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ABSTRACT

We present a new study of polarized elastic muon-electron scattering. The Born cross-section is
calculated for arbitrary polarization of muon and electron. The complete photonic O(«) radiative
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corrections are determined for the case of longitudinally polarized muons and electrons. All calcula-
tions are done by two methods: semianalytic, which allows an implementation of the experimental
cuts used for the analysis of pe scattering data from the beam polarimeter of the SMC experiment
at CERN and completely analytic, which is used for cross checks. The FORTRAN code pela realizes
formulae of both approaches. We prove that certain experimental cuts lead to negligible radiative
corrections in the muon beam polarization experiment.
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1 Introduction

Polarized elastic pe scattering is being measured by the SMC collaboration at CERN as a
monitor of muon beam polarization [l]. Since the measurement pretends to be very precise,
the photonic corrections have to be taken into account.

The differential cross-section for this process in lowest order may be cast into the simple

form [2] .

do
dy - m.E,

2ra? [(V —y) 1
_ [ RN ARE R AL (1.1)
where the following notation is used:

m,,, m. — muon and electron masses,

P,, P, — longitudinal polarizations of muon beam and electron target,

!

y =y, =1— =% - the measured energy loss of the muon,
&
my, . . . .
Y = (1 + ) — its kinematical maximum,
2K,

E,. E;, E' — muon (initial, final), electron final energies in the laboratory frame.
The polarization dependence of do is used to calculate the measured electron spin-flip
asymmetry AJP

do(1})  do(11)

exp __ dy B dy
A= T () doT) (1.2)
dy dy

The asymmetry is measured as a function of the variable y,.
Previous calculations [B]-[B], presented results in terms of the variable y. = E./FE,, and,

only Ref. [6] took into account the polarizations.
If elastic pe scattering is treated in the Born approximation then

yﬂz - ye = y7 (13)

and eq. (1.1) may be written in terms of either y, or y..

The situation changes drastically if one calculates QED corrections. Due to the emission
of non-observed photons the identity (1.3) does not hold anymore, and one has to specify the
variable to be used for the calculation of radiative corrections. Their numerical values may be
very different in y, and y..

Since the measurement and the analysis were performed in terms of y,, [1], the calculation
of QED corrections must be done, of course, in terms of the same variable. This is why a new
calculation was neccessary.

Our new calculation is the theoretical basis for the Fortran program pela, [7]. It is a
complete, order O(a?), calculation. It takes into account longitudinal polarizations of both
p and e, finite muon mass effects (the electron mass is neglected wherever possible). In the
semianalytic approach it is possible to apply all experimental cuts which were used in the
analysis of the experimental data:

(E™ =35 GeV);
"T(ETT =40 GeV);

— a recoll electron energy cut, £, > F

— an energy balance cut,



— angular cuts on both p and e, 8, and 0. in the laboratory system: |0 — GBBORN < Omin,

(921635 _ GBORN

I
BORN

while 8"

< Omin (Omin = 1 mrad). In the above, 62°* and (92“635 are the measured angles,

and GBBORN are angular values calculated using BORN kinematics.
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Figure 1: Feynman diagrams for the elastic pe scattering in order O(a?).
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It order O(a?), the 14 Feynman graphs, shown in Fig. I}, contribute to the cross-section.
The latter may be subdivided into 12=2x6 separately gauge invariant contributions:

QED

do
dyu

R)
e

(1.4)

Q“\

where the indices k& and [ have the following meaning

[= 1 — unpolarized contribution, [ = unpol;
2 — polarized contribution (the terms proportional to P.P, in (1)) , [ = pol.
k= 1 — Born cross-section, k = b;
2 — Radiative corrections (RC) for the muonic current: vertex + bremsstrahlung, k = ppu;
3 — contribution of the anomalous magnetic moment of the muon, k& = amm;
4 — RC for the electronic current: vertex + bremsstrahlung, & = ee;
5 — pe interference: two-photon exchange +
muon-electron bremsstrahlung interference, k = pe;
6 — Vacuum polarization correction, running o, k = vp.

The resulting QED corrected cross-section is given by the sum

do QED unpol d pol
= +pp, Tk ) (1.5)
dy, ; dyu "y,
The cross-sections with k = pp, ee, e have similar generic structure
doy, a vedo daEREM
— = —0, ) (1.6)
dy,, m dy, dy,

with a factorized part 6% originating from infrared divergent virtual (V) and real soft photon
(R) contributions.

The main conclusion of this study is illustrated in Figs. 2 and 8, which present radiative
corrections to the asymmetry as a function of the variable y, for two cases: without any cuts
and with experimental cuts described above.

The asymmetry A} , and the radiative correction to it, 5i are defined as follows:

do®(1}) _ do*(t1)

dy dy LAY
Ar = ZE £ = BORN, QED 54 = 2 _ 1. 1.
“ T AT et " ORN, QED, 0, = Zeom (.7
dy,, dy,

As is seen from the figures, the corrections without cuts are very large and reach up to
-20%. When the four above mentioned cuts are taken into account they reduce ¢ to values
below 1%. Actually, for a wide range of y, they are even well below 1%.

The main conclusion of our investigation is that one may safely neglect radiative corrections
in the determination of the muon beam polarization with the SMC set-up.

Tn the following we will always present the formulae in the form (:l- ), i.e. summed over /.
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Figure 2: QFD corrections to the polarization asymmetry without experimental cuts.
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Figure 3:  QFED corrections to the polarization asymmetry with experimental cuts:

E™ =35 GeV, E” =40, Oomin = 0 min = 1 mrad.



2 The Born cross-section

2.1 Kinematics and phase space

We consider the elastic scattering process

fe(ky) + e(pr) — plka) + e(p2), (2.8)

in a fixed target experiment, i.e. with the initial state electron at rest, k; = (6, ime).
Since the typical incident muon energy, F,, in present-day fixed target experiments is
O(10* — 10° GeV), the maximal c.m.s. energy,

s = —(ki+ p1)2 = mi + mg +2m.E,, (2.9)

is very small, \/s < 1 GeV. Therefore, we may completely neglect Z-boson exchange.

In fact, for the energy used by the SMC collaboration, £, = 190 GeV, the invariant s is
only 20 times bigger than the muon mass squared. Therefore, we can not neglect effects of
the finite muon mass. Of course, the electron mass may be completely neglected.

While calculating the Born cross-section, we will perform all derivations exactly even in
me, since the resulting expressions are very compact even if m. is kept, but at the end of
calculations we will neglect the electron massi. The Born process is characterized by one
kinematical variable, besides s. We will use the dimensionless variable y:

!
I

= =1- -+t 2.10
piki k? Eu ( )
We will introduce also the transferred momentum squared
Q* = (k1 — k2)* = —1. (2.11)
It is easy to derive the identity:
Q* = Sy, (2.12)
where
st—mg—mi. (2.13)
For the Born cross-section, we have
1
do” "™ = ——|M"7"Pdry, (2.14)
24/
with
A, = 5% —dmlm?, (2.15)
Ply By
dly = (2m)* d(k — ky — po). 2.16
2 ( 7T) (27T)32k8 (27_[_)32]9(2) ( 1+ pr 2 p2) ( )
In terms of y the differential phase space reads
1 dQ? S
dl'y = — © (2.17)

= dp = ———=dydyp.
1672 /X 7 1672,/ 7

2We refer to this approximation as to the “Ultra-Relativistic Approximation (URA) in m.”.

7



2.2 Spin degrees of freedom

Since we are going to deal with the scattering of polarized particles, there will be additional
essential variables, besides s and y, which are supposed to describe the spin degrees of freedom
of the problem. Their description uses the language of spin density matrix ( for details we
refer e.g. to Appendix C of [B]).

For non-polarized particles, we use projection operators in trace calculations, i.e. summing
and averaging over spin indices looks as

S ()i () = (D). (2.15)
with
A(p) = —ip+ m. (2.19)

For polarized particles, we use the spin density matrix instead

St (p)a'(p) = 51+ irsE)A(), (2.20)

where £ is the polarization four-vector .
In the particle rest frame, = 0, it is:

¢ = (P#,0), (2.22)

where © is a unit vector in the direction of spin quantization, and P is the polarization,
defining the degree of spin orientation along the direction 7. For instance, P = 1 means that
the probability of a particle to have its spin projection along the direction 7 is equal to 1 (right
handed longitudinal polarization, if vector 7 is chosen along particle momentum p’). From
(2:22) in the particle rest frame, we have

&po= 0,
¢ = P (2.23)

Due to Lorenz invariance, the properties (2.23) are fulfilled in any Lorenz frame.

