoubtedly

contribute signi�cantly to a meaningful comparison of the SM and experiment in the decay B !

X

s

`

+

`

�

. Still, concerning the SD-contribution, some aspects of this decay remain to be studied

theoretically. In the context of experimental searches for B ! X

s

`

+

`

�

, it has been emphasized (see,

for example, the CLEO paper [30]) that theoretical estimates of the hadronic invariant mass and hadron

energy spectra in this decay will greatly help in providing improved control of the signal and they will

also be needed to correct for the experimental acceptance. In addition to their experimental utility,

hadron spectra in heavy hadron decays are also of considerable theoretical interest in their own right,

as reected by similar studies done for the charged current induced semileptonic decays B ! X

c

`�

`

and B ! X

u

`�

`

[31{35], where the main emphasis has been on testing HQET and/or in determining

the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements V

cb

and V

ub

. The hadronic invariant mass

spectra in b ! s`

+

`

�

and b ! u`

�

�

`

decays have striking similarities and di�erences. For example,

both of these processes have at the parton level a delta function behavior d�=ds

0

/ �(s

0

�m

2

q

), q = u; s,

where s

0

is the hadronic invariant mass at the parton level. Thus, the entire invariant mass spectrum

away from s

0

= m

2

q

is generated perturbatively (by gluon bremsstrahlung) and through the B-hadron

non-perturbative e�ects. Hence, measurements of these spectra would lead to direct information on

the QCD dynamics and to a better determination of the non-perturbative parameters. There are also

obvious di�erences in these decays, namely the decay B ! X

u

`�

`

is intrinsically a lot simpler due to

the absence of the resonating c�c contributions, which one must include to get the inclusive spectra

in B ! X

s

`

+

`

�

, or else use data in restricted phase space where the c�c-resonant contributions are

subleading.

Having stated the motivations, we study hadron spectra in the decay B ! X

s

`

+

`

�

in this pa-

per. We �rst compute the leading order (in �

s

) perturbative QCD and power (1=m

2

b

) corrections

to the hadronic invariant mass and hadron energy spectra at the parton level. In addition to the

bremsstrahlung contribution b ! (s + g)`

+

`

�

, there are important non-perturbative e�ects even in

O(�

0

s

) that come from the relations between the b quark mass and the B meson mass. In HQET, this

takes the form m

B

= m

b

+

�

� � (�

1

+ 3�

2

)=2m

b

+ :::, where

�

�, �

1

and �

2

are the HQET parameters

[16{18]. Keeping, for the sake of simplicity just the

�

� term, the hadronic invariant mass S

H

is related

to s

0

and the partonic energy E

0

by S

H

= s

0

+ 2

�

�E

0

+

�

�

2

. This gives rise to a non-trivial spectrum

in the entire region

�

�

2

< S

H

< M

2

B

. Including both the O(1=m

2

b

) and O(�

s

) terms generates hadron

energy and hadronic invariant mas spectrum with terms of O(

�

�=m

B

), O(�

s

�

�=m

B

), O(�

1

=m

2

B

) and

O(�

2

=m

2

B

). The power- and perturbatively corrected hadron spectra up to and including these terms

are presented here. The 1=m

2

b

corrections in the hadron energy spectrum are found to be small over a

good part of this spectrum. However, the expansion in 1=m

b

fails near the lower end-point and near

the c�c threshold. The hadronic invariant mass spectrum is reliably calculable over a limited region

2



only, namely for S

H

>

�

�m

B

. Hadronic moments hS

n

H

i and hE

n

H

i, on the other hand, are calculable in

HQET and we have summarized the results for the �rst two moments n = 1; 2 in a letter [36], based

on this study. The hadronic invariant mass moments are sensitive to the HQET parameters

�

� and

�

1

. This provides potentially an independent determination of these quantities. We think that the

hadron spectra in B ! X

s

`

+

`

�

and B ! X

u

`�

`

can be related to each other over limited phase space

and this could help in vastly improving the present precision on V

ub

[6] and the parameters �

1

and

�

�

[37,38].

In view of the continued phenomenological interest in the FM model [28], motivated in part

by its close resemblance to the HQET framework [39,17], we also compute the hadron spectra in

B ! X

s

`

+

`

�

in this model, taking into account the O(�

s

) perturbative QCD corrections. The FM

model is characterized by two parameters which are usually taken as p

F

, the Gaussian width of

the b-quark momentum, and m

q

, the spectator quark mass in the B hadron; the b-quark mass is a

momentum-dependent quantity (see section 6 for details). The matrix element of the kinetic energy

operator, �

1

and the binding energy

�

� can be calculated in terms of the FM model parameters. The

di�erence between the e�ective b-quark mass, which is a derived quantity in the FM model, and the

B-meson mass can also be expressed via an HQET-type relation, m

B

= m

e�

b

+

�

���

1

=2m

e�

b

. However,

there is no analog of �

2

in the FM model. Having de�ned the equivalence between the FM model

and HQET parameters, we shall use

�

� and �

1

to also characterize the FM model parameters. The

dependence of the hadron spectra in the FM model in the decay B ! X

s

`

+

`

�

on the parameters

�

�

and �

1

is studied in this paper. We �nd that the hadron energy spectrum in B ! X

s

`

+

`

�

in the FM

model is stable against variations of the model parameters. The hadron energy spectra in the FM

model and HQET are also found to be close to each other in regions where HQET holds. This feature

was also noticed in the context of the decay B ! X

u

`�

`

in ref. [33]. The hadronic invariant mass

spectrum depends sensitively on the parameters of the FM model - a behavior which has again its

parallel in studies related to the decay B ! X

u

`�

`

[34] as well as in HQET. Hadronic moments hS

n

H

i

and hE

n

H

i are computed in the FM model and are found to be remarkably close to their counterparts

calculated in HQET for equivalent values of the parameters

�

� and �

1

. The picture that emerges from

these comparisons is that the spectra and moments in the two approaches are rather similar, though

not identical. We also study the e�ects of the CLEO experimental cuts on the branching ratios, hadron

spectra and hadronic moments in B ! X

s

`

+

`

�

in the FM model and the results are presented here.

These can be compared with data when they become available.

This paper is organized as follows. In section 2, we de�ne the kinematics of the process B !

X

s

`

+

`

�

and introduce the quantities of dynamical interest in the framework of an e�ective Hamil-

tonian. Leading order (in �

s

) perturbative corrections to the hadron energy and hadronic invariant

mass spectra at the parton level are derived in section 3, where we also present the Sudakov-improved

3



spectrum dB=ds

0

. Using the HQET relation between m

B

and m

b

, we calculate the corrected hadronic

invariant mass spectrum dB=dS

H

. In section 4, we present the leading power corrections (in 1=m

2

b

)

for the Dalitz distribution d

2

B=dx

0

dŝ

0

(here x

0

and ŝ

0

are the scaled partonic energy and hadronic

invariant mass, respectively) and derive analytic expressions for the hadron energy spectrum dB=dx

0

and the resulting spectrum is compared with the one in the parton model. In section 5, we calculate

the moments in the hadron energy and hadronic invariant mass in HQET and give the results for

hS

H

i, hS

2

H

i, hE

H

i and hE

2

H

i in terms of the corresponding moments in the partonic variables. Sec-

tion 6 describes the wave-function e�ects in the FM model [28] in the hadron energy and hadronic

invariant mass spectra. We also give here numerical estimates of the hadronic moments in HQET and

the FM model. In section 7, we study the e�ects of the experimental cuts used in the CLEO analysis

of B ! X

s

`

+

`

�

on the hadron spectra and hadronic moments using the FM model. Estimates of the

branching ratios B(B ! X

s

`

+

`

�

) for ` = �; e are also presented here, together with estimates of the

survival probability for the CLEO cuts, using the FM model. Section 8 contains a summary of our

work and some concluding remarks. De�nitions of various auxiliary functions and lengthy expressions

appearing in the derivation of our results, including the partonic moments hx

n

0

i, h(ŝ

0

� m̂

s

)

n

i and

hx

0

(ŝ

0

� m̂

s

)i for n = 1; 2 are relegated to the Appendices A - D.

2 The Decay B ! X

s

`

+

`

�

in the E�ective Hamiltonian Approach

2.1 Kinematics

We start with the de�nition of the kinematics of the decay at the parton level,

b(p

b

)! s(p

s

)(+g(p

g

)) + `

+

(p

+

) + `

�

(p

�

) ; (1)

where g denotes a gluon from the O(�

s

) correction (see Fig. 1). The corresponding kinematics at the

hadron level can be written as:

B(p

B

)! X

s

(p

H

) + `

+

(p

+

) + `

�

(p

�

) : (2)

We de�ne the momentum transfer to the lepton pair and the invariant mass of the dilepton system,

respectively, as

q � p

+

+ p

�

; (3)

s � q

2

: (4)

The dimensionless variables with a hat are related to the dimensionful variables by the scale m

b

, the

b-quark mass, e.g., ŝ =

s

m

2

b

, m̂

s

=

m

s

m

b

etc.. Further, we de�ne a 4-vector v, which denotes the velocity

4



of both the b-quark and the B-meson, p

b

= m

b

v and p

B

= m

B

v. We shall also need the variable u

and the scaled variable û =

u

m

2

b

, de�ned as:

u � �(p

b

� p

+

)

2

+ (p

b

� p

�

)

2

; (5)

û = 2v � (p̂

+

� p̂

�

) : (6)

The hadronic invariant mass is denoted by S

H

� p

2

H

and E

H

denotes the hadron energy in the �nal

state. The corresponding quantities at parton level are the invariant mass s

0

and the scaled parton

energy x

0

�

E

0

m

b

. In parton model without gluon bremsstrahlung, this simpli�es to s

0

= m

2

s

and

x

0

becomes directly related to the dilepton invariant mass x

0

= 1=2(1� ŝ + m̂

2

s

). From momentum

conservation the following equalities hold in the b-quark, equivalently B-meson, rest frame (v =

(1; 0; 0; 0)):

x

0

= 1� v � q̂ ; ŝ

0

= 1� 2v � q̂ + ŝ ; (7)

E

H

= m

B

� v � q ; S

H

= m

2

B

� 2m

B

v � q + s : (8)

The relations between the kinematic variables of the parton model and the hadronic states , using the

HQET mass relation, can be written as

E

H

=

�

��

�

1

+ 3�

2

2m

B

+

�

m

B

�

�

�+

�

1

+ 3�

2

2m

B

�

x

0

+ : : : ;

S

H

= m

2

s

+

�

�

2

+ (m

2

B

� 2

�

�m

B

+

�

�

2

+ �

1

+ 3�

2

) (ŝ

0

� m̂

2

s

)

+ (2

�

�m

B

� 2

�

�

2

� �

1

� 3�

2

)x

0

+ : : : ; (9)

where the ellipses denote terms higher order in 1=m

b

.

2.2 Matrix element for the decay B ! X

s

`

+

`

�

The e�ective Hamiltonian obtained by integrating out the top quark and the W

�

bosons is given as

H

eff

(b! s +X; X = ; `

+

`

�

) = �

4G

F

p

2

V

�

ts

V

tb

"

6

X

i=1

C

i

(�)O

i

+ C

7

(�)

e

16�

2

�s

�

�

��

(m

b

R+m

s

L)b

�

F

��

+C

8

(�)O

8

+ C

9

(�)

e

2

16�

2

�s

�



�

Lb

�

�

`

�

`+ C

10

e

2

16�

2

�s

�



�

Lb

�

�

`

�



5

`

#

;(10)

where L and R denote chiral projections, L(R) = 1=2(1� 

5

), V

ij

are the CKM matrix elements and

the CKM unitarity has been used in factoring out the product V

�

ts

V

tb

. The operator basis is taken

from [15], where also the Four-Fermi operators O

1

; : : : ; O

6

and the chromo-magnetic operator O

8

can

be seen. Note that O

8

does not contribute to the decay B ! X

s

`

+

`

�

in the approximation which

we use here. The C

i

(�) are the Wilson coe�cients, which depend, in general, on the renormalization

scale �, except for C

10

.

