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Abstract

We compute the decay rates for the exclusive decays B

�

! (�

0

; �)(K

�

;K

��

) and B

0

!

(�

0

; �)(K

0

;K

�0

) in a QCD-improved factorization framework by including the contribution from

the process b ! sgg ! s(�

0

; �) through the QCD anomaly. This method provides an alter-

native estimate of the contribution b ! sc�c ! s(�; �

0

) to these decays as compared to the

one using the intrinsic charm content of the �

0

and � mesons determined through the decays

J= ! (�; �

0

; �

c

). The advantage of computing the relevant matrix elements via the QCD

anomaly governing the transition gg ! (�

0

; �) is that there is no sign ambiguity in these con-

tributions relative to the matrix elements from the rest of the operators in the weak e�ective

Hamiltonian. Numerically, the QCD anomaly method and the one using the radiative decays

J= ! (�; �

0

; �

c

) give similar branching ratios for the decays of interest here. The resulting

branching ratios are compared with the CLEO data on B

�

! �

0

K

�

and B

0

! �

0

K

0

and

predictions are made for the rest.

(Submitted to Physics Letters B)



1. Introduction

The CLEO collaboration has recently reported measurements in a number of exclusive two-

body non-leptonic decays of the type B ! h

1

h

2

, where h

1

and h

2

are light mesons and the

inclusive decay B

�

! �

0

X

s

[1] - [5]. In particular, large branching ratios into the �nal states

including �

0

are reported [1, 5]:

B(B

�

! �

0

+X

s

) = (6:2 � 1:6 � 1:3)� 10

�4

(for 2:0 GeV � p

�

0

� 2:7 GeV); (1)

B(B

�

! �

0

+K

�

) = (6:5

+1:5

�1:4

� 0:9)� 10

�5

; (2)

B(B

0

! �

0

K

0

) = (4:7

+2:7

�2:0

� 0:9)� 10

�5

: (3)

Interestingly, no decay involving the (�K) or (�; �

0

)K

�

modes of either the charged B

�

or the

neutral B

0

(B

0

) has been observed and the corresponding limits on some of these decays can be

seen in [5]. Of these, the most stringent limit is reported on the decay B

�

! �K

�

, for which,

at 90% C.L., one has [5]

B(B

�

! �K

�

) � 1:4 � 10

�5

: (4)

These measurements have stimulated a lot of theoretical activity [6] - [18]. We will concentrate

in this paper on the exclusive two-body decays B ! (�

0

; �)(K;K

�

) for both neutral and charged

B mesons.

In ref.. [6], two of us (A.A. and C.G.) have studied a number of non-leptonic two-body

exclusive decay modes of the B

�

and B

0

mesons in the QCD-improved e�ective Hamiltonian

approach, involving the e�ective four-quark and magnetic moment operators. Since the relevant

matrix elements of the type hh

1

h

2

jO

i

jBi, where O

i

are four-quark operators, are di�cult to

estimate from �rst principles, one often resorts to the factorization approximation [19], in which

the matrix elements of interest factorize into a product of two relatively more tractable hadronic

matrix elements. The resulting decay rates depend on a set of e�ective parameters, which have

to be determined from experiments. We recall that this generalized factorization approach

appears to describe the two-body non-leptonic B decays involving the so-called heavy to heavy

transitions reasonably well [20]. Likewise, data on B ! K� and B ! �� decays are well

accounted for in this framework [6].

In contrast to the decays B ! K� and B ! ��, the decays B ! (�; �

0

)(K;K

�

) in the

factorization approach require additionally the knowledge of the matrix elements h�

0

jc

�



5

cj0i

and h�jc

�



5

cj0i, emerging from the decay b ! s(�cc) ! s(�

0

; �). Parameterizing them as

h�

0

jc

�



5

cj0i = �if

c

�

0

q

�

and h�jc

�



5

cj0i = �if

c

�

q

�

, the quantities of interest for this contribu-

tion are f

c

�

0

and f

c

�

, which are often referred to as the charm content of the �

0

and �, respectively

[21]. These quantities are a priori unknown but they can be determined in a number of ways,

also including the B-decays being discussed here. In [6], these quantities were determined from

the decays J= ! (�; �

0

; �

c

), extending the usual (�; �

0

)-mixing formalism [22] to the (�

c

; �

0

; �)

system. Using the measured decay widths for the decays J= ! (�; �

0

; �

c

) and (�

c

; �

0

; �)! 

yields jf

c

�

0

j ' 5:8 MeV and jf

c

�

j ' 2:3 MeV [6].

In the meanwhile, theoretical arguments based on SU(3)-breaking e�ects in the pseudoscalar

nonet (�;K; �; �

0

) in the chiral perturbation theory approach [23], and phenomenological anal-

ysis involving in particular the � and �

0

 transition form factors [24], have put to question the

conventional (one mixing-angle) octet-singlet mixing scheme for the (�; �

0

) system. The mod-

i�ed two-angle mixing scheme, proposed in [23], has also implications for B decays involving

1



the � and �

0

meson in the �nal state. In particular, estimates of jf

c

�

0

j and jf

c

�

j are expected

to get revised. Numerically, these quantities depend on the input values of the pseudoscalar

coupling constants, f

0

and f

8

, and the two mixing angles, called �

0

and �

8

. However, it is found

that using the best-�t values of the parameters from [24], which are consistent with Leutwyler's

estimates of the same [23], the estimate of jf

c

�

0

j in the modi�ed mixing scheme remains prac-

tically unaltered. In contrast, the quantity jf

c

�

j is considerably reduced due to the small value

of the mixing angle in the singlet sector, which makes � an almost octet state. One �nds now

jf

c

�

j ' 0:9 MeV [6]. With these estimates, it has been argued in [6] that the charm-induced

contribution b! s(c�c)! s(�

0

; �) does not dominate the matrix element for B

�

! �

0

K

�

. The

resulting branching ratio BR(B

�

! �

0

K

�

) = (2 � 4) � 10

�5

is somewhat lower than but not

inconsistent with the experimental number in Eq. (2).

