
*H
EP
-P
H/
97
∣2
3∣
0*

he
p-

ph
/9

71
23

10
   

9 
D

ec
 1

99
7

DESY 97{230

hep-ph/9712310

December 1997

QED Corrections for Polarized Elastic �e Scattering

a;b

Dima Bardin

1

and Lida Kalinovskaya

1;2

1

Laboratory for Nuclear Problems, JINR, ul. Joliot-Curie 6, RU{141980 Dubna, Russia

2

DESY-Zeuthen, Platanenallee 6, D-15735, Zeuthen, Germany

ABSTRACT

We present a new study of polarized elastic muon-electron scattering. The Born cross-section is

calculated for arbitrary polarization of muon and electron. The complete photonic O(�) radiative

corrections are determined for the case of longitudinally polarized muons and electrons. All calcula-

tions are done by two methods: semianalytic, which allows an implementation of the experimental

cuts used for the analysis of �e scattering data from the beam polarimeter of the SMC experiment

at CERN and completely analytic, which is used for cross checks. The FORTRAN code �ela realizes

formulae of both approaches. We prove that certain experimental cuts lead to negligible radiative

corrections in the muon beam polarization experiment.
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1 Introduction

Polarized elastic �e scattering is being measured by the SMC collaboration at CERN as a

monitor of muon beam polarization [1]. Since the measurement pretends to be very precise,

the photonic corrections have to be taken into account.

The di�erential cross-section for this process in lowest order may be cast into the simple

form [2]

d�

BORN

dy

=

2��

2

m

e

E

�

"

(Y � y)

y

2

Y

(1� yP

e

P

�

) +

1

2

(1� P

e

P

�

)

#

; (1.1)

where the following notation is used:

m

�

; m

e

{ muon and electron masses,

P

�

; P

e

{ longitudinal polarizations of muon beam and electron target,

y = y

�

= 1�

E

0

�

E

�

{ the measured energy loss of the muon,

Y =

 

1 +

m

�

2E

�

!

�1

{ its kinematical maximum,

E

�

; E

0

�

; E

0

e

{ muon (initial, �nal), electron �nal energies in the laboratory frame.

The polarization dependence of d� is used to calculate the measured electron spin-
ip

asymmetry A

exp

�e

A

exp

�e

=

d�("#)

dy

�

d�("")

dy

d�("#)

dy

+

d�("")

dy

: (1.2)

The asymmetry is measured as a function of the variable y

�

.

Previous calculations [3]-[6], presented results in terms of the variable y

e

= E

0

e

=E

�

, and,

only Ref. [6] took into account the polarizations.

If elastic �e scattering is treated in the Born approximation then

y

�

= y

e

= y; (1.3)

and eq. (1.1) may be written in terms of either y

�

or y

e

.

The situation changes drastically if one calculates QED corrections. Due to the emission

of non-observed photons the identity (1.3) does not hold anymore, and one has to specify the

variable to be used for the calculation of radiative corrections. Their numerical values may be

very di�erent in y

�

and y

e

.

Since the measurement and the analysis were performed in terms of y

�

[1], the calculation

of QED corrections must be done, of course, in terms of the same variable. This is why a new

calculation was neccessary.

Our new calculation is the theoretical basis for the Fortran program �ela, [7]. It is a

complete, order O(�

3

), calculation. It takes into account longitudinal polarizations of both

� and e, �nite muon mass e�ects (the electron mass is neglected wherever possible). In the

semianalytic approach it is possible to apply all experimental cuts which were used in the

analysis of the experimental data:

{ a recoil electron energy cut, E

0

e

� E

RC

(E

RC

= 35 GeV);

{ an energy balance cut,

�

�

�E � E

0

�

� E

0

e

�

�

� � E

BC

(E

BC

= 40 GeV);
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{ angular cuts on both � and e, �

�

and �

e

in the laboratory system:

�

�

��

meas

e

� �

BORN

e

�

�

� � �

min

,

�

�

��

meas

�

� �

BORN

�

�

�

� � �

min

(�

min

= 1 mrad). In the above, �

meas

e

and �

meas

�

are the measured angles,

while �

BORN

�

and �

BORN

e

are angular values calculated using BORN kinematics.

t

2

t

2

t

t

Vacuum Polarization

�e - interference

Electronic RC

Muonic RC

{

Figure 1: Feynman diagrams for the elastic �e scattering in order O(�

3

).
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It order O(�

3

), the 14 Feynman graphs, shown in Fig. 1, contribute to the cross-section.

The latter may be subdivided into 12=2�6 separately gauge invariant contributions:

d�

QED

dy

�

=

2

X

l=1

6

X

k=1

d�

l

k

dy

�

; (1.4)

where the indices k and l have the following meaning

l = 1 � unpolarized contribution, l = unpol;

2 � polarized contribution (the terms proportional to P

e

P

�

in (1.1)) ; l = pol:

k = 1 � Born cross-section, k = b;

2 � Radiative corrections (RC) for the muonic current: vertex + bremsstrahlung, k = ��;

3 � contribution of the anomalous magnetic moment of the muon, k = amm;

4 � RC for the electronic current: vertex + bremsstrahlung, k = ee;

5 � �e interference: two-photon exchange +

muon-electron bremsstrahlung interference, k = �e;

6 � Vacuum polarization correction, running �; k = vp:

The resulting QED corrected cross-section is given by the sum

d�

QED

dy

�

=

X

k

 

d�

unpol

k

dy

�

+ P

e

P

�

d�

pol

k

dy

�

!

: (1.5)

The cross-sections with k = ��; ee; �e have similar generic structure

d�

k

dy

�

=

�

�

�

VR

k

d�

BORN

dy

�

+

d�

BREM

k

dy

�

; (1.6)

with a factorized part �

VR

k

originating from infrared divergent virtual (V) and real soft photon

(R) contributions

1

.

The main conclusion of this study is illustrated in Figs. 2 and 3, which present radiative

corrections to the asymmetry as a function of the variable y

�

for two cases: without any cuts

and with experimental cuts described above.

The asymmetry A

a

�e

, and the radiative correction to it, �

A

y

�

are de�ned as follows:

A

a

�e

=

d�

a

("#)

dy

�

�

d�

a

("")

dy

�

d�

a

("#)

dy

�

+

d�

a

("")

dy

�

; a = BORN, QED; �

A

y

�

=

A

QED

�e

A

BORN

�e

� 1: (1.7)

As is seen from the �gures, the corrections without cuts are very large and reach up to

-20%. When the four above mentioned cuts are taken into account they reduce � to values

below 1%. Actually, for a wide range of y

�

they are even well below 1%.

The main conclusion of our investigation is that one may safely neglect radiative corrections

in the determination of the muon beam polarization with the SMC set-up.

1

In the following we will always present the formulae in the form (1.5), i.e. summed over l.
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Figure 2: QED corrections to the polarization asymmetry without experimental cuts.
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Figure 3: QED corrections to the polarization asymmetry with experimental cuts:

E

RC

= 35 GeV, E

BC

= 40, �
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= �
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= 1 mrad.
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2 The Born cross-section

2.1 Kinematics and phase space

We consider the elastic scattering process

�(k

1

) + e(p

1

)! �(k

2

) + e(p

2

); (2.8)

in a �xed target experiment, i.e. with the initial state electron at rest, k

1

= (

~

0; im

e

).