5



The matrix element for the decay B ! X

s

`

+

`

�

can be factorized into a leptonic and a hadronic

part as

M(B ! X

s

`

+

`

�

) =

G

F

�

p

2�

V

�

ts

V

tb

�

�

L

�

L

L

�

+ �

R

�

L

R

�

�

; (11)

with

L

L=R

�

�

�

l 

�

L(R) l ; (12)

�

L=R

�

� �s

"

R

�

 

C

e�

9

(ŝ)� C

10

+ 2C

e�

7

^

6 q

ŝ

!

+ 2m̂

s

C

e�

7



�

^

6 q

ŝ

L

#

b : (13)

The e�ective Wilson coe�cient C

e�

9

(ŝ) receives contributions from various pieces. The resonant c�c

states also contribute to C

e�

9

(ŝ); hence the contribution given below is just the perturbative part:

C

e�

9

(ŝ) = C

9

�(ŝ) + Y (ŝ) : (14)

Here �(ŝ) and Y (ŝ) represent the O(�

s

) correction [40] and the one loop matrix element of the Four-

Fermi operators [12,13], respectively. While C

9

is a renormalization scheme-dependent quantity, this

dependence cancels out with the corresponding one in the function Y (ŝ) (the value of �, see below).

To be self-contained, we list the two functions in C

e�

9

(ŝ):

Y (ŝ) = g(m̂

c

; ŝ) (3C

1

+ C

2

+ 3C

3

+ C

4

+ 3C

5

+ C

6

)

�

1

2

g(1; ŝ) (4C

3

+ 4C

4

+ 3C

5

+ C

6

)�

1

2

g(0; ŝ) (C

3

+ 3C

4

)

+

2

9

(3C

3

+ C

4

+ 3C

5

+ C

6

)� �

4

9

(3C

1

+ C

2

� C

3

� 3C

4

) ; (15)

�(ŝ) = 1 +

�

s

(�)

�

!(ŝ) ; (16)

� =

(

0 (NDR);

�1 (HV);

(17)

g(z; ŝ) = �

8

9

ln(

m

b

�

)�

8

9

ln z +

8

27

+

4

9

y �

2

9

(2 + y)

q

j1� yj

�

"

�(1� y)(ln

1 +

p

1� y

1�

p

1� y

� i�) + �(y � 1)2 arctan

1

p

y � 1

#

; (18)

g(0; ŝ) =

8

27

�

8

9

ln(

m

b

�

)�

4

9

ln ŝ +

4

9

i� ; (19)

where y = 4z

2

=ŝ, and

!(ŝ) = �

2

9

�

2

�

4

3

Li

2

(ŝ)�

2

3

ln ŝ ln(1� ŝ)�

5 + 4ŝ

3(1 + 2ŝ)

ln(1� ŝ)

�

2ŝ(1 + ŝ)(1� 2ŝ)

3(1� ŝ)

2

(1 + 2ŝ)

ln ŝ+

5 + 9ŝ� 6ŝ

2

6(1� ŝ)(1 + 2ŝ)

: (20)

6



Above, (NDR) and (HV) correspond to the naive dimensional regularization and the 't Hooft-Veltman

schemes, respectively. The one gluon correction to O

9

with respect to x

0

will be presented below in

eq. (26). The Wilson coe�cients in leading logarithmic approximation can be seen in [12].

With the help of the above expressions, the di�erential decay width becomes on using p

�

=

(E

�

;p

�

),

d� =

1

2m

B

G

F

2

�

2

2�

2

jV

�

ts

V

tb

j

2

d

3

p

+

(2�)

3

2E

+

d

3

p

�

(2�)

3

2E

�

�

W

L

��

L

L

��

+W

R

��

L

R

��

�

; (21)

where W

L;R

��

and L

L;R

��

are the hadronic and leptonic tensors, respectively. The hadronic tensor W

L=R

��

is related to the discontinuity in the forward scattering amplitude, denoted by T

L=R

��

, through the

relation W

��

= 2 ImT

��

. Transforming the integration variables to ŝ, û and v � q̂, one can express the

Dalitz distribution in B ! X

s

`

+

`

�

as:

d�

dû dŝ d(v � q̂)

=

1

2m

B

G

F

2

�

2

2 �

2

m

b

4

256 �

4

jV

�

ts

V

tb

j

2

2 Im

�

T

L

��

L

L

��

+ T

R

��

L

R

��

�

; (22)

with

T

L=R

��

= i

Z

d

4

y e

�i q̂�y

D

B

�

�

�
T

n

�

1

L=R

�

(y);�

2

L=R

�

(0)

o

�

�

�
B

E

; (23)

L

L=R

��

= 2

h

p

+

�

p

�

�

+ p

�

�

p

+

�

� g

��

(p

+

� p

�

)� i�

����

p

+

�

p

�

�

i

; (24)

where �

1

L=R

�

y

= �

2

L=R

�

= �

L=R

�

, and is given in eq. (13). Using Lorentz decomposition, the tensor T

��

can be expanded in terms of three structure functions T

i

,

T

��

= �T

1

g

��

+ T

2

v

�

v

�

+ T

3

i�

����

v

�

q̂

�

; (25)

where the structure functions which do not contribute to the amplitude in the limit of massless leptons

have been neglected. The problem remaining is now to determine the T

i

, to which we shall return in

section 4.

3 Perturbative QCD Corrections in O(�

s

) in the Decay B ! X

s

`

+

`

�

In this section the O(�

s

) corrections to the hadron spectra are investigated. Only O

9

is subject to �

s

corrections and the renormalization group improved perturbation series for C

9

is O(1=�

s

) + O(1) +

O(�

s

) + : : :, due to the large logarithm in C

9

represented by O(1=�

s

) [12]. The Feynman diagrams,

which contribute to the matrix element of O

9

in O(�

s

), corresponding to the virtual one-gluon and

bremsstrahlung corrections, are shown in Fig. 1. The e�ect of a �nite s-quark mass on the O(�

s

)

correction function is found to be very small. After showing this, we have neglected the s-quark mass

in the numerical calculations of the O(�

s

) terms.
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Parameter Value

m

W

80:26 (GeV)

m

Z

91:19 (GeV)

sin

2

�

W

0:2325

m

s

0:2 (GeV)

m

c

1:4 (GeV)

m

b

4:8 (GeV)

m

t

175� 5 (GeV)

� m

b

+m

b

�m

b

=2

�

�1

129

�

s

(m

Z

) 0:117� 0:005

B

sl

(10:4� 0:4) %

Table 1: Default values of the input parameters and errors used in the numerical calculations.

C

1

C

2

C

3

C

4

C

5

C

6

C

e�

7

C

9

C

10

C

(0)

�0:240 +1:103 +0:011 �0:025 +0:007 �0:030 �0:311 +4:153 �4:546 +0:381

Table 2: Values of the Wilson coe�cients used in the numerical calculations corresponding to the

central values of the parameters given in Table 1. Here, C

e�

7

� C

7

� C

5

=3 � C

6

, and for C

9

we use

the NDR scheme.

3.1 Hadron energy spectrum

The explicit order �

s

correction to O

9

can be obtained by using the existing results in the literature as

follows: The vector current O

9

can be decomposed as V = (V �A)=2+(V +A)=2. We recall that the

(V �A) and (V +A) currents yield the same hadron energy spectrum [41] and there is no interference

term present in this spectrum for massless leptons. So, the correction for the vector current case in

B ! X

s

`

+

`

�

can be taken from the corresponding result for the charged (V �A) case [28,40], yielding

C

e�

9

(x

0

) = C

9

�(x

0

) + Y (x

0

) (26)

b

s

l

+

l

�

O

9

Figure 1: Feynman diagrams contributing to the explicit order �

s

corrections of the operator O

9

.

Curly lines denote a gluon. Wave function corrections are not shown.

8



with

�(x) = 1 +

�

s

�

�(x); (27)

�(x) =

1

(3x� 4x

2

� 2m̂

2

s

+ 3m̂

2

s

x)

G

1

(x)

3

p

x

2

� m̂

2

s

; (28)

where Y (x

0

) � Y (ŝ) with ŝ = 1�2x

0

+m̂

2

s

. The expression for G

1

(x) with m

s

6= 0 has been calculated

in [40]. The e�ect of a �nite m

s

is negligible in G

1

(x), as can be seen in Fig. 2, where this function

is plotted both with a �nite s-quark mass, m

s

= 0:2 GeV, and for the massless case, m

s

= 0. A

numerical di�erence occurs at the lowest order end point x

max

0

= 1=2(1 + m̂

2

s

) (for m

l

= 0), where

the function develops a singularity from above (x

0

> x

max

0

) and the position of which depends on the

value of m

s

. The function G

1

(x) for a massless s-quark is given and discussed below [40].

G

1

(x) = x

2

f

1

90

(16x

4

� 84x

3

+ 585x

2

� 1860x+ 1215) + (8x� 9) ln(2x)

+ 2(4x� 3)

"

�

2

2

+ Li

2

(1� 2x)

#

g for 0 � x � 1=2 ;

G

1

(x) =

1

180

(1� x)(32x

5

� 136x

4

+ 1034x

3

� 2946x

2

+ 1899x+ 312)

�

1

24

ln(2x� 1)(64x

3

� 48x

2

� 24x� 5)

+ x

2

(3� 4x)

"

�

2

3

� 4Li

2

(

1

2x

) + ln

2

(2x� 1)� 2 ln

2

(2x)

#

for 1=2 < x � 1 ; (29)

where Li

2

(z) is the dilogarithmic function.

Figure 2: The function G

1

(x) is shown for m

s

= 0:2GeV (solid line) and for the massless case

corresponding to eq. (29) (dashed line).

The O(�

s

) correction has a double logarithmic (integrable) singularity for x

0

! 1=2 from above

(x

0

> 1=2). Further, the value of the order �

s

corrected Wilson coe�cient C

e�

9

(x

0

) is reduced

9



compared to its value with �

s

= 0, therefore also the hadron energy spectrum is reduced after including

the explicit order �

s

QCD correction for 0 < x

0

< 1=2. Note that the hadron energy spectrum for

B ! X

s

`

+

`

�

receives contributions for 1 � x > 1=2 only from the order �

s

bremsstrahlung corrections.

3.2 Hadronic invariant mass spectrum

Figure 3: The di�erential branching ratio

dB(B!X

s

`

+

`

�

)

ds

0

in the parton model is shown in the O(�

s

)

bremsstrahlung region. The dotted (solid) line corresponds to eq. (30), (eq. (35)). The vertical line

denotes the one particle pole from b! s`

+

`

�

. We do not show the full spectra in the range 0 � s

0

� m

2

b

as they tend to zero for larger values of s

0

.