The branching ratio for B

�

! �

0

K

�

(and other related decay modes) depends on the sign of

the quantity f

c

�

0

(and f

c

�

involving the � meson), as well as on the phenomenological parameter

�, which in turn determines the e�ective Wilson coe�cients in the factorization approach [6].

It is not unreasonable to expect that the value of � will be similar in the decays B ! h

1

h

2

, as

the energy released in these decays are comparable; hence this parameter can be determined

in a number of B decays [25]. A consistent determination of the parameter � will also check

the consistency of the underlying theoretical framework, namely QCD-improved factorization.

However, it is desirable to get independent estimates of the quantities f

c

�

0

and f

c

�

, and also settle

the sign ambiguity present in the method used in [6]. We note that a recent phenomenological

study has put a bound on f

c

�

0

, namely �65 MeV � f

c

�

0

� 15 MeV, with f

c

�

being consistent

with zero [24] by analyzing the Q

2

evolution of the � and �

0

 form factors, respectively. The

bounds on f

c

�

0

from this method are not very stringent and the estimates of this quantity in [6]

are well within these bounds.

In this letter we propose another method for computing the contribution of the amplitudes

b! s(gg) ! s(�

0

; �). This method is based on calculating the amplitude for the chromomag-

netic penguin process b ! sgg, followed by the transitions gg ! (�

0

; �) which are calculated

using the QCD anomaly, determining both the sign and magnitude of these contributions. As

discussed below, the numerical values of f

c

�

0

and f

c

�

now depend on the charm quark mass (both

of them being essentially proportional to m

�2

c

). Varying m

c

in the range 1:3 - 1:5 GeV, we �nd

that the QCD-anomaly-method gives f

c

�

0

= �3:1 (�2:3) MeV and f

c

�

= �1:2 ( �0:9) MeV.

Hence, in absolute value, f

c

�

turns out to be very close to the one obtained in the (�

c

; �

0

; �)-

mixing formalism [6] (the two estimates almost coincide for m

c

= 1:5 GeV), but the value

of f

c

�

0

is typically a factor 2 smaller in the QCD-anomaly method. The branching ratios for

B

�

! (�

0

; �)(K

�

;K

��

) and B

0

! (�

0

; �)(K

0

;K

�0

) based on the QCD-anomaly method are

calculated in this letter and compared with the present CLEO measurements and with the ones

in [6]. We �nd that the theoretical branching ratios for B

�

! �

0

K

�

and B

0

! �

0

K

0

are almost

equal and both are in the range (2� 4) � 10

�5

, in agreement with the estimates in [6].

2. Estimate of b! (�; �

0

)s via QCD anomaly

We write the e�ective Hamiltonian H

e�

for the �B = 1 hadronic transitions as

H

e�

=

G

F

p

2

"

V

ub

V

�

uq

(C

1

O

u

1

+ C

2

O

u

2

) + V

cb

V

�

cq

(C

1

O

c

1

+ C

2

O

c

2

)� V

tb

V

�

tq

 

10

X

i=3

C

i

O

i

+ C

g

O

g

!#

;

(5)

2



where q = d; s. The operators read

O

u

1

= (�u

�

b

�

)

V�A

(�q

�

u

�

)

V�A

O

c

1

= (�c

�

b

�

)

V�A

(�q

�

c

�

)

V�A

O

u

2

= (�u

�

b

�

)

V�A

(�q

�

u

�

)

V�A

O

c

2

= (�c

�

b

�

)

V�A

(�q

�

c

�

)

V�A

O

3

= (�q

�

b

�

)

V�A

X

q

0

�

�q

0

�

q

0

�

�

V�A

O

4

= (�q

�

b

�

)

V�A

X

q

0

�

�q

0

�

q

0

�

�

V�A

O

5

= (�q

�

b

�

)

V�A

X

q

0

�

�q

0

�

q

0

�

�

V+A

O

6

= (�q

�

b

�

)

V�A

X

q

0

�

�q

0

�

q

0

�

�

V+A

O

7

=

3

2

(�q

�

b

�

)

V�A

X

q

0

e

q

0

�

�q

0

�

q

0

�

�

V+A

O

8

=

3

2

(�q

�

b

�

)

V�A

X

q

0

e

q

0

�

�q

0

�

q

0

�

�

V+A

O

9

=

3

2

(�q

�

b

�

)

V�A

X

q

0

e

q

0

�

�q

0

�

q

0

�

�

V�A

O

10

=

3

2

(�q

�

b

�

)

V�A

X

q

0

e

q

0

�

�q

0

�

q

0

�

�

V�A

O

g

= (g

s

=8�

2

)m

b

�s

�

�

��

(1 + 

5

) (�

A

��

=2) b

�

G

A

��

: (6)

Here � and � are the SU(3) color indices and �

A

��

; A = 1; :::; 8, are the Gell-Mann matrices. The

subscripts V �A represent the chiral projections 1� 

5

. G

A

��

denotes the gluonic �eld strength

tensor. The operators O

1

and O

2

are the current-current operators, O

3

; :::; O

6

the so-called

gluonic penguin operators and O

7

; :::; O

10

are the electroweak penguin operators. Finally, O

g

is the gluonic dipole operator. In the following we use the next-to-leading logarithmic values

(NLL) (with respect to QCD) for C

1

; :::; C

6

, computed in [26], while the remaining coe�cients

are taken at leading logarithmic precision (LL). Taking �

s

(m

Z

) = 0:118, �

ew

(m

Z

) = 1=128

and m

pole

top

= 175 GeV, the coe�cients in the naive dimensional renormalization scheme (NDR)

(evaluated at the renormalization scale � = 2:5 GeV) read: C

1

= 1:117, C

2

= �0:257, C

3

=

0:017, C

4

= �0:044, C

5

= 0:011, C

6

= �0:056, C

7

= �1 � 10

�5

, C

8

= 5 � 10

�4

, C

9

= �0:010,

C

10

= 0:002 and C

g

= �0:158. Among the coe�cients of the electroweak penguins only C

9

has

a sizable coe�cient, which arises mainly from the Z

0

penguin.