Since the typical incident muon energy, E

�

, in present-day �xed target experiments is

O(10

2

� 10

3

GeV), the maximal c.m.s. energy,

s = �(k

1

+ p

1

)

2

= m

2

�

+m

2

e

+ 2m

e

E

�

; (2.9)

is very small,

p

s � 1 GeV. Therefore, we may completely neglect Z-boson exchange.

In fact, for the energy used by the SMC collaboration, E

�

= 190 GeV, the invariant s is

only 20 times bigger than the muon mass squared. Therefore, we can not neglect e�ects of

the �nite muon mass. Of course, the electron mass may be completely neglected.

While calculating the Born cross-section, we will perform all derivations exactly even in

m

e

, since the resulting expressions are very compact even if m

e

is kept, but at the end of

calculations we will neglect the electron mass

2

. The Born process is characterized by one

kinematical variable, besides s. We will use the dimensionless variable y:

y =

p

1

(k

1

� k

2

)

p

1

k

1

=

k

0

1

� k

0

2

k

0

1

� 1�

E

0

�

E

�

: (2.10)

We will introduce also the transferred momentum squared

Q

2

= (k

1

� k

2

)

2

= �t: (2.11)

It is easy to derive the identity:

Q

2

= Sy; (2.12)

where

S = s�m

2

e

�m

2

�

: (2.13)

For the Born cross-section, we have

d�

BORN

=

1

2

q

�

S

jM

BORN

j

2

d�

2

; (2.14)

with

�

S

= S

2

� 4m

2

e

m

2

�

; (2.15)

d�

2

= (2�)

4

d

3

~

k

2

(2�)

3

2k

0

2

d

3

~p

2

(2�)

3

2p

0

2

�(k

1

+ p

1

� k

2

� p

2

): (2.16)

In terms of y the di�erential phase space reads

d�

2

=

1

16�

2

dQ

2

q

�

S

d' =

S

16�

2

q

�

S

dyd': (2.17)

2

We refer to this approximation as to the \Ultra-Relativistic Approximation (URA) in m

e

".
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2.2 Spin degrees of freedom

Since we are going to deal with the scattering of polarized particles, there will be additional

essential variables, besides s and y, which are supposed to describe the spin degrees of freedom

of the problem. Their description uses the language of spin density matrix ( for details we

refer e.g. to Appendix C of [8]).

For non-polarized particles, we use projection operators in trace calculations, i.e. summing

and averaging over spin indices looks as

X

s

u

s

(p)�u

s

(p) =

1

2

�(p); (2.18)

with

�(p) = �ip̂+m: (2.19)

For polarized particles, we use the spin density matrix instead

X

s

u

s

(p)�u

s

(p) =

1

2

(1 + i


5

^

�)�(p); (2.20)

where � is the polarization four-vector

3

.

In the particle rest frame, ~p = 0, it is:

� = (P~n; 0); (2.22)

where ~n is a unit vector in the direction of spin quantization, and P is the polarization,

de�ning the degree of spin orientation along the direction ~n. For instance, P = 1 means that

the probability of a particle to have its spin projection along the direction ~n is equal to 1 (right

handed longitudinal polarization, if vector ~n is chosen along particle momentum ~p ). From

(2.22) in the particle rest frame, we have

�p = 0;

�

2

= P

2

: (2.23)

Due to Lorenz invariance, the properties (2.23) are ful�lled in any Lorenz frame.

The initial electron with the four-momentum p

1

is at rest in the laboratory frame. Using

then the direction of incoming muon as the direction of spin quantization, i.e. ~n =

~

k

1

=j

~

k

1

j, we

get the four-vector of the electron polarization from (2.22)

�

e

= P

e

0

@

~

k

1

j

~

k

1

j

; 0

1

A

: (2.24)

The four-vector �

�

may be obtained from the expression similar to (2.24) in the muon rest

frame

�

�

= P

�

0

@

~

k

1

j

~

k

1

j

; 0

1

A

(2.25)

3

A naive use of longitudinal polarizations from the early beginning of calculations, i.e. use of the spin

density matrices in the form

X

s

u

s

(p)�u

s

(p) =

1

2

(1 + �


5

)�(p); (2.21)

does not properly reproduce the �nite muon mass terms in the P

e

P

�

part of the cross-section.

8



by Lorenz boost to the electron rest frame along the beam axis:

�

�

= P

�

k

0

1

m

�

0

@

~

k

1

j

~

k

1

j

;

j

~

k

1

j

k

0

1

1

A

: (2.26)

We will consider the Born cross-section with arbitrary orientations of electron and muon

spins. We choose the laboratory frame with z-axis oriented along the incoming muon 3-

momentum

~

k

1

and with the plane (x,z) coinciding with the reaction plane. Another plane is

spanned by the vectors

~

k

1

and the projection (

~

�

e

)

xy

of vector

~

�

e

to a plane perpendicular to

z-axis. In this frame, the relevant 4-vectors are written as follows:

k

1

=

�

0; 0; j

~

k

1

j; k

0

1

�

;

k

2

=

�

j

~

k

2

j sin �

�

; 0; j

~

k

2

j cos �

�

; k

0

2

�

;

p

1

= (0; 0; 0; m

e

) ;

p

2

=

�

j~p

2

j sin �

e

; 0; j~p

2

j cos �

e

; p

0

2

�

: (2.27)

For the spin vector �

e

arbitrarily oriented in 3D-space, we have in the choosen laboratory

frame instead of (2.24) the following generalization

�

e

= P

e

(sin #

e

cos'

e

; sin#

e

sin'

e

; cos #

e

; 0) : (2.28)

We may identify the angle '

e

in (2.27) with ' of the phase space parametrization in (2.17)

and therefore ' becomes an essential degree of freedom in presence of a transverse polarization.

For arbitrarily oriented �

�

, we have instead of (2.25) in the corresponding rest frame

�

�

= P

�

(sin#

�

cos'

�

; sin#

�

sin'

�

; cos #

�

; 0) : (2.29)

Now we boost �

�

from the muon rest frame to the laboratory frame

�

�

= P

�

0

@

sin#

�

cos'

�

; sin#

�

sin'

�

;

k

0

1

m

�

cos#

�

;

j

~

k

1

j

m

�

cos#

�

1

A

: (2.30)

Using the explicit representations (2.27), (2.28) and (2.30), we can easily derive all scalar

products involving polarization vectors.

