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Abstract

We calculate theO(�

s

) corrections to the production of a hard and isolated photon

accompanied by one or two jets in deep inelastic lepton nucleon scattering at HERA.

Numerical results are presented and the potential of this process for studies of parton

distribution functions is discussed.
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1 Introduction

The production of hard photons in hadronic processes is an important testing ground for

QCD. Since the photon does not take part in the strong interaction, it is a 'direct' probe

of the hard scattering process. Direct photon production in p [1] and in p�p collisions [2]

provides a means to determine the strong coupling constant �

s

and has been used to extract

information on the parton distributions, in particular the gluon density in the proton [3].

In e

+

e

�

annihilation [4], measurements of photon radiation in hadronic Z decays at LEP1

have provided important independent information on the electroweak couplings of up and

down quarks to the Z boson [5, 6]. Moreover, �nal states containing a photon are an

important background for many searches for new physics and a good knowledge of the

standard model predictions for direct photon production is therefore required.

At HERA, radiative deep inelastic scattering, ep! eX, with photons collinear to the

incoming electron has been used to obtain a measurement of the structure function F

2

at

low values of the momentum transfer Q

2

[7]. Also the �rst observation of hard non-collinear

photons at Q

2

= 0, i.e. in photoproduction has been reported recently [8]. With increasing

luminosity this measurement is expected to contribute information on the parton content

of the photon and the proton. By contrast, direct photon production at large Q

2

would be

sensitive to the parton distributions in the proton only. The information obtained this way

would be complementary to the F

2

measurement from inclusive deep inelastic scattering,

since up and down quarks contribute with di�erent weights. Typical cross sections for the

production of hard photons in deep inelastic scattering with Q

2

> 10 GeV

2

are of the order

of 10 pb. With a luminosity of 50 pb

�1

one thus expects statistical uncertainties of the

order of 5 % and a measurement of di�erential cross sections seems feasible.

Whereas next-to-leading order calculations for direct photon production are available

for photoproduction [1, 9], p�p collisions [10], as well as for e

+

e

�

annihilation [11, 12], a

corresponding calculation for deep inelastic ep scattering was still missing. In this work

we study the O(�

s

) corrections to the process ep ! eX at large Q

2

. Since hard photon

production is a process of relative order �

e

= 1=137 with respect to the total deep inelastic

scattering cross section, we expect sizable event rates only at moderately large Q

2

and

restrict ourselves therefore to pure photon exchange, i.e. Z-exchange contributions are

neglected. The calculations will be organized in such a way that the hadronic �nal state

can be separated into  + (1 + 1)-jet and  + (2 + 1)-jet topologies (the remnant being

counted as \+1" jet, as usual). Our approach is thus analogous to that in calculations of

(2 + 1)- and (3 + 1)-jet cross sections in deep inelastic scattering where a gluon is replaced

by a photon [13].  + (2 + 1)-jet events originate through the emission or absorption of a

gluon. Therefore the ratio of  + (2 + 1)-jet and  + (1 + 1)-jet events is sensitive to the

value of the strong coupling constant �

s

and to the gluon distribution.

In addition to perturbative direct production, photons are also produced through the

`fragmentation' of a hadronic jet into a single photon carrying a large fraction of the

jet energy [14]. This long-distance process is described in terms of the quark-to-photon
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and gluon-to-photon fragmentation functions. The necessity for taking into account non-

perturbative contributions is signaled by the presence of singularities showing up in a

perturbative calculation. These singularities are related to collinear photon-quark con�gu-

rations. The factorization theorem of QCD guarantees that all singularities can be absorbed

into well-de�ned universal parton-to-photon fragmentation functions, the remainder being

calculable in perturbation theory.

In practice, a measurement of direct photon production is feasible only when isola-

tion conditions are imposed on the observed photon in order to reduce various hadronic

backgrounds, in particular from two-photon decays of �

0

. The contribution from non-

perturbative parton-to-photon fragmentation, being related to collinear photon emission

from partons, can be reduced by isolation requirements, but is not completely removed.

