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Abstract

We have calculated inclusive direct CP-asymmetries for charmlessB

�–decays. After summing
large logarithms to all orders the CP-asymmetries in�S = 0 and�S = 1 decays are found as

a

CP

(�S = 0) =

�

2:0

+1:2

�1:0

�

%; a

CP

(�S = 1) = (�1:0� 0:5)%:

These results are much larger than previous estimates based on a work without summation of
large logarithms. We further show that the dominant contribution toa

CP

(�S = 0) is propor-
tional to sin  � jV

cb

=V

ub

j. The constraints on the apex(�; �) of the unitarity triangle obtained
from these two CP-asymmetries define circles in the(�; �)-plane. We have likewise analyzed the
information on the unitarity triangle obtainable from a measurement of the average non-leptonic
branching ratiosBr(�S = 0), Br(�S = 1) and their sumBr

NL

(B ! no charm). These
CP-conserving quantities define circles centered on the�-axis of the(�; �)-plane. We expect a
determination ofjV

ub

=V

cb

j from Br

NL

(B ! no charm) to be promising. Our results contain
some new QCD corrections enhancingBr(�S = 1), which now exceedsBr(�S = 0) by
roughly a factor of two.
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2 1 INTRODUCTION

1. Introduction

CP-violation is a litmus test for the Standard Model, which parametrizes all CP-violating quan-
tities by a single parameter, the complex phase in the Cabibbo-Kobayashi-Maskawa(CKM) ma-
trix. The related amplitudes are further suppressed due to the smallness of CKM elements and
loop graphs, so that new physics effects may become detectable. CP-violating observables are
commonly expressed in terms of the angles�, � and of the unitarity triangle. Yet we can
determine its shape not only from its angles, but also from the length of its sides,which are ob-
tained from measurements of CP-conserving quantities. This interplay is a special feature of the
CKM mechanism. In order to overconstrain the unitarity triangle one must find sufficiently many
theoretically clean observables. While, for example,� can be extracted without hadronic uncer-
tainties from the mixing-induced CP asymmetry inB

d

! J= K

S

, the angle is notoriously
hard to measure in experiments withB

d

andB� mesons.

Direct CP-violation in exclusiveB�-decays does not help to determine any of the angles be-
cause of the unknown strong phases in the decay amplitudes. On the contrary directinclusive

CP-asymmetries can be cleanly predicted, because quark-hadron duality allows the reliable cal-
culation of strong interaction effects within perturbation theory. Such direct inclusive asymme-
tries have been analyzed in [1–6] and mixing-induced inclusive CP-asymmetriesstudied in [7]
are now investigated by the SLD collaboration [8]. Semi-inclusive directCP-asymmetries have
been studied in [9]. While inclusive final states are experimentally difficult to identify, inclusive
branching ratios are huge compared to exclusive ones. As we will see in the following, inclusive
CP-asymmetries in charmless decays have a promising size, so that it isworthwile to study them
experimentally. Further they can be obtained from branching ratios only and therefore do not
require an asymmetricB-factory.

In this paper we calculate direct inclusive CP-asymmetries in charmlessB�-decays extending
our recent calculation of decay rates in [10]. In [10] the corresponding branching ratios have
been calculated in renormalization group improved perturbation theory including the dominant
contributions of the next-to-leading order. In the following section we set up our notations and
summarize previous work on the subject. In sect. 3 we analyze�S = 0 decays. We discuss
the relation of the CP-asymmetries to the angles of the unitarity triangle andtheir impact on
the determination of the improved Wolfenstein parameters� and�. Here we also investigate the
constraint on(�; �) imposed by a measurement of the average branching ratio ofB andB decays
with �S = 0. In sect. 4 we repeat the procedure for�S = 1 decays. Readers mainly interested
in phenomenology may draw their attention to sect. 5, where we will give numerical predictions
for the newly calculated quantities. In sect. 5 we also predict the total charmless non-leptonic
branching ratio of theB meson and exemplify how the unitarity triangle is constructed from the
branching ratios and CP-asymmetries. Finally we summarize our findings. An appendix contains
details of our analytical results.
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2. Preliminaries