The initial electron with the four-momentum p; is at rest in the laboratory frame. Using
then the direction of incoming muon as the direction of spin quantization, i.e. 1 = k_;/|k_; |, we
get the four-vector of the electron polarization from (2.22)

F
(e =P (ﬁo) : (2.24)

The four-vector £, may be obtained from the expression similar to (2.24) in the muon rest

Fy
fu = Pu (ﬁvo) (2.25)

frame

3A mnaive use of longitudinal polarizations from the early beginning of calculations, i.e. use of the spin
density matrices in the form

S ()t (p) = 51+ M)A (D), (221)

does not properly reproduce the finite muon mass terms in the P, P, part of the cross-section.



by Lorenz boost to the electron rest frame along the beam axis:

K ko |k
Cu = Pu—t (|k| | |). (2.26)

We will consider the Born cross-section with arbitrary orientations of electron and muon
spins. We choose the laboratory frame with z-axis oriented along the incoming muon 3-
momentum lgl and with the plane (x,z) coinciding with the reaction plane. Another plane is
spanned by the vectors ki and the projection (f_;)l,y of vector f_; to a plane perpendicular to
z-axis. In this frame, the relevant 4-vectors are written as follows:

by (0. 0, [k, 4D) .

ky = (|E2|sin0M, 0, |l_€)2|coseu,kg),

p = (0,0, 0, m.),

po= (IBlsind., 0, || cos b, pf) . (2.27)

For the spin vector £, arbitrarily oriented in 3D-space, we have in the choosen laboratory

frame instead of (2:24) the following generalization
(. = P. (sind. cos ., sind.sine., cosd, 0). (2.28)

We may identify the angle ¢, in (2:27) with ¢ of the phase space parametrization in (2:17)
and therefore ¢ becomes an essential degree of freedom in presence of a transverse polarization.
For arbitrarily oriented ¢, , we have instead of (2.25) in the corresponding rest frame

£, = P, (sind, cosp,, sind,sing,, cosd,, 0). (2.29)

Now we boost ¢, from the muon rest frame to the laboratory frame

kY ke,
&, = P, (sin 0, cos @, sind,sing,, ——cosd,, M cos ﬂu) : (2.30)
my, my,
Using the explicit representations (2.27), (2.28) and (2.30), we can easily derive all scalar
products involving polarization vectors.
The doubly differential (in y and ¢ &) cross-section exact in both masses reads:

BORN

do 2028 s 1 1 1 1
= — - — PP |—+=—= 7, J
dyde Ay {y2 y5+2+ [( y+Y Z)COS o8 Vu
_I_mu|p2 ( _|_2m
y\/

|k 2 ) )
_m | 2| 1+ m“ sinf, cos v, sin, cos @,
Y/ As S

) sin @, cos Y. sin ¥, cos @,

mem, (sl
-9 25 smﬁesmﬁu(Tmn@e&n(%coscpecosc,%

+y cos 5(%—%))] } (2.31)

“For ¢ two choices are possible: 1) ¢ = ¢, then ¢, = p.— (5(%_%) or2) ¢ = ,, then . = ¢, + (5(%_%).




The expressions for sinf, and sinf, exact in m, are

2m. )
Ging, = MVl (2.32)
A2
2men/SY
nf, = ——— 2.33
sinf, I (2.33)
where
A= Sz(l—y)2—4mgmi,
M= %y 4 4m? Sy, (2.34)
. )
_ 1 - 2L 2.35
J y( Y) (2.35)
and

A m2\ "
Vo= 2x (1+?ﬂ) (2.36)

is the kinematical maximum of y-variation.
The substitution of these variables into (2.31)) exhibits an interesting property of the general
Born cross-section which becomes

BORN

do 2025 (1 s 1 1 1 1
= — —+ -+ PP+ =—= 7, J
dydo X {y2 y5+2+ u[( y—l—Y 2) cos V. cos v,

m /Sy (1 N 2m?
/A S
Mme/ Sy

VAs

—2% sind, sind, ((1 — %) COS (P, COS p,, + COS 5(%—%))] } (2.37)

_|_

) cos ¥, sin v, cos @,

Zmi .
1+ 5 cos ¥, sin ¥, cos @,

From the last presentation it is clearly seen that while terms related to the transverse electron
polarization are small since they are suppressed by the electron mass (third and fourth lines),
the term induced by the transverse muon beam polarization (second line) is not small, since
it appears to be proportional to the muon mass.

By trivial algebra one may show that the expression (2.311) reduces to a very short form in
two particular cases. In case of tranverse electron and longitudinal muon polarizations in the
URA in the electron mass we obtain

BORN

do 202 [ 1 1 1 l—y /1 1
=— |—=——+-+F.P i 0—(———) . 2.38
dydo g [yQ yY+2+ ,, COs psin b, y 5Ty ] ( )

The corresponding expression for the case of longitudinal polarization of both particles, but
exact in both masses reads:

BORN

do Ara?S [ 1 s 1 1 1 1
= — —+—-4+PP|[——F=—==1]. 2.
dy Ay [yz y5+2+ “( y+Y 2)] (2.39)
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Having in mind that r. = a/m. and S = 2m.F,, we immediately identify (2.39) with the
corresponding expressions from Section 2.2 of ref. [2] if one neglects terms of O(m?) here.
In the URA in m., equation (2.3%) may be rewritten in a form, which is explicitly positive
definite:

BORN

(1—yP.P) + % (1—-P.P,)|. (2.40)

do Ama? [(Y —y)
dy S y?Y

3 Complete O(a) Radiative Corrections

3.1 Kinematics of e — pevy

The reaction
pi(k1) + e(pr) = pulkz) + e(p2) (3.1)

is accompanied by the bremsstrahlung of non-observed photon(s)

(ki) + e(pr) = plke) + e(p2) + (n)7(p). (3.2)

First of all we will study the kinematics of one-photon bremsstrahlung. We want y, to be the
last integration variable out of a set of four variables (besides ). There is some freedom in
doing this.

We will use the definitions:

k —k
Q= (b — ko), oy =tk (33)
p1k1
and
Qg = (p2 _p1)27 Ye = pl(p2 _ pl) (34)
p1k1
The other invariants are:
Z1T = —2pk1, Z9 = —2pk2,
Vio= =2pp1, Vi = —2pp. (3.5)

Of course, only four of the invariants are independent.
Using 4-momentum conservation, it is easy to derive the following relations among them:

Zl—l_‘/l = 22+‘/27
Vi = Syu_ 2

e’

szsyu_ 2

w?

QI = Sy (3.6)
We will use the following set of independent variables
Sv QZ? Yus zv 22(1)' (37)

The last of egs. (3.6) deserves a comment. Our choice of the 4-momentum p; in defini-
tions (8.3) and (B.4) introduces the asymmetry between y, and y.. This is reason why Q2 and
y, may be chosen as independent variables, while there exists a relation between Q? and y..

11



For the moduli of particle momenta and the energies, in the electron rest system p; = 0,

we obtain

PR
pl = o,

o A
|k1| = Sv
2m.

— \/)\7[
|k2| = )
2m.

— \/)\M
|Ql| = 2—7
me

|ﬁ2| = |Qe =

with

7 —
mp,? kl * P2

Sl == S(l — y#)

S(@+2md) _§-Q2- =

2
4m?

(3.8)

(3.9)

The corresponding equations for the Born kinematics (|p] = 0) can be easily derived from

(B29) setting

In this limit

Q=@ =@

Vi=Vo=2=2=0.

and

Ye = Yp = Y-

(3.10)

(3.11)

Many relations and useful notations can now be taken from [B]. As usual, we introduce

the relevant kinematical A-Tunctions:

Ap
A

S

Al

where

Me,y,z) =

Al=(pr + )%, —pi, —1°]

Al=(p1 + k1)?, —pi, —ki]
Al=(p1 + k2)?, —pi, —k3]
Al=(p1 + Qu)?, —p1. —@Q

Al—=(p1 + p2)*, —pi, —p3]

3.2 Kinematic boundaries

2
I

]

=

= 52(%; y6)27
= 52—4mim§,

2?4yt 4 22— 22y — 202 — 2.

(3.12)

(3.13)

The boundary conditions may be taken from [9]. The first one, (B.3) of [9], remains unchanged

g |

12

m?Q% + 5%y, Q% + m25%y,* — AsQ?% =0,

(3.14)



while the second condition, (B.4) of [9], changes, since, contrary to [9], y. is not an independent
variable here. This is due to the fact that we are dealing now with elastic scattering rather
than with the deep inelastic scattering in [H]. Using the last of eqgs. (8.6), eq. (B.4) of [9] takes
the form:

S?y, Q7 + QQ5 — mi(Qh — Q) — Sy QHQL + Q2) = 0. (3.15)
The physical region £, = (Q2,y,) is given by two inequalities (see [U], subsection B.2.1),
which are derived from (3.14)

<< — 75 =(2 1
where
) Q?
i) = <y, < Q2. (3.17)
W) = g [ 2] (3.15)
" " Zmi SV oETm rl '
and
Ay = QZ(QZ + 4mi) (3.19)

The solution of eq.(B.I5) is

_ Syu(Syu - Qi) + szQi + (Syu - QZ)\/E

2\max,min 3.20
e Sy, = QL+ ) 20
3.3 Another set of independent variables
Besides of (B.7) we use
Sv Yus ‘/27 ‘/17 22(1)7 (321)

To write down the limits in these invariants, we reorder first the physical region &, =
(Q%,yu) = (yu, Q1) Trivial manipulations with (3.16)(3.I8) lead to

0 <y, < Y™, (3.22)

(Q2)™" < Q7 < min{(Q2)™, Sy,.}. (3.23)
Here

A, — Sy, £ AN

2
e

(@ )mexmin = (3.24)

2m
Solving the equation

(@)™ = Sy, (3.25)

max

we find a maximal value y}

Y = s (3.26)



where the two upper limit branches of (B.23) meet each other.
From (8:23) and the definitions of V;, we easily derive the limits of V; as function of y,

Syn(S +2m2) — A + /AN
OS‘/QS yﬂ«( )25‘ sl‘

2m:

(3.27)

The second solution

SyM(S + sz) - )‘s BEY, )‘s)‘l

2 9
2m:

min __
‘/2 =

(3.28)

is unphysical. It is negative in the physical region (8.23) of y,. Finally, from (3.20) we derive
the limits of V; as functions of y, and V5

‘/1min S ‘/1 S ‘/lmax7 (329)
where
. Sy, +2m2 £ /A
‘/1max,m1n — ‘/2 H 2 H . (3‘30)
2(Vz + m;)