We have calculated the order �

s

perturbative QCD correction for the hadronic invariant mass in

the range m̂

2

s

< ŝ

0

� 1. Since the decay b ! s + `

+

+ `

�

contributes in the parton model only at

ŝ

0

= m̂

2

s

, only the bremsstrahlung graphs b ! s + g + `

+

+ `

�

contribute in this range. This makes

the calculation much simpler than in the full ŝ

0

range including virtual gluon diagrams. We �nd

dB

dŝ

0

=

2

3

B

0

�

s

�

1

ŝ

0

f

(ŝ

0

� 1)

27

(93� 41ŝ

0

� 95ŝ

2

0

+ 55ŝ

3

0

) +

4

9

ln ŝ

0

(�3� 5ŝ

0

+ 9ŝ

2

0

� 2ŝ

4

0

)gC

2

9

: (30)

Our result for the spectrum in B ! X

s

`

+

`

�

is in agreement with the corresponding result for the

(V � A) current obtained for the decay B ! X

q

`�

`

in the m

q

= 0 limit in ref. [32] (their eq. (3.8)),

once one takes into account the di�erence in the normalizations. We display the hadronic invariant

mass distribution in Fig. 3 as a function of s

0

(with s

0

= m

2

b

ŝ

0

), where we also show the Sudakov

improved spectrum, obtained from the O(�

s

) spectrum in which the double logarithms have been

resummed. For the decay B ! X

u

`�

`

, this has been derived in ref. [33], where all further details

10



Figure 4: The di�erential branching ratio

dB(B!X

s

`

+

`

�

)

dS

H

in the hadronic invariant mass, S

H

, shown

for di�erent values of m

b

in the range where only bremsstrahlung diagrams contribute. We do not

show the result in the full kinematic range as the spectra tend monotonically to zero for larger values

of S

H

� m

2

B

.

can be seen. We con�rm eq. (17) of ref. [33] for the Sudakov exponentiated double di�erential decay

rate

d

2

�

dxdy

and use it after changing the normalization �

0

! B

0

2

3

C

2

9

for the decay B ! X

s

`

+

`

�

. The

constant B

0

is given later. De�ning the kinematic variables (x; y) as

q

2

= x

2

m

2

b

;

v � q = (x+

1

2

(1� x)

2

y)m

b

; (31)

the Sudakov-improved Dalitz distribution is given by

d

2

B

dxdy

(B ! X

s

`

+

`

�

) = �B

0

8

3

x(1� x

2

)

2

(1 + 2x

2

) exp

�

�

2�

s

3�

ln

2

(1� y)

�

(32)

�

�

4�

s

3�

ln(1� y)

(1� y)

h

1�

2�

s

3�

(G(x) +H(y))

i

�

2�

s

3�

dH

dy

(y)

�

C

2

9

;

where [33]

G(x) =

[8x

2

(1� x

2

� 2x

4

) ln x+ 2(1� x

2

)

2

(5 + 4x

2

) ln(1� x

2

)� (1� x

2

)(5 + 9x

2

� 6x

4

)]

2(1� x

2

)

2

(1 + 2x

2

)

+�

2

+ 2Li

2

(x

2

)� 2Li

2

(1� x

2

) ; (33)

H(y) =

Z

y

0

dz

�

4

1� z

ln

2� z(1� x) + �

2

�

(1� x)(3 + x+ xz � z)

(1 + x)

2

h

ln(1� z)� 2 ln

2� z(1� x) + �

2

i

11



�

�

2(1 + x)

2

(1 + 2x

2

)

h

7(1 + x)(1 + 2x

2

)

1� z

+ (1� x)(3� 2x

2

)

i�

: (34)

The quantity � in eq. (34) is de�ned as � �

p

z

2

(1� x)

2

+ 4xz.

To get the hadronic invariant mass spectrum for a b quark decaying at rest we change variables

from (x; y) to (q

2

; s

0

) followed by an integration over q

2

,

dB

ds

0

=

Z

(m

b

�

p

s

0

)

2

4m

2

l

dq

2

d

2

B

dxdy

1

2m

4

b

x(1� x)

2

: (35)

The most signi�cant e�ect of the bound state is the di�erence between m

B

and m

b

, which is

dominated by

�

�. Neglecting �

1

; �

2

, i.e., using

�

� = m

B

� m

b

, the spectrum

dB

dS

H

is obtained along

the lines as given above for

dB

ds

0

, after changing variables from (x; y) to (q

2

; S

H

) and performing an

integration over q

2

. It is valid in the region m

B

m

B

�

��

�

�

2

+m

2

s

m

B

�

�

�

< S

H

� m

2

B

(or m

B

�

� � S

H

� m

2

B

,

neglecting m

s

) which excludes the zeroth order and virtual gluon kinematics (s

0

= m

2

s

), yielding

dB

dS

H

=

Z

(m

B

�

p

S

H

)

2

4m

2

l

dq

2

d

2

B

dxdy

1

2m

3

b

m

B

x(1� x)

2

: (36)

The hadronic invariant mass spectrum thus found depends rather sensitively on m

b

(or equivalently

�

�), as can be seen from Fig. 4. An analogous analysis for the charged current semileptonic B decays

B ! X

u

`�

`

has been performed in ref. [34], with similar conclusions.

4 Power Corrections in the Decay B ! X

s

`

+

`

�

The hadronic tensor in eq. (25) can be expanded in inverse powers of m

b

with the help of the HQET

techniques. The leading term in this expansion, i.e., O(m

0

b

) reproduces the parton model result. In

HQET, the next to leading power corrections are parameterized in terms of the matrix elements of

the kinetic energy and the magnetic moment operators �

1

and �

2

, respectively. The B � B

�

mass

di�erence yields the value �

2

= 0:12 GeV

2

. In all numerical estimates we shall use this value of �

2

and,

unless otherwise stated, we take the value for �

1

extracted from an analysis of data on semileptonic

B-decays (B ! X`�

`

), yielding �

1

= �0:20 GeV

2

with a corresponding value

�

� = 0:39GeV [37]. For

a review on the dispersion in the present values of these non-perturbative parameters, see [38].

The contributions of the power corrections to the structure functions T

i

can be decomposed into

the sum of various terms, denoted by T

(j)

i

, which can be traced back to well de�ned pieces in the

evaluation of the time-ordered product in eq. (23):

T

i

(v:q̂; ŝ) =

X

j=0;1;2;s;g;�

T

(j)

i

(v:q̂; ŝ) : (37)

The expressions for T

(j)

i

(v:q̂; ŝ), i = 1; 2; 3 calculated up to O(m

B

=m

3

b

) are given in [15]. After

contracting the hadronic and leptonic tensors, one �nds

T

L=R

��

L

L=R

��

= m

b

2

�

2 ŝ T

1

L=R

+

�

(v � q̂)

2

�

1

4

û

2

� ŝ

�

T

2

L=R

� ŝ û T

3

L=R

�

: (38)
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With the help of the kinematic identities given in eq. (7), we can make the dependence on x

0

and ŝ

0

explicit,

T

L=R

��

L

L=R

��

= m

b

2

�

2(1� 2x

0

+ ŝ

0

)T

1

L=R

+

�

x

2

0

�

1

4

û

2

� ŝ

0

�

T

2

L=R

� (1� 2x

0

+ ŝ

0

)û T

3

L=R

�

(39)

and with this we are able to derive the double di�erential power corrected spectrum

dB

dx

0

dŝ

0

for B !

X

s

`

+

`

�

. Integrating eq. (22) over û �rst, where the variable û is bounded by

� 2

q

x

2

0

� ŝ

0

� û � +2

q

x

2

0

� ŝ

0

; (40)

we arrive at the following expression

d

2

B

dx

0

dŝ

0

= �

8

�

B

0

Im

q

x

2

0

� ŝ

0

(

(1� 2x

0

+ ŝ

0

)T

1

(ŝ

0

; x

0

) +

x

2

0

� ŝ

0

3

T

2

(ŝ

0

; x

0

)

)

+O(�

i

�

s

) ; (41)

where

T

1

(ŝ

0

; x

0

) =

1

x

( 

8x

0

� 4(

^

�

1

3

+

^

�

2

)

!

�

jC

e�

9

(ŝ)j

2

+ jC

10

j

2

�

+

 

32(�2m̂

2

s

� 2ŝ

0

� 4m̂

2

s

ŝ

0

+ x

0

+ 5m̂

2

s

x

0

+ ŝ

0

x

0

+ m̂

2

s

ŝ

0

x

0

) + 16(

^

�

1

3

+

^

�

2

)

� (�5� 11m̂

2

s

+ 5ŝ

0

� m̂

2

s

ŝ

0

+ 10x

0

+ 22m̂

2

s

x

0

� 10x

2

0

� 10m̂

2

s

x

2

0

)

�

jC

e�

7

j

2

(ŝ

0

� 2x

0

+ 1)

2

+

 

�32

ŝ

0

� 2x

0

+ 1

(m̂

2

s

+ ŝ

0

� x

0

� m̂

2

s

x

0

)� 48(

^

�

1

3

+

^

�

2

)

!

Re(C

e�

9

(ŝ))C

e�

7

)

+

1

x

2

( 

8

^

�

1

3

(�2ŝ

0

� 3x

0

+ 5x

2

0

) + 8

^

�

2

(�2ŝ

0

+ x

0

+ 5x

2

0

)

!

�

jC

e�

9

(ŝ)j

2

+ jC

10

j

2

�

+

 

32

^

�

1

3

(6m̂

2

s

+ 12ŝ

0

+ 18m̂

2

s

ŝ

0

� 2ŝ

2

0

� 2m̂

2

s

ŝ

2

0

� 3x

0

� 21m̂

2

s

x

0

� 13ŝ

0

x

0

� 19m̂

2

s

ŝ

0

x

0

� 3x

2

0

+ 9m̂

2

s

x

2

0

+ 5ŝ

0

x

2

0

+ 5m̂

2

s

ŝ

0

x

2

0

+ 4x

3

0

+ 4m̂

2

s

x

3

0

)

+ 32

^

�

2

(�2m̂

2

s

� 2m̂

2

s

ŝ

0

� 2ŝ

2

0

� 2m̂

2

s

ŝ

2

0

+ x

0

� m̂

2

s

x

0

� 5ŝ

0

x

0

� 11m̂

2

s

ŝ

0

x

0

+ x

2

0

+ 13m̂

2

s

x

2

0

+ 5ŝ

0

x

2

0

+ 5m̂

2

s

ŝ

0

x

2

0

)

�

jC

e�

7

j

2

(ŝ

0

� 2x

0

+ 1)

2

+

 

�32

^

�

1

3

(�3m̂

2

s

� 5ŝ

0

+ 2m̂

2

s

ŝ

0

+ 3x

0

+ 6m̂

2

s

x

0

+ 3ŝ

0

x

0

� x

2

0

� 5m̂

2

s

x

2

0

)

� 32

^

�

2

(m̂

2

s

+ ŝ

0

+ 2m̂

2

s

ŝ

0

� x

0

+ 2m̂

2

s

x

0

+ 3ŝ

0

x

0

� 3x

2

0

� 5m̂

2

s

x

2

0

)

�

Re(C

e�

9

(ŝ))C

e�

7

ŝ

0

� 2x

0

+ 1

)

+

1

x

3

^

�

1

(ŝ

0

� x

2

0

)

�

32x

0

3

�

jC

e�

9

(ŝ)j

2

+ jC

10

j

2

�

+

128

3

(�2m̂

2

s

� 2ŝ

0

� 4m̂

2

s

ŝ

0

+ x

0

+ 5m̂

2

s

x

0

+ ŝ

0

x

0

+ m̂

2

s

ŝ

0

x

0

)

jC

e�

7

j

2

(ŝ

0

� 2x

0

+ 1)

2

+

�128

3

(m̂

2

s

+ ŝ

0

� x

0

� m̂

2

s

x

0

)

Re(C

e�

9

(ŝ))C

e�

7

ŝ

0

� 2x

0

+ 1

)

;
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T

2

(ŝ

0

; x

0

) =

1

x

( 

16� 40(

^

�

1

3

+

^

�

2

)

!