We start our discussion withB decays corresponding to the quark level transitionb ! qqd,
q = u; d; s; c. They are triggered by thej�Bj = 1, j�Sj = 0 hamiltonianH:

H =

G

F

p

2

8

<

:

2

X

j=1

C

j

�

�

�

c

Q

c

j

+ �

�

u

Q

u

j

�

� �

�

t

X

j2P

C

j

Q

j

9

=

;

+ h:c: ; �

q

= V

�

qb

V

qd

: (1)

HereQc;u

1;2

are the familiar current-current operators, which originate from the tree-level W -
exchange inb! ccd andb! uud. FurtherP = f3; : : : 6; 8g, andQ

3�6

andQ
8

are the penguin
operators. More details can be found in [10], where the numerical values for the Wilson coeffi-
cientsC

i

are tabulated. For the following we only have to keep in mind that the coefficientsC
3�6

andC
8

accompanying��
t

are much smaller in magnitude thanC
1

andC
2

.
Now we express the decay rate forb! qqd as

� =

G

2

F

m

5

b

64�

3

�Re

h

j�

u

j

2

�

uu

+ j�

t

j

2

�

tt

+ j�

c

j

2

�

cc

+ �

u

�

�

c

�

uc

+ �

t

�

�

u

�

tu

+ �

t

�

�

c

�

tc

i

: (2)

The coefficients�
ij

encode the various contributions of the different operators in (1). For example
in b! uud the interference of the tree diagram ofQ

u

2

in Fig. 1 with the penguin diagram ofQc

2

with q0 = c in Fig. 2 contributes to�
uc

. The average branching ratio for the decay ofB

� into
some inclusive final stateX reads

Br =

� (B

+

! X) + �

�

B

�

! X

�

2�

tot

: (3)

Similarly we define the CP-asymmetries as

A

CP

=

1

2

h

Br

�

B

+

! X

�

�Br

�

B

�

! X

�i

; a

CP

=

A

CP

Br

: (4)

Of course the average branching ratio in (3) may also be considered forB

d

andB
d

instead of
B

+ andB�. We do not consider small spectator effects in this work, so that all given formulae
for Br likewise apply to the neutralB mesons. We will classify the inclusive final stateX by
its strangeness quantum numberS. Hence if alsoB

s

mesons are included in the consideration of
Br, the strangeness ofX must be corrected for the non-zero strangeness of the spectator quark.
Our strategy is to expressBr and the CP-asymmetries in (4) in terms of the�

ij

’s. The con-
straints for the CKM matrix obtained from measurements ofBr anda

CP

are most conveniently
expressed in terms of the improved Wolfenstein parameters(�; �) [11]. The calculation of(�; �)
fromBr anda

CP

involves certain combinations of the�
ij

’s, for which we will derive compact
approximate formulae. The exact expressions for the�

ij

’s can be found in the appendix.
The three angles of the unitarity triangle are

arg (��

t

�

�

u

) = �; arg (��

c

�

�

t

) = �; arg (��

u

�

�

c

) = : (5)
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b u
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d

Figure 1: Tree diagram ofQu

1;2

.

b d

q
_

q

q’

Figure 2: Penguin diagram involvingQq

0

2

.
It contributes the absorptive part necessary
for a non-zeroa

CP

.

ThenBr andA
CP

are easily found as

Br = F �

1

jV

cb

j

2

�

h

j�

u

j

2

�

uu

+ j�

t

j

2

�

tt

+ j�

c

j

2

�

cc

� j�

u

�

c

j cos  Re�

uc

� j�

t

�

u

j cos�Re�

tu

� j�

t

�

c

j cos �Re�

tc

] (6)

A

CP

= F �

1

jV

cb

j

2

� [� j�

u

�

c

j sin  Im�

uc

� j�

t

�

u

j sin� Im�

tu

+ j�

t

�

c

j sin� Im�

tc

] : (7)

The common factorF reads

F =

B

exp

SL

0:1045

�

h

0:715 + 3:0(x

c

� 0:3) + 11(x

c

� 0:3)

2

i

�

�

1� 0:04 log

�

m

b

�

: (8)