Examining (3.27), one may see that the invariant V5 is positive only in the interval
0 <y, <yi™ (3.31)

To complete the study of kinematics of the reaction (8:2), we have to give the limits of
variation of the variable z;(;). We may take all the relevant formulae from [}] and simply list
them for completenes:

A" s Qo ye) = BI(Q)AB/D_Z = BI(Q)C:IF(Q)\/D_Z’ (3.32)
and the Gram determinant
R, = —Aiz} +2B12 — C) = — Azl 4+ 2Bozy — (o, (3.33)
Ay = = Ay, (3.34)
By = {2m2Q%Q2 — Q%) + 5*(1 — ) (,Q% — weQ2) + S*(1)Q2(yu — v}
=~ B{)e-1-w)} (3.35)
Cy = {S(1—y)Q? — SQ2I(1) — w]] +4m2[S*(y, — ), Q? — 9. Q%) — m2(Q2 — Q%))
= af) e -0-yh (3.36)
D. = Bjy — Az (3.37)

Here we now understand that Q% = Sy.. This makes no simplifications, therefore we did not

substitute it in order not to destroy a nice symmetry of these equations.
The inequalities (3.31), (8:27), (3.30) and (B.33) are the kinematical limits in the sequence:
Yus ‘/27 ‘/17 <2-

14



3.4 Phase spaces

In order to have a convincing proof that all the boundaries are correctly derived, we always
write a supporting FORTRAN program to numerically check that the phase space volume in
any sequence of variables is exactly the same. We calculated as many phase space integrals
analytically as is possible.

For example, we realized the cross check of our sequence (3.21). Three integrations may
be easily performed analytically, yielding:

max

I = ' dy, (Vzmax —m?ln

‘/2max + mg)
B a—

me

S v
e /0 (3.38)
The numerical check returned for this integral exactly the same value as for the basic sequence,
(C.1) of [9].

We will always integrate over z; first. Then, only three variables 1}, V5, y, remain. The
physical regions € = (y,, V2) and Z = (V3, V1), as derived from (3.27) and (3.3(0), are shown
in Figs. 4 and 5.

V2 V1
Vzmcx V1""°"
V1min
Yu V2
Figure 4:  (Va,y,)-plot Figure 5: (V1, Va)-plot
3.5 Bremsstrahlung cross section
For the normalized bremsstrahlung cross-section, we have
BREM 1 BREM |2
o™ = —=|M dr's, (3.39)
2/,
with the 2 — 3 phase space
Phy P PP
dl's = (27)' ==~ b D §(ky + pr— ks —p2 — p). (3.40)

(2 )2k3 (2727 (2m)°2p)

15



In terms of the variables (8.21) the differential phase space looks as follows
S le

———=dy, dV; dV} ——.

277'['41 / )\S 8 ’ ' \% Rz

We developped two branches to present the final result:

dl's = (3.41)

e calculation within the Numerical Approach, with the possibility to impose arbitrary
experimental cuts;

e calculation within an Analytic Approach with limited possibility to apply cuts.

Amin,max

We note that the integrals over z; were calculated analytically with arbitrary limits 2]
(see, Appendix (A)), while integrals over V5(;y were computed purely numerically. This is the
essence of our numerical approach, the muenum branch of pela.

We also performed the complete O(a) RC calculations within an Analytic Approach, the
mueana branch of pela. In this description, we will present only a sketch of the calculations.

Within the analytic approach we have integrated the bremsstrahlung contribution over the
variables z; and Vj over the full photonic phase space without imposing experimental cuts. The
aim of this is twofold: first, we performed an independent calculation of the bremsstrahlung
cross section and its integration which was used to cross check the formulae of the numerical
approach and their coding in the FORTRAN program pela. Second, these analytic formulae are
rather elegant, although lengthy, in the SIngle Ultra Relativistic Approximation (SIURA) in
the electron mass. Due to analytic integration, they run at the computer incredibly fast, several
orders of magnitude faster than the numerical integration within the numerical approach. We
note that this relative simplicity may be reached only if we integrate over the full phase space
of photons. From formulae in the STURA it is easy to derive the formulae in the DOubly
Ultra Relativistic Approximation, DOURA. It is important to stress, that in the latter case
satisfactory precision of the calculations is not ensured.

The derivation of analytic results is quite straightforward. We consequently integrate in the
sequence dV,dVidz;. In reality, it is convenient to calculate and substitute the twofold integrals:
dVidz;. These are presented in the Table in Appendix (D.1}). After substituting the dVidz,
integrals, we arrive at another Table of integrals over V; which are listed in Appendix (D.2).
They are much more complicated than the first, two fold integrals. The latter integrals were
calculated in limits [O,VQmaX] with an arbitrary upper limit. This allows us to impose V;-
dependent experimental cuts even within the analytic approach. An example is the muon
angular cut.

A comment on DOURA is in due here. Since here we neglect m?, a problem might arise

from the fact that Qimm is proportional to the muon mass. Apparently, mi can’t be neglected
in Qimm, since it enters in the denominator of the photon propagator. However, we assume

that a cut is imposed on V5, which prevents Qimin from reaching its kinematical limit. In
other words we assume that

Q2 > (Q%)™ = (Q2)° > m?. (3.42)

3.5.1 Final expression for the normalized bremsstrahlung cross section

Defining the z-integrated contributions,

“MBREM\QL = /: W% | (3.43)
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and neglecting m, wherever possible, we finally obtain

dO‘ a3 V2max Vlmax BREM
& dV’/ vy [|m
dyu S /0 2 Vmin 1 H

1

BREM

I (3.44)

In (B.44), the limits ‘A/Q‘E“la)x, gmimmax o e functions of experimental cuts. In this way, the
cuts are implemented within our numerical approach.

There are three gauge-invariant contributions to the bremsstrahlung differential cross sec-
tion: muonte, electronic and pe interference, each of them is represented as the sum of an
InfraRed divergent contribution ‘IR’ and a finite (Regular) part ‘R’

BREM |2 - IR R
“M L= e (BEL s, (3.45)
“sz = Q2 (BFR 4 51, (3.46)
BREM |2 IR R
WMBZQW@%+%% (3.47)
where B is the Born factor
Y — Yy o 1 BORN |2
B: y2Y (1—yP6PM)—|—2(1—P6PM):167TT“2‘ (348)
The F;R are infrared factors:
1 1 1
IR
= o) [e] -milg] ol e
Sy m?  m?
IR = Lot )1 3.50
ee (‘/1‘/2 ‘/12 ‘/22 Z? ( )
S S |1 S|l Syl
AR O e DI
‘/1212‘/2222‘/1222‘/2212

In (349)-(B:5L) and in the cumbersome functions S; given in Appendix (Aj), the z-
integration (3:43) with arbitrary limits is assumed to be done. .
Tables of z-integrals with cuts and equations for limits V3%, 27™™™** in terms of experi-

3.5.2 Treatment of the infrared divergent part

The three terms with F™ in (3.45)-(3:47) cannot be simply integrated in (3.44) because of
the infrared divergency at V5 = 0. It is treated by dimensional regularization.

Substituting all terms with F™® into (3241f), we define the IR Part of the bremsstrahlung
cross-section.

® _ 2'ma’ 5 IR IR | 2 IR
do™ = Vs B (QMFML T QA Fe + QT ) dl's
277T30é3

- B(QZFR + 0,0 108 + Q2 F) [0(= — p°) + 0(p° — 2)] dI's

doRsoft 4 g IRohard (3_52)
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We will treat do'® in the R-frame which is defined in Appendix (J by the condition

P+ p=0. (3.53)

In this frame we find
Vo= =2p.py = —(p2 +p)* —m? = (p; +p°)" — mZ. (3.54)
For sufficiently small & we have at the point of separation of soft and hard photons, p° = &,
Vo=V = 2mee, (3.55)

which can be choosen to be much smaller then any typical invariant of the process.

From a study of the R-system it may be understood that there is an unique correspondence
between angular integrations in the R-system and invariant integrations, i.e. we may use
invariant limits of z in (3.43) and of V; in (3.44) instead of angular limits in the R-frame in
order to compute the hard part of do'®

IR,hard 2'm%a’ 2 IR IR | q2pIR 0
doTohard or B(QZFL + 0,018 + Q2F) dUs0(p° — 2). (3.56)
This is very convenient, since hard photons are in general affected by experimental cuts and
the cuts are implemented in our approach by means of limits of a numerical integration over
z; and V;. Finally, we get from (8.52)

JoRhard o | pvmex Ve o | HIR IR 2| pIR
W - ?B Vs v /Vlmin Vi Qu Fw —I_QMQ@ Fue +Q6 Fee
do‘BORN o ’ ’ ’
- -~ _51R,hard (357)
dy, T
with
A2max Vlmax
§iRbard _ /V dvi /V o (QZ lFiﬂ + Q0 lFE?] +Q? lFJE] ) (3.58)

Again, in (8.5%)-(8.58) the z-integration (8.43) with experimental cuts is assumed to have been

e -

done.