The doubly di�erential (in y and '

4

) cross-section exact in both masses reads:

d�

BORN

dyd'

=

2�

2

S

�

S

(

1

y

2

�

s

yS

+

1

2

+ P

e

P

�

" 

�

1

y

+

1

Y

�

1

2

!

cos#

e

cos #

�

+

m

�

j~p

2

j

y

q

�

S

 

1 +

2m

2

e

S

!

sin �

e

cos #

e

sin #

�

cos'

�

�

m

e

j

~

k

2

j

y

q

�

S

 

1 +

2m

2

�

S

!

sin �

�

cos#

�

sin#

e

cos'

e

�2

m

e

m

�

y

2

S

sin#

e

sin#

�

 

j

~

k

2

jj~p

2

j

S

sin �

e

sin �

�

cos'

e

cos'

�

+y cos �

(

'

e

�'

�

)

!#)

: (2.31)

4

For ' two choices are possible: 1) ' = '

e

, then '

�

= '

e

� �

(

'

e

�'

�

)

or 2) ' = '

�

, then '

e

= '

�

+ �

(

'

e

�'

�

)

.
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The expressions for sin �

e

and sin �

�

exact in m

e

are

sin �

e

=

2m

e

p

Sŷ

q

�

0

e

; (2.32)

sin �

�

=

2m

e

p

Sŷ

p

�

l

; (2.33)

where

�

l

= S

2

(1� y)

2

� 4m

2

e

m

2

�

;

�

0

e

= S

2

y

2

+ 4m

2

e

Sy; (2.34)

ŷ = y

�

1 �

y

Y

�

(2.35)

and

Y =

�

S

sS

�

 

1 +

m

2

�

S

!

�1

(2.36)

is the kinematical maximum of y-variation.

The substitution of these variables into (2.31) exhibits an interesting property of the general

Born cross-section which becomes

d�

BORN

dyd'

=

2�

2

S

�

S

(

1

y

2

�

s

yS

+

1

2

+ P

e

P

�

" 

�

1

y

+

1

Y

�

1

2

!

cos #

e

cos #

�

+

m

�

p

Sŷ

y

q

�

S

 

1 +

2m

2

e

S

!

cos #

e

sin#

�

cos'

�

�

m

e

p

Sŷ

y

q

�

S

 

1 +

2m

2

�

S

!

cos#

�

sin#

e

cos'

e

�2

m

e

m

�

yS

sin#

e

sin#

�

 

�

1�

y

Y

�

cos'

e

cos'

�

+ cos �

(

'

e

�'

�

)

!#)

: (2.37)

From the last presentation it is clearly seen that while terms related to the transverse electron

polarization are small since they are suppressed by the electron mass (third and fourth lines),

the term induced by the transverse muon beam polarization (second line) is not small, since

it appears to be proportional to the muon mass.

By trivial algebra one may show that the expression (2.31) reduces to a very short form in

two particular cases. In case of tranverse electron and longitudinal muon polarizations in the

URA in the electron mass we obtain

d�

BORN

dyd'

=

2�

2

S

"

1

y

2

�

1

yY

+

1

2

+ P

e

P

�

cos' sin �

�

1� y

y

�

1

2

�

1

Y

�

#

: (2.38)

The corresponding expression for the case of longitudinal polarization of both particles, but

exact in both masses reads:

d�

BORN

dy

=

4��

2

S

�

S

"

1

y

2

�

s

yS

+

1

2

+ P

e

P

�

 

�

1

y

+

1

Y

�

1

2

!#

: (2.39)
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Having in mind that r

e

= �=m

e

and S = 2m

e

E

�

, we immediately identify (2.39) with the

corresponding expressions from Section 2.2 of ref. [2] if one neglects terms of O(m

2

e

) here.

In the URA in m

e

, equation (2.39) may be rewritten in a form, which is explicitly positive

de�nite:

d�

BORN

dy

=

4��

2

S

"

(Y � y)

y

2

Y

(1� yP

e

P

�

) +

1

2

(1� P

e

P

�

)

#

: (2.40)

3 Complete O(�) Radiative Corrections

3.1 Kinematics of �e! �e


The reaction

�(k

1

) + e(p

1

)! �(k

2

) + e(p

2

) (3.1)

is accompanied by the bremsstrahlung of non-observed photon(s)

�(k

1

) + e(p

1

)! �(k

2

) + e(p

2

) + (n)
(p): (3.2)

First of all we will study the kinematics of one-photon bremsstrahlung. We want y

�

to be the

last integration variable out of a set of four variables (besides S). There is some freedom in

doing this.

We will use the de�nitions:

Q

2

�

= (k

1

� k

2

)

2

; y

�

=

p

1

(k

1

� k

2

)

p

1

k

1

; (3.3)

and

Q

2

e

= (p

2

� p

1

)

2

; y

e

=

p

1

(p

2

� p

1

)

p

1

k

1

: (3.4)

The other invariants are:

z

1

= �2pk

1

; z

2

= �2pk

2

;

V

1

= �2pp

1

; V

2

= �2pp

2

: (3.5)

Of course, only four of the invariants are independent.

Using 4-momentum conservation, it is easy to derive the following relations among them:

z

1

+ V

1

= z

2

+ V

2

;

V

1

= Sy

�

�Q

2

e

;

V

2

= Sy

�

�Q

2

�

;

Q

2

e

= Sy

e

: (3.6)

We will use the following set of independent variables

S; Q

2

�

; y

�

; Q

2

e

; z

2(1)

: (3.7)

The last of eqs. (3.6) deserves a comment. Our choice of the 4-momentum p

1

in de�ni-

tions (3.3) and (3.4) introduces the asymmetry between y

�

and y

e

. This is reason why Q

2

�

and

y

�

may be chosen as independent variables, while there exists a relation between Q

2

e

and y

e

.
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For the moduli of particle momenta and the energies, in the electron rest system ~p

1

= 0,

we obtain

j~pj =

q

�

p

2m

e

; p

0

=

S(y

�

� y

e

)

2m

e

;

j

~

k

1

j =

q

�

S

2m

e

; k

0

1

=

S

2m

e

;

j

~

k

2

j =

q

�

l

2m

e

; k

0

2

=

S

1

2m

e

;

j

~

Q

l

j =

q

�

�

2m

e

; Q

0

�

=

Sy

�

2m

e

;

j~p

2

j = j

~

Q

e

j =

q

�

e

2m

e

; p

0

2

= m

e

+

Sy

e

2m

e

:

~

k

1

�

~

k

2

=

SS

1

4m

2

e

�

Q

2

�

2

�m

2

�

;

~

k

1

� ~p

2

=

S(Q

2

e

+ 2m

2

e

)

4m

2

e

�

S �Q

2

e

� z

2

2

;

(3.8)

with

S

1

= S(1� y

�

): (3.9)

The corresponding equations for the Born kinematics (j~pj = 0) can be easily derived from

(3.8) setting

V

1

= V

2

= z

1

= z

2

= 0: (3.10)

In this limit

Q

2

e

= Q

2

�

= Q

2

and y

e

� y

�

= y: (3.11)

Many relations and useful notations can now be taken from [9]. As usual, we introduce

the relevant kinematical �-functions:

�

p

� �[�(p

1

+ p)

2

;�p

2

1

;�p

2

] = S

2

(y

�

� y

e

)

2

;

�

S

� �[�(p

1

+ k

1

)

2

;�p

2

1

;�k

2

1

] = S

2

� 4m

2

�

m

2

e

;

�

l

� �[�(p

1

+ k

2

)

2

;�p

2

1

;�k

2

2

] = S

2

1

� 4m

2

�

m

2

e

;

�

�

� �[�(p

1

+Q

�

)

2

;�p

2

1

;�Q

2

�

] = S

2

y

�

2

+ 4m

2

e

Q

2

�

;

�

e

� �[�(p

1

+ p

2

)

2

;�p

2

1

;�p

2

2

] = S

2

y

e

2

+ 4m

2

e

Q

2

e

;