�

jC

e�

9

(ŝ)j

2

+ jC

10

j

2

�

+

 

�64 + 160(

^

�

1

3

+

^

�

2

)

!

(1 + m̂

2

s

)

jC

e�

7

j

2

ŝ

0

� 2x

0

+ 1

)

+

1

x

2

( 

112

^

�

1

3

(�1 + x

0

) + 16

^

�

2

(�3 + 5x

0

)

!

�

jC

e�

9

(ŝ)j

2

+ jC

10

j

2

�

+

 

448

^

�

1

3

(1� x

0

) + 64

^

�

2

(5x

0

� 1)

!

(1 + m̂

2

s

)

jC

e�

7

j

2

ŝ

0

� 2x

0

+ 1

� 64

^

�

2

Re(C

e�

9

(ŝ))C

e�

7

)

+

1

x

3

^

�

1

(ŝ

0

� x

2

0

)

(

64

3

�

jC

e�

9

(ŝ)j

2

+ jC

10

j

2

�

+

�256

3

(1 + m̂

2

s

)

jC

e�

7

j

2

ŝ

0

� 2x

0

+ 1

)

: (42)

Here, x = ŝ

0

�m̂

2

s

+ i�,

^

�

1

= �

1

=m

2

b

and

^

�

2

= �

2

=m

2

b

. As the structure function T

3

does not contribute

to the branching ratio, we did not consider it in our present work. The Wilson coe�cient C

e�

9

(ŝ)

depends both on the variables x

0

and ŝ

0

arising from the matrix element of the Four-Fermi-operators.

The branching ratio for B ! X

s

`

+

`

�

is usually expressed in terms of the measured semileptonic

branching ratio B

sl

for the decays B ! X

c

`�

`

. This �xes the normalization constant B

0

to be,

B

0

� B

sl

3�

2

16�

2

jV

�

ts

V

tb

j

2

jV

cb

j

2

1

f(m̂

c

)�(m̂

c

)

; (43)

where

f(m̂

c

) = 1� 8 m̂

2

c

+ 8 m̂

6

c

� m̂

8

c

� 24 m̂

4

c

ln m̂

c

(44)

is the phase space factor for �(B ! X

c

`�

`

) and the function �(m̂

c

) accounts for both the O(�

s

) QCD

correction to the semileptonic decay width [42] and the leading order (1=m

b

)

2

power correction [16].

It reads as:

�(m̂

c

) = 1 +

�

s

(m

b

)

�

g(m̂

c

) +

h(m̂

c

)

2m

2

b

; (45)

where

g(m̂

c

) =

A

0

(m̂

c

)

f(m̂

c

)

; (46)

h(m̂

c

) = �

1

+

�

2

f(m̂

c

)

h

�9 + 24m̂

2

c

� 72m̂

4

c

+ 72m̂

6

c

� 15m̂

8

c

� 72m̂

4

c

ln m̂

c

i

; (47)

and the analytic form of A

0

(m̂

c

) can be seen in [32]. Note that the frequently used approximation

g(z) � �

2

3

((�

2

�

31

4

)(1�z)

2

+

3

2

) holds within 1:4% accuracy in the range 0:2 � z � 0:4. The equation

g(z) = �1:671 + 2:04(z � 0:3) � 2:15(z � 0:3)

2

is accurate for 0:2 � z � 0:4 to better than one per

mille accuracy and that is what we have used here.

The double di�erential ratio given in eq. (41) agrees in the (V �A) limit with the corresponding

expression derived for the semileptonic decay B ! X

c

`�

`

in [32] (their eq. (3.2)). Taking this limit

amounts to the following transcription:

C

e�

9

= �C

10

=

1

2

; (48)

C

e�

7

= 0 ; (49)

�

G

F

�

p

2�

V

�

ts

V

tb

�

!

�

�

4G

F

p

2

V

cb

�

: (50)
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The hadron energy spectrum can now be obtained by integrating over ŝ

0

. The imaginary part can

be obtained using the relation:

Im

1

x

n

/

(�1)

n�1

(n� 1)!

�

(n�1)

(ŝ

0

� m̂

2

s

) : (51)

The kinematic boundaries are given as:

max(m̂

2

s

;�1 + 2x

0

+ 4m̂

2

l

) � ŝ

0

� x

2

0

;

m̂

s

� x

0

�

1

2

(1 + m̂

2

s

� 4m̂

2

l

) : (52)

Here we keep m̂

l

as a regulator wherever it is necessary and abbreviate C

e�

9

� C

e�

9

(ŝ = 1�2x

0

+m̂

2

s

).

Including the leading power corrections, the hadron energy spectrum in the decay B ! X

s

`

+

`

�

is

given below:

dB

dx

0

= B

0

nh

g

(9;10)

0

+

^

�

1

g

(9;10)

1

+

^

�

2

g

(9;10)

2

i �

jC

e�

9

j

2

+ jC

10

j

2

�

+

h

g

(7)

0

+

^

�

1

g

(7)

1

+

^

�

2

g

(7)

2

i

jC

e�

7

j

2

x

0

�

1

2

(1 + m̂

2

s

)

+

h

g

(7;9)

0

+

^

�

1

g

(7;9)

1

+

^

�

2

g

(7;9)

2

i

Re(C

e�

9

)C

e�

7

+ (

^

�

1

h

(9)

1

+

^

�

2

h

(9)

2

)

djC

e�

9

j

2

dŝ

0

+

^

�

1

k

(9)

1

d

2

jC

e�

9

j

2

dŝ

2

0

+ (

^

�

1

h

(7;9)

1

+

^

�

2

h

(7;9)

2

)

dRe(C

e�

9

)

dŝ

0

C

e�

7

+

^

�

1

k

(7;9)

1

d

2

Re(C

e�

9

)

dŝ

2

0

C

e�

7

)

+ �(x

0

�

1

2

(1 + m̂

2

s

� 4m̂

2

l

))f

�

(

^

�

1

;

^

�

2

) + �

0

(x

0

�

1

2

(1 + m̂

2

s

� 4m̂

2

l

))f

�

0

(

^

�

1

;

^

�

2

) : (53)

The functions g

(9;10)

i

; g

(7)

i

; g

(7;9)

i

; h

(9)

i

; h

(7;9)

i

; k

(9)

1

; k

(7;9)

1

in the above expression are the coe�cients of the

1=m

2

b

power expansion for di�erent combinations of Wilson coe�cients, with g

(j;k)

0

being the lowest

order (parton model) functions. They are functions of the variables x

0

and m̂

s

and are given in

appendix A. The singular functions �; �

0

have support only at the lowest order end point of the

spectrum, i.e., at x

max

0

�

1

2

(1 + m̂

2

s

� 4m̂

2

l

). The auxiliary functions f

�

(

^

�

1

;

^

�

2

) and f

�

0

(

^

�

1

;

^

�

2

) vanish

in the limit

^

�

1

=

^

�

2

= 0. They are given in appendix B. The derivatives of C

e�

9

are de�ned as

d

n

C

e�

9

dŝ

n

0

�

d

n

C

e�

9

dŝ

n

(ŝ = 1� 2x

0

+ ŝ

0

; ŝ

0

= m̂

2

s

) (n = 1; 2). In the (V �A) limit our eq. (53) for the hadron

energy spectrum in B ! X

s

`

+

`

�

agrees with the corresponding spectrum in B ! X`�

`

given in [32]

(their eq. (A1)). Integrating also over x

0

the resulting total width for B ! X

s

`

+

`

�

agrees again in the

(V �A) limit with the well known result [16].

The power-corrected hadron energy spectrum

dB(B!X

s

`

+

`

�

)

dE

0

(with E

0

= m

b

x

0

) is displayed in

Fig. 5 through the solid curve, however, without the singular �; �

0

terms. Note that before reaching

the kinematic lower end point, the power-corrected spectrum becomes negative, as a result of the

^

�

2

term. This behavior is analogous to what has already been reported for the dilepton mass spectrum

dB(B!X

s

`

+

`

�

)

dq

2

in the high q

2

region [15], signaling a breakdown of the

1

m

b

expansion in this region. The
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Figure 5: Hadron energy spectrum

dB(B!X

s

`

+

`

�

)

dE

0

in the parton model (dotted line) and including

leading power corrections (solid line). For m

b

=2 < E

0

� m

b

the distributions coincide. The parameters

used for this plot are the central values given in Table 1 and the default values of the HQET parameters

speci�ed in text.

terms with the derivatives of C

e�

9

in eq. (53) give rise to a singularity in the hadron energy spectrum

at the charm threshold due to the cusp in the function Y (ŝ), when approached from either side. The

hadron energy spectrum for the parton model is also shown in Fig. 5, which is �nite for all ranges of

E

0

.

What is the region of validity of the hadron energy spectrum derived in HQET? It is known that

in B ! X

s

`

+

`

�

decay there are resonances present, from which the known six [6] populate the x

0

(or E

0

) range between the lower end point and the charm threshold. Taking this into account and

what has been remarked earlier, one concludes that the HQET spectrum cannot be used near the

resonances, near the charm threshold and around the lower endpoint. Excluding these regions, the

spectrum calculated in HQET is close to the (partonic) perturbative spectrum as the power corrections

are shown to be small. The authors of ref. [20],

1

who have performed an 1=m

c

expansion for the

dilepton mass spectrum

dB(B!X

s

`

+

`

�

)

dq

2

and who also found a charm-threshold singularity, expect a

reliable prediction of the spectrum for q

2

� 3m

2

c

corresponding to E

0

�

m

b

2

(1+ m̂

2

s

� 3m̂

2

c

) � 1:8 GeV.

In this region, the e�ect of the 1=m

b

power corrections on the energy spectrum is small and various

spectra in B ! X

s

`

+

`

�

calculated here and in ref. [15] can be compared with data.

1

The O(1=m

2

c

) correction to

dB(B!X

s

`

+

`

�

)

dq

2

has also been calculated in ref. [21], however, the result di�ers in sign

from the one in ref. [20]. It seems that this controversy has been settled in favor of ref. [20].
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The leading power corrections to the invariant mass spectrum is found by integrating eq. (41) with

respect to x

0

. We have already discussed the non-trivial hadronic invariant mass spectrum which

results from the O(�

s

) bremsstrahlung and its Sudakov-improved version. Since we have consistently

dropped everywhere terms of O(�

i

�

s

) (see eq. (41)), this is the only contribution to the invariant mass

spectrum also in HQET away from ŝ

0

= m̂

2

s

, as the result of integrating the terms involving power

corrections in eq. (41) over x

0

is a singular function with support only at ŝ

0

= m̂

2

s

. Of course, these

corrections contribute to the normalization (i.e., branching ratio) but leave the perturbative spectrum

intact for ŝ

0

6= m̂

2

s

.