3.5.3 A short form of the completely differential bremsstrahlung cross-section

........

unpolarized squared matrix elements of (3.45-3.47) with not yet separated infrared parts (3.49%

B.51) a compact representation is known in the literature [10]. We present it here, in notations
of our paper, even in a more compact form:

5 7 unpol f-R 2
BREM €
“Mform i = lehZ& * Q! (miAZM " mgAW)] 7
7 unpol R
F 2
MBREM 2 _ 2 QAB QAM
U form ee | Qe QZ‘/l‘/? * Qi (me ee T m“ 66) ’
7 unpol R 2
BREM |2 F S S’ U U’ Qmu
I _ Al (3.59
“ form e | Q.Q [ QzQZ (‘/121 + Vazy + Vizg + Zl‘/Z) QEQZ g ] ( )
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where

Fro— S§2 4§72 4?4
. S/2+U2 52+U/2 SU_I_S/U/
A““ - T2 B 22 -2 212
1 2 122
1 1 1 1\?2
27 (- - ) +emi@d (- - =)
21 z2 21 z2
S+uU S'+U  miQ?
Afm = - h + i +4 MQa
1 Z9 2172
S?PyU?r ST U 1 1
A = - — 2!MIO? | — + —
ee ‘/12 ‘/22 —I_ mMQﬂ ‘/12 +‘/22 ?
A _(S—I—U)2+(S/—I—U/)2
ee - ‘/1‘/2 9
S S’ U U’
A, = — 2 2
g (Qe * QM) (‘/121 * Vozg * Vizo * 21‘/2)
! _ !
LA Uit (3.60)
21 z2
S/ = S—Zl—‘/l,
U = -S+Q2+W,
U = —=S4+Q+ . (3.61)

The representation (3.60)-(3.61) is really very elegant, and it may be used in a Monte Carlo
code. It can’t be used, however, within the numerical approach of this paper for the following

reasoIns:

1. It does not take into account polarizations (main reason).

2. It includes the IRD part which has to be separated out.

3. Our bremsstrahlung cross-section, as we emphazed already, is integrated once over the

invariant z1 o within arbitrary limits (by making use of a table of indefinite integrals).
To do so, we need the canonical representation

S =3 A Ka(S, g Va, Vi) i = eesepypp, 5 =1,2, [=1—24,

Ly

(3.62)

see Appendix (D). We gain at least one order of magnitude in CPU-time, since instead
of a three-fold numerical integration over V5, V; and z 2, we need only two-fold: (Vz, V).
This gain of CPU-time makes our code very fast and user friendly. In order to arrive
at this level, however, one has to substitute S’, U, U’, and the compact expressions,
actually, become much more cumbersome (see Appendix A).

. Finally, the canonical representation (3.62) seems to be the only road towards an ana-
lytically integrated differential cross-section, see the discussion at the beginning of this
section.
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3.6 The muon anomalous magnetic moment contribution

The contribution of the anomalous magnetic moment of the muon to the cross-section can be
expressed as (here we follow decomposition of ref. [I'1]):

amm ,
jy“ — %3 framm (—2”55) G . %) (2 —yP.P,), (3.63)
where L
i et (3.64)
and
B= 14+ 4523. (3.65)

3.7 The running electromagnetic coupling

The correction due to the running QED coupling (vacuum polarization) can be implemented

as
2 2 BORN BORN
doyp _ a(Q7) 1 do _ 5Vpda 7 (3.66)
dy « dy dy
where
a o
The correction A« contains two parts:
AO&(QQ) = AO&[ —|— Aozudcsb, (368)

the first contribution is due to the charged leptons, the second one is due to the light quarks
(u,d,c,s,b). All details about the calculation of da; are described in [12]. For the calculation
of the Adayqess we use the parametrization of ref. [13].

3.8 The net O(a®) cross-section

Now we have collected all the ingredients to construct the net QED cross-section up to order

O(c?). Tt has the form

dUQED B d BORN (1 + 5 ) + amm
dyu B dyu ° dyu
o do‘BORN do‘BREM
k=pu,ee,ue ™ dyﬂ dyﬂ

reads
BREM

Z do,

dy
kY
with SE given by (AL71), (A.72) and (A.73). The limits of integration in (3.70) are discussed

[ g - - -

in the Appendix B.

Vmaa:

053 V2mam :
- ? /V2 Vs / min Vi (QZSEM + QzSi + QuQeSES) ) (3.70)

1
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A Finite contributions to the bremsstrahlung cross-sec-

tion
Here we list three finite contributions, SZ»R, to the hard part of do which enter the formu-
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V. SSR,\ Vi [ S 10 4 2y,R
+2—2(—1+ Qz“)+—2[—(—3yu+9——+—2—M)—yﬁ]
1

eYu Q2 1 Yu Yu
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Q) Y
2 2 1 4
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yﬂ« yp, y#« y#«

The indefinite integrals, in terms of which the quantities S:, are presented here, is the first
series of integrals over z; or zo, which is given in this paper. It correspontds to the first,
innermost and the only semianalytical integration, within our numerical approach. In the
R-frame, it corresponds to the integration over the angle wg of the photon, see eq. (C.127).

The three first integrals of this series are presented in Appendix D.1 of [§], eqns.(D.6)-(D.8).
Here we recall the definition of integration, and present two additional integrals.

[ B 1 ZAE;Y le(Q)
_AL -l VR A
[ 1 1 Bl 2
4) Z1(2) = _7T—)\q R.(21(2)) . + )\Z ) [1] ,
2 2

The functions A, B, C' are defined in (3.34)-( 8.36).
In the table, we introduced the abbreviation

max

& (A.74)

min

1(2)

z

z

z

mln max

The limits of the integration 212) may be arbitrary. The particular realization of these

limits, depending on realistic experimental cuts, which we implement within our numerical
approach, has been derived in Appendix B.3.

B Numerical approach. Implementation of experimen-
tal cuts

Within our numerical approach, the cuts are applied via integration limits in (3.70). There
are cuts in variables V5, V; and z;.

B.1 Vi-dependent cut

e Angular cut of muon

Here we consider the cut on the angle of the scattered muon. This angle may be easily
calculated from the Born and bremsstrahlung kinematics. In both cases

— 2y = 2 (kYK — |k ||k2| cos0,,) (B.75)
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For the case of Born kinematics one can easily derive

S%(1 — —2m2(S 2m?
cos QiORN _ ( yu) me( Yu + mu)‘ (B.76)
VAsvV A

From eq. (B.76), keeping only terms O(m?), we get
4m2vmax
. o ,BORN 9 ,BORN 2V
sin“f, =1—cos™0, = m, (B.77)
so, one may derive the GiORN. Here Vmax
muy.’ Sy y
V= Sy, — = 2 (1——“) B.78
2 yﬂf 1 _ yu 1 o yu Y 9 ( )

is the upper limit of V; neglecting m.. The exact expression was given in (3.27).

Using (B.8), one may receive from (B.75) the following expression for cos GiREM:

S — —2m? (Sy, — Vo + 2m?
cos aiREM _ ( yu) ( Yu 2 M)‘ (B79)

v

Keeping again only terms linear in m7, we may derive the value of sine of the muon
scattering angle in the bremsstrahlung process:

. 4m?
SIH2 (giREM == ,Sq(li—ey) (‘/2max - ‘/2) . (B80)
n
It is obvious that:
BREM BORN
B <4, (B.81)
Therefore, we may introduce the upper limit of the difference
0. 0 <, (B.82)
or
BREM BORN BORN —~ =
(0,2 >0, —20" 0407 (B.83)
By substitution of expressions (B.77) and (B.8U), we receive
é(QQBORN _ g)
Vo < V) = Vzmaxw (B.84)
n

Kinematical limitation

The kinematical limit on V™ was written in (8.27).

So, the absolute max of V; should be a minimum of the two possible maximal values of V5

V= min [V, V5] (B.85)
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B.2 Vi-dependent cuts

e Energy recoil cut £™°.

The electron energy in the final state is limited from below by: E;l =py > ERC, where
E™ is some cut on recoil electron energy. In numerical calculation we use the SMC
value E™” = 35 GeV. So,

2mep) > 2m B (B.S6)

From the other hand:
— 2p1py = Zmepg = Qg + 2m2. (B.87)

This corresponds to
RC

Sy, — Vi >2m(E " —m.), (B.88)

and we receive one of the possible cuts on V;:

RC

i < VlERC =Sy, —2m (E " —m.). (B.89)

e Energy balance cut £

Photon energy p® also could be implicitely limited by an experimental condition, emerg-
ing from checking of overall energy balance:

E,4+m.—E, —E =p, < E™. (B.90)
The SMC value is E”° = 40 GeV. It is another energy cut related to the invariant V;:
2mep® < 2m BT, (B.91)
BC EBC

Vi=2pp=2mp’ <2m.E =V, . (B.92)

e Kinematical limitation

Still we must take into account the kinematical limitation on V{™**. The boundaries of
the allowed phase-space region are defined by (3230).

These three cuts allow us to make the right choice for an absolute maximum of V}

Vi = min [V V0 17 (B.93)
B.3 :-dependent cut
o Cut on the electron angle The electron angle can be determined from
— 2k py = 2kDpY — 2|k || 2] cos 0. (B.94)

It differs for the Born and bremsstrahlung kinematics. We consider first the radiative
case, where it may be rewritten as:

cos P S1(Sy. = Vi) +2m?] = [S(1 — yu) + V5o — z1] 2m

‘ VsV
(S +2md)(Sy, = Vi) +2mlz

VAsy/(Sy, = Vi)? + 4m2(Sy, — Vi)

(B.95)
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and

BREM

: 4m?
sin’ 6, = )\”;\e {Qz[)\s —QAS+mZ+ml)— z(S+ ng)} — m?zz}.(B.%)
site

In the URA in m?, it becomes

BREM 4 2
sin? 07 S;”Q; 5% — @*m? — S(Sy, — Vi + ). (B.97)

We may extract the correct boundaries for the invariant z;, from three quantities:

(GBORN)2 , (GBREM)2 and the difference 6.