(3.12)

where

�(x; y; z) = x

2

+ y

2

+ z

2

� 2xy � 2xz � 2yz: (3.13)

3.2 Kinematic boundaries

The boundary conditions may be taken from [9]. The �rst one, (B.3) of [9], remains unchanged

m

2

e

Q

4

�

+ S

2

y

�

Q

2

�

+m

2

�

S

2

y

�

2

� �

S

Q

2

�

= 0; (3.14)
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while the second condition, (B.4) of [9], changes, since, contrary to [9], y

e

is not an independent

variable here. This is due to the fact that we are dealing now with elastic scattering rather

than with the deep inelastic scattering in [9]. Using the last of eqs. (3.6), eq. (B.4) of [9] takes

the form:

S

2

y

�

2

Q

2

e

+Q

4

e

Q

2

�

�m

2

e

(Q

2

�

�Q

2

e

)

2

� Sy

�

Q

2

e

(Q

2

�

+Q

2

e

) = 0: (3.15)

The physical region E

�

= (Q

2

�

; y

�

) is given by two inequalities (see [9], subsection B.2.1),

which are derived from (3.14)

0 � Q

2

�

�

�

S

S +m

2

�

+m

2

e

�

�

Q

2

�

: (3.16)

where

y

min

�

(Q

2

�

) =

Q

2

�

S

� y

�

� y

max

�

(Q

2

�

); (3.17)

y

max

�

(Q

2

�

) =

1

2m

2

�

�

1

S

q

�

S

�

m

�Q

2

�

�

; (3.18)

and

�

m

= Q

2

�

(Q

2

�

+ 4m

2

�

): (3.19)

The solution of eq.(3.15) is

(Q

2

e

)

max;min

=

Sy

�

(Sy

�

�Q

2

�

) + 2m

2

e

Q

2

�

� (Sy

�

�Q

2

�

)

q

�

�

2(Sy

�

�Q

2

�

+m

2

e

)

: (3.20)

3.3 Another set of independent variables

Besides of (3.7) we use

S; y

�

; V

2

; V

1

; z

2(1)

; (3.21)

To write down the limits in these invariants, we reorder �rst the physical region E

�

=

(Q

2

�

; y

�

)! (y

�

; Q

2

�

). Trivial manipulations with (3.16){(3.18) lead to

0 � y

�

� y

max

�

; (3.22)

(Q

2

�

)

min

� Q

2

�

� minf(Q

2

�

)

max

; Sy

�

g: (3.23)

Here

(Q

2

�

)

max;min

=

�

S

� S

2

y

�

�

q

�

S

�

l

2m

2

e

: (3.24)

Solving the equation

(Q

2

�

)

max

= Sy

�

; (3.25)

we �nd a maximal value y

max

�

y

max

�

�

�

S

S(S +m

2

�

+m

2

e

)

; (3.26)
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where the two upper limit branches of (3.23) meet each other.

From (3.23) and the de�nitions of V

i

, we easily derive the limits of V

2

as function of y

�

0 � V

2

�

Sy

�

(S + 2m

2

e

)� �

S

+

q

�

S

�

l

2m

2

e

: (3.27)

The second solution

V

min

2

=

Sy

�

(S + 2m

2

e

)� �

S

�

q

�

S

�

l

2m

2

e

; (3.28)

is unphysical. It is negative in the physical region (3.22) of y

�

. Finally, from (3.20) we derive

the limits of V

1

as functions of y

�

and V

2

V

min

1

� V

1

� V

max

1

; (3.29)

where

V

max;min

1

= V

2

Sy

�

+ 2m

2

e

�

q

�

�

2(V

2

+m

2

e

)

: (3.30)

Examining (3.27), one may see that the invariant V

2

is positive only in the interval

0 � y

�

� y

max

�

: (3.31)

To complete the study of kinematics of the reaction (3.2), we have to give the limits of

variation of the variable z

1(2)

. We may take all the relevant formulae from [9] and simply list

them for completenes:

z

max;min

1(2)

(y

�

; Q

2

�

; y

e

) =

B

1(2)

�

p

D

z

A

1(2)

=

C

1(2)

B

1(2)

�

p

D

z

; (3.32)

and the Gram determinant

R

z

= �A

1

z

2

1

+ 2B

1

z

1

� C

1

� �A

2

z

2

2

+ 2B

2

z

2

� C

2

; (3.33)

A

2

= �

�

� A

1

; (3.34)

B

2

=

n

2m

2

e

Q

2

�

(Q

2

�

�Q

2

e

) + S

2

(1� y

�

)(y

�

Q

2

e

� y

e

Q

2

�

) + S

2

(1)Q

2

�

(y

�

� y

e

)

o

� � B

1

n

(1)$�(1 � y

�

)

o

; (3.35)

C

2

=

n

S(1 � y

�

)Q

2

e

� SQ

2

�

[(1) � y

e

]

i

2

+ 4m

2

�

h

S

2

(y

�

� y

e

)(y

�

Q

2

e

� y

e

Q

2

�

)�m

2

e

(Q

2

e

�Q

2

�

)

2

o

� C

1

n

(1)$ �(1� y

�

)

o

; (3.36)

D

z

= B

2

1(2)

�A

1(2)

C

1(2)

: (3.37)

Here we now understand that Q

2

e

� Sy

e

. This makes no simpli�cations, therefore we did not

substitute it in order not to destroy a nice symmetry of these equations.

The inequalities (3.31), (3.27), (3.30) and (3.32) are the kinematical limits in the sequence:

y

�

; V

2

; V

1

; z

2

.

14



3.4 Phase spaces

In order to have a convincing proof that all the boundaries are correctly derived, we always

write a supporting FORTRAN program to numerically check that the phase space volume in

any sequence of variables is exactly the same. We calculated as many phase space integrals

analytically as is possible.

For example, we realized the cross check of our sequence (3.21). Three integrations may

be easily performed analytically, yielding:

� =

�

2

S

4

q

�

S

Z

y

max

�

0

dy

�

 

V

max

2

�m

2

e

ln

V

max

2

+m

2

e

m

2

e

!

: (3.38)

The numerical check returned for this integral exactly the same value as for the basic sequence,

(C.1) of [9].

We will always integrate over z

2

�rst. Then, only three variables V

1

; V

2

; y

�

remain. The

physical regions E = (y

�

; V

2

) and I = (V

2

; V

1

), as derived from (3.27) and (3.30), are shown

in Figs. 4 and 5.

Figure 4: (V

2

; y

�

)-plot
Figure 5: (V

1

; V

2

)-plot

3.5 Bremsstrahlung cross section

For the normalized bremsstrahlung cross-section, we have

d�

BREM

=

1

2

q

�

S

�

�

�M

BREM

�

�

�

2

d�

3

; (3.39)

with the 2! 3 phase space

d�

3

= (2�)

4

d

3

~

k

2

(2�)

3

2k

0

2

d

3

~p

2

(2�)

3

2p

0

2

d

3

~p

(2�)

3

2p

0

�(k

1

+ p

1

� k

2

� p

2

� p): (3.40)
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In terms of the variables (3.21) the di�erential phase space looks as follows

d�

3

=

S

2

7

�

4

q

�

S

dy

�

dV

2

dV

1

dz

1

p

R

z

: (3.41)

We developped two branches to present the �nal result:

� calculation within the Numerical Approach, with the possibility to impose arbitrary

experimental cuts;

� calculation within an Analytic Approach with limited possibility to apply cuts.