Herex
c

= m

c

=m

b

and� = O(m

b

) is the renormalization scale.F is inverse proportional to the
total decay rate�

tot

, which we calculate via�
tot

= �

SL

=B

SL

from the measured semileptonic
branching ratioB

SL

. The numerical approximation in (8) holds to an accuracy of 1 % in the
range0:25 � x

c

� 0:35 and for variations of the renormalization scale� in the rangem
b

=2 �

� � 2m

b

. The exact expression can be found in the appendix.
From (7) one can nicely verify that one needs two different CKM structures and anon-zero
absorptive partIm�

ij

in order to obtain a non-vanishingA
CP

. It is known for long that the
CPT theorem correlates the CP-asymmetries for different subsets of final statesX in (4) [2, 5].
For exampleA

CP

(�jCj = 2;�S = 0) = �A

CP

(�jCj = 0;�S = 0), where (�jCj = 2,
�S = 0) denotes the decay into the inclusive final state with total strangeness zerocontaining a
c and ac quark, while�jCj = 0 corresponds to a charmless final state. In the following we will
focus on charmless final state and omit “�jCj = 0” in our notation. The non-zero contributions
to A

CP

(�S = 0) come from the absorptive parts of penguin diagrams (see Fig. 2) involving
the annihilation process(c; c) ! (q; q), q = u; d; s. We have illustrated the leadingO(�

s

)

contribution toIm�

uc

, Im�

tc

andIm�

tu

in Figs. 3 and 4. The results of all possible operator
insertions into Figs. 3 and 4 can be expressed in terms of a single functiong(m

q

0

=m

b

; �=m

b

),
e.g.Im�

tc

/ Img(x

c

; �=m

b

) (for details see the appendix and [10]). We will need some special
values:

g(0; 1) = �0:67 � 0:93i; g(x

c

= 0:3; 1) = �0:69� 0:23i; g(1; 1) = 0:28: (9)
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u

b b

c

c-

d

u

u-
Q

2
c Q

2

Figure 3: Diagram constituingIm�

uc

to order�
s

for �S = 0 decays. The right cut marks the
final stateuud. The left cut denotes the absorptive part of the penguin diagram of Fig. 2.

The imaginary part ofg is �-independent. Incidentally we will omit the second argument ofg.
Let us now look at the CP-asymmetry related to a specific quark final state,for definiteness we
consideruud: The contribution from�

uc

depicted in Fig. 3 involvesQc

2

andQu

2

and is therefore
proportional toC2

2

, while �

tc

and�
tu

involve ��
t

and a small penguin coefficientC
3�6

thereby.
Now Im�

uc

/ Im g(x

c

) = �0:23 for x
c

= 0:3. The smallness ofImg(0:3) compared toIm g(0)

in (9) reflects the fact thatImg(x

c

) vanishes forx
c

� 1=2. Yet Gérard and Hou [2] have made the
important observation that this kinematic suppression is absent in the higher order contributions
to �

uc

, so that the result of Fig. 3 receives a correction of order�

s

(m

b

)=� � Img(0)=Im g(x

c

) �

30%. But these unsuppressed terms cancel in the sumA

CP

(uud) +A

CP

(ssd) +A

CP

�

ddd

�

=

A

CP

(�S = 0) = �A

CP

(�jCj = 2;�S = 0), because the latter asymmetry vanishes in the
kinematically forbidden regionx

c

� 1=2 [2,5]. In this work we will only calculate the inclusive
CP asymmetries for charmless�S = 0 and�S = 1 decays and therefore do not need to
include terms of order�2

s

. This, however, is not true for the separate inclusive CP-asymmetries
A

CP

(ssd

0

) andA
CP

�

ddd

0

�

, d0 = d; s, calculated to orderC
2

C

3�6

�

s

in [4]. In addition the
O(�

2

s

)-contributions to these quantities involve the large results of “double penguin” diagrams
proportional toC2

2

corresponding to the square of the diagram in Fig. 2.
Still there is an important difference between our calculations and those in [2]: We use the ef-
fective hamiltonian of (1), while Gérard and Hou perform their calculation in the full theory and
thereby invoke large logarithms, which are summed to all orders in our approach. These large
logarithms lead to an apparently large contribution of order�

2

s

in [2], which had been found to
cancel the leading contribution of order�

s

numerically, so that the authors of [2] have claimed
the total inclusive asymmetries to be vanishingly small, of order of a few permille. As we will
see in the following, the correct summation of the large logarithms leads to a different result:The

inclusive CP-asymmetries a
CP

(�S = 0) and a
CP

(�S = 1) are sizeable, of the order of two and

one percent, respectively.