Again, in a perturbative calculation, this is related to the presence of singularities. In fact,

if one tries to model the experimental isolation conditions by imposing cuto�s on parton-

level jets, one can not exclude contributions due to soft quarks having emitted a hard

collinear photon; the soft quark may appear only as part of a parton-level jet, but not as a

separate, observable jet which can enter the isolation conditions

1

. The implementation of

photon isolation is particularly non-trivial in a calculation including O(�

s

) contributions

since the isolation conditions a�ect the available phase space for gluon emission [19]. As

a consequence, the parton-to-photon fragmentation functions may have to be modi�ed for

isolated photon production and higher-order corrections may turn out to be large and to

require their resummation.

In the present work we adopt a simpler approach where the fragmentation contributions

are ignored completely. The photon-quark collinear singularities then have to be removed

by explicit parton-level cuto�s. The dependence of the �nal results on these cuto�s (dis-

cussed in section 4 below) will indicate to what extent the quark-to-photon fragmentation

function would contribute in a more systematic treatment.

2 The Leading-Order Process

In leading order (LO), the production of photons in deep inelastic electron (positron)

proton scattering is described by the quark (antiquark) subprocess

e(p

1

) + q(p

3

) ! e(p

2

) + q(p

4

) + (p

5

) (1)

where we have given the de�nition of the particle momenta in parentheses. The momentum

of the incoming quark is a fraction of the proton momentum p

P

: p

3

= �p

P

. The proton

1

The problem is most easily visible in e

+

e

�

!  + 1-jet, where already at leading order photon-jet

isolation does not remove the photon-quark collinear singularity [12]. A next-to-leading order calculation

[15] shows features typical for a next-to-next-to-leading order calculation. Measurements of the quark-to-

photon fragmentation function in e

+

e

�

! +1-jet had been proposed in Refs. [16, 17] and were described

in Refs. [18].
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remnant r carries the momentum

p

r

= (1� �)p

P

(2)

and hadronizes into the remnant jet so that the process (1) gives rise to  + (1 + 1)-jet

�nal states. The momentum of the hadronic �nal state, i.e. the (1 + 1)-jet system, is

p

P

+ p

1

� p

2

� p

5

and its invariant mass W is given by

W

2

= (p

P

+ p

1

� p

2

� p

5

)

2

: (3)

We will use the well-known kinematic variables for deep inelastic scattering

Q

2

= �(p

1

� p

2

)

2

; x =

Q

2

2p

P

(p

1

� p

2

)

; y =

Q

2

xs

; s = (p

1

+ p

P

)

2

; (4)

determined by the momentum of the scattered lepton. Because of the presence of the

photon in the �nal state, large Q

2

does not guarantee large W and we will have to require

explicitly W > W

min

in order to stay in the deep inelastic regime where a perturbative

treatment can be expected to work. Apart from this, we will also apply cuts on the variables

x, y and Q

2

since we ask for an observable scattered electron. These latter cuts remove

direct photon production in photoproduction.

Both leptons and quarks emit photons. The subset of Feynman diagrams where the

photon is emitted from the lepton (\leptonic radiation") is gauge invariant and can be

treated separately. Similarly, the Feynman diagrams with a photon emitted from the quark

line is called \quarkonic radiation". There is also a contribution from the interference of

these two parts. For tests of QCD the interest is in those contributions where the photon

is emitted from quarks and leptonic radiation is viewed as a background.

Radiative deep inelastic scattering appears as a contribution to QED radiative correc-

tions (see for example Ref. [20] and references therein). In this case the emitted photon

remains undetected and singularities due to soft and collinear photons have to be canceled

by taking into account virtual O(�) corrections to non-radiative scattering eq! eq. Here

we are interested in events with an observable photon, i.e. we restrict ourselves to the case

where the energy of the photon E



= E

5

is su�ciently large,

E



> E

;min

: (5)

Also, the photon should be spatially separated from all other particles:

�

;i

> �

sep

; (6)

where �

;i

is the angle between the momenta of the photon and particle i (= 1; 2; 3; 4 for

the leading-order process (1) and similarly for the next-to-leading order processes speci�ed

in section 3 below). In particular, the photon is not allowed to be emitted close to the

beams:

�

min

< �



< �

max

: (7)
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These cuts remove all photonic infrared and collinear singularities. Instead of using the

angle �

;i

, photon separation from �nal state particles can also be imposed by cuts on the

invariant masses

s

ij

= (p

i

+ p

j

)

2

(8)

or, normalized to the invariant mass of the hadronic �nal state,

y

ij

=

s

ij

W

2

: (9)

The condition

y

5i

> y



0

(10)

(i = 2; 4; r) is more comfortable for the analytic calculation, but less suited to experimental

requirements. Since we will perform the phase space integration with the help of Monte

Carlo techniques, we are not restricted to one speci�c choice of isolation criteria, but we

can apply a combination of the above cuts as will be described below.