5 Hadronic Moments in B ! X

s

`

+

`

�

in HQET

We start with the derivation of the lowest spectral moments in the decay B ! X

s

`

+

`

�

at the parton

level. These moments are worked out by taking into account the two types of corrections discussed

earlier, namely the leading power 1=m

b

and the perturbative O(�

s

) corrections. To that end, we

de�ne:

M

(n;m)

l

+

l

�

�

1

B

0

Z

(ŝ

0

� m̂

2

s

)

n

x

m

0

d

2

B

dŝ

0

dx

0

dŝ

0

dx

0

; (54)

for integers n and m. These moments are related to the corresponding moments hx

m

0

(ŝ

0

� m̂

2

s

)

n

i

obtained at the parton level by a scaling factor which yields the corrected branching ratio B =

B

0

M

(n;m)

`

+

`

�

. Thus,

hx

m

0

(ŝ

0

� m̂

2

s

)

n

i =

B

0

B

M

(n;m)

l

+

l

�

: (55)

The correction factor B

0

=B is given a little later. We remind that one has to Taylor expand it in terms

of the O(�

s

) and power corrections. The moments can be expressed as double expansion in O(�

s

)

and 1=m

b

and to the accuracy of our calculations can be represented in the following form:

M

(n;m)

l

+

l

�

= D

(n;m)

0

+

�

s

�

C

9

2

A

(n;m)

+

^

�

1

D

(n;m)

1

+

^

�

2

D

(n;m)

2

; (56)

with a further decomposition into pieces from di�erent Wilson coe�cients for i = 0; 1; 2:

D

(n;m)

i

= �

(n;m)

i

C

e�

7

2

+ �

(n;m)

i

C

2

10

+ 

(n;m)

i

C

e�

7

+ �

(n;m)

i

: (57)

The terms 

(n;m)

i

and �

(n;m)

i

in eq. (57) result from the terms proportional to Re(C

e�

9

)C

e�

7

and jC

e�

9

j

2

in eq. (41), respectively. The results for �

(n;m)

i

; �

(n;m)

i

; 

(n;m)

i

; �

(n;m)

i

are presented in appendix C. Out

of these, the functions �

(n;m)

i

and �

(n;m)

i

are given analytically, but the other two 

(n;m)

i

and �

(n;m)

i

are

given in terms of a one-dimensional integral over x

0

, as these latter functions involve the coe�cient

C

e�

9

, which is a complicated function of x

0

.

17



The leading perturbative contributions for the hadronic invariant mass and hadron energy moments

can be obtained analytically by integrating eq. (30) and eq. (29), respectively, yielding

A

(0;0)

=

25� 4�

2

9

; A

(1;0)

=

91

675

; A

(2;0)

=

5

486

;

A

(0;1)

=

1381� 210�

2

1350

; A

(0;2)

=

2257� 320�

2

5400

: (58)

The zeroth moment n = m = 0 is needed for the normalization and we recall that the result for A

(0;0)

was derived by Cabibbo and Maiani in the context of the O(�

s

) correction to the semileptonic decay

rate B ! X`�

`

quite some time ago [42]. Likewise, the �rst mixed moment A

(1;1)

can be extracted

from the results given in [32] for the decay B ! X`�

`

after changing the normalization,

A

(1;1)

=

3

50

: (59)

For the lowest order parton model contribution D

(n;m)

0

, we �nd, in agreement with [32], that the �rst

two hadronic invariant mass moments hŝ

0

�m̂

2

s

i; h(ŝ

0

�m̂

2

s

)

2

i and the �rst mixed moment hx

0

(ŝ

0

�m̂

2

s

)i

vanish:

D

(n;0)

0

= 0 for n = 1; 2 and D

(1;1)

0

= 0 : (60)

We remark that we have included the s-quark mass dependence in the leading term and in the power

corrections, but omitted it throughout our work in the calculation of the explicit �

s

term. All the

expressions derived here for the moments agree in the V �A limit (and with m̂

s

= 0 in the perturbative

�

s

correction term) with the corresponding expressions given in [32]. From here the full O(�

s

m

s

)

expressions can be inferred after adjusting the normalization �

0

! B

0

2

3

C

2

9

. We have checked that a

�nite s-quark mass e�ects the values of the A

(n;m)

given in eq. (58-59) by less than 8% for m

s

= 0:2

GeV.

We can eliminate the hidden dependence on the non-perturbative parameters resulting from the

b-quark mass in the moments M

(n;m)

l

+

l

�

with the help of the HQET mass relation. As m

s

is of order

�

QCD

, to be consistent we keep only terms up to order m

2

s

=m

2

b

[43]. An additional m

b

-dependence

is in the mass ratios m̂

l

=

m

l

m

b

. Substituting m

b

by the B meson mass using the HQET relation

introduces additional O(1=m

B

; 1=m

2

B

) terms in the Taylor expansion of eq. (55). We get for the

following normalization factor for B=B

0

=M

(0;0)

`

+

`

�

:

B

B

0

=

32

9m

2

B

(�4m

2

B

� 13m

2

s

� 3(m

2

B

� 2m

2

s

) ln(4

m

2

l

m

2

B

))C

e�

7

2

+

2

3m

2

B

(m

2

B

� 8m

2

s

)C

2

10

+

Z 1

2

(1+m

2

s

=m

2

B

)

m

s

=m

B

dx

0

64

m

2

B

(�m

2

s

� 4m

2

s

x

0

+ 2m

2

B

x

2

0

+ 2m

2

s

x

2

0

)Re(C

e�

9

)C

e�

7

+

Z 1

2

(1+m

2

s

=m

2

B

)

m

s

=m

B

dx

0

16

3m

2

B

(�3m

2

s

+ 6m

2

B

x

2

0

+ 6m

2

s

x

2

0

� 8m

2

B

x

3

0

)jC

e�

9

j

2
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+

�

s

�

A

(0;0)

C

2

9

+

�64

3

C

e�

7

2

�

�

m

B

+

�32

3

C

e�

7

2

�

�

2

m

2

B

+

"

16

9

(2� 3 ln(4

m

2

l

m

2

B

))C

e�

7

2

+

C

2

10

3

+

Z
1

2

0

dx

0

(64x

2

0

Re(C

e�

9

)C

e�

7

+

16

3

(3� 4x

0

)x

2

0

jC

e�

9

j

2

)

#

�

1

m

2

B

+

"

16

3

(4 + 9 ln(4

m

2

l

m

2

B

))C

e�

7

2

� 3C

2

10

(61)

+

Z 1

2

0

dx

0

(64(�1� 4x

0

+ 7x

2

0

)Re(C

e�

9

)C

e�

7

+ 16(�1 + 15x

2

0

� 20x

3

0

)jC

e�

9

j

2

#

�

2

m

2

B

:

Here, the

�

�

m

B

and

�

�

2

m

2

B

terms result from the expansion of ln(4m

2

l

=m

2

b

). The �rst two moments and the

�rst mixed moment, hx

0

iB=B

0

, hx

2

0

iB=B

0

, hŝ

0

� m̂

2

s

iB=B

0

, h(ŝ

0

� m̂

2

s

)

2

iB=B

0

and hx

0

(ŝ

0

� m̂

2

s

)iB=B

0

are presented in appendix D.

With this we obtain the moments for the physical quantities valid up to O(�

s

=m

2

B

; 1=m

3

B

), where

the second equation corresponds to a further use of m

s

= O(�

QCD

). We get for the �rst two hadronic

invariant mass moments

2

hS

H

i = m

2

s

+

�

�

2

+ (m

2

B

� 2

�

�m

B

) hŝ

0

� m̂

2

s

i+ (2

�

�m

B

� 2

�

�

2

� �

1

� 3�

2

)hx

0

i ;

hS

2

H

i = m

4

s

+ 2

�

�

2

m

2

s

+ 2m

2

s

(m

2

B

� 2

�

�m

B

)hŝ

0

� m̂

2

s

i+ 2m

2

s

(2

�

�m

B

� 2

�

�

2

� �

1

� 3�

2

)hx

0

i

+ (m

4

B

� 4

�

�m

3

B

)h(ŝ

0

� m̂

2

s

)

2

i+ 4

�

�

2

m

2

B

hx

2

0

i+ 4

�

�m

3

B

hx

0

(ŝ

0

� m̂

2

s

)i ; (62)

= (m

4

B

� 4

�

�m

3

B

)h(ŝ

0

� m̂

2

s

)

2

i+ 4

�

�

2

m

2

B

hx

2

0

i+ 4

�

�m

3

B

hx

0

(ŝ

0

� m̂

2

s

)i ;

and for the hadron energy moments:

hE

H

i =

�

��

�

1

+ 3�

2

2m

B

+

�

m

B

�

�

� +

�

1

+ 3�

2

2m

B

�

hx

0

i ;

hE

2

H

i =

�

�

2

+ (2

�

�m

B

� 2

�

�

2

� �

1

� 3�

2

)hx

0

i (63)

+(m

2

B

� 2

�

�m

B

+

�

�

2

+ �

1

+ 3�

2

)hx

2

0

i :

One sees that there are linear power corrections, O(

�

�=m

B

), present in all these hadronic quantities

except hS

2

H

i which starts in

�

s

�

�

�

m

B

.

5.1 Numerical Estimates of the Hadronic Moments in HQET

Using the expressions for the HQET moments given in appendix D, we present the numerical results

for the hadronic moments in B ! X

s

`

+

`

�

, valid up to O(�

s

=m

2

B

; 1=m

3

B

). We �nd:

hx

0

i = 0:367 (1+ 0:148

�

s

�

� 0:204

�

�

m

B

�

s

�

� 0:030

�

�

m

B

� 0:017

�

�

2

m

2

B

+ 0:884

�

1

m

2

B

+ 3:652

�

2

m

2

B

) ;

2

Our �rst expression for hS

2

H

i, eq. (62), does not agree in the coe�cient of hŝ

0

� m̂

2

s

i with the one given in [32] (their

eq. (4.1)). We point out that m

2

B

should have been replaced by m

2

b

in this expression. This has been con�rmed by Adam

Falk (private communication). Dropping the higher order terms given in their expressions, the hadronic moments in

HQET derived here and in [32] agree.
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hx

2

0

i = 0:147 (1+ 0:324

�

s

�

� 0:221

�

�

m

B

�

s

�

� 0:058

�

�

m

B

� 0:034

�

�

2

m

2

B

+ 1:206

�

1

m

2

B

+ 4:680

�

2

m

2

B

) ;

hx

0

(ŝ

0

� m̂

2

s

)i = 0:041

�

s

�

(1 + 0:083

�

�

m

B

) + 0:124

�

1

m

2

B

+ 0:172

�

2

m

2

B

;

hŝ

0

� m̂

2

s

i = 0:093

�

s

�

(1 + 0:083

�

�

m

B

) + 0:641

�

1

m

2

B

+ 0:589

�

2

m

2

B

;

h(ŝ

0

� m̂

2

s

)

2

i = 0:0071

�

s

�

(1 + 0:083

�

�

m

B

)� 0:196

�

1

m

2

B

: (64)

As already discussed earlier, the normalizing factor B=B

0

is also expanded in a Taylor series. Thus,

in deriving the above results, we have used

B

B

0

= 25:277 (1� 1:108

�

s

�

� 0:083

�

�

m

B

� 0:041

�

�

2

m

2

B

+ 0:546

�

1

m

2

B

� 3:439

�

2

m

2

B

) :

The parameters used in arriving at the numerical coe�cients are given in Table 1 and Table 2.