€ €

From (B.97) we get:

(GBREM)2:4mz S(l_yu)‘l—%_Zl _m_i (B 98)
‘ S Syu = Vi S '
In the Born approximation V; = V4, = z; = 0 it reduces to
(GBORN)Q o 4mz 1 — Yu m_i (B 99)
S A | |
Due to the fact that the differences between GBBORN — 0”"™™ | has to be smaller than some

value, which is determined by experiment, we have:

BORN BREM

0. -0, |<0. (B.100)
One gets two cases
07" > 00" (B.101)
and
9 > 97 (B.102)
With (B.98), (B.9Y) and (B.101) we arrive at
()™ = Vot p ;ﬂy“) + iffj 0 (20" — ), (B.103)

min 1 — S 2 _
(=)™ = V2+V1( yy“)—4gg 0(0+200"""). (B.104)
H

€

e Kinematical limitation

Also the kinematic boundaries z;™% and 2™ defined in (3.32), should be taken into

account.
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The 6. cut conditions is active, if at least one of
(25)™", (25)™ € [, 2™, (B.105)
and .
(00 < () (B.106)
Then the absolute maximum of z; should be a minimun of the two possible maxima of z;

s2max

20 = min [, ()™ ], (B.107)

and the absolute minimum of z; should be a maximum of the two possible minima of z;

smin

2 = max {Z?ﬁn, (z6)mn } . (B.108)

C R-frame kinematics

In two applications in this paper, we will need another frame than the laboratory frame. When
calculating the soft photon contribution and a table of two-fold integrals within the completely
analytic approach, we will also make use of the so called R-frame, which is defined by

p2+p=0, (C.109)
or
Q=pi+k — k=0 (C.110)

First, we introduce coordinates of 4-vectors py, k1, k2, p, shown in the figure,

po= (0.0, )

ki = (0,|k_;|sin(9i,|lgi|cos Hi,k?)

p = p°(sinfpsinpp,sinfgcos pp,cos g, 1),

p2 = (—po sin O sin g, —p° sin g cos g, —p° cos QR,pg) ) (C.111)

As may be seen from figure 6, we have choosen the z-axis of the R-frame along the vector
p1 and matched the R-frame (z, y)-plane with the plane spanned by vector pj; and one of the
vectors ky or ky. This trick is possible since we will use the R-frame only in analytical calcula-
tions of tables of bremsstrahlung hard and soft integrals, in which we will always ‘decouple’ z;
and zy using an invariant partial fraction decomposition while calculating hard integrals and
Feynman parametrization for the soft. Finally, the photonic vector p is directed arbitrarily
and its angles are unlimited

R >
< 0p <. (C.112)

Actually we are using two R-frames, different for z; and 2, containing integrands with
different pairs of 0, ¢gr, both varying within the full solid angle 4.
and vector moduli |p], |l_€)172|. They can be derived using an invariant language. First we
consider

T=—(p2+p)* = (5 +p°)° (C.113)

28



Figure 6: The R-frame.

Therefore,
Py 0’ = VT (C.114)

To derive an energetic coordinate of a 4-momentum, we consider the 4-scalar product of this
4-momentum with the four vector —2(ps + p) and write it twice: through invariants, and in

—2(pa+p)p = Vo — through invariants,
= 2(p3+p")p° = 2¢/7p° — in the R-frame. (C.115)

Let us introduce the following A-functions:

A, = A {—(pg —I—p—kl)Q,T,—kﬂ =[5(1 —yu)—I—VQ]2 —4mi7’,
)‘k2 = A {_(pZ +p— k2)27 T, _kﬂ = (S - ‘/2)2 - 4mi7—7
At = A {_(pZ +p—p)T, —pﬂ = (Syu + sz)Q —dmir = A, (C.116)

In this way, the following table had been derived:

|k_;| _ \/)‘kl B0 — S —y)+ Vo _ Sk
2/ 1 NN
= A
|k2| _ k27 kg _ S_‘/QZ Sk27
T NCERENG
|p_)| _ \/)\M po _ Syﬂ—|_2mz _ Spl (Cll?)
R : 21 27
|—»| _ Va 0 _ V2‘|‘2m§
P2 2\/;7 P2 2\/; 9
o= o _ V5
Pl =[Pl o= 5
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Now we write invariant S in terms of R-frame variables

S = —2pyky = 2(p°k0 — | 1| |y | cos 0y). (C.118)

Sp15k1 — 4/ AuAk, cos
g = R VA T (C.119)

2T ’
from which we derive an expression for cos §; in the R-frame in terms of invariants:
Sp1Sk — 25T
cos By = Zplom 20T (C.120)

Then we write the invariant S;

Sy = —2piky = 2000kS — ||| k2| cos 63). (C.121)

Sp1Sk2 — 1/ AuAk, cos
g = R Ve TR (C.122)

1 — ”

2T
from where we derive an expression for cos #, in R-frame:
Spl Skz - 2517'

Now we can write down invariants z; and z, in their two own R-frames correspondingly

cos y =

(C.123)

2 = —2kip=2° (k? — |E1| cos by cos O — |E1| sin 6, sin AR cos c,oR) , (C.124)
29 = —2kyp = 2p° (kg — |E2| cos by cos O — |E2| sin 65 sin AR cos c,oR) ) (C.125)
The invariant V;
Vi==2pp=2° (p(l) — |p1| cos GR) (C.126)
looks formally the same in both R-frames.

Vmax A V, [t 2
AV / -2 / dcos don. C.127
/‘/min 1 Zinin T A /RZ T 1 cos R 0 SOR ( )

1
This property was widely used when we discussed the treatment of the infrared divergent part.

D Analytic approach. Tables of integrals

D.1 First and second analytic integrations. The R-integrals

Al =/ U, / sy (D.128)
- y/min 1 Zinin W\/R_Z )

1

R
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1] VuN, 1 Sy, Va 1
e IC e
) Qi) m2QSA\ QL [ oA Q7 Q2x1 ]
g, = e 92 (T o) [
20 = 4 SS —I—Zmz
L 77 PR 1o Wy W R Q? 0%,
1) 1] Nkll 1 ] L] (Slvzm_%*yu)
Q227 | QN | Q22 |, QI m2V, Q2
2) 1] N l 1 ] 1 (—SVQ—I-)\S_ZSyM)
zzg_R Qi)‘s ngz R Q mZVZ Qi
1] 1 [SV,
2 | = 2
Vo lel, QM@? = Sk am
3N, 2m? Sy, Vy 1
1 )\ _ M
+Q3Al(’+5% Q2 Q%1 | 4
m2Q’, A Vo) mlQ8 A
12V
e (i + et - 55103 )
1 1 S1Va
24 - — S —2m?
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3N, QmQSyMVz)][ 1 ]
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2624 m2QS A
12V
ngz m2A, +m2Qt — SSlQi)
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Skl = Sl+‘/27 Sk? = S_‘/27 Spl = Syu+2m2

1 (Sk1 + Vv )\kl)z 1 (Sk2 + v )\k2)

Lkl = In LkQ = In

Ak1 mZT ’ Ak2 4m
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(SY + VA, + 2m2)? Va(Syu + V) +2mlQ;

L,y = In ) Lg. = In )

. Am?7 ¢ Va(Sy — VA + 2m2Q2

1 VA +Q?

L, = In ,

Ls = L ln(S + )\S)Z Lg, = ! ln(Sl + \/)\_1)2

ST Vs AmPm? U AmPm?
Ni =SSy, —2miQ2, Ny = Sy, 4 2m2Q2,

Sio= S(1—yu), T = V2‘|'m§7
)\kl == Skl — 4mi7’, )\kz == SkQ — 4mi7’,
Ay, = Qi + 4miQi (D.129)

integrands in the foregoing table. On top of them, we will also use two differences

Dkl — Lkl - LS, Dkz — LkQ — le. (D130)

D.2 The third analytic integration. The Vi-integrals

r V2max
A] = [T ana
L 1y 0

1) 1] — Syu . Qimax
L 1V
r 1 1 szax

2 — = —In—£

) _Qi_ Vv Syﬂ

s [L] - L(L L)
_Qi_v S Qimax yu
[ 1] 1 2 1
4) 6 = ﬁ(%__z)
_QM_V Qp, yp,

5[] - (g )
7 P U

1 $max 1 tmin 1
6) |L.| = ~(wl g2l T
v 9 $max __ q $min __
i L, 1 ) gmin 4 jmax 1 2 max
wly 2m;, (| pmax — 1 Sy,
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Br, = —5i+2m?, By, = S42m?,

2

and the additional notation

max
tl

max
t2

min
tl

min
ta

max
ta

Fr

k

Ly = W% B0 S B (D.131)
me Syp, m6 Syﬂ'
14 2r,,,
1+2 [% + /(1 + %1)] ; tig = 142 [m —y/ru(l + %1)] ;
(1795 — 12 — o,
14 2r,,
L+ 2r, +2¢/r (1 + 1), tog = 14 2r, —24/r,(1+71,),
(1995 — 17 — dr, 3%,
—51 4+ VSa y —S1 —VSa
- o > 12 — — & >
SYpu SYu
\/(Sl + ‘/2max)2 _ 4mi‘/2max _ Sl
‘/2max ?
S — (S — V)2 — am2 Ve
‘/2max ?
251 + ‘/2min — 4mi
\/(Sl + Vzmin)z . 4mivzmin N Slv
25 — V" 4 dm,
S + \/(S o ‘/zmin)Q o 47,)1%2L‘/2min7
2 2
S yp, —I_ 4m;21,5yﬂ'7
Sy, + 2m?,
JAo
Q(Sy + 2m2) - Vmin min min
L2 N0 /A — 20 Sy, + 2m2) o+ (V)2
/A?n _ \/)\gn _ Q%max(syu _I_ Qmi) _I_ (‘/zmaX)Z
‘/2maX 2
to — 1)(¢ 1 to — 1)(¢ 1
In (0 )( 11+ ) lﬂ(ta—tll)—lﬂ (0 )( 12+ ) lﬂ(ta—tlg)
(ti1 — 1)(t11 — to) (tiz — 1)(t12 — to)
) ta_tll) ) (ta_tIZ) ) (ta_tll)
—Liy | ————— Liy [ ————= L
"2 (—1—t11 T\ T ) e (T
) ta_t12) ) (ta_tll) ) (ta_tIZ)
—L L — L . D.132
12(1—t12 e EPrng A S (D-132)
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E Soft contribution to do't