At lowest order, each parton is identi�ed with a jet and photon-parton isolation corre-

sponds to the isolation of the photon from an observable jet. With isolation cuts, parton-

to-photon fragmentation does not contribute at this order.

3 O(�

s

) Corrections

At next-to-leading order (NLO), processes with an additional gluon, either emitted into

the �nal state or as incoming parton, have to be taken into account:

e(p

1

) + q(p

3

) ! e(p

2

) + q(p

4

) + (p

5

) + g(p

6

); (11)

e(p

1

) + g(p

3

) ! e(p

2

) + q(p

4

) + (p

5

) + �q(p

6

); (12)

where the de�nition of momenta is again shown in parentheses (see Fig. 1). In addition,

virtual corrections (one-loop diagrams at O(�

s

)) to the process (1) have to be included.

The amplitude for purely leptonic radiation at order O(�

s

) factorizes into a leptonic

tensor for e ! e

�

and a hadronic tensor including next-to-leading order QCD cor-

rections. Both parts are well-known and their combined contribution to deep inelastic

scattering is included for example in the Monte Carlo program DJANGO6 [21]. For the

O(�

s

) corrections to quarkonic radiation and in particular the lepton-quark interference,

a representation in terms of a leptonic and a hadronic tensor is not suitable. The corre-

sponding complete matrix elements including the leptonic and hadronic vertex have been

obtained with the help of form [22] and are given in [23].

Whereas the LO process leads to the appearance of events with a photon and one

current jet, + (1 + 1)-jets, in higher orders additional jets can be produced: the processes

(11, 12) contribute both to the +(1+1)-jetcross section, as well as to the cross section for
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Figure 1: Examples of Feynman diagrams for eq! eqg (a) and eg ! eq�q (b) with the

de�nition of momenta.

+ (2 + 1)-jets, depending on whether the quark-gluon or quark-antiquark pair in the �nal

state appears as one single jet or as two separated jets. The two cases can be identi�ed by

comparing the scaled invariant masses of parton pairs with a jet resolution parameter y

J

:

two partons (i; j) with i; j = 4; 6; r are supposed to lead to 2 jets if

y

ij

> y

J

: (13)

Also the remnant r is treated as a parton and a quark, antiquark, or gluon in the �nal state

is recombined with the remnant into one jet if y

ir

=

1��

�

y

i3

is smaller than y

J

0

. Similarly,

photon isolation can be imposed with the help of cuts on the scaled invariant masses.

In the phase space region where two jets can not be separated, the matrix elements

become singular. These singularities appear when one of the partons becomes soft or when

two partons become collinear to each other. The singularities can be assigned either to

the initial state or to the �nal state (ISR: initial-state radiation, FSR: �nal-state radia-

tion). The FSR singularities cancel against singularities from virtual corrections to the

lower-order process. For the ISR singularities, this cancellation is incomplete and the re-

maining singular contributions have to be factorized and absorbed into renormalized parton

distribution functions [24].

To accomplish this procedure, the singularities have to be isolated in an analytic cal-

culation, e.g. with the help of dimensional regularization. The application of dimensional

regularization is, however, not feasible for the complete cross section of the higher-order

processes. Therefore we use the so-called phase-space slicing method [25] to separate those

regions in the 4-particle phase space which give rise to singular contributions. A separation

cut y

J

0

is applied to the scaled invariant masses y

ij

and chosen small enough, such that

the calculation can be simpli�ed by neglecting terms of the order O(y

J

0

). Contributions

6



from phase space regions where one of the y

ij

is smaller than y

J

0

are singular and have to

be combined with the one-loop corrections to obtain a �nite result. The sum of these two

contributions de�nes the cross section for events where two partons are recombined into a

parton-level jet (parton-level (1 + 1)-jet events). The contributions where all y

ij

are bigger

than y

J

0

are related to �nal states with three separate partons (parton-level (2 + 1)-jet

events). The latter are free of singularities and can be calculated with the help of Monte

Carlo techniques.