We note that the integrals over z

1

were calculated analytically with arbitrary limits ẑ

min;max

1

(see, Appendix (A)), while integrals over V

2(1)

were computed purely numerically. This is the

essence of our numerical approach, the muenum branch of �ela.

We also performed the complete O(�) RC calculations within an Analytic Approach, the

mueana branch of �ela. In this description, we will present only a sketch of the calculations.

Within the analytic approach we have integrated the bremsstrahlung contribution over the

variables z

1

and V

1

over the full photonic phase space without imposing experimental cuts. The

aim of this is twofold: �rst, we performed an independent calculation of the bremsstrahlung

cross section and its integration which was used to cross check the formulae of the numerical

approach and their coding in the FORTRAN program �ela. Second, these analytic formulae are

rather elegant, although lengthy, in the SIngle Ultra Relativistic Approximation (SIURA) in

the electron mass. Due to analytic integration, they run at the computer incredibly fast, several

orders of magnitude faster than the numerical integration within the numerical approach. We

note that this relative simplicity may be reached only if we integrate over the full phase space

of photons. From formulae in the SIURA it is easy to derive the formulae in the DOubly

Ultra Relativistic Approximation, DOURA. It is important to stress, that in the latter case

satisfactory precision of the calculations is not ensured.

The derivation of analytic results is quite straightforward. We consequently integrate in the

sequence dV

2

dV

1

dz

1

. In reality, it is convenient to calculate and substitute the twofold integrals:

dV

1

dz

1

. These are presented in the Table in Appendix (D.1). After substituting the dV

1

dz

1

integrals, we arrive at another Table of integrals over V

2

which are listed in Appendix (D.2).

They are much more complicated than the �rst, two fold integrals. The latter integrals were

calculated in limits [0;

^

V

max

2

] with an arbitrary upper limit. This allows us to impose V

2

-

dependent experimental cuts even within the analytic approach. An example is the muon

angular cut.

A comment on DOURA is in due here. Since here we neglect m

2

�

, a problem might arise

from the fact that Q

2

�

min

is proportional to the muon mass. Apparently, m

2

�

can't be neglected

in Q

2

�

min

, since it enters in the denominator of the photon propagator. However, we assume

that a cut is imposed on V

2

, which prevents Q

2

�

min

from reaching its kinematical limit. In

other words we assume that

Q

2

�

� (Q

2

�

)

cut

� (Q

2

�

)

c

� m

2

�

: (3.42)

3.5.1 Final expression for the normalized bremsstrahlung cross section

De�ning the z-integrated contributions,

"

�

�

�M

BREM

�

�

�

2

#

z

=

Z

ẑ

max

1

ẑ

min

1

dz

1

�

p

R

z

�

�

�M

BREM

�

�

�

2

(3.43)
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and neglecting m

e

wherever possible, we �nally obtain

d�

BREM

dy

�

=

�

3

S

Z

^

V

max

2

0

dV

2

Z

^

V

max

1

V

min

1

dV

1

h

�

�

�M

BREM

�

�

�

i

2

z

: (3.44)

In (3.44), the limits

^

V

max

2(1)

; ẑ

min;max

1

are functions of experimental cuts. In this way, the

cuts are implemented within our numerical approach.

There are three gauge-invariant contributions to the bremsstrahlung di�erential cross sec-

tion: muonic, electronic and �e interference, each of them is represented as the sum of an

InfraRed divergent contribution `IR' and a �nite (Regular) part `R':

"

�

�

�M

BREM

�

�

�

2

��

#

z

= Q

2

�

�

BF

IR

��

+ S

R

��

�

; (3.45)

"

�

�

�M

BREM

�

�

�

2

ee

#

z

= Q

2

e

�

BF

IR

ee

+ S

R

ee

�

; (3.46)

"

�

�

�M

BREM

�

�

�

2

�e

#

z

= Q

�

Q

e

�

BF

IR

�e

+ S

R

�e

�

; (3.47)

where B is the Born factor

B = 4

Y � y

y

2

Y

(1� yP

e

P

�

) + 2 (1� P

e

P

�

) �

1

16�

2

�

2

�

�

�M

BORN

�

�

�

2

: (3.48)

The F

IR

i

are infrared factors:

F

IR

��

=

�

Sy

�

+ 2m

2

�

�

"

1

z

1

z

2

#

z

�m

2

�

"

1

z

2

1

#

z

�m

2

�

"

1

z

2

2

#

z

; (3.49)

F

IR

ee

=

 

Sy

�

V

1

V

2

�

m

2

e

V

2

1

�

m

2

e

V

2

2

!"

1

#

z

; (3.50)

F

IR

�e

= �

S

V

1

"

1

z

1

#

z

�

S

V

2

"

1

z

2

#

z

+

S

1

V

1

"

1

z

2

#

z

+

S

1

V

2

"

1

z

1

#

z

: (3.51)

In (3.49)-(3.51) and in the cumbersome functions S

R

i

given in Appendix (A), the z-

integration (3.43) with arbitrary limits is assumed to be done.

Tables of z-integrals with cuts and equations for limits

^

V

max

2(1)

; ẑ

min;max

1

in terms of experi-

mental cuts are presented below in Appendix B: (B.93), (B.85), (B.107)-(B.108).

3.5.2 Treatment of the infrared divergent part

The three terms with F

IR

in (3.45)-(3.47) cannot be simply integrated in (3.44) because of

the infrared divergency at V

2

= 0. It is treated by dimensional regularization.

Substituting all terms with F

IR

into (3.41), we de�ne the IR Part of the bremsstrahlung

cross-section.
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: (3.52)
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We will treat d�

IR

in the R-frame which is de�ned in Appendix C by the condition

~p

2

+ ~p = 0: (3.53)

In this frame we �nd

V

2

= �2p:p

2

= �(p

2

+ p)
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e
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e

: (3.54)

For su�ciently small " we have at the point of separation of soft and hard photons, p

0

= ",

V

2

=

�

V

2

= 2m

e

"; (3.55)

which can be choosen to be much smaller then any typical invariant of the process.

From a study of the R-system it may be understood that there is an unique correspondence

between angular integrations in the R-system and invariant integrations, i.e. we may use

invariant limits of z in (3.43) and of V

1

in (3.44) instead of angular limits in the R-frame in

order to compute the hard part of d�

IR
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� "): (3.56)

This is very convenient, since hard photons are in general a�ected by experimental cuts and

the cuts are implemented in our approach by means of limits of a numerical integration over

z

1

and V

1

. Finally, we get from (3.52)
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with

�
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=
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^
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Again, in (3.57)-(3.58) the z-integration (3.43) with experimental cuts is assumed to have been

done.