In (3.53) the expression for do™=°ft reads:

IR, soft 20’ 2 IR IR 2 IR 0
do = = b (@ FE + Q0. F + Q2F) 0(e — p°)dls. (E.133)
We substitute now the phase space dl's, (3740), which in the soft photon limit can be
factorized

Phy, Py PP &p
dl's = (2m)* d(k —ky—py) =dly——. E.134
» = O g rpad e T TR ) = Al 5 (B3
Using definition (£.14) and relation (3:48), we straightforwardly derive from (E.133)
dO_IR,soft = dO’BORN g 51R,soft7 (E135)
7T
where( see also [g]) :
2 r d&Pp
gt = = ﬁ FIR (= — p°). (E.136)
Then, the function F''® takes the unique form
PR _ Q2<k1 _ k2)2+2QQ<k1 _ kz)(ih _ pz)
P\2k1p  2kap 2k p 2kap/) \2p1p 2pap
2
+Qg< p_ P ) (E.137)
2pip - 2pap
= QZF 4 QuQ. P + Q2R (E.138)

R-frame, YR, g, and on the photonic energy, p°.
Since the energy of emitted soft photons is limited within a narrow interval

0<p’<e (E.139)

it is always possible to choose ¢ small enough to ensure the phase space of soft photons be a
sphere non-limited by experimental cuts. In other words, the phase space of soft photons is
isotropic which allows to choose the z-axis along a convenient direction, differently for every
variables -V-lﬁ/;, z1 and z; might be expressed in terms of onl-y- the polar angle cos¥p = ¢ and
made independent of the azimuthal angle or

Va = —2pyp = 2p5p° = 2m.p”, (E.140)
Vi = —2pip=20"(p) — |P119), (E.141)
o= —2kp =20k — |ky|6), (E.142)
2y = —2kyp = 2p° (kS — |ka6). (E.143)

38



In the R-frame
p2+p=0 (E.144)
and in soft limit p — 0 R-frame degenerates to the rest frame of p,
Py = 1. (E.145)

2 d3}7 Am . (pO)n—E)dpo o .
™ d / Ip)"2dVp.  (E.146
™ / (2}?0)3 = (Qﬁ)”r(n/Q _ 1) /0 /~Ln_4 o YR ) (Sln R) R ( )

Here ~ is the Euler Constant and p is an arbitrary parameter with a dimension of mass.

gisoft — %7 [PIR +ln = 4 %m(i — 52)] F (E.147)
!
In (F.1%7)
FIR = (2p0)2pR (E.148)
and the typical pole term
PIR:n14—|—1’y—|—ln2\/_ (E.149)

represents the infrared divergences at n = 4.

over { may occur, which are presented in Appendix D. 2 of [9’]) Writing F'® in a form similar

to (E.138), we wiH calculate the three contributions 513 soft, 532” soft and §Iselt separately. Before

this, however, we present a collection of formulae in the R-frame in the soft photon limit.

E.1 R-frame kinematics for the calculation of the soft photon con-
tribution

The R-frame is defined by
p2t+p=0 (E.150)
or

Q=pi+hk —k=0. (E.151)
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Since the R-frame is isotropic, there is no need to fix its z-axis along a given direction, say
along pii

pro= (0,0.0pi].09) . (F.152)
It might be equally chosen along lgl,

ko= (0,0, k] £D) (E.153)

or along 122, then
ky = (0,0, k2, kS) (E.154)
or along any linear combination of any vectors, say k., = ak; + (1- oz)l%, then
ko = (0,0, |k + (1= a)ky|, ok + (1 — a)kS) . (E.155)

So, we have indeed many R-frames, which differ one from another by a spatial rotation and
when we write an arbitrarily oriented photonic 4-momentum as

p = p’(sindgsing,sindgcos pr,cosIg, 1), (E.156)

one should understand that in every R-frame one has its own angles Vg, @r which vary within

All the energies and momenta moduli depend only on three invariants: S,y and V,. We
make no distinction between y and y, in the soft photon kinematics. In the soft photon
problem, we neglect the small invariant V, as compared to the others. In this limit, the

- A
|k1| = \/7 k? il

Qme Qme
VA S
|k2| = Sv kg = )
Qme Qme
|_)| B )\8 o Sy—|—2mz (E157)
P - Qmev P = Qme )
Blo= o A=
P2 2\/;7 P2 €9
- — ‘/2
] = [, o=
Me

Tn this subsection all 4-momentum coordinates are understood in the R-frame.
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E.2 Muonic current

In muonic current we are dealing with

ko’ ky \° 2k ko
IR 1 2y 2 E.1
s (Zklp) * (kap (2k1p)(2kap)’ (F-158)

see (F.137). By applying the Feynman parameterization for the last term, we have

2 2 1 2k k
Ja o me M —/d 172 E.1
i 2k Chap)? Jo “(2kap)?’ (F.159)
where a new 4-vector was introduced as discussed in (E.155):
ka = Oék‘l + (1 — Oé)kg. (E160)
Therefore, using all soft machinery described above we can write §'"°* as follows
Nk 1 - 1
gt Qi{(PIR +1In ;) 5 [da [ e F 45 [da [ g - ¢) f}}j},
0 -1 0 -1
(E.161)
see (ETT47), with
m? 1 m? 1 Sy + 2m? 1
FR_ _ e _ A + = . E.162
A (3 D L e
On passing, we used
— 0/7.0 7 _ 07.0
—2kap = 2p(ky — |kal) = 2p7ko (1 = Baf), (F.163)
z1 = —2kip = QPO(k? — |kil§) = 2}7%?(1 — Bif), (E.164)
7 = —2kp = QPO(kS — |k2[€) = 2}7%3(1 — B26), (E.165)
with three velocities
[T
= =1 = X E.166
ﬁl k‘? Sl 2 ( )
k| s
= _— = E-l
|
Ba = o (E.168)
We also have from (E.160) the following relations:
ko _ Sa + 51(1 — Oé)
. 2m., ’
—kz = mi + a(l — a)Sy. (E.169)
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Therefore

¢[Sa + 51 (1 — )] — 4m? [mi +a(l — oz)Sy]

o . E.170
6 Sa + 51(1 — Oé) ( )

Using the table of integrals from Appendix D.2 of [D] we obtain

1
2e m: 1 m? 1 Sy+2m? 1

51R,soft _ Q2 /doz{ (PIR + In _) [__“ _ M + H

o gy P R T e o R T T

2

21 1+p 1 mi 1 L+ 5,
55 702 7 o 57, 102 7 0
200k (L=37)  1—=00 26,k (1—-063)  1-/

1 Sy+2m? 1 144,
— 1 . E.171
DR T TR R A AT
We have from (F105) (B169)
(K1 =57) = —k = m, (E.172)
(k)" (1= f3) = —ky = m, (E.173)
(K1 - 5) = —k2 (B.171)
And the expression (E.161) becomes
1
2e de
sRsoft — g2) [ pR 1,25 |9 9m2 /
it Qu{( + In M) + (Sy+ mu)o mi—l—oz(l—oz)Sy
1 146 1 1+ 5,
+—1In —1In
2680 1 =00 28, 15
Sy +2m? do 1—%}
+ : / 1 : E.175
2 ) Balm? + a(l — a)Sy] 1ql—l—ﬁa ( )
Now we use the URA in the electron mass
1 1 —|— ﬁ1 Sl
— In ~ =In , E.176
2&1 I - 61 meny, ( )
1 1+ 5, S
— In ~ =In . E.177
2&2 I - 62 meny, ( )
The first integral we calculated precisely in [9]
1
da 1+ 32
Sy + 2m? / _ L E.178
( M) J [m2 + a(l — a)Sy] g " ( )
with
5 = . 4mi
= T 5
B+1
Ly = 5oy (E.179)



With the second integral the situation is more complicated. Defining it as in [9],

1 da 1—5
=_ 2m? 1 =
Se= g (Svd2md) | G T

(E.180)

we cannot take over the analogous result from [§] since there that integral was calculated in
the URA in the leptonic mass m. Here we need result exact in m, (see also [B]). Making use

do m? {mz +a(l — oz)Sy}
~ 2m? 1 -
S (Sy—l— m“)o/mi—l-oz(l—oz)Sy n Sa 151 —a)f

(E.181)

The expression for S¢ simplifies drastically and can be calculated straightforwardly
Sy—l—Zmi{l m?(Sy +4m?) 02
n
/e S*L—y)(1 —yar)(1 —yaz)  (—on)

_l n2 I all — n(l—y)(l—yal)_ :
3! [<_a1><1_y>]“<1 e T

+Lis [ﬁ] + Lis [W] ~ Liy K—Ozlﬂ } (E.182)

158
5
Collecting all terms together, we finally have

o L+p S*(1—y)
gitsolt — q {Z(PIR—H ;)( % Lﬁ—1)+mW+S¢ . (E184)

From the virtual photon correction to the muon vertex we have the contribution

2
grert = Qi{—Q(PIR—I—ln%)(lJrﬁLﬁ—l)—l-gﬁLﬁ—Q

20
L+5 4 (148Y L (1=8

The infrared divergence and the scale parameter 1 cancel exactly in the sum of these two
contributions. The sum reads

Se =

with

ay92 =

(E.183)

A
— Qi{ ll ;“fLﬁ — 1] (21n ‘/2; —In(1 — y)) + gﬁLﬁ —2
+1n(1 —y)In (1 _(1y%1y;2yal l Ceat az]
i L)y, (o]} 15
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E.3 Electronic current

The correction §1E°% is very easy to calculate.