Inserting the expressions for the moments calculated at the partonic level into eq. (62) and

eq. (63), we �nd the following expressions for the short-distance hadronic moments, valid up to

O(�

s

=m

2

B

; 1=m

3

B

):

hS

H

i = m

2

B

(

m

2

s

m

2

B

+ 0:093

�

s

�

� 0:069

�

�

m

B

�

s

�

+ 0:735

�

�

m

B

+ 0:243

�

�

2

m

2

B

+ 0:273

�

1

m

2

B

� 0:513

�

2

m

2

B

) ;

hS

2

H

i = m

4

B

(0:0071

�

s

�

+ 0:138

�

�

m

B

�

s

�

+ 0:587

�

�

2

m

2

B

� 0:196

�

1

m

2

B

) ; (65)

hE

H

i = 0:367m

B

(1 + 0:148

�

s

�

� 0:352

�

�

m

B

�

s

�

+ 1:691

�

�

m

B

+ 0:012

�

�

2

m

2

B

+ 0:024

�

1

m

2

B

+ 1:070

�

2

m

2

B

) ;

hE

2

H

i = 0:147m

2

B

(1 + 0:324

�

s

�

� 0:128

�

�

m

B

�

s

�

+ 2:954

�

�

m

B

+ 2:740

�

�

2

m

2

B

� 0:299

�

1

m

2

B

+ 0:162

�

2

m

2

B

) :

Setting m

s

= 0 changes the numerical value of the coe�cients in the expansion given above (in which

we already neglected �

s

m

s

) by at most 1%. With the help of the expressions given above, we have

calculated numerically the hadronic moments in HQET for the decay B ! X

s

`

+

`

�

, ` = �; e and

have estimated the errors by varying the parameters within their �1� ranges given in Table 1. They

are presented in Table 3 where we have used

�

� = 0:39GeV, �

1

= �0:2GeV

2

and �

2

= 0:12GeV

2

.

Further, using �

s

(m

b

) = 0:21, the explicit dependence of the hadronic moments given in eq. (65) on

the HQET parameters �

1

and

�

� can be worked out:

hS

H

i = 0:0055m

2

B

(1 + 132:61

�

�

m

B

+ 44:14

�

�

2

m

2

B

+ 49:66

�

1

m

2

B

) ;

hS

2

H

i = 0:00048m

4

B

(1 + 19:41

�

�

m

B

+ 1223:41

�

�

2

m

2

B

� 408:39

�

1

m

2

B

) ; (66)

hE

H

i = 0:372m

B

(1 + 1:64

�

�

m

B

+ 0:01

�

�

2

m

2

B

+ 0:02

�

1

m

2

B

) ;

hE

2

H

i = 0:150m

2

B

(1 + 2:88

�

�

m

B

+ 2:68

�

�

2

m

2

B

� 0:29

�

1

m

2

B

) :
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While interpreting these numbers, one should bear in mind that there are two comparable expansion

parameters

�

�=m

B

and �

s

=� and we have �xed the latter in showing the numbers. As expected, the

dependence of the energy moments hE

n

H

i on

�

� and �

1

is very weak. The correlations on the HQET

parameters �

1

and

�

� which follow from (assumed) �xed values of the hadronic invariant mass moments

hS

H

i and hS

2

H

i are shown in Fig. 6. We have taken the values for the decay B ! X

s

�

+

�

�

from Table

3 for the sake of illustration and have also shown the presently irreducible theoretical errors on these

moments following from the input parameters m

t

, �

s

and the scale �, given in Table 1. The errors

were calculated by varying these parameters in the indicated range, one at a time, and adding the

individual errors in quadrature. This exercise has to be repeated with real data in B ! X

s

`

+

`

�

to

draw any quantitative conclusions.

The theoretical stability of the moments has to be checked against higher order corrections and the

error estimates presented here will have to be improved. The \BLM-enhanced" two-loop corrections

[44] proportional to �

2

s

�

0

, where �

0

= 11� 2n

f

=3 is the �rst term in the QCD beta function, can be

included at the parton level as has been done in other decays [32,45], but not being crucial to our point

we have not done this. More importantly, higher order corrections in �

s

and 1=m

3

b

are not included

here. While we do not think that the higher orders in �

s

will have a signi�cant inuence, the second

moment hS

2

H

i is susceptible to the presence of 1=m

3

b

corrections as shown for the decay B ! X`�

`

[46]. This will considerably enlarge the theoretical error represented by the dashed band for hS

2

H

i in

Fig. 6. Fortunately, the coe�cient of the

�

�=m

B

term in hS

H

i is large. Hence, a good measurement of

this moment alone constrains

�

� e�ectively. Of course, the utility of the hadronic moments calculated

above is only in conjunction with the experimental cuts. Since the optimal experimental cuts in

B ! X

s

`

+

`

�

remain to be de�ned, we hope to return to this and related issue of doing an improved

theoretical error estimate in a future publication.

Related issues in other decays have been studied in literature. The classi�cation of the operators

contributing in O(1=m

3

b

), estimates of their matrix elements, and e�ects on the decay rates and spectra

in the decays B ! X`�

`

and B ! (D;D

�

)`�

`

have been studied in refs. [47{49]. Spectral moments

of the photon energy in the decay B ! X

s

 have been studied in ref. [50]. For studies of O(1=m

3

b

)

contributions in this decay and the e�ects of the experimental cut (on the photon energy) on the

photon energy moments, see ref. [51].

Finally, concerning the power corrections related to the c�c loop in B ! X

s

`

+

`

�

, it has been

suggested in [20] that an O(�

2

QCD

=m

2

c

) expansion in the context of HQET can be carried out to

take into account such e�ects in the invariant mass spectrum away from the resonances. Using the

expressions (obtained with m

s

= 0) for the 1=m

2

c

amplitude, we have calculated the partonic energy

21



Figure 6: hS

H

i (solid bands) and hS

2

H

i (dashed bands) correlation in (�

1

-

�

�) space for �xed values

hS

H

i = 1:64 GeV

2

and hS

2

H

i = 4:48 GeV

4

, corresponding to the central values in Table 3. The curves

are forced to meet at the point �

1

= �0:2 GeV

2

and

�

� = 0:39 GeV.

HQET hS

H

i hS

2

H

i hE

H

i hE

2

H

i

(GeV

2

) (GeV

4

) (GeV) (GeV

2

)

�

+

�

�

1:64� 0:06 4:48� 0:29 2:21� 0:04 5:14� 0:16

e

+

e

�

1:79� 0:07 4:98� 0:29 2:41� 0:06 6:09� 0:29

Table 3: Hadronic spectral moments for B ! X

s

�

+

�

�

and B ! X

s

e

+

e

�

in HQET with

�

� = 0:39GeV ,

�

1

= �0:2GeV

2

, and �

2

= 0:12GeV

2

. The quoted errors result from varying �; �

s

and the top mass

within the ranges given in Table 1.

moments 4hx

n

0

i, which correct the short-distance result at order �

2

=m

2

c

:

4hx

n

0

i

B

B

0

= �

256C

2

�

2

27m

2

c

Z

1=2(1�4m̂

2

l

)

0

dx

0

x

n+2

0

Re

"

F (r)

 

C

e�

9

(3� 2x

0

) + 2C

e�

7

�3 + 4x

0

+ 2x

2

0

2x

0

� 1

!#

;

r =

1� 2x

0

4m̂

2

c

; (67)

F (r) =

3

2r

8

>

>

>

<

>

>

>

:

1

p

r(1� r)

arctan

r

r

1� r

� 1 0 < r < 1 ;

1

2

p

r(r� 1)

 

ln

1�

p

1� 1=r

1 +

p

1� 1=r

+ i�

!

� 1 r > 1 :

(68)

The invariant mass and mixed moments give zero contribution in the order we are working, with

m

s

= 0. Thus, the correction to the hadronic mass moments are vanishing, if we further neglect terms
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proportional to

�

2

m

2

c

�

� and

�

2

m

2

c

�

i

, with i = 1; 2. For the hadron energy moments we obtain numerically

4hE

H

i

1=m

2

c

= m

B

4hx

0

i = �0:007GeV ;

4hE

2

H

i

1=m

2

c

= m

2

B

4hx

2

0

i = �0:013GeV

2

; (69)

leading to a correction of order �0:3% to the short-distance values presented in Table 5. The power

corrections presented here in the hadron spectrum and hadronic spectral moments in B ! X

s

`

+

`

�

are

the �rst results in this decay.

6 Hadron Spectra and Moments in the Fermi Motion Model

In this section, we study the non-perturbative e�ects associated with the bound state nature of the

B hadron on the hadronic invariant mass and hadron energy distributions in the decay B ! X

s

`

+

`

�

.

These e�ects are studied in the FM model [28]. The hadronic moments in this model are compared

with the ones calculated in the HQET approach for identical values of the equivalent parameters. We

also de�ne this equivalence and illustrate this numerically for some values of the FM model parameters

resulting from �ts of data in other B decays. With the help of the phenomenological pro�les in the

FM model, we study the e�ects of the experimental cuts used by the CLEO collaboration [30] on the

hadron spectra and spectral moments in the decay B ! X

s

`

+

`

�

. The resulting branching ratios and

the hadronic invariant mass moments are calculated for several values of the FM parameters and can

be compared directly with data when it becomes available.

6.1 Hadron spectra in B ! X

s

`

+

`

�

in the Fermi motion model [28]

The Fermi motion model [28] has received a lot of phenomenological attention in B decays, partly

boosted by studies in the context of HQET showing that this model can be made to mimic the e�ects

associated with the HQET parameters

�

� and �

1

[39,17]. We further quantify this correspondence in

this paper. In the context of rare B decays, this model has been employed to calculate the energy

spectra in the decay B ! X

s

+  in [52], which was used subsequently by the CLEO collaboration in

their successful search of this decay [53]. It has also been used in calculating the dilepton invariant

mass spectrum and FB asymmetry in B ! X

s

`

+

`

�

in ref. [15].

The FM model has two parameters p

F

and the spectator quark mass m

q

. Energy-momentum

conservation requires the b-quark mass to be a momentum-dependent parameter determined by the

constraint:

m

2

b

(p) = m

B

2

+m

q

2

� 2m

B

q

p

2

+m

q

2

; p = j~pj : (70)

The b-quark momentum p is assumed to have a Gaussian distribution, denoted by �(p), which is
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determined by p

F

�(p) =

4

p

�p

F

3

exp(

�p

2

p

F

2

) ; (71)

with the normalization

R

1

0

dp p

2

�(p) = 1. In this model, the HQET parameters are calculable in

terms of p

F

and m

q

with

�

� =

Z

1

0

dp p

2

�(p)

q

m

2

q

+ p

2

;

�

1

= �

Z

1

0

dp p

4

�(p) = �

3

2

p

2

F

: (72)

In addition, for m

q

= 0, one can show that

�

� = 2p

F

=

p

�. There is, however, no parameter in the FM

model analogous to �

2

in HQET. Curiously, much of the HQET malaise in describing the spectra in

the end-point regions is related to �

2

, as also shown in [17,15]. For subsequent use in working out the

normalization (decay widths) in the FM model, we also de�ne an e�ective b-quark mass by

m

e�

b

� (

Z

1

0

dp p

2

m

b

(p)

5

�(p))

1=5

: (73)

The relation between m

B

, m

b

,

�

�, �

1

and �

2

in HQET has already been stated. With the quantity

m

e�

b

de�ned in eq. (73) and the relations in eqs. (72) for �

1

and

�

�, the relation

m

B

= m

e�

b

+

�

�� �

1

=(2m

e�

b

) ; (74)

is found to be satis�ed in the FM model to a high accuracy (better than 0:7%), which is shown in

Table 4 for some representative values of the HQET parameters and their FM model equivalents. We

shall use the HQET parameters

�

� and �

1

to characterize also the FM model parameters, with the

relations given in eqs. (72) and (73) and in Table 4.