3.5.3 A short form of the completely di�erential bremsstrahlung cross-section

The IR �nite z-integrated contributions (A.71-A.73) are rather cumbersome indeed. For the

unpolarized squared matrix elements of (3.45-3.47) with not yet separated infrared parts (3.49-

3.51) a compact representation is known in the literature [10]. We present it here, in notations

of our paper, even in a more compact form:

"

�

�

�M

BREM

form

�

�

�

2

��

#

unpol

= Q

2

�

"

F

R

Q

2

e

z

1

z

2

+

2

Q

4

e

�

m

2

�

�

�

��

+m

2

e

�

e

��

�

#

;

"

�

�

�M

BREM

form

�

�

�

2

ee

#

unpol

= Q

2

e

"

F

R

Q

2

�

V

1

V

2

+

2

Q

4

�

�

m

2

e

�

e

ee

+m

2

�

�

�

ee

�

#

;

"

�

�

�M

BREM

form

�

�

�

2

�e

#

unpol

= Q

�

Q

e

"

�

F

R

Q

2

e

Q

2

�

 

S

V

1

z

1

+

S

0

V

2

z

2

+

U

V

1

z

2

+

U

0

z

1

V

2

!

�

2m

2

�

Q

2

e

Q

2

�

�

�e

#

;(3.59)
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where
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and

S

0

= S � z

1

� V

1

;

U = �S +Q

2

e

+ V

1

;

U

0

= �S +Q

2

e

+ z

2

: (3.61)

The representation (3.60)-(3.61) is really very elegant, and it may be used in a Monte Carlo

code. It can't be used, however, within the numerical approach of this paper for the following

reasons:

1. It does not take into account polarizations (main reason).

2. It includes the IRD part which has to be separated out.

3. Our bremsstrahlung cross-section, as we emphazed already, is integrated once over the

invariant z

1;2

within arbitrary limits (by making use of a table of inde�nite integrals).

To do so, we need the canonical representation

S

R

i

=

X

l;j

f

l

(z

j

)K

il

(S; y

�

; V

2

; V

1

): i = ee; e�; ��; j = 1; 2; l = 1� 24; (3.62)

see Appendix (D). We gain at least one order of magnitude in CPU-time, since instead

of a three-fold numerical integration over V

2

; V

1

and z

1;2

, we need only two-fold: (V

2

; V

1

).

This gain of CPU-time makes our code very fast and user friendly. In order to arrive

at this level, however, one has to substitute S

0

; U; U

0

, and the compact expressions,

actually, become much more cumbersome (see Appendix A).

4. Finally, the canonical representation (3.62) seems to be the only road towards an ana-

lytically integrated di�erential cross-section, see the discussion at the beginning of this

section.
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3.6 The muon anomalous magnetic moment contribution

The contribution of the anomalous magnetic moment of the muon to the cross-section can be

expressed as (here we follow decomposition of ref. [11]):

d�

amm

dy

=

�

3

S

F
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�
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4m

2

�

Sy

2

! 

1

y
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Y

!

(2 � yP

e

P

�

) ; (3.63)

where

F
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� � 1

; (3.64)

and

� =

v

u

u

t

1 +

4m

2

�

Q

2

: (3.65)

3.7 The running electromagnetic coupling

The correction due to the running QED coupling (vacuum polarization) can be implemented

as

d�

vp
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� 1
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; (3.66)

where

�(Q

2
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�

1 ���(Q

2

)

: (3.67)

The correction �� contains two parts:

��(Q

2

) = ��

l

+��

udcsb

; (3.68)

the �rst contribution is due to the charged leptons, the second one is due to the light quarks

(u; d; c; s; b). All details about the calculation of ��

l

are described in [12]. For the calculation

of the ��

udcsb

we use the parametrization of ref. [13].

3.8 The net O(�

3

) cross-section

Now we have collected all the ingredients to construct the net QED cross-section up to order

O(�

3

). It has the form
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; (3.69)

where the corrections �

VR

k

are given by (E.186), (E.196) and(E.215) and the last sum in (3.69)

reads

X

k

d�

BREM

k

dy

�

=

�

3

S

Z

^

V

max

2

�

V

2

dV

2

Z

^

V

max

1

V

min

1

dV

1

�

Q

2

�

S

R

��

+ Q

2

e

S

R

ee

+ Q

�

Q

e

S

R

�e

�

; (3.70)

with S

R

k

given by (A.71), (A.72) and (A.73). The limits of integration in (3.70) are discussed

in the Appendix B.
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The inde�nite integrals, in terms of which the quantities S

R

k

, are presented here, is the �rst

series of integrals over z

1

or z

2

, which is given in this paper. It correspontds to the �rst,

innermost and the only semianalytical integration, within our numerical approach. In the

R-frame, it corresponds to the integration over the angle '

R

of the photon, see eq. (C.127).

The three �rst integrals of this series are presented in Appendix D.1 of [9], eqns.(D.6)-(D.8).

Here we recall the de�nition of integration, and present two additional integrals.
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ẑ

min

1(2)

dz

1(2)

p

R

z

A;

4)

"

z

1(2)

#

z

= �

1

��

q

q

R

z

(z

1(2)

)

�

�

�

z

+

B

1(2)

�

q

"

1

#

z

;

5)

"

z

2

1(2)

#

z

= �

1

2��

q

�

z

1(2)

+ 3

B

1(2)

�

q

�

q

R

z

(z

1(2)

)

�

�

�

z

+

1

2�

2

q

�

3B

2

1(2)

� �

q

C

1(2)

�

"

1

#

z

:

The functions A;B;C are de�ned in (3.34)-( 3.36).

In the table, we introduced the abbreviation

�

�

�

z
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ẑ
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: (A.74)

The limits of the integration ẑ

min;max

1(2)

may be arbitrary. The particular realization of these

limits, depending on realistic experimental cuts, which we implement within our numerical

approach, has been derived in Appendix B.3.

B Numerical approach. Implementation of experimen-

tal cuts

Within our numerical approach, the cuts are applied via integration limits in (3.70). There

are cuts in variables V

2

; V

1

and z

1

.

B.1 V

2

-dependent cut

� Angular cut of muon

Here we consider the cut on the angle of the scattered muon. This angle may be easily

calculated from the Born and bremsstrahlung kinematics. In both cases

� 2k
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k
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= 2
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k

0

1

k
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2

� j

~
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�

: (B.75)

24



For the case of Born kinematics one can easily derive
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From eq. (B.76), keeping only terms O(m

2

e

), we get
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so, one may derive the �

BORN

�

. Here V
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2
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is the upper limit of V

2

neglecting m

e

. The exact expression was given in (3.27).

Using (3.8), one may receive from (B.75) the following expression for cos �

BREM

�
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Keeping again only terms linear in m

2

e

, we may derive the value of sine of the muon

scattering angle in the bremsstrahlung process:
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It is obvious that:
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: (B.81)

Therefore, we may introduce the upper limit of the di�erence
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By substitution of expressions (B.77) and (B.80), we receive
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� Kinematical limitation

The kinematical limit on V

max

2

was written in (3.27).

So, the absolute max of V

2

should be a minimum of the two possible maximal values of V

2

^

V

max

2

= min [V

max

2

; V

c
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] : (B.85)
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B.2 V

1

-dependent cuts

� Energy recoil cut E

RC

.

The electron energy in the �nal state is limited from below by: E

0

el

= p

0

2

� E

RC

, where

E

RC

is some cut on recoil electron energy. In numerical calculation we use the SMC

value E

RC

= 35 GeV. So,
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� 2m

e
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From the other hand:
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This corresponds to
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); (B.88)

and we receive one of the possible cuts on V

1

:
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� Energy balance cut E

BC

.