As known from similar calculations (e.g., for the (non-radiative) jet cross sections in

DIS [26]), the phase space slicing parameter y

J

0

has to be chosen very small, of the order

of 10

�3

or smaller, in order to allow for the neglect of terms of order O(y

J

0

). Therefore, y

J

0

can not be identi�ed with the y-cut of a jet algorithm applied in an experimental analysis.

There, due to experimental restrictions, y cannot be reduced to values below O(10

�3

).

In addition, a �xed-order calculation may give unphysical, i.e. negative (1 + 1)-jet cross

sections for too small values of y (see the curves labeled with S in Figs. 2a and 3a below).

The Monte Carlo approach, however, allows to apply a jet algorithm to the parton-level

events, i.e. to recombine 2 partons in the parton-level (2 + 1)-jet events according to a jet

algorithm using y-cuts y

J

for the separation of jet pairs (similarly: y



for the separation

of a jet and a photon) with values as appropriate for the given experimental situation.

The calculation thus proceeds through two subsequent steps: First, phase space slicing

is applied with a small y-cut y

J

0

of the order of

<

�

10

�3

to accomplish the cancellation of

singularities. This step relies on analytic calculations. Secondly, a jet algorithm is applied

with experimentally realizable, i.e. large enough values y

J

and y



of the order of 0:01�0:1.

The second step is performed during the Monte Carlo integration.

The singular contributions for the process eq! eqg involve the following factors

(

1

y

36

;

1

y

46

)

; (14)

those for eg ! eq�q contain the factors

(

1

y

36

;

1

y

34

)

: (15)

Terms containing 1=y

3i

, i.e. the momentum p

3

of the incoming parton, are associated

to initial-state singularities, terms that do not, to �nal-state singularities. Contributions

involving the product of an ISR and an FSR factor, as for example the factor 1=y

36

y

46

, can

be separated by partial fractioning,

1

y

ij

y

ik

=

1

y

ij

1

y

ij

+ y

ik

+

1

y

ik

1

y

ij

+ y

ik

; (16)

so that all singular contributions can be associated either to the initial state or to the �nal

state. Note that the denominator y

ij

+ y

ik

introduced by partial fractioning can become

7



zero only if both y

ij

= 0 and y

ik

= 0 at the same time; since con�gurations where all three

partons 3, 4, and 6 are collinear with each other are excluded by the cut on W , this is

possible only for p

i

= 0. Therefore, for a contribution containing the pole factor 1=y

ij

, we

can separate the phase space into three regions:

� y

ij

< y

J

0

. This region contains the infrared singularity at y

ij

= y

ik

= 0, as well

as the collinear singularity at y

ij

= 0, y

ik

> 0 and leads to singular contributions,

i.e. 1=� and 1=�

2

poles in dimensional regularization. The double-poles 1=�

2

and

parts of the single-poles 1=� cancel with corresponding singular contributions from

virtual corrections. The remaining 1=�-pole contributions are associated to the initial

state, can be factorized, and are absorbed by renormalizing the parton distribution

functions. The analytical integration over this phase space region is performed with

the approximation of small y

J

0

, i.e. neglecting terms of O(y

J

0

). This contribution will

be denoted by \S" (singular) below.

� y

ij

� y

J

0

and y

ik

� y

J

0

with only parton-level  + (2 + 1)-jet events, denoted by \R"

(real corrections);

� y

ij

� y

J

0

and y

ik

< y

J

0

. Here, the result is non-singular (therefore denoted by \F",

�nite) but does not vanish with y

J

0

! 0, contrary to naive expectations. Its contri-

bution is calculated numerically. It is non-negligible in particular for terms related

to ISR singularities.

The integrals needed for the singular contributions are written in a Lorentz-invariant

form as tensor integrals which can be reduced to a few basic scalar integrals with the help of

analytic programs like mathematica or form. More details are given in [23]. The remaining

phase space integrations are performed with the help of Monte Carlo techniques. The three

contributions S, R, and F are treated separately, each with appropriate mappings of the

respective integration variables to improve the numerical stability of the calculation.