Working consistently to the precision mentioned above, we include one-loop QCD corrections

to the partonic matrix elements of the operators O

1

; :::; O

6

and the tree-level diagram associated

with O

g

, where the gluon splits into a quark-antiquark pair. These issues are discussed in detail

in ref. [6]. In addition, we include the photonic penguin diagram associated with the current-

current operators O

1

and O

2

. All these corrections can be absorbed into e�ective Wilson

coe�cients C

e�

i

(i = 1; :::; 10) multiplying the four-Fermi operators O

1

; :::; O

10

in the basis (6).

While C

e�

1

; :::; C

e�

6

are given in Eq. (2.5) in ref. [6], the remaining e�ective coe�cients read

C

e�

7

= C

7

+

�

ew

8�

C

e

; C

e�

8

= C

8

; C

e�

9

= C

9

+

�

ew

8�

C

e

; C

e�

10

= C

10

; (7)

where

C

e

= �

8

9

(3C

2

+ C

1

)

X

q

0

=u;c

V

q

0

b

V

�

q

0

q

V

tb

V

�

tq

 

2

3

+

2

3

log

m

2

q

0

�

2

��F

1

 

k

2

m

2

q

0

!!

: (8)

The function �F

1

is also given in ref. [6]. In the following, we often use the following linear

combinations of e�ective Wilson coe�cients (N

c

= 3 is the number of colors):

a

i

= C

e�

i

+

1

N

c

C

e�

i+1

(i = odd) ; a

i

= C

e�

i

+

1

N

c

C

e�

i�1

(i = even) : (9)

3



As described in detail in ref. [6], the hadronic matrix elements hh

1

h

2

jC

e�

i

O

i

jBi for the two-

body decays of the form B ! h

1

h

2

are now readily decomposed into various form factors and

decay constants when applying the factorization approximation. If �

(

0

)

is involved in the �nal

state, the factorization of O

c

1

and O

c

2

brings in the matrix elements

h�

(

0

)

j�c

�



5

cj0i (10)

which have to be estimated. We model them by annihilating the charm-anticharm pair into two

gluons, followed by the transition gg ! �

(

0

)

(see Fig. 1). The �rst part of this two-step process,

i.e. b ! s(�cc ! g(k

1

)g(k

2

)) which amounts to calculating the charm-quark-loop from which

two gluons are emitted, has been worked out by Simma and Wyler [27] in the context of a

calculation in the full theory. Their result is readily translated to our e�ective theory approach

and can be compactly written as a new (induced) e�ective Hamiltonian H

gg

e�

,

H

gg

e�

= �

�

s

2�

 

C

e�

2

+

C

e�

1

N

c

!

G

F

p

2

V

cb

V

�

cs

�i

5

(

q

2

m

2

c

)

1

k

1

� k

2

G

��

a

(D

�

~

G

��

)

a

s

�

(1 � 

5

)b ; (11)

with

~

G

��

=

1

2

�

����

G

��

(�

0123

= +1). In this formula, which holds for on-shell gluons (q

2

=

(k

1

+ k

2

)

2

= 2k

1

� k

2

), the sum over color indices is understood. The function �i

5

(q

2

=m

2

c

) is

de�ned as

�i

5

(z) = �1 +

1

z

h

� � 2 arctan(

4

z

� 1)

1=2

i

2

; for 0 < z < 4 : (12)

Note that the b! sgg calculation brings in an explicit factor of �

s

. However, as shown below,

this explicit �

s

factor gets absorbed into the matrix element of the operator resulting from the

anomaly. So, to the order that we are working, we use the coe�cients C

e�

1

and C

e�

2

in eq. (11).

By expanding the function �i

5

(q

2

=m

2

c

) in inverse powers of m

2

c

, it is easy to see that the leading

(1=m

2

c

) term in Eq. (11) generates the chromomagnetic analogue of the operator considered by

Voloshin [28] to calculate the power (1=m

2

c

) correction in the radiative decay B ! X

s

. It

should be remarked that the corresponding u�u contribution in Fig. 1 is suppressed due to the

unfavourable CKM factors. The t

�

t contribution is included in the e�ective Hamiltonian via the

bsgg piece present in the operator O

g

. However, in the factorization framework, the bsgg term

in O

g

does not contribute to the decays discussed. So, the c�c contribution in Fig. 1 is the only

one that survives.

The (factorizable) contribution from Eq. (11) in the decays B ! (�; �

0

)(K;K

�

) is of the

same order (in �

s

) as those of the other operators taken into account in [6]. It should be

remarked that in calculating the amplitude b ! sgg, there are more contributions in this

order in �

s

than what is shown in Eq. (11) and Fig. 1. However, the diagrams where one of

the gluons is present in the �nal state yielding b ! sg(�; �

0

) are not expected to contribute

signi�cantly to the exclusive two-body decays, but rather induce multibody decays. Certainly,

these con�gurations have to be included in inclusive decays B ! (�; �

0

)X

s

[7] but can be

neglected in the exclusive decays B ! (�; �

0

)(K;K

�

). Likewise, con�gurations in which one

of the gluons emanates from the e�ective bsg vertex and the other is bremsstrahled from the

b or s-quark (or from the spectator anti-quark in the B meson) to form an �

0

or � are non-

factorizing contributions and they are ignored as the rest of the amplitudes are also calculated

in the factorization approximation.