Photon energy p

0

also could be implicitely limited by an experimental condition, emerg-

ing from checking of overall energy balance:
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: (B.90)

The SMC value is E

BC

= 40 GeV. It is another energy cut related to the invariant V

1

:
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; (B.91)
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� Kinematical limitation

Still we must take into account the kinematical limitation on V

max

1

. The boundaries of

the allowed phase-space region are de�ned by (3.30).

These three cuts allow us to make the right choice for an absolute maximum of V
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B.3 z

1

-dependent cut

� Cut on the electron angle The electron angle can be determined from
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It di�ers for the Born and bremsstrahlung kinematics. We consider �rst the radiative

case, where it may be rewritten as:
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In the URA in m
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, it becomes
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We may extract the correct boundaries for the invariant z

1

, from three quantities:
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In the Born approximation V

1
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= 0 it reduces to
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Due to the fact that the di�erences between
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� has to be smaller than some

value, which is determined by experiment, we have:
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One gets two cases
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With (B.98), (B.99) and (B.101) we arrive at
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while from (B.102) we receive
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� Kinematical limitation

Also the kinematic boundaries z

1

max

and z

1

min

de�ned in (3.32), should be taken into

account.
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Then the absolute maximum of z
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should be a minimun of the two possible maxima of z
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and the absolute minimum of z
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C R-frame kinematics

In two applications in this paper, we will need another frame than the laboratory frame. When

calculating the soft photon contribution and a table of two-fold integrals within the completely

analytic approach, we will also make use of the so called R-frame, which is de�ned by
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+ ~p = 0; (C.109)
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First, we introduce coordinates of 4-vectors p
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; p, shown in the �gure,
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As may be seen from �gure 6, we have choosen the z-axis of the R-frame along the vector

~p

1

and matched the R-frame (z; y)-plane with the plane spanned by vector ~p

1

and one of the

vectors

~

k

1

or

~

k

2

. This trick is possible since we will use the R-frame only in analytical calcula-

tions of tables of bremsstrahlung hard and soft integrals, in which we will always `decouple' z

1

and z

2

using an invariant partial fraction decomposition while calculating hard integrals and

Feynman parametrization for the soft. Finally, the photonic vector ~p is directed arbitrarily

and its angles are unlimited
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Actually we are using two R-frames, di�erent for z

1

and z

2

, containing integrands with

di�erent pairs of �

R
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R

, both varying within the full solid angle 4�.

The vector coordinates (C.111) contain, apart from angular variables, the energies p
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j. They can be derived using an invariant language. First we
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Figure 6: The R-frame.

Therefore,
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� : (C.114)

To derive an energetic coordinate of a 4-momentum, we consider the 4-scalar product of this

4-momentum with the four vector �2(p

2

+ p) and write it twice: through invariants, and in

the R-frame, using (C.114). We give the simplest example:
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Let us introduce the following �-functions:
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In this way, the following table had been derived:

j

~

k

1

j =

q

�

k

1

2

p

�

; k

0

1

=

S(1� y

�

) + V

2

2

p

�

=

S

k1

2

p

�

;

j

~

k

2

j =

q

�

k

2

2

p

�

; k

0

2

=

S � V

2

2

p

�

=

S

k2

2

p

�

;

j~p

1

j =

q

�

�

2

p

�

; p

0

1

=

Sy

�

+ 2m

2

e

2

p

�

=

S

p1

2

p

�

;

j~p

2

j =

V

2

2

p

�

; p

0

2

=

V

2

+ 2m

2

e

2

p

�

;

j~pj = j~p

2

j; p

0

=

V

2

2

p

�

:

(C.117)

29



Now we write invariant S in terms of R-frame variables
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By using (C.117), we get
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from which we derive an expression for cos �

1

in the R-frame in terms of invariants:
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Then we write the invariant S
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By using (C.117), we get
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from where we derive an expression for cos �

2

in R-frame:
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Now we can write down invariants z

1

and z

2

in their two own R-frames correspondingly
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z

2

= �2k

2

p = 2p

0

�

k

0

2

� j

~

k

2

j cos �

2

cos �

R

� j

~

k

2

j sin �

2

sin �

R

cos'

R

�

: (C.125)

The invariant V
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looks formally the same in both R-frames.

Finally, relations (C.126), (C.125) allow to perform
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This property was widely used when we discussed the treatment of the infrared divergent part.

D Analytic approach. Tables of integrals

D.1 First and second analytic integrations. The R-integrals
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In (D.129) we de�ned the objects L
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D.2 The third analytic integration. The V
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and the additional notation
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E Soft contribution to d�

IR

In (3.52) the expression for d�

IR;soft

reads:
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We substitute now the phase space d�

3

, (3.40), which in the soft photon limit can be

factorized
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Using de�nition (2.14) and relation (3.48), we straightforwardly derive from (E.133)
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Then, the function F
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takes the unique form
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The symbol ) in (E.135) means that instead of z-integrated IR-factors (3.49)-(3.51), we

use them in a completely di�erential form (E.137); they depend on two photonic angles in the

R-frame, #

R

; '

R

, and on the photonic energy, p

0

.

Since the energy of emitted soft photons is limited within a narrow interval

0 � p

0

� " (E.139)

it is always possible to choose " small enough to ensure the phase space of soft photons be a

sphere non-limited by experimental cuts. In other words, the phase space of soft photons is

isotropic which allows to choose the z-axis along a convenient direction, di�erently for every

term in (E.137). while performing angular integrations in (E.136). Therefore, the invariant
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might be expressed in terms of only the polar angle cos#
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made independent of the azimuthal angle '
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In the R-frame
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+ ~p = 0 (E.144)

and in soft limit p! 0 R-frame degenerates to the rest frame of ~p

2
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= m

e

: (E.145)

This is why V

2

in (E.140) is angular independent.

We will use the dimensional regularization for the infrared divergences and rewrite the

photonic phase space as follows (we took also 2p

0

out of every invariant variable in (E.140)-

(E.143))
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Here 
 is the Euler constant and � is an arbitrary parameter with a dimension of mass.

Now integration in (E.136) over p

0

is performed straightforwardly:
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In (E.147)
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and the typical pole term
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represents the infrared divergences at n = 4.

From (E.140){(E.143) entering (E.138) and from (E.147) we see that only those integrals

over � may occur, which are presented in Appendix D.2 of [9]). Writing F

IR

in a form similar

to (E.138), we will calculate the three contributions �

IR;soft

��

; �

IR;soft

�e

and �

IR;soft

ee

separately. Before

this, however, we present a collection of formulae in the R-frame in the soft photon limit.

E.1 R-frame kinematics for the calculation of the soft photon con-

tribution

The R-frame is de�ned by
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Since the R-frame is isotropic, there is no need to �x its z-axis along a given direction, say
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It might be equally chosen along
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or along any linear combination of any vectors, say
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So, we have indeed many R-frames, which di�er one from another by a spatial rotation and

when we write an arbitrarily oriented photonic 4-momentum as
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one should understand that in every R-frame one has its own angles #

R

; '

R

which vary within

the same limits { covering the full solid angle. In this way, we arrive at equations (E.140)-

(E.143) for invariants V

2

; V
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; z
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; z

2

with formally one parameter �.