As discussed in the introduction, in the present work we do not factorize and subtract

those photon-parton collinear singularities which have to be absorbed into parton-to-photon

fragmentation functions. Instead, we remove all singular contributions by keeping isolation

cuts at the parton level. As stated in the introduction, care has to be taken that the

isolation criteria do not restrict the phase space for gluon emission since this would destroy

the cancellation of singular contributions. Therefore, in the �rst step of the calculation

described above, we require the photon to be isolated from the quark (antiquark) by the

cut

y

5i

> y



0

(17)

with i = 3; 4 for eq ! eqg and i = 4; 6 for eg ! eq�q. The cut is not applied to

photon-gluon pairs which is possible since gluons do not emit photons and there is no

singularity related to y

g

. This de�nition of photon isolation at the parton level introduces

an unphysical parameter (y



0

). The sensitivity to y



0

can be reduced by applying, in the

8



second step of the calculation, photon isolation with respect to jets described by cuto�

parameters which can be used in the same way in the experimental analysis. In order to

have some freedom when modeling these physical isolation criteria we choose a small value

for y



0

. The dependence on y



0

will be discussed below.

4 Numerical Results

The results discussed in the following are obtained for energies and cuts appropriate for

the HERA experiments: the energies of the incoming electron (positron) and proton are

E

e

= 27:5 GeV, E

P

= 820 GeV and

Q

2

� 10 GeV

2

; W � 10 GeV;

0:001 � x � 0:5; 0:05 � y � 0:99;

p

T



� 5 GeV; 90

�

� �



� 170

�

; �

e

� 10

�

:

(18)

Note that the emission angle of the photon, �



, measured with respect to the incoming

electron in the HERA laboratory frame, is restricted to the hemisphere �



� 90

�

since

photon production with �



< 90

�

is dominated by `uninteresting' leptonic radiation. The

parton distribution functions are taken from Ref. [28] (MRS(A)).

The events generated during Monte Carlo integration are q, qg or q�q events. A

simple event analysis is applied to obtain  + (1 + 1)-jet and  + (2 + 1)-jet event samples.

The event analysis consists of two parts: the �rst part serves to identify the number of

jets according to a conventional jet algorithm; the second part treats photon isolation. For

simplicity we choose a jet de�nition using the normalized invariant masses y

ij

. Since for

small � � x the momentum of the remnant and thus y

ir

can be large even for partons with

small transverse momentum, we �rst remove low-p

T

partons before recombining partons

to jets. Explicitly we apply the following conditions:

(1) A �nal state parton (quark or gluon) is recombined with the remnant if its transverse

momentum is below a cuto�:

p

T

i

< p

T

min

= 1 GeV; i = 4; 6: (19)

(2) Two partons are recombined into one jet if

y

ij

< y

J

for i; j = 4; 6; r (20)

and all quarks, antiquarks and gluons as well as the proton remnant are taken into

account when forming jets. If several pairs of partons have y

ij

below y

J

, the pair

with the smallest y

ij

is recombined �rst. Several prescriptions for the recombination

9



are possible: the energy and 3-momentum of a jet (ij) obtained from pairing partons

i and j can be obtained by

E

ij

= �(E

i

+ E

j

); ~p

ij

= �(~p

i

+ ~p

j

): (21)

For example in the E-scheme one chooses � = � = 1; in the P-scheme one has

� = j~p

i

+ ~p

j

j =(E

i

+E

j

), � = 1 instead. Since the present calculation is of �rst order

in �

s

, the recombination has not to be iterated. However, the di�erent recombination

prescriptions become relevant when photon isolation with respect to jets is imposed.

In addition, the cut on low-p

T

partons or parton-pairs Eq. (19) is a�ected if a recom-

bination prescription with � 6= 1 is used. Our numerical results will be given for the

P-scheme.

(3) Finally, an event is accepted only if the photon is separated from the jets or if the

photon is accompanied by hadronic energy less than a speci�ed amount, i.e. we

exclude events with

y

j

< y



and E

j

> � (E

j

+ E



) (22)

where j denotes any jet (i.e., parton or pair of partons) remaining after steps (1) and

(2) of the event analysis.

We keep the possibility to use di�erent values for the y-cuts applied to purely hadronic jets

and to jets containing the photon. In practice, y

J

and y



are taken equal with a typical

value 0.03. For the photon isolation parameter � we will take the value 0.1 as used in

experimental analyses [8]. Apart from being experimentally unrealistic, the value � = 0 is

theoretically not allowed since Eq. (22) with � = 0 would restrict the phase space for soft

partons and consequently destroy the cancellation of corresponding singularities.