Working out the hadronic matrix element of Eq. (11) using factorization, we now need to

evaluate the matrix elements

h�

(0)

jG

��

a

(D

�

~

G

��;a

)j0i : (13)

4



The operator in Eq. (13) can be written as

G

��

a

(D

�

~

G

��

)

a

= @

�

(G

��

a

~

G

��;a

)� (D

�

G

��

)

a

~

G

��;a

: (14)

We can discard the second term since it is suppressed by an additional power of g

s

which follows

on using the equation of motion, and furthermore, the �rst term is enhanced by N

c

in the large

N

c

limit. The matrix elements of @

�

(G

��

a

~

G

��;a

) are related to those of G

~

G; more explicitly

@

�

h�

(

0

)

jG

��

a

~

G

��;a

j0i =

iq

�

4

h�

(

0

)

jG

��

a

~

G

��;a

j0i : (15)

The conversion of the gluons into � and �

0

is described by an amplitude which is �xed by the

SU(3) symmetry and the axial U(1) current triangle anomaly. The matrix elements for G

~

G

can be written as [29]

h�

(

0

)

j

�

s

4�

G

��

a

~

G

��;a

j0i = m

2

�

(

0

)

f

u

�

(

0

)

: (16)

In Eqs. (16) the decay constants f

u

�

0

and f

u

�

read

f

u

�

=

f

8

p

6

cos �

8

�

f

0

p

3

sin �

0

; f

u

�

0

=

f

8

p

6

sin �

8

+

f

0

p

3

cos �

0

; (17)

where the coupling constants f

8

, f

0

and the mixing angles �

8

and �

0

have been introduced

earlier. We follow here the two-angle (�; �

0

) mixing formalism of ref. [23], where the mass

eigenstates j�i and j�

0

i have the following decompositions:

j�i = cos �

8

j�

8

i � sin �

0

j�

0

i;

j�

0

i = sin �

8

j�

8

i+ cos �

0

j�

0

i: (18)

Collecting the individual steps, the matrix elements in Eqs. (13) can be written as

h�

(0)

(q)j

�

s

4�

G

��

a

(D

�

~

G

��a

)j0i = iq

�

m

2

�

(

0

)

4

f

u

�

(

0

)

: (19)

One would have naively expected that the gluonic matrix elements are small since they

contain an extra factor of �

s

. However, as shown by Eqs. (19), this is obviously not the case

and the gluon operator with �

s

as a whole is responsible for the invariant mass of the �

(0)

mesons. Also, the combination entering in Eqs. (19) involving the product of �

s

and the gluon

�eld operators is independent of the renormalization scale.

3. Matrix elements for the decays B

�

! (�

0

; �)(K

�

;K

��

) and B

0

! (�

0

; �)(K;K

�0

)

To compute the complete amplitude for the exclusive decays, one has to combine the con-

tribution from the decay b! s(c�c) ! s(gg) ! s�

(

0

)

discussed in the previous section with all

the others arising from the four-quark and chromomagnetic operators, as detailed in [6]. The

resulting amplitudes in the factorization approximation are listed below for all the eight cases

of interest B

�

! (�

0

; �)(K

�

;K

��

) and B

0

! (�

0

; �)(K

0

;K

�0

). The expressions are given for

the decays of the B

�

and B

0

mesons; the ones for the charge conjugate decays are obtained by

complex conjugating the CKM factors.
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(i) B

�

! K

�

�

(

0

)

M =

G

F

p

2

8

<

:

V

ub

V

�

us

2

4

a

2

+ a

1

m

2

B

�m

2

�

(

0

)

m

2

B

�m

2

K

F

B!�

(

0

)

0

(m

2

K

)

F

B!K

�

0

(m

2

�

(

0

)

)

f

K

f

u

�

(

0

)

3

5

� V

cb

V

�

cs

a

2

�i

5

�

m

2

�

(

0

)

m

2

c

�

�V

tb

V

�

ts

"

2(a

3

� a

5

) +

1

2

(a

9

� a

7

) +

 

a

3

� a

5

�

1

2

(a

9

� a

7

) + a

4

�

1

2

a

10

+(a

6

�

1

2

a

8

)

m

2

�

(

0

)

m

s

(m

b

�m

s

)

!

f

s

�

(

0

)

f

u

�

(

0

)

� (a

6

�

1

2

a

8

)

m

2

�

(

0

)

m

s

(m

b

�m

s

)

+

 

a

4

+ a

10

+

2(a

6

+ a

8

)m

2

K

(m

s

+m

u

) (m

b

�m

u

)

!

m

2

B

�m

2

�

(

0

)

m

2

B

�m

2

K

F

B!�

(

0

)

0

(m

2

K

)

F

B!K

�

0

(m

2

�

(

0

)

)

f

K

f

u

�

(

0

)

#

9

=

;

� hK

�

j�s b

�

jB

�

i h�

(

0

)

j�uu

�

j0i (20)

where

hK

�

j�s b

�

jB

�

i h�

(

0

)

j�uu

�

j0i = i f

u

�

(

0

)

(m

2

B

�m

2

K

)F

B!K

�

0

(m

2

�

(

0

)

): (21)

The coe�cients a

i

are de�ned in Eq. (9) and the short-hand notation �uu

�

stands for �uu

�

=

�u

�

(1� 

5

)u. The quantities f

u

�

and f

u

�

0

are given in Eqs. (17), while f

s

�

and f

s

�

0

read

f

s

�

0

= �2

f

8

p

6

sin �

8

+

f

0

p

3

cos �

0

; f

s

�

= �2

f

8

p

6

cos �

8

�

f

0

p

3

sin �

0

: (22)

Note that the matrix elements of the pseudoscalar density have been expressed as

h�

(

0

)

j�s

5

sj0i = i

m

2

�

(

0

)

2m

s

(f

u

�

(

0

)

� f

s

�

(

0

)

): (23)

(ii) B

�

! K

��

�

(

0

)

M =

G

F

p

2

8

<

:

V

ub

V

�

us

2

4

a

2

+ a

1

F

B!�

(

0

)

1

(m

2

K

�

)

A

B!K

�

0

(m

2

�

(

0

)

)

f

K

�

f

u

�

(

0

)

3

5

� V

cb

V

�

cs

a

2

�i

5

�

m

2

�

(

0

)

m

2

c

�

�V

tb

V

�

ts

"

2(a

3

� a

5

) +

1

2

(a

9

� a

7

) +

 

a

3

� a

5

�

1

2

(a

9

� a

7

) + a

4

�

1

2

a

10

�(a

6

�

1

2

a

8

)

m

2

�

(

0

)

m

s

(m

b

+m

s

)