2 2
2p1p2
Felf”:(pl) +(p2) _ E.187
2p1p 2pap (2p1p)(2p2p) A8T)
Since 2p,p is independent of ¢ = cos Jg, the a-parameterization is not needed here and ot
reads
+1 +1
1 1
gt = [(PIR +1n f) 5 / dEFE+ 5 / déIn(1 — 52)&15]- (E.188)
[
1 1
Introducing
71| S2y? + 4m?lSy
= p—o — \/ e (E.189)
1 e
we receive
FIR m? 1 . 2mpy 1 _ g 2 m? 1
. py* (1 = Bg)? mepy (1 — B¢) =8¢ p9* (1 - P>
(E.190)

Using the table of integrals from Appendix D.2 of [B] we derive

2 1148 m2 1
(glj@oft — Qg{(PIR_I_ln _) [_1 + “n—= — 67‘| E.191
p Bol=p (-5 (190

1 [,. [ 28 . {28 m? 11 148
+1+%[L12(—ﬁ_1)—le(—ﬁ+1)]+p?22ﬁ(1_ﬁ2)1ﬂl_ﬁ}

In the URA in mg we obtain

1 1+5 Sy
ﬁlnl—ﬁ ~ 2ln 2 (E.192)
and
) 2 ) 2 ) S
L12 (ﬁ—_ﬁl) — L12 (ﬁ—_fl) ~ —2L12(1) — 21H2 m—yg. (Elgg)

So, we can write

glRsoft 2@3{(PIR+1H 1—5) (—1 + In %) +1 —I-ln% — In? S—y2 — Liz(l)}.

m

€ € €

(E.194)

The corresponding virtual photon correction to the electron vertex has the following form:

syt = Qg{z (PIRHH”;B) (1—1n%) —2—|—gln%—%lnz%+mz(l)}-

€ €

(E.195)
The complete answer is:

VR o IR ,soft vert
5 - 566 —I_ 566

= Qg[(lns—%—l) (lmsy—l—Zlmv2 )—1—|—gln5—y2—llnzs—y2]. (E.196)

2 2
me me e me 2 e

ee
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E.4 e interference

In the pe interference the expression for Filj reads

IR _ 2k1py _ 2k p; _ 2kypy n 2k ps (E.197)

Y (2kip)(2pip)  (2kip)(2p2p)  (2kap)(2pip)  (2kap)(2p2p)

We introduce the o parameterization with the aid of two new 4-vectors

kloz = kloz + pl(l — Oé), (E198)
k2a = kQOé + pg(l — Oé), (E199)
resulting in

1

S S S S
IR _ ! _ —|-/d l L ] E.200
T Ty R v R I PTow vl R
and &% hecomes
L L L
glftsoft QMQS[(PIR +In 5) - / da / dEF + = / da / dé In(1 — gZ)f}}j] (E.201)
nZzy SRR
with
2 2 Sy S
FR - + - . (E.202
N i S N T S L T e
Here
— ki, = mioz2 +m?(1 — a)? = 2kipra(l — a)
= mioz2 +m2(1 — oz)2 + Sa(l — ),
2 _
oo o et (GyF2m)l—a) (E.203)
2m.
—k3, = mioz2 +m2(1 — ) — 2kypra(l — )
= mioz2 +m2(1 — oz)2 + Sia(l — o),
2 _
- Sa+ (Sy +2mf)(1 oz)' (E.204)
2m.
By = Mol (E.205)
kloz
¢{Sla + (Sy 4+ 2m?)(1 — oz)}2 — 4dm? [mZOzQ +m2(1 — a)® + Sa(l — oz)}
B Sio+ (Sy + 2m2)(1 — a) ’
Fio
Bra = ‘% (E.206)
kloz

¢{Sa + (Sy +2m?)(1 — oz)}2 — 4dm? {mZOzQ +m?(1 —a)® + Sia(l — oz)}
Sa+ (Sy +2m?)(1 — «a) '

€
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Using the table of integrals from Appendix D.2 of [§] we derive

1 1+ 5

2611 =5

51R,soft

= QuQc

(2

21—

=

1 145

/da
k3,

_% lle (522%1) b (ﬁ%l)] T lL' (ﬁ?[ill) b (512%1)]
s
_50/ SN 1 Igii %0/ k%aﬁza :gi} (E.207)
In the URA in m?

5/01 % ~ In m;;z (F.208)
51 /01 % ~ In m;iz (E.209)
5/_ﬁwmmilgzﬁwsd&&% (E.210)
g —ézmnilgz* (51, 5) (E.211)

Where we introduced the generic function Sg(1, 1)

. I/ do m? {m a? +m?(1 — a)? —|—[oz(1—oz)}
Se(l,1) = 5/ 2 (1 Ta(l—a) " 2
0 M o’ +mi(l —a)’ +lo(l - a) {[oz—l—(Sy—l—Zmz)(l—oz)}
1 2l I* 1 21 2 Sym?
R PSS [ S P A S P ST T
2 S5%y? mem;, 4 1 4 1 II

In—1In—* — —In* — E.212
e T g, (£:212)

The expression (E.207) reduces in the URA in m. to
sisott iRy 25 g1 21n(1 In e F.213
w = thr (1l —y)+2In(l —y){In == ~lny]. (£.213)

In the next Appendix on the box contribution we derive
box IR 1 Q2 fin
) Q:Q, —pP™— 5 In ? 4In(1 —y)| + B, ¢, (E.214)
and the following short final expression is obtained

5VR _ 51R,soft 5b0x _ 41n(1 1 ‘/Qmin Bﬁn E.215
e e + we T QSQM H( - y) n Sy + ue (* ( : )

The finite contribution from box diagram, Bfi", is presented in Appendix F.

ne
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F Two photon exchange contribution

The two-photon exchange contribution is described by the two box diagrams: direct box and
crossed box. For the sake of symmetry, it is convenient to duplicate the number of diagrams
and to deal with four diagrams shown in the figure below:

ky a ki+p 16} ks ky 16} By —p o ks
P q+p q+p P
7 7
D1 af p1L—p p P2 D1 p p2+p o P2
ki« ki +p 16} ks ky 16} ky—p a ke
P q+p q+p P
7 7
P p p2+p o P2 yul o p1—p p P2

This is why the two-photon exchange matrix element is given by an expression, which
contains an extra factor 1/2:

MBOX - l/ d4p
2J p*(p+q)?
B Qk o ‘|‘ D o Qk a o p
Xu(kz)[’w( h Pa) o ( 2 v p)’m]u(kl)
p? + 2pky p* — 2pk,
_ (2p2a —I' 7&]‘5)75 75(2]‘71& - ]57&)‘|
XU + U . F.216
( Z)l p* + 2pp> p* — 2pm (pr) ( )

For later use we introduce the short hand notation for propagators

[I(k) = p*+ 2pk,
[I(k2) = p* — 2pk,,
[I(p) = »*—2pp,
[I(p) = p*+ 2pp2. (F.217)

Now we separate the infrared divergent (IRD) part of the two-photon exchange contribu-
tion. There are two IRD-poles: 1) one is located at p — 0 and 2) another one —at (p+¢) — 0.
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At p — 0, one has
11 4k py 4y py 4kopy 4kyp1

2p2g? [H(kl)H(pz) ! [Tk TI(pr)  TICk2) IT(p2)  TICK2) TT(po)

While at p — ¢, one has

]’Yﬁ @ v, (F.218)

1 Ak po 4k py 4kgp; Sy

1
2+ P lH(koH(pz) NI C N H(@)H(pl)]”ﬁ o
(F.219)

For the latter term, we perform the substitution p = p'—¢ and observe that at this substitution
the propagators transform as follows

[I(k) — TI(=F)
[1(k:) — TI(—),
1) — II(-p2),
[I(p2) — II(=p1) (F.220)

With one more substitution p’ — —p, and using equalities ky.py = ky.p1, ko.p1 = ki.p2, we see
that the second pole gives exactly the same contribution as the first one. Therefore, the full
IRD-part of the two-photon exchange reads:

11 4k1py 4k 4kop2 4kapy

2 [TIk0) s  TI00) IT) — TL0) T+ T00k) L) 777

Now we add and subtract the IRD-part of the two-photon exchange and when adding it

(F.221)

identity
11 =2p(pta)
Plo+a? ¢ C+a? @+
we arrive at the final expression for the two-photon exchange contribution before integration
over d*p.

(F.222)

M lH(kSSH(pl) ! H(ki%@z)]’w o
‘pjfp(Tq)?q? lH(kSSHm) ! H(,ﬁ_)%(m]w o
+p2(p1+ q)* [l_f(lzl) " l_f(ZZz)]w N lﬁfpg - lzlﬁf;ﬂ
+p2(p1+ q)° [ﬁﬁf;a) - HZZS] N W[l_f;;z) " ﬁ?(l;)]

1 [’mﬁva B vaﬁ’m] “ [vamﬁ ’mﬁva]

T+ Tk T T T
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The first raw of this formula represents the IRD-contribution, the second raw stands for
the IR-free scalar, the next two represent the IR-free vector, and finally the last one is an
[R-free tensor.