We start with demonstrating the consistency of our approach by showing the depen-

dence of the  + (1 + 1)-jet cross section on the phase space slicing cut y

J

0

. Figures 2 and

3 show the dependence of the total and partial cross sections for  + (1 + 1)-jet events.

For q(�q)-initiated processes, the separate contributions S and R depend on log

2

y

J

0

(see

Fig. 2a) and the �nite contribution F is not negligible. In this case the sum is numerically

stable in the range 10

�5

<

�

y

J

0

<

�

10

�3

; for smaller values the numerical precision decreases

and for larger values the error from neglected terms of order O(y

J

0

) is not negligible. The

calculation of g-initiated contributions can be performed with much smaller uncertainties

and for much smaller values of y

J

0

, as seen in Fig. 3 since here the dependence on log y

J

0

is

only linear. Also, the �nite contribution is negligible for diagrams with incoming gluons.

The dependence on y

J

0

at large values above ' 10

�3

is slightly stronger in this case than

for q(�q)-initiated contributions since terms of order O(y

J

0

) are relatively more important.

In the following we �x y

J

0

at the value 10

�4

.

Figure 4 shows the residual dependence of the cross sections for  + (1 + 1)-jets on

the parton-level photon isolation cut y



0

, separately for (anti)quark and gluon-initiated

processes. The y



0

-dependence is weak for the case with incoming (anti)quarks showing that

10
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Figure 2: Dependence of the  + (1 + 1)-jet cross section on the phase space slicing cut y

J

0

for incoming quarks and antiquarks (y



0

= 10

�4

, y



= y

J

= 0:03). (a) shows the separate

contributions and the sum = R + S + F + LO. (b) shows the sum of all contributions,

including the leading-order cross section, on a larger scale.
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Figure 3: Dependence of the  + (1 + 1)-jet cross section on the phase space slicing cut y

J

0

for incoming gluons (y



0

= 10

�4

, y



= y

J

= 0:03). (a) shows the separate contributions and

the sum = R + S. (b) shows the sum of all contributions on a larger scale.
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Figure 4: Dependence on the infrared cuto� parameter y



0

of the +(1+1)-jet cross section

for incoming (anti)quarks (a) and gluons (b) (y

J

0

= 10

�4

, y



= y

J

= 0:03).

the isolation criteria e�ciently reduce the sensitivity to the phase space region where the

non-perturbative parton-to-photon fragmentation functions would contribute. For the g-

initiated processes, the sensitivity to y



0

is larger. In this case all �nal-state partons (q and �q)

can emit a photon. Since the isolation condition is applied to jets, the singularity associated

to con�gurations with soft (anti)quarks having emitted a hard collinear photon is removed

only with the help of the parton-level cut Eq. (17). For processes with incoming quarks,

only a small subset of diagrams leads to singularities for similar con�gurations. We choose

y



0

= 10

�4

in the following. This value is small enough compared with experimentally

realistic values for y



>

�

O(10

�2

) so that contributions where a quark or an antiquark

determines the momentum of a jet, become insensitive to y



0

. Also, much larger values

would lead to an unphysical negative cross section for the g-initiated subprocess. In a

more systematic treatment, the y



0

-dependent terms in our calculation would be replaced

by contributions from parton-to-photon fragmentation functions. In our present approach,

however, the unwanted dependence on y



0

has to be viewed as an unavoidable source of a

theoretical uncertainty. The  + (1 + 1)-jetcross section at Q

2

<

�

100 GeV

2

is a�ected by

this at the level of 20 % (see Fig. 6 below). At larger Q

2

, the inuence of the y



0

-dependent

gluon-initiated contribution is reduced

2

.