!

f

s

�

(

0

)

f

u

�

(

0

)

+ (a

6

�

1

2

a

8

)

m

2

�

(

0

)

m

s

(m

b

+m

s

)

+(a

4

+ a

10

)

F

B!�

(

0

)

1

(m

2

K

�

)

A

B!K

�

0

(m

2

�

(

0

)

)

f

K

�

f

u

�

(

0

)

#

9

=

;

hK

��

j�s b

�

jB

�

i h�

(

0

)

j�uu

�

j0i

(24)

with

hK

��

j�s b

�

jB

�

i h�

(

0

)

j�uu

�

j0i = �i f

u

�

(

0

)

2m

K

�

(p

B

�

�

K

�

)A

B!K

�

0

(m

2

�

(

0

)

): (25)
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(iii) B

0

! K

0

�

(

0

)

M =

G

F

p

2

(

V

ub

V

�

us

a

2

� V

cb

V

�

cs

a

2

�i

5

�

m

2

�

(

0

)

m

2

c

�

� V

tb

V

�

ts

"

2(a

3

� a

5

) +

1

2

(a

9

� a

7

) +

 

a

3

� a

5

�

1

2

(a

9

� a

7

) + a

4

�

1

2

a

10

+(a

6

�

1

2

a

8

)

m

2

�

(

0

)

m

s

(m

b

�m

s

)

!

f

s

�

(

0

)

f

u

�

(

0

)

� (a

6

�

1

2

a

8

)

m

2

�

(

0

)

m

s

(m

b

�m

s

)

+

�

a

4

�

1

2

a

10

+

(2a

6

� a

8

)m

2

K

(m

s

+m

d

)(m

b

�m

d

)

�

m

2

B

�m

2

�

(

0

)

m

2

B

�m

2

K

F

B!�

(

0

)

0

(m

2

K

)

F

B!K

0

(m

2

�

(

0

)

)

f

K

0

f

u

�

(

0

)

#)

� hK

0

jsb

�

jB

0

ih�

(

0

)

juu

�

j0i: (26)

(iv) B

0

!K

�0

�

(

0

)

M =

G

F

p

2

(

V

ub

V

�

us

a

2

� V

cb

V

�

cs

a

2

�i

5

�

m

2

�

(

0

)

m

2

c

�

� V

tb

V

�

ts

"

2(a

3

� a

5

) +

1

2

(a

9

� a

7

) +

 

a

3

� a

5

�

1

2

(a

9

� a

7

) + a

4

�

1

2

a

10

�(a

6

�

1

2

a

8

)

m

2

�

(

0

)

m

s

(m

b

+m

s

)

!

f

s

�

(

0

)

f

u

�

(

0

)

+ (a

6

�

1

2

a

8

)

m

2

�

(

0

)

m

s

(m

b

+m

s

)

+ (a

4

�

1

2

a

10

)

F

B!�

(

0

)

1

(m

2

K

�

)

A

B!K

�

0

(m

2

�

(

0

)

)

f

K

�

f

u

�

(

0

)

#)

hK

0�

jsb

�

jB

0

ih�

(

0

)

juu

�

j0i: (27)

It is instructive to compare the matrix elements derived above with the corresponding

expressions in [6], obtained by estimating the intrinsic charm quark content in the �, �

0

mesons.

Concentrating on the decays B

�

! (�

0

; �)(K

�

;K

��

), which were the ones worked out in [6],

and substituting

��i

5

(m

2

�

0

=m

2

c

)f

u

�

0

! f

c

�

0

;

��i

5

(m

2

�

=m

2

c

)f

u

�

! f

c

�

; (28)

we get (apart from the small electroweak penguin contributions neglected in [6] but included

above) exactly the same expressions for the decay amplitudes as in [6]. Therefore, we have a

simple relation between the decay constants f

c

�

0

, f

c

�

, introduced in the intrinsic charm content

method, and the form factor �i

5

entering via the operator in Eq. (11). The idea of intrinsic

charm quark content of �

0

and � and the contribution of the operator in Eq. (11) are related since

this operator comes from the charm quark loop. Using the best-�t values of the (�; �

0

)-mixing

parameters from [24], yielding �

8

= �22:2

�

; �

0

= �9:1

�

; f

8

= 168 MeV; f

0

= 157 MeV, which

in turn yields f

u

�

0

= 63:6 MeV and f

u

�

= 77:8 MeV, the relations in (28) give f

c

�

0

� �3:1 MeV

(�2:3 MeV) and f

c

�

� �1:2 MeV (�0:9 MeV), with m

c

having the value 1:3 GeV (1:5 GeV).

The QCD-anomaly method gives results for f

c

�

which are in good agreement with the ones in

7



[6] (in particular for m

c

= 1:5 GeV) but it yields typically a factor 2 smaller value for f

c

�

0

than

the method based on the (�

c

; �

0

; �)-mixing [6]. Given the uncertainties in the �t parameters

and approximations in both the methods, our estimates presented here are consistent with the

parameters f

c

�

0

and f

c

�

obtained in [6].

However note that the two approaches are quite di�erent. The advantage of the present

approach is that the operator in Eq. (11) gives an unambiguous sign relative to the other

contributions while the method of determining the intrinsic charm quark content via radiative

decays J= ! (�

c

; �

0

; �) can only give the absolute magnitude. In our approach the relative

signs of the contributions from O

c

1

and O

c

2

to the other contributions are determined; we obtain

the negative-f

c

�

0

(and f

c

�

) solution of the two possible ones which were not resolved in [6].