With this we turn to discuss the hadron energy spectrum in the decay B ! X

s

`

+

`

�

in the FM

model including the O(�

s

) QCD corrections. The spectrum

dB

dE

H

(B ! X

s

`

+

`

�

) is composed of a

Sudakov improved piece from C

2

9

and the remaining lowest order contribution. The latter is based on

the parton model distribution, which is well known and given below for the sake of completeness:

dB

ds

= B

0

�u

m
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s

2
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2
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s
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7

j

2

s
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4

b
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2

s

m

2
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; (75)
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q
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2

s

)
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b

s

m

2
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B
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�
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5

b

;

�

sl

=

G

2

F

V

2

cb

m

5

b

192�

3

f(m̂

c

)�(m̂

c

) : (76)
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Note that in the lowest order expression just given, we have jC

e�

9

(s)j

2

= jY (s)j

2

+ 2C

9

Re(Y (s)) with

the rest of C

e�

9

(s) now included in the Sudakov-improved piece as can be seen in eq. (32). To be

consistent, the total semileptonic width �

sl

, which enters via the normalization constant B

0

, has also

to be calculated in the FM model with the same set of the model parameters. We implement the

correction in the decay width by replacing the b-quark mass in �

sl

given in eq. (76) by m

e�

b

. (See [15]

for further quantitative discussions of this point on the branching ratio for the decay B ! X

s

`

+

`

�

.)

The hadronic invariant mass spectrum in the decay B ! X

s

`

+

`

�

in this model is calculated very much

along the same lines. The kinematically allowed ranges for the distributions are m

X

� E

H

� m

B

and m

2

X

� S

H

� m

2

B

, and we recall here that the physical threshold has been implemented by

demanding that the lowest hadronic invariant mass produced in the decay B ! X

s

`

+

`

�

satis�es

m

X

= max(m

K

; m

q

+m

s

). The results for the hadron energy and the hadronic invariant mass spectra

are presented in Figs. 7 and 9, respectively. We do not show the S

H

distribution in the entire range,

as it tends monotonically to zero for larger values of S

H

.

Figure 7: Hadron energy spectrum in B ! X

s

`

+

`

�

in the Fermi motion model based on the per-

turbative contribution only. The solid, dotted, dashed curve corresponds to the parameters (�

1

;

�

�) =

(�0:3; 0:5); (�0:1; 0:4); (�0:15; 0:35) in (GeV

2

, GeV), respectively.

A number of remarks is in order:

� The hadron energy spectrum in B ! X

s

`

+

`

�

is rather insensitive to the model parameters. Also,

the di�erence between the spectra in the FM and the parton model is rather small as can be

seen in Fig. 8. Since, away from the lower end-point and the c�c threshold, the parton model
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58

60

�

�

�

�

Figure 8: Hadron energy spectrum in B ! X

s

`

+

`

�

based on the perturbative contribution only, in

the Fermi motion model (dotted curve) for (p

F

; m

q

) = (252; 300) (MeV;MeV ), yielding m

e�

b

= 4:85

GeV, and in the parton model (long-short dashed curve) for m

b

= 4:85 GeV.

and HQET have very similar spectra (see Fig. 5), the estimates presented in Fig. 7 provide a

good phenomenological pro�le of this spectrum for the short-distance contribution. Very similar

conclusions were drawn in [33] for the corresponding spectrum in the decay B ! X

u

`�

`

, where,

of course, the added complication of the c�c threshold is not present.

� In contrast to the hadron energy spectrum, the hadronic invariant mass spectrum in B !

X

s

`

+

`

�

is sensitive to the model parameters, as can be seen in Fig. 9. Again, one sees a close

parallel in the hadronic invariant mass spectra in B ! X

s

`

+

`

�

and B ! X

u

`�

`

, with the latter

worked out in [34]. We think that the present theoretical dispersion on the hadron spectra in

the decay B ! X

s

`

+

`

�

can be considerably reduced by the analysis of data in B ! X

u

`�

`

.

� The hadronic invariant mass distribution obtained by the O(�

s

)-corrected partonic spectrum

and the HQET mass relation can only be calculated over a limited range of S

H

, S

H

> m

B

�

�, as

shown in Fig. 3. The larger is the value of

�

�, the smaller is this region. Also, in the range where

it can be calculated, it depends on the non-perturbative parameter m

b

(or

�

�). A comparison of

this distribution and the one in the FM model may be made for the same values of m

b

and m

e�

b

.

This is shown for m

b

= 4:85 GeV in Fig. 9 for HQET (long-short dashed curve) to be compared

with the dotted curve in the FM model, which corresponds to m

e�

b

= 4:85 GeV. We see that

the two distributions di�er though they are qualitatively similar.
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Figure 9: Hadronic invariant mass spectrum in the Fermi motion model and parton model, based

on the perturbative contribution only. The solid, dotted, dashed curve corresponds to the parameters

(�

1

;

�

�) = (�0:3; 0:5); (�0:1; 0:4); (�0:15; 0:35) in (GeV

2

, GeV), respectively. The parton model (long-

short dashed) curve is drawn for m

b

= 4:85 GeV.

6.2 Numerical Estimates of the Hadronic Moments in FM model and HQET

To underline the similarity of the HQET and FM descriptions in B ! X

s

`

+

`

�

, and also to make

comparison with data when it becomes available with the FM model, we have calculated the hadronic

moments in the FM model using the spectra just described. The moments are de�ned as usual:

hX

n

H

i � (

Z

X

n

H

dB

dX

H

dX

H

)=B for X = S;E : (77)

The values of the moments in both the HQET approach and the FM for n = 1; 2 are shown in Table 5

for the decay B ! X

s

�

+

�

�

, with the numbers in the parentheses corresponding to the former. They

are based on using the central values of the parameters given in Table 1 and are calculated for the

same values of the HQET parameters

�

� and �

1

, using the transcriptions given in eqs. (72). Both the

HQET and the FM model lead to strikingly similar results for the hadronic moments shown in this

table. With hS

H

i ' (1:5�2:1) GeV, the hadronic invariant mass spectra in B ! X

s

`

+

`

�

are expected

to be dominated by multi-body states.
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p

F

; m

q

(MeV,MeV) m

e�

b

(GeV) �

1

(GeV

2

)

�

� (GeV)

(450; 0) 4:76 -0.304 0.507

(252; 300) 4:85 -0.095 0.422

(310; 0) 4:92 -0.144 0.350

(450; 150) 4:73 -0.304 0.534

(500; 150) 4:68 -0.375 0.588

(570; 150) 4:60 -0.487 0.664

Table 4: Values of non perturbative parameters m

e�

b

, �

1

and

�

� for di�erent sets of the FM model

parameters (p

F

; m

q

) taken from various �ts of the data on B ! X

s

+ (J= ; ) decays discussed in

ref. [29].

hS

H

i hS

2

H

i hE

H

i hE

2

H

i

(�

1

;

�

�) in (GeV

2

, GeV) (GeV

2

) (GeV

4

) (GeV) (GeV

2

)

(�0:3; 0:5) 2.03 (2.09) 6.43 (6.93) 2.23 (2.28) 5.27 (5.46)

(�0:1; 0:4) 1.75 (1.80) 4.04 (4.38) 2.21 (2.22) 5.19 (5.23)

(�0:14; 0:35) 1.54 (1.49) 3.65 (3.64) 2.15 (2.18) 4.94 (5.04)

Table 5: Hadronic spectral moments for B ! X

s

�

+

�

�

in the Fermi motion model (HQET) for the

indicated values of the parameters (�

1

;

�

�).

7 Branching Ratios and Hadron Spectra in B ! X

s

`

+

`

�

with Cuts

on Invariant Masses

The short-distance (SD) contribution (electroweak penguins and boxes) is expected to be visible

away from the resonance regions dominated by B ! X

s

(J= ;  

0

; :::) ! X

s

`

+

`

�

. So, cuts on the

invariant dilepton mass are imposed to get quantitative control over the long-distance (LD) resonant

contribution. For example, the cuts imposed in the recent CLEO analysis [30] given below are typical:

cut A : q

2

� (m

J= 

� 0:1GeV)

2

= 8:98GeV

2

;

cut B : q

2

� (m

J= 

� 0:3GeV)

2

= 7:82GeV

2

;

cut C : q

2

� (m

 

0

+ 0:1GeV)

2

= 14:33GeV

2

: (78)

The cuts A and B have been chosen to take into account the QED radiative corrections as these

e�ects are di�erent in the e

+

e

�

and �

+

�

�

modes. In a forthcoming paper [29], we shall compare the

hadron spectra with and without the B ! (J= ;  

0

; :::)! X

s

`

+

`

�

resonant parts after imposing these

experimental cuts to quantify the theoretical uncertainty due to the residual LD-e�ects. Based on

this study, we argue that the above cuts in q

2

greatly reduce the resonant part. Hence, the resulting

distributions and moments with the above cuts essentially test (up to the non-perturbative aspects)
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the SD contribution in B ! X

s

`

+

`

�

.

As mentioned in [30], the dominant B

�

B background to the decay B ! X

s

`

+

`

�

comes from two

semileptonic decays of B or D mesons, which produce the lepton pair with two undetected neutrinos.

To suppress this B

�

B background, it is required that the invariant mass of the �nal hadronic state

is less than t = 1:8GeV, which approximately equals m

D

. We de�ne the survival probability of the

B ! X

s

`

+

`

�

signal after the hadronic invariant mass cut:

S(t) � (

Z

t

2

m

2

X

dB

dS

H

dS

H

)=B ; (79)

and present S(t = 1:8 GeV) as the fraction of the branching ratio for B ! X

s

`

+

`

�

surviving these

cuts in Table 6. We note that the e�ect of this cut alone is that between 83% to 92% of the signal for

B ! X

s

�

+

�

�

and between 79% to 91% of the signal in B ! X

s

e

+

e

�

survives, depending on the FM

model parameters. This shows that while this cut removes a good fraction of the B

�

B background,

it allows a very large fraction of the B ! X

s

`

+

`

�

signal to survive. However, this cut does not

discriminate between the SD- and LD- contributions, for which the cuts A - C are e�ective.

With the cut A (B) imposed on the dimuon (dielectron) invariant mass, we �nd that between 57%

to 65% (57% to 68%) of the B ! X

s

`

+

`

�

signal survives the additional cut on the hadronic invariant

mass for the SD contribution. The theoretical branching ratios for both the dielectron and dimuon

cases, calculated using the central values in Table 1 are also given in Table 6. As estimated in [15],

the uncertainty on the branching ratios resulting from the errors on the parameters in Table 1 is

about �28% (for the dielectron mode) and �21% (for the dimuon case). The wave-function-related

uncertainty in the branching ratios is negligible, as can be seen in Table 6. This reects that, like

in HQET, the corrections to the decay rates for B ! X

s

`

+

`

�

and B ! X`�

`

are of order 1=m

2

b

,

and a good part of these corrections cancel in the branching ratio for B ! X

s

`

+

`

�

. With the

help of the theoretical branching ratios and the survival probability S(t = 1:8 GeV), calculated for

three sets of the FM parameters, the branching ratios can be calculated for all six cases with the

indicated cuts in Table 6. This gives a fair estimate of the theoretical uncertainties on the partially

integrated branching ratios from the B-meson wave function e�ects. This table shows that with 10

7

B

�

B events, O(70) dimuon and O(100) dielectron signal events from B ! X

s

`

+

`

�

should survive the

CLEO cuts A (B) with m(X

s

) < 1:8 GeV. With cut C, one expects an order of magnitude less

events, making this region interesting for the LHC experiments. We show in Fig. 10 hadron spectra

in B ! X

s

`

+

`

�

, `

�

= e

�

; �

�

, resulting after imposing the CLEO cuts A, B,C, de�ned in eq. (78).