In Fig. 5 we show the di�erential cross section d�=d�



(sum of  + (1 + 1)-jets and

 + (2 + 1)-jets) in the range 10

�

� �



� 175

�

. Apart from the extended range of photon

2

This can be compared with the case of e

+

e

�

! +hadrons where the total cross section has little

sensitivity to the parton-level photon isolation cut for not too large y, but the  + 1-jet rate has a non-

negligible dependence on y



0

[27].
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[pb]

Born

O(�

s

)

Figure 5: Di�erential cross section d�=d�



for ep! e+(1+1)-jets and ep! e+(2+1)-

jets with y

J

= y



= 0:03. Full histogram: lowest order, dashed histogram: including O(�

s

)

corrections. Cuts are explained in the text.

emission angles all cuts given in (18) are applied. The majority of photons is produced

with small angles, i.e. close to the direction of the incoming lepton. For leptonic radiation,

QCD corrections reduce the cross section by � 10 % for the phase space region under

consideration. By contrast, at large emission angles, dominated by quarkonic radiation,

the cross section receives positive QCD corrections. In the following we restrict ourselves

again to this \signal" region �



� 90

�

, i.e. the proton hemisphere in the HERA laboratory

system.

The Q

2

-dependence in this restricted phase space region is shown in Fig. 6. The cross

section is shown separately for q(�q)-initiated and gluon-initiated contributions giving rise to

+(1+1)-jet and +(2+1)-jet events using y

J

= y



= 0:03. The +(1+1)-jet contribution

is dominant for these y-cut values with a maximum in the lower Q

2

range, whereas the

cross section for  + (2 + 1)-jet events is atter and extends to larger Q

2

. Incoming

gluons contribute only roughly 10 % to the total cross section. Since the distributions for

incoming quarks and incoming gluons are not very di�erent, it seems di�cult to utilize

radiative deep inelastic scattering for a measurement of the gluon distribution. We also

checked that using other parametrizations of parton distribution functions (like those of
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H

Figure 6: Di�erential cross section Q

2

d�=dQ

2

for ep ! e + (n + 1)-jets with y

J

= y



=

0:03. Upper full histogram: lowest order, dashed histogram: contribution from incoming

(anti)quarks to  + (1 + 1)-jets, dotted histogram: contribution from incoming (anti)quarks

to  + (2 + 1)-jets, dash-dotted histogram: incoming gluons for  + (1 + 1)-jets, lower full

histogram: incoming gluons for  + (2 + 1)-jets. Photons are restricted to 90

�

� �



� 170

�

and other cuts are explained in the text.

Refs. [29]) do not lead to signi�cantly di�erent shapes of distributions. Only the total cross

sections vary by O(10 � 15 %).

The rate of  + (2 + 1)-jet events,

R

;2+1

=

�( + (2 + 1)�jets)

�( + (1 + 1)�jets) + �( + (2 + 1)�jets)

; (23)

increases towards smaller values of y

J

(see Fig. 7) and becomes equal to the  + (1 + 1)-jet

rate at y

J

<

�

10

�3

, the precise value depending on y



. The dependence on y



is weaker; in

particular, for y



>

�

0:02 the +(2+1)-jet rate is almost independent on y



. The reduction

of the cross sections with increasing y



is stronger for  + (2 + 1)-jet events at large values

of y

J

than at small y

J

, relative to the  + (1 + 1)-jet cross section, i.e. the ratio R

;2+1

increases with increasing y



at large y

J

whereas it decreases with increasing y



at small y

J

.

For completeness we present the y-cut dependence of the  + (1 + 1)-jet and  + (2 + 1)-jet
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as a function of the jet cut y

J

for three di�erent values

of the photon isolation cut y



.

10

�3

10

�2

10

�1

y

J

20

15

10

5

0

y



=

0.01

0.05

0.1

�( + (1 + 1)-jets) [pb]

a)

10

�3

10

�2

10

�1

y

J

6

5

4

3

2

1

0

y



=

0.01

0.05

0.1

�( + (2 + 1)-jets) [pb]

b)

Figure 8:  + (1 + 1)-jet and  + (2 + 1)-jet cross sections as a function of jet cut and

photon isolation.
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cross sections in Fig. 8. Note that also the total cross section has a dependence on y

J

, as

can be seen from the sum of the results shown in Figs. 8a and b. The jet algorithm not

only de�nes the classi�cation of the hadronic �nal state into +(1+1)-jet or +(2+1)-jet

events, but also a�ects the overall phase space boundaries: smaller values of y

J

allow the

jets to be closer to the remnant jet so that the cut against low-p

T

partons has a stronger

e�ect.