4. Numerical results

For the numerical analysis, we take the values of the parameters used in [6]. The matrix

elements listed in (i),...,(iv) depend on the e�ective coe�cients a

1

; :::; a

10

, quark masses, various

form factors, coupling constants and the CKM parameters. In turn, the coe�cients a

i

and the

quark masses depend on the renormalization scale � and the QCD scale parameter �

MS

. We

have �xed �

MS

using �

s

(m

Z

) = 0:118, which is the central value of the present world average

�

s

(m

Z

) = 0:118 � 0:003 [30]. The scale � is varied between � = m

b

and � = m

b

=2, but due

to the inclusion of the NLL expressions, the dependence of the decay rates on � is small and

hence not pursued any further. To be de�nite, we use � = 2:5 GeV in the following.. The

CKM matrix will be expressed in terms of the Wolfenstein parameters [31], A, �, � and �.

Since the �rst two are well-determined with A = 0:81 � 0:06; � = sin �

C

= 0:2205 � 0:0018,

we �x them to their central values. The other two are correlated and are found to lie (at 95%

C.L.) in the range 0:25 � � � 0:52 and �0:25 � � � 0:35 from the CKM unitarity �ts [32].

However, a good part of the negative-� region is now disfavoured [33] by the lower bound on

the mass mixing ratio �M

s

=�M

d

[34]. Likewise, the ratio R

1

= 0:65� 0:40 measured recently

by the CLEO collaboration [2], with R

1

� B(B

0

(

�

B

0

) ! �

�

K

�

)=B(B

�

! �

�

K

0

), disfavours

the region � < 0 [6]. Hence, we shall not entertain here the negative-� values and take three

representative points in the allowed (�; �) contour with � � 0. These correspond to the three

values of the CKM matrix element ratio: jV

ub

=V

cb

j = 0:08; 0:11; and 0:05, reecting the present

central value of this quantity and the upper and lower values resulting from a generous error

on it. The speci�c values of � and � and the legends used in drawing the �gures are as follows:

1. � = 0:05; � = 0:36, yielding

p

�

2

+ �

2

= 0:36 (drawn as a solid curve)

2. � = 0:30; � = 0:42, yielding

p

�

2

+ �

2

= 0:51 (drawn as a dashed curve)

3. � = 0; � = 0:22, yielding

p

�

2

+ �

2

= 0:22 (drawn as a dashed-dotted curve).

All other curves in Figs. 2 - 4, through which other parametric dependences are shown, are based

on using the values � = 0:05; � = 0:36. The decay constants f

u

�

0

, f

s

�

0

, f

u

�

and f

s

�

can be obtained

from f

0

and f

8

by using �

0

and �

8

for the �

0

-� mixing angles. Since q

2

= m

2

h

is rather close to

the point q

2

= 0, and a simple pole model is mostly used to implement the q

2

dependence in the

form factors, we shall neglect the q

2

dependence and equate F

B!h

0;1

(q

2

= m

2

h

) = F

B!h

0;1

(q

2

= 0).

The values used for the form factors are listed in Table 1.

The quark masses enter our analysis in two di�erent ways. First, they occur in the ampli-

tudes involving penguin loops. We treat the internal quark masses in these loops as constituent

8



F

B!K

0;1

F

B!�

0

0;1

F

B!�

0;1

A

B!K

�

0

0:33 0:33

h

sin �

8

p

6

+

cos �

0

p

3

i

0:33

h

cos �

8

p

6

�

sin �

0

p

3

i

0.28

Table 1: Form factors at q

2

= 0.

masses rather than current masses. For them we use the following (renormalization scale inde-

pendent) values:

m

b

= 4:88 GeV; m

c

= 1:5 GeV; m

s

= 0:5 GeV; m

d

= m

u

= 0:2 GeV: (29)

Variation in a reasonable range of these parameters does not change the numerical results of

the branching ratios signi�cantly. The value of m

b

above is �xed to be the current quark mass

value m

b

(� = m

b

=2) = 4:88 GeV, given below. Second, the quark masses m

b

, m

s

, m

d

and

m

u

also appear through the equations of motion when working out the (factorized) hadronic

matrix elements. In this case, the quark masses should be interpreted as current masses. Using

m

b

(m

b

) = 4:45 GeV [35] and

m

s

(1 GeV) = 150 MeV ; m

d

(1 GeV) = 9:3 MeV ; m

u

(1 GeV) = 5:1 MeV ; (30)

from [36], the corresponding values at the renormalization scale � = 2:5 GeV are given in Table

2, together with other input parameters needed for our analysis.

m

b

m

s

m

d

m

u

�

s

(m

Z

) �

B

4.88 GeV 122 MeV 7.6 MeV 4.2 MeV 0.118 1.60 ps

Table 2: Quark masses and other input parameters. The running masses are given at the

renormalization scale � = 2:5 GeV in the MS scheme.

The branching ratios BR(B

�

! �

0

K

�

) and BR(B

0

! �

0

K

0

) are plotted against the

parameter � in Figs. 2 and 3, respectively. Although not indicated by the notation, the branch-

ing ratios for the neutral B-meson decays are always understood to be averages with the

corresponding charged conjugated decays in the following tables and �gures. We would like

to make the following observations concerning the sensitivity of the branching ratios on the

various input parameters.

� CKM-parametric dependence: The branching ratio BR(B

�

! �

0

K

�

) shows a mild de-

pendence (of order 10%) on the CKM parameters whereas BR(B

0

! �

0

K

0

) is practically

independent of them.