In the expression (E.147), which has to be integrated over � with (E.148) and (E.137),

enter the energies p
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and moduli j~p
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j ( see (E.140)-(E.143)).

All the energies and momenta moduli depend only on three invariants: S; y and V

2

. We

make no distinction between y and y

�

in the soft photon kinematics. In the soft photon

problem, we neglect the small invariant V

2

as compared to the others. In this limit, the

table (C.117) reduces to
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5

In this subsection all 4-momentum coordinates are understood in the R-frame.
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E.2 Muonic current

In muonic current we are dealing with
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see (E.137). By applying the Feynman parameterization for the last term, we have
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where a new 4-vector was introduced as discussed in (E.155):
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Therefore, using all soft machinery described above we can write �
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see (E.147), with
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On passing, we used
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with three velocities
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We also have from (E.160) the following relations:
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Using the table of integrals from Appendix D.2 of [9] we obtain
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We have from (E.166){(E.168)
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And the expression (E.161) becomes
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Now we use the URA in the electron mass
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The �rst integral we calculated precisely in [9]
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With the second integral the situation is more complicated. De�ning it as in [9],
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we cannot take over the analogous result from [9] since there that integral was calculated in

the URA in the leptonic mass m. Here we need result exact in m
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(see also [5]). Making use
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, with the aid of (E.170) we get
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The expression for S
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simpli�es drastically and can be calculated straightforwardly
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with
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Collecting all terms together, we �nally have
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From the virtual photon correction to the muon vertex we have the contribution
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The infrared divergence and the scale parameter � cancel exactly in the sum of these two

contributions. The sum reads
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E.3 Electronic current

The correction �
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is very easy to calculate.
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we receive
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Using the table of integrals from Appendix D.2 of [9] we derive
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The corresponding virtual photon correction to the electron vertex has the following form:
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The complete answer is:
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E.4 �e interference

In the �e interference the expression for F
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reads
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We introduce the � parameterization with the aid of two new 4-vectors
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Using the table of integrals from Appendix D.2 of [9] we derive
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The expression (E.207) reduces in the URA in m
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to
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In the next Appendix on the box contribution we derive
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and the following short �nal expression is obtained
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The �nite contribution from box diagram, B

�n

�e

, is presented in Appendix F.
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F Two photon exchange contribution

The two-photon exchange contribution is described by the two box diagrams: direct box and

crossed box. For the sake of symmetry, it is convenient to duplicate the number of diagrams

and to deal with four diagrams shown in the �gure below:
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This is why the two-photon exchange matrix element is given by an expression, which

contains an extra factor 1=2:
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For later use we introduce the short hand notation for propagators
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Now we separate the infrared divergent (IRD) part of the two-photon exchange contribu-

tion. There are two IRD-poles: 1) one is located at p ! 0 and 2) another one { at (p+q)! 0.
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At p! 0, one has
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While at p ! q, one has
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For the latter term, we perform the substitution p = p

0

�q and observe that at this substitution

the propagators transform as follows
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With one more substitution p

0

! �p, and using equalities k
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; k
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, we see

that the second pole gives exactly the same contribution as the �rst one. Therefore, the full

IRD-part of the two-photon exchange reads:
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Now we add and subtract the IRD-part of the two-photon exchange and when adding it

we use (F.221), while when subtracting it we use the sum of (F.218) and (F.219). Using the

identity
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we arrive at the �nal expression for the two-photon exchange contribution before integration

over d

4

p.
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The �rst raw of this formula represents the IRD-contribution, the second raw stands for

the IR-free scalar, the next two represent the IR-free vector, and �nally the last one is an

IR-free tensor.

For the IR-divergent part we introduce the well-known presentation
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Then all needed IRD-integrals are
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For the IR-�nite scalars
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we derived
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F.1 Vectorial integrals

We begin with the reduction of vector integrals. First we de�ne the coe�cients of the vector

reduction

V

ij

�

=

16�

2

i

Z

d

4

p p

�

(2�)

4

p

2

(p+ q)

2

Q

(k

i

)

Q

(p

j

)

= (V

q

)

ij

q

�

+ (V

k

)

ij

(k

i

)

�

+ (V

p

)

ij

(p

j

)

�

; (F.233)
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The system of linear equations for these coe�cients in terms of scalar integrals, derived by

contraction of (F.233) with q
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Here
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Two additional types of scalar integrals
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are introduced. They sa�sfy the equalities
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and may be described by one generic formula:
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The solution of the system (F.234) is presented in subsection F.4 of this Appendix.

F.2 Tensorial integrals

De�ne the coe�cients of tensor reduction
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The system of equations for the coe�cients T

ij

was derived in the following way:
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� the next three equations were received by multiplying (F.241) with q
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� another six equations were received by multiplying (F.241) with (k

i

)

�

and (p

j
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�

.

The latter nine equations are
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Together with the tenth equation (F.242), they can be solved and the answer may be expressed

in terms V

ij

and additional vectors arising from various pinches of the box diagrams.

F.3 The box contribution to the cross-section

Substituting all these solutions to the box amplitude and computing its interference with

Born amplitude, we derive the contributions to the unpolarized and polarized cross-section

parths from the two-photon exchange diagrams to the di�erential cross-section of elastic �e

scattering
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where unpolarized and polarized non-factorized contributions B

unp

and B

pol

are:
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with
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There are two useful combinations:
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The two-photon exchange contribution simpli�es drastically in the DOURA. We list the

answer because of its elegance.
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G Description of www-Figures

In March 1996, when the FORTRAN code �ela was completed, a lot of �gures for the radia-

tive corrections to the polarized cross-sections and the polarization asymmetry were produced

and put to a home-page of the theory group of DESY-Zeuthen, http://www.ifh.de/�bardin.

In this Appendix, we give a short guide to these �gures.

All the cross-sections, radiative corrections and asymmetries are shown as function of y

�

.

The units are: cross-sections in microbarns, radiative corrections in percent, asymmetries in

absolute, dimensionless units varying from 0 to 1.

Some legends:

- parallel, antiparallel means mutual longitudinal polarization orientations;

- P

e

and P

�

are modules of polarization degrees, always written in �gures;

- All corrections mean that all 12 contributions (1.4) are taken into account;

- AN means Analytic calculations;

- when AN is not written, the numerical calculations are meant.

The �

y

�

is de�ned by

�

y

�

=

d�

QED

dy

�

d�

BORN

dy

�

� 1; (%): (G.255)

SIURA-series of 43 �gures contain following plots:

� 1-3 Born cross-section and Born asymmetry;

� 4-5 Results of completely integrated analytic calculations without cuts;

� 6-7 Results of completely numerical calculations without cuts;
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� 8-17 Illustrate e�ects of some cuts separately, muon angular cut being treated both

analytically and numerically;

� 18-19 are our main result: All corrections, All cuts (four indeed);

� 20-27 illustrate four cases: � + e corrections, � corrections, e corrections and �e inter-

ference corrections, correspondingly, without cuts;

� 28-35 the same, but with all cuts;

� 36-43 is a series of �gures with `realistic' P

e

and P

�

. It is quite senceless for the asymme-

try, where P

e

and P

�

cancel. We only `gain' an instability due to cancellation of nearly

equal numbers.
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