O(�

s

)

Born

�( + (n + 1)-jets) [pb]

y

J

= y



= 0:03

f

0.25 1 4

12

11

10

9

8

7

6

Figure 9: Dependence on the renormalization and factorization scales �

2

F

= �

2

R

= fQ

2

of

the total cross section (i.e., the sum of +(1+1)-jets and +(2+1)-jets) for y

J

= y



= 0:03.

The leading order cross section depends on a factorization scale �

F

via the scale entering

the parton distribution functions q

i

(x; �

2

F

). At next-to-leading order, there is an explicit

scale dependence in the +(1+1)-jet cross section through factorization of the initial state

singularities which partly compensates the scale dependence from the parton distribution

functions. In addition, the explicit factor �

s

depends on the renormalization scale. For

simplicity we identify the two scales, which could in principle be chosen independently

from each other. Figure 9 shows the scale dependence of the leading-order and the next-

to-leading order cross sections where we have used �

2

F

= �

2

R

= fQ

2

. Varying f between 0:25

and 4, the total cross section for ep! eX shows good stability within a few percent. Also

from this �gure one can infer that the O(�

s

) corrections vary between 20 and 30 %. A 5 %

measurement of the cross section would therefore correspond to a 20 to 30 % measurement

of �

s

, assuming negligible uncertainties from parton distribution functions.
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Radiative ep scattering is complementary to usual deep inelastic scattering since up

and down-type quarks contribute with di�erent weights to the cross sections. In the usual

structure function F

2

, the sums of u- and d-type quarks, U = u + c + �u + �c and D =

d + s + b +

�

d + �s +

�

b enter with the relative factors e

2

u

: e

2

d

= 4 : 1 whereas for the

contribution from quarkonic radiation to ep ! eX this ratio is e

4

u

: e

4

d

= 16 : 1. In

principle, a common analysis of non-radiative and radiative scattering performed with

high enough precision, would allow a determination of U and D separately. We therefore

investigated the dependence of the total cross section for ep ! eX on the ratio U=D.

In order to keep the well-constrained structure function F

2

unchanged, we modi�ed the

parton distributions by the following prescription:

D ! �

d

D;

U !

 

1 +

1� �

d

4(U=D)

!

U:

(24)

By this the combination e

4

u

U + e

4

d

D is replaced with [1 + 3(1 � �

d

)=(1 + 16U=D)]� (e

4

u

U +

e

4

d

D). With U=D ' 1:5, a typical value at x ' 0:1, one expects a 12 % reduction for

�

d

= 2 and a 6 % enhancement for �

d

= 0:5. In fact, the true change of the cross section is

smaller (�5:7 % and +2:3 % with the cuts (18)) since additional contributions from leptonic

radiation and quark-lepton interference, which are not proportional to the fourth power of

the quark charges, are not negligible even in the `signal' region �



� 90

�

. It thus seems

unlikely that with respect to a determination of U=D radiative deep inelastic scattering

could become competitive with classical analyses like that of the di�erence of proton and

neutron cross sections or the W charge asymmetry in p�p ! W

�

+ X.

5 Summary

We have described a �rst next-to-leading order calculation of isolated photon production

in ep scattering at large Q

2

. Apart from providing a sound basis for testing QCD in direct

photon production, our results improve the knowledge of standard model predictions as a

source of background for searches for new physics. We have discussed numerical results for

 + (1 + 1)-jet and  + (2 + 1)-jet cross sections at HERA. Corresponding measurements

will provide valuable information that will allow to further constrain parton distribution

functions, in particular when combined with results from other experiments. It still has

to be investigated which kinematical variable would be best suited to obtain the highest

sensitivity on the gluon distribution, the U=D ratio, or the strong coupling constant �

s

.

For example, in photoproduction the distributions with respect to the photon rapidity or

photon transverse momentum (in the HERA laboratory or in the 

�

p center-of-mass frame)

turned out to be good choices. One should also expect that the theoretical uncertainties

due to the parton-level cuto� y



0

could be further reduced by optimizing the analysis with

respect to kinematical cuts, the jet algorithm (e.g., a cone algorithm as used in the study

17



of (2 + 1)- or (3 + 1)-jet events at HERA [30]) and modi�ed photon isolation prescriptions

(e.g., the so-called \democratic" clustering procedure [16]).
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