� s-quark mass dependence: The dependence of the branching ratios on the s-quark mass

is quite marked. To illustrate this we show the two branching ratios calculated using

m

s

(2:5 GeV) = 100 MeV through the dotted curves, to be compared with the corre-

sponding solid curves which are drawn for the same values of the CKM parameters,

namely � = 0:05 and � = 0:36, but m

s

(2:5 GeV) = 122 MeV. The resulting increase in

9



Processes BR (� = 0) BR (� = 0:45) Experiment

B

�

! �

0

K

�

(2:7� 3:6)� 10

�5

(2:0� 2:6)� 10

�5

(6:5

+1:5

�1:4

� 0:9)� 10

�5

B

�

! �

0

K

��

(2:6� 5:2)� 10

�7

(2:0� 3:9)� 10

�7

< 1:3� 10

�4

B

�

! �K

�

(1:5� 2:2)� 10

�6

(0:8� 1:7)� 10

�6

< 1:4� 10

�5

B

�

! �K

��

(1:5� 3:0)� 10

�6

(1:6� 3:1)� 10

�6

< 3:0� 10

�5

B

0

! �

0

K

0

(3:0� 3:7)� 10

�5

(2:0� 2:6)� 10

�5

(4:7

+2:7

�2:0

� 0:9)� 10

�5

B

0

! �

0

K

�0

(2:0� 6:5)� 10

�7

(0:8� 1:0)� 10

�7

< 3:9� 10

�5

B

0

! �K

0

(1:2� 1:7)� 10

�6

(0:8� 1:1)� 10

�6

< 3:3� 10

�5

B

0

! �K

�0

(2:4� 3:4)� 10

�6

(1:9� 2:8)� 10

�6

< 3:0� 10

�5

Table 3: Numerical estimates of the branching ratios for the decays B

�

! (�

0

; �)(K

�

;K

��

)

and B

0

! (�

0

; �)(K

0

;K

�0

), obtained by varying the CKM parameters in the ranges indicated

in the text and the s-quark mass in the range 100 MeV � m

s

(2:5 GeV) � 122 MeV. The

�rst column corresponds to using the value of the factorization-model parameter � = 0 and the

second to � = 0:45. The third column shows the present measurement and the 90% C.L. upper

limits reported by the CLEO collaboration [1, 5].

the branching ratios in lowering the value fromm

s

= 122 MeV to m

s

= 100 MeV amounts

to about 20% (and 65% for m

s

= 80 MeV). While in literature one comes across even

smaller values of m

s

(2:5 GeV), we subscribe to the view that the valuem

s

(2:5 GeV) = 100

MeV is a realistic lower limit on this quantity. However, if the present high values of the

branching ratios for B

�

! �

0

K

�

and B

0

! �

0

K

0

continue to persist, one might have to

consider smaller values of m

s

. We also expect progress in calculating quark masses on

the lattice, sharpening the theoretical estimates presented here.

� Dependence on f

c

�

0

: Restricting to the negative-f

c

�

0

solution, determined by the QCD-

anomaly method, we plot the branching ratios with f

c

�

0

= �5:8 MeV, as obtained in [6].

The other parameters are: m

s

(2:5 GeV) = 100 MeV, � = 0:05 and �=0.35. The results

are shown through the long-short dashed curves in Figs. 2 and 3. Comparing these curves

with the corresponding dotted curves, we see that the resulting branching ratios in the

two approaches are very similar.

� Dependence on �: This amounts to between 20% and 35% depending on the other pa-

rameters if one varies � in the range 0 � � � 0:5. In all cases, the branching ratios are

larger for � = 0.

Taking into account the parametric dependences just discussed, we note that the theoretical

branching ratios BR(B

�

! �

0

K

�

) and BR(B

0

! �

0

K

0

) are uncertain by a factor 2. Determin-

ing the value of � from other B ! h

1

h

2

decays in the future, this uncertainty can be reduced

considerably (see Table 3).

The ratio of the branching ratios BR(B

�

! �

0

K

�

)=BR(B

0

! �

0

K

0

) is a useful quantity,

as it is practically independent of the form factors and most input parameters. This is shown

in Fig. 4. We see that the residual uncertainty is due to the CKM-parameter dependence of

10



this ratio, which is estimated as about 10%. We get (for 0 � � � 0:5)

BR(B

�

! �

0

K

�

)

BR(B

0

! �

0

K

0

)

= 0:9� 1:02 : (31)

The present experimental value of this ratio as calculated by adding the experimental errors

in the numerator and denominator in quadrature is 1:38 � 0:86. Given the large experimental

error, it is di�cult to draw any quantitative conclusions except that the theoretical ratio in

Eq. (31) is in agreement with data. However, we do expect that the experimental value of this

ratio will asymptote to unity.

The branching ratio BR(B

�

! �

0

K

�

) is found to be somewhat lower than the present

experimental number reported by CLEO. As shown in Fig. 2, we estimate BR(B

�

! �

0

K

�

) =

(2�4)�10

�5

in our framework compared to the experimental measurement of the same (6:5�

1:75) � 10

�5

. The calculations presented here are in better agreement with the experimental

measurement of BR(B

0

! �

0

K

0

), making it to within 1�. Of course, theoretical rates can

be augmented by increasing the values of the input form factors given in Table 1. There is

certainly some room for such enhancement, but in view of the emerging theoretical consensus

on the estimates of the form factors and the fact that the branching ratios in a number of

B ! h

1

h

2

decays do not require such enhancement [6], this can only be modest. Hence, we

anticipate that the experimental numbers for BR(B

�

! �

0

K

�

) and BR(B

0

! �

0

K

0

) will

decrease so as to be more in line with the rest of the CKM-allowed QCD-penguin-dominated

two-body B decays and with our estimates!

We present in Table 3 numerical estimates for all the eight branching ratios BR(B

�

!

(�

0

; �)(K

�

;K

��

)) and BR(B

0

! (�

0

; �)(K

0

;K

�0

)) calculated in the QCD-anomaly method.

The ranges shown take into account them

s

- and CKM-parametric dependence, discussed earlier.

The entries in column 2 and 3 are based on the choice � = 0, corresponding to using N

c

=1

in the e�ective coe�cients, and � = 0:45, which corresponds to the phenomenological value

estimated in the decays B ! (D;D

�

)(�; �) [20], respectively

A number of comments are in order on the entries in Table 3. First, as shown in this table

and Fig. 4, theoretical estimates of the branching ratios for B

�

! �

0

K

�

and B

0

! �

0

K

0

are

almost equal and they are also the largest for the eight decays shown. So, it is no coincidence

that these are exactly the ones measured so far. In particular, the branching ratios for the

decays B

�

! �

0

K

��

and B

0

! �

0

K

�0

are found to be the smallest in this group, and we

predict

BR(B

�

! �

0

K

��

)

BR(B

�

! �

0

K

�

)

� 0:02 ; (32)

BR(B

0

! �

0

K

�0

)

BR(B

0

! �

0

K

0

)

� 0:03 : (33)

Likewise, the branching ratios for the decay modes B

�

! �K

�

and B

0

! �K

0

are smaller

compared to their �

0

-counterparts by at least an order of magnitude. We estimate BR(B

�

!