One sees that the general features of the (uncut) theoretical distributions remain largely intact: the

hadron energy spectra are relatively insensitive to the FM parameters and the hadronic invariant

mass spectra showing a sensitive dependence on them. Given enough data, one can compare the

experimental distributions in B ! X

s

`

+

`

�

directly with the ones presented in Fig. 10.
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FM parameters B � 10

�6

B � 10

�6

No s-cut No s-cut cut A cut B cut C cut C

(�

1

;

�

�) in (GeV

2

, GeV) �

+

�

�

e

+

e

�

�

+

�

�

e

+

e

�

�

+

�

�

e

+

e

�

�

+

�

�

e

+

e

�

(�0:3; 0:5) 5.8 8.6 83% 79 % 57% 57% 6:4% 4:5%

(�0:1; 0:4) 5.7 8.4 93% 91 % 63% 68% 8:3% 5:8%

(�0:14; 0:35) 5.6 8.3 92% 90 % 65% 67% 7:9% 5:5%

Table 6: Branching ratios for B ! X

s

`

+

`

�

, ` = �; e for di�erent FM model parameters are given in

the second and third columns. The values given in percentage in the fourth to ninth columns represent

the survival probability S(t = 1:8 GeV), de�ned in eq. (79), with no cut on the dilepton invariant mass

and with cuts on this variable as de�ned in eq. (78).

We have calculated the �rst two moments of the hadronic invariant mass in the FM model by

imposing a cut S

H

< t

2

with t = 1:8GeV and an optional cut on q

2

.

hS

n

H

i = (

Z

t

2

m

2

X

S

n

H

d

2

B

cutX

dS

H

dq

2

dS

H

dq

2

)=(

Z

t

2

m

2

X

d

2

B

cutX

dS

H

dq

2

dS

H

dq

2

) for n = 1; 2 : (80)

Here the subscript cutX indicates whether we evaluated hS

H

i and hS

2

H

i with the cuts on the invariant

dilepton mass as de�ned in eq. (78), or without any cut on the dilepton mass. The results are collected

in Table 7. The moments given in Table 7 can be compared directly with the data to extract the

FM model parameters. The entries in this table give a fairly good idea of what the e�ects of the

experimental cuts on the corresponding moments in HQET will be, as the FM and HQET yield very

similar moments for equivalent values of the parameters. The functional dependence of the hadronic

moments on the HQET parameters taking into account the experimental cuts still remains to be

worked out.

FM No s-cut No s-cut cut A cut B cut C

parameters �

+

�

�

e

+

e

�

�

+

�

�

e

+

e

�

`

+

`

�

(�

1

;

�

�) hS

H

i hS

2

H

i hS

H

i hS

2

H

i hS

H

i hS

2

H

i hS

H

i hS

2

H

i hS

H

i hS

2

H

i

GeV

2

, GeV GeV

2

GeV

4

GeV

2

GeV

4

GeV

2

GeV

4

GeV

2

GeV

4

GeV

2

GeV

4

(�0:3; 0:5) 1.47 2.87 1.52 3.05 1.62 3.37 1.66 3.48 0.74 0.69

(�0:1; 0:4) 1.57 2.98 1.69 3.37 1.80 3.71 1.88 3.99 0.74 0.63

(�0:14; 0:35) 1.31 2.34 1.38 2.55 1.47 2.83 1.52 2.97 0.66 0.54

Table 7: hS

H

i and hS

2

H

i for B ! X

s

`

+

`

�

, ` = �; e for di�erent FM model parameters and a hadronic

invariant mass cut S

H

< 3:24GeV

2

are given in the second to �fth columns. The values in the sixth to

eleventh columns have additional cuts on the dilepton invariant mass spectrum as de�ned in eq. (78).

The S

H

-moments with cuts are de�ned in eq. (80).
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8 Summary and Concluding Remarks

We summarize our results:

� We have calculated the O(�

s

) perturbative QCD and leading O(1=m

b

) corrections to the hadron

spectra in the decay B ! X

s

`

+

`

�

, including the Sudakov-improvements in the perturbative part.

� We �nd that the hadronic invariant mass spectrum is calculable in HQET over a limited range

S

H

> m

B

�

� and it depends sensitively on the parameter

�

� (equivalently m

b

). These features

are qualitatively very similar to the ones found for the hadronic invariant mass spectrum in the

decay B ! X

u

`�

`

[34].

� The 1=m

b

-corrections to the parton model hadron energy spectrum in B ! X

s

`

+

`

�

are small

over most part of this spectrum. However, heavy quark expansion breaks down near the lower

end-point of this spectrum and close to the c�c threshold. The behavior in the former case has a

similar origin as the breakdown of HQET near the high end-point in the dilepton invariant mass

spectrum, found in ref. [15].

� We have calculated the hadronic spectral moments hS

n

H

i and hE

n

H

i for n = 1; 2 using HQET. The

dependence of these moments on the HQET parameters is worked out numerically. In particular,

the moments hS

n

H

i are sensitive to the parameters

�

� and �

1

and they provide complementary

constraints on them than the ones following from the analysis of the decay B ! X`�

`

. The

simultaneous �t of the data in B ! X

s

`

+

`

�

and B ! X`�

`

could then be used to determine

these parameters very precisely. This has been illustrated in ref. [36] based on the present work.

� The corrections to the hadron energy moments 4hE

H

i

1=m

2

c

and 4hE

2

H

i

1=m

2

c

from the leading

O(�

2

QCD

=m

2

c

) power corrections have been worked out, using the results of ref. [20]. We �nd

that these corrections are very small. The corresponding corrections in 4hS

n

H

i

1=m

2

c

vanish in the

theoretical accuracy we are working.

� We think that the quantitative knowledge of

�

� and �

1

from the moments can be used to remove

much of the theoretical uncertainties in the partially integrated decay rates in B ! X

u

`�

`

and

B ! X

s

`

+

`

�

. Realating the two decay rates would enable a precise determination of the CKM

matrix element V

ub

.

� As a phenomenological alternative to HQET, we have worked out the hadron spectra and spectral

moments in B ! X

s

`

+

`

�

in the Fermi motion model [28]. This complements the description of

the �nal states in B ! X

s

`

+

`

�

presented in [15], where the dilepton invariant mass spectrum

and FB asymmetry were worked out in both the HQET and FM model approaches. We �nd
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that the hadron energy spectrum is stable against the variation of the FM model parameters.

However, the hadronic invariant mass is sensitive to the input parameters. For equivalent values

of the FM and HQET parameters, the spectral moments are found to be remarkably close to

each other.

� We have worked out the hadron spectra and spectral moments in the FM model by imposing

the CLEO experimental cuts designed to suppress the resonant c�c contributions, as well as the

dominant B

�

B background leading to the �nal state B

�

B ! X

s

`

+

`

�

(+ missing energy). The

parametric dependence of the resulting spectra is studied. In particular, the survival probability

of the B ! X

s

`

+

`

�

signal is estimated by imposing a cut on the hadronic invariant mass

S

H

< 3:24 GeV

2

and on the dilepton invariant mass as used in the CLEO analysis. The spectra

and moments can be directly compared with data.

We hope that the work presented here will contribute to precise determinations of the HQET

parameters and V

ub

using the inclusive decays B ! X

s

`

+

`

�

and B ! X

u

`�

`

in forthcoming B

facilities.
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Appendices

A Coe�cient Functions g

(9;10)

i

; g

(7)

i

; g

(7;9)

i

; h

(9)

i

; h

(7;9)

i

; k

(9)

1

; k

(7;9)

1

These functions enter in the derivation of the leading (1=m

2

b

) corrections to the hadron energy spectrum

in B ! X

s

`

+

`

�

, given in eq. (53).

g

(9;10)

0

=

q

x

2

0

� m̂

2

s

32

3

(�2m̂

2

s

+ 3x

0

+ 3m̂

2

s

x

0

� 4x

2

0

) ; (A-1)

g

(9;10)

1

=

1

q

x

2

0

� m̂

2

s

16

9

(9m̂

2

s

+ 23m̂

4

s

� 18m̂

2

s

x

0

� 18x

2

0

� 52m̂

2

s

x

2

0

+ 36x

3

0

+ 20x

4

0

) ; (A-2)

g

(9;10)

2

=

1

q

x

2

0

� m̂

2

s

16

3

(3m̂

2

s

+ 23m̂

4

s

� 3x

0

� 21m̂

2

s

x

0

� 6x

2

0

� 52m̂

2

s

x

2

0

+ 36x

3

0

+ 20x

4

0

) ; (A-3)

g

(7)

0

=

q

x

2

0

� m̂

2

s

64

3

(10m̂

2

s

+ 10m̂

4

s

� 3x

0

� 18m̂

2

s

x

0

� 3m̂

4

s

x

0

+ 2x

2

0

+ 2m̂

2

s

x

2

0

) ; (A-4)

g

(7)

1

=

1

q

x

2

0

� m̂

2

s

1

(x

0

�

1

2

(1 + m̂

2

s

))

2

�8

9

(9m̂

2

s

+ 34m̂

4

s

+ 104m̂

6

s

+ 110m̂

8

s

+ 31m̂

10

s

� 132m̂

4

s

x

0

� 312m̂

6

s

x

0

� 180m̂

8

s

x

0

� 18x

2

0

� 170m̂

2

s

x

2

0

� 58m̂

4

s

x

2

0

+ 74m̂

6

s

x

2

0

� 20m̂

8

s

x

2

0

+ 72x

3

0

+ 564m̂

2

s

x

3

0

+ 576m̂

4

s

x

3

0

+ 228m̂
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(ŝ

0

� m̂

2

s

)i

B

B

0

=

�

s

�

A

(1;1)

C

2

9

+

"

�8

27

(1 + 3 ln(4

m

2

l

m

2

B

))C

e�

7

2

+ 23

C

2

10

270

+

Z
1

2

0

dx

0

(

128

3

(3� 5x

0

)x

3

0

Re(C

e�

9

)C

e�

7

+

32

9

(9� 27x

0

+ 20x

2

0

)x

3

0

jC

e�

9

j

2

)

#

�

1

m

2

B

+

"

�8

3

(5 + 3 ln(4

m

2

l

m

2

B

))C

e�

7

2

+ 13

C

2

10

90

(D-92)

+

Z 1

2

0

dx

0

(

128

3

x

3

0

(3 + 7x

0

)Re(C

e�

9

)C

e�

7

+

32

3

x

3

0

(3 + 3x

0

� 20x

2

0

)jC

e�

9

j

2

#

�

2

m

2

B

;

hŝ
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Figure 10: Hadron spectra in B ! X
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in the Fermi motion model with the cuts on the dilpeton

mass de�ned in eq. (78); (a),(c),(e) for the hadronic energy and (b),(d),(f) for the hadronic invariant

mass corresponding to cut A,B,C, respectively. The solid, dotted, dashed curves correspond to the

parameters (�
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;
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�) = (�0:3; 0:5); (�0:1; 0:4); (�0:15; 0:35) in (GeV
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, GeV), respectively.
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