For the IR-divergent part we introduce the well-known presentation

N 1672 d'p
Jy (ki,p) = ; /( )4 p?T1(ke) T1 ( 1)

— Pulp) /01 (_d[y )+% : d[y@ln( qA Do om 1) (F221)

where
— K; = y +m2(1 —y)? — Sy(1 —y). (F.225)
We will use the short hand notations
Lo d
pIR = pIR _ _p / y
S (S) IR(/’L) 0 (_[(:3)7
dy (—K?)
Ks = K / 1 y F.22
s {(9) ) n Z (F.226)
Then all needed IRD-integrals are
IR IR IR [(5
Jy (kp) = Jy (kaypa) = —Pg" + 50 (F.227)
K
Iy (kip2) = g (kaypr) = PS4 (F.228)
with
PIR(Sl) — —PIR(—Sl),
Ks, = K(-51). (F.229)
For the [R-finite scalars
1672 2p.(p + q)d*p
I (hip) = — / , F.230
o i) = =5 | Gy + a7 Tk T (F-230)
we derived
Ji(k1,p1) = Ja(ka, p2) = K, (F.231)
Ji(k1,p2) = Ja(ka, p1) = Ky, (F.232)

F.1 Vectorial integrals

We begin with the reduction of vector integrals. First we define the coefficients of the vector
reduction

5 16 &'p b
W= /(2ﬂ)4p2(p+Q)2H(ki)H(pj)
= (V) qu + (Vi) (ki) + (Vo) () )y (F.233)
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The system of linear equations for these coefficients in terms of scalar integrals, derived by

207V 4+ 250 q - kiVi 425, - p Vil — Jy(kiypi) + 2y (kiop;) =0
25%,q - kivqij + QSkiQk?Vij + QSkiSpgk' 'pjvw Jg(p]) + J ( vaj)

25, - iV + 28, S, ki p; Vil 28, 2pAVI — Ja(ky) + 5 (kiypy) = 0. (F.234)
Here
Skl = -1, Sk2 = +1,
Sy, = +1, Sy, = —L (F.235)
Two additional types of scalar integrals
167> dp
Iy (ki) = — / , F.236
o)== (2m)*p*(p + )* TI(K:) (1:236)
and
1672 d*p
Iy (py) = — / , F.237
)= G+ 0 ) 20
are introduced. They safisfy the equalities
and
Js(p1) = J3(p2), (F.239)
and may be described by one generic formula:
1 d —¢)y(l —y) — ¢ (1 —
JS(%):/ — Y : 1 (4= 4%yl 2y) ¢(l—y)
o —¢*y — (1 —y) + (¢ —a)*y(1 —y) 7y
(F.240)

with ¢; = (kh —ka, p2, —p1)-

F.2 Tensorial integrals
Define the coeflicients of tensor reduction

167T2/ d'p pupy

oL (2m)tp(p 4 ¢)* (k) T(py)

= Todu + Tyauau + Tip(ki)u (k) + T (pi)u(p; )

T30 [qu(B)y + qu(ki)] + T [qu(pi)e + qu(ps)al

+ T [(k)u(pi)o + (ki)u(pi)l - (F.241)

The system of equations for the coefficients 7% was derived in the following way:

y
T,
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IR

Ty (kipy) = AT6' + ¢T3 + (kP Tf + (0)° T3 + Ty + T + LTy, (F.242)

/ d*p[2pg+ ¢ +p* — ¢ — p*lpu
(2m)1p2(p + q)* T1(k:) T1(ps)

_ / d P - / d'p P
(2m*) p* [1(k:) [(py) (274) (p + )* T1(k:) [1(p))
2 d*p P
! / (27%) p*(p + @)* T1(ks) T (p;)
= 24,1 + 24° 0. Ty + * Ty (ki) + ¢* T35 (03
Tk [0 + 26° (ko)) + T3] [ 0.0 + 26° (1))
+a* Ty (ki) + (pi)] (IF.243)

The latter nine equations are
T+ 2¢° T+ T + ¢ Viki, py) = 0
k2T + PTi + 25k, Sy ki p T + Vik(ki,p) + ¢Vi(kiops) + T3 (kiypj) = 0
25y, Sy ki Tk + * Tyt + 292 T4 — Vaw(kiy p) + Vir(hip) = 0
T +2¢° T3 + ¢ Ty + *Vy (ki py) = 0
28y, Sp ki - pi Tt + ¢T3 + 2k2 T — Vag (key py) + Vi (kiy pj) = 0
2p; - T + * T2 + 25k, Sy ki - pi Tl + Va(kis py) + Jo" (ki p) + ¢* Vo (ki) = 0
207137 + " Tk + ¢T3 = Vinlki, i) = Viplhi, pj) + 26V (ki py) = 0
G*Ti + 2K2T0 4 28y, Sy, ki - py T
—Vaq(ki, pj) = Vak(kis p) = Vi (kis pj) — J3 (kiypi) =0
q2Tqu + 25y, Sy ki -pquZi + ijzT;g
—Vig(kiy pi) = Vir(kis pj) — Vip(kis pi) — Jy (kispj) = 0 (F.244)

in terms V¥ and additional vectors arising from various pinches of the box diagrams.

F.3 The box contribution to the cross-section

Substituting all these solutions to the box amplitude and computing its interference with
Born amplitude, we derive the contributions to the unpolarized and polarized cross-section
parths from the two-photon exchange diagrams to the differential cross-section of elastic pe
scattering

BOX BORN

o do
SIURA _4PIR In(1 —
" (1) In(1 =)~

+ Buyp + P.P.Boi| (F.245)
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where unpolarized and polarized non-factorized contributions B,,,, and B, are:

Bunp

Bpol —

2 2R 2 1
(1———|— “)(SKS—|—51K51)—|—4[—14———2]%# (1-|-—)]
Yy Yy

y Y
42 (yi - QRM) Is +2 (1 - @) ls,
Y Y  Ywm
SNECEYN [ A
+4R [—1———|— In—+2|-14+-)5S(Ks—yJ
g Y Yy +4R,) Z Yy (Es ?)

14 2R
+2 [—2+y—41%M (yﬁJr - “)] SJk,
Y

2
(—1 + - — QRM) (S[(S + 511(51)
)

2 1-R
+4 [—HQRM (—1+—+ . —RM)]
y Y

2R, (1 — 1 -2
+2 [yﬁ(lmm) —21%3] ls—I-Z[ Rl = Ra) Ru] Is,

Y Y Y
2 1-—-R 2(1 4+ 2R,) Q?
+4R, | = + - YR, | In =
g (y Yu y+4R, M) " Z
R.y(1+2R,)
/A S AN
+ v T AR, K,
with
2
m
R = 3
1
Y =
14+ R,
There are two useful combinations:
4 S m2 m2
511(51 + S[(s = —1H5;Q—511H§1 - 2Li2 (1 - S—f) + 2Li2 (1 + ?ﬂ) + 7T27
. Q2 1 Q2 ) m2 7_[_2
SRs —plr) = —Infog oo 20 {1+ 5 o+ 5
Here
1 m? , 1
Jik = J(m2) = = [ln Q—;ln Y, — 2L (1 — y,,) — §1n2 Yu, + WQ],
Jp = J(mg)
and
_ Q* +2m’ + /X,
yﬂ'l Qmi 9
1
Yy 2 - -
8 Y

(F.246)

(F.247)

(F.248)

(F.249)

(F.250)

(F.251)

(F.252)

(F.253)



The two-photon exchange contribution simplifies drastically in the DOURA. We list the
answer because of its elegance.

dUEZERA _ a3 IR 2 2
s = Saad-r | 20y (1-2) s -y

+(1 - P.P,) [(1 - 3) (In*(1 = y) — 2In(1 — y) Iny + 72)

—|—gln(1 —y) — 21ny]
)

+2 (1 . 3) In%(1 —y)—41;yln(1 —y)}. (F.254)

G Description of www-Figures

In March 1996, when the FORTRAN code pela was completed, a lot of figures for the radia-
tive corrections to the polarized cross-sections and the polarization asymmetry were produced

_________________

In this Appendix, we give a short guide to these figures.

All the cross-sections, radiative corrections and asymmetries are shown as function of y,.
The units are: cross-sections in microbarns, radiative corrections in percent, asymmetries in
absolute, dimensionless units varying from 0 to 1.

Some legends:

- parallel, antiparallel means mutual longitudinal polarization orientations;

- P, and P, are modules of polarization degrees, always written in figures;

- All corrections mean that all 12 contributions (1.4) are taken into account;
- AN means Analytic calculations;

- when AN is not written, the numerical calculations are meant.

The §,, is defined by

QED

do

Oy, = % —1, (%). (G.255)
do

m

dyu
SIURA-series of 43 figures contain following plots:

e 1-3 Born cross-section and Born asymmetry;
o 4-5 Results of completely integrated analytic calculations without cuts;

o 6-7 Results of completely numerical calculations without cuts;
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o 8-17 Hlustrate effects of some cuts separately, muon angular cut being treated both
analytically and numerically;

e 18-19 are our main result: All corrections, All cuts (four indeed);

o 20-27 illustrate four cases: p + e corrections, p corrections, e corrections and pe inter-
ference corrections, correspondingly, without cuts;

o 28-35 the same, but with all cuts;

e 36-43 is a series of figures with ‘realistic’ P, and P,. It is quite senceless for the asymme-
try, where P, and P, cancel. We only ‘gain’ an instability due to cancellation of nearly
equal numbers.
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