�K

�

) = (1 � 2) � 10

�6

and a similar value for the neutral B decay mode. On the other

hand, the branching ratios for the decay modes B

�

! �(K

�

;K

��

) and B

0

! �(K

0

;K

�0

)

are all comparable to each other and are predicted to be somewhere in the range (1 � 3) �

10

�6

. The reason behind this pattern can be seen in the various constructive and destructive

11



interferences involving the eight amplitudes listed earlier. This is in qualitative agreement with

the anticipation in [37].

5. Concluding Remarks

We have provided an independent estimate of the process b! s(c�c)! s(gg)! s(�

0

; �), us-

ing QCD anomaly. The resulting branching ratios in B ! (�

0

; �)(K;K

�

) reported here are close

to the ones obtained in the (�

c

; �

0

; �)-mixing approach [6]. The present method also removes the

intrinsic sign ambiguity inherent in ref. [6], thereby reducing one source of calculational uncer-

tainty. Theoretical predictivity is, however, still limited due to the remaining input parameters

of this framework and we estimate it to be a factor 2. Despite this, very clear patterns emerge

among the various decay modes considered here, which are drastically di�erent from the ones

which follow in other scenarios. Hence, ongoing and future experiments will be able to test the

predictions of the present approach as well as of the competing ones, such as models based on the

dominance of the intrinsic charm contributions in �

0

, as suggested in [8, 9], or models in which

dominant role is attributed to the soft-gluon-fusion process to form an � or �

0

[17, 18]. In con-

trast to our approach, these models typically predict similar branching ratios (within a factor 2)

involving the modes B ! �

0

K and B ! �

0

K

�

, in both the charged and neutral B decays. Data

already rules out models predicting BR(B ! �

0

K

�

) > BR(B ! �

0

K), and is tantalizingly close

to testing also the soft-gluon fusion models which predict BR(B ! �

0

K

�

) ' 0:5BR(B ! �

0

K)

[17, 18]. We note that a large intrinsic-charm component in �

0

is not substantiated by inde-

pendent analysis of the �

0

 form factor [24]. Soft-gluon-fusion models are not theoretically

motivated as they show extreme (quartic) sensitivity of the decay widths to the gluon mass

(an ill-de�ned quantity) { reecting that the method being employed in these models is nei-

ther infrared stable nor predictive. For a de�nite test of the theoretical framework presented

here and in [6], more precise data are required and one has to reduce the uncertainty on the

input parameters, in particular the s-quark mass. However, if in forthcoming experiments, the

branching ratios presented in Table 3 for the eight decay modes are found to be signi�cantly

larger (in particular in the modes B

�

! �

0

K

��

and B

0

! �

0

K

�0

), then it will most probably

be an indication of signi�cant non-factorizing contributions, which may feed into the decays

B ! (�

0

; �)(K;K

�

) dominantly through the matrix elements of the dipole operator O

g

.

In conclusion, we reiterate the two intrinsic assumptions of our approach: (i) absence of

�nal state interactions, and (ii) absence of non-perturbative contributions in penguin diagrams,

which may modify both the magnitudes and phases of the e�ective coe�cients calculated in

the factorization framework presented here. The �rst should be a good approximation for the

decays being considered. For the second, we note that non-perturbative contributions are not

speci�c to the decaysB ! (�

0

; �)(K;K

�

) but are endemic to all such decays where penguins play

a dominant role [38]. Furthermore, we admit that the factorization framework used here and

elsewhere is vulnerable and it is conceivable that non-perturbative non-factorizing contributions

do play a signi�cant role in non-leptonic two-body B-decays being discussed here. This remains

to be tested experimentally or proven on �rm theoretical grounds in a well-de�ned framework,

such as lattice QCD. However, it is fair to say that there exists at least a prima facie case in

some of the related decays, such as B ! K� and B ! ��, which support the contention that

the neglected non-perturbative e�ects are not overwhelming and the measured decay rates can

be explained without invoking them [6]. Of course, this point of view may have to be revised

with more precise data.
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η(') η(')

Figure 1: Feynman diagram contributing to the processes b ! s(c�c) ! s(gg) ! s�

(

0

)

in the

full and e�ective theory. The lower vertex in the diagram on the right is calculated with the

insertion of the operators O

c

1

and O

c

2

in the e�ective Hamiltonian approach; the upper vertex

in both the full and e�ective theory is determined by the QCD triangle anomaly.

Figure 2: The branching ratio BR(B

�

! �

0

K

�

) plotted against the parameter �. The lower

three curves correspond to the valuem

s

(2:5 GeV) = 122 MeV and the three choices of the CKM

parameters: � = 0:05; � = 0:36 (solid curve); � = 0:30; � = 0:42 (dashed curve); � = 0; � = 0:22

(dashed-dotted curve). The upper two curves correspond to the value m

s

(2:5 GeV) = 100 MeV,

� = 0:05; � = 0:36 and f

c

�

0

= �2:3 MeV from the QCD-anomaly method (dotted curve) and

f

c

�

0

= �5:8 MeV from [6] (long-short dashed curve). The horizontal thick solid lines represent

the present CLEO measurements (with �1� errors).
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Figure 3: The branching ratio BR(B

0

! �

0

K

0

) plotted against the parameter �. The leg-

ends are the same as in Fig. 2. The horizontal thick solid lines represent the present CLEO

measurements (with �1� errors).

Figure 4: Ratio of the branching ratios BR(B

�

! �

0

K

�

)/ BR(B

0

! �

0

K

0

) plotted against

the parameter �. The legends are the same as in Fig. 2. The horizontal thick solid lines

represent the present CLEO measurements (with �1� errors estimated as stated in the text).
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