CP-asymmetries with resummed large logarithms have also been calculated in [6], but for the
case of a lightm

t

' 15 GeV. In [6] therefore no penguin operatorsQ
3�6

andQ
8

appear. The
actual numerical results form

t

' 170 GeV are substantially different. In [6] also the observation
has been made that corrections of order�

2

s

are small fora
CP

(�S = 0) anda
CP

(�S = 1).
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3

b b

q’

q’-

d

q

q-
Q

2
q’

Q
4,6

b b

q’

q’-

d

d

d-
Q

2
q’ Q

Figure 4: The diagrams show the contributions toIm�

tc

andIm�

tu

to order�
s

. Im�

tc

corre-
sponds toq0 = c with the right cut denoting the final state withq = u; d or s. LikewiseIm�

tu

is obtained forq0 = u, but now also the left cut marks a possible charmless final state. Then the
right cut denotes the absorptive part of a penguin diagram with internal quarksq = u; d; s or
c. The contributions of this figure are suppressed with respect to those of Fig. 3, because they
involve a small penguin coefficientC

3�6

.

3. �S = 0 decays

We first look at the dominant contributions toBr anda
CP

: Keeping only the lowest nonvanishing
order in�

s

and neglecting the contributions of the small penguin coefficients one finds

Br (�S = 0) = F jV

ud

j

2

�

�

�

�

V

ub

V

cb

�

�

�

�

2

; a

CP

(�S = 0) = �Im�

uc

�

�

�

�

V

cd

V

ud

�

�

�

�

�

�

�

�

V

cb

V

ub

�

�

�

�

sin : (10)

Hence fromBr one can determinejV
ub

=V

cb

j, becauseF andV
ud

are well-known. Likewisea
CP

measures the product ofsin  andjV
cb

=V

ub

j. The corrections to (10) stemming from the penguin
coefficients and higher order corrections toBr are reliably calculable and small. The best way to
exploit (10) and to include these corrections is the use of the improved Wolfensteinparameters
A, �, � and� [11]. ThenBr of (6) reads

Br (�S = 0) = L

B

h

(�� �

0

)

2

+ �

2

�K

i

: (11)
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Here

L

B

= F �

2

[�

tt

+ �

uu

� Re�

tu

] (12a)

�

0

=

2�

tt

+Re [�

uc

� �

tc

� �

tu

]

2 [�

tt

+ �

uu

�Re �

tu

]

(12b)

K =

1

4 [�

tt

+ �

uu

�Re�

tu

]

2

�

h

�4�

uu

�

tt

+ 4�

uu

Re�

tc

+ [Re�

uc

]

2

� 2Re�

uc

Re�

tu

� 4�

cc

�

uu

+ 4�

cc

Re�

tu

+ [Re�

tu

]

2

� 2Re�

tu

Re�

tc

�4�

tt

�

cc

+ 4�

tt

Re�

uc

+ [Re�

tc

]

2

� 2Re�

tc

Re�

uc

i

: (12c)

We stress here that our notation ofBr(�S = 0) only comprises non-leptonic decays, but not the
semileptonic decayB ! X

u

`�

`

, which is measured in a different way. In addition to the quark
final statesuud, ssd andddd we have also included the decayb ! d g, which gives a small
contribution of order 3% toBr(�S = 0), but has a non-negligible impact onK and�

0

. Notice
that the Wolfenstein parameterA drops out in (12). The corrections to the formulae in (12) are of
order�6 and therefore negligible. From (11) one sees that the measurement of the CP-conserving
quantityBr defines a circle in the(�; �)-plane centered at(�

0

; 0) with radiusR
B

, where

R

2

B

=

Br (�S = 0)

L

B

+K: (13)

The center(�
0

; 0) andK are independent of the measuredBr, they vanish in the limit considered
in (10). For the constraint from the CP asymmetry we likewise define

L

a

=

Im [�

tc

� �

tu

� �

uc

]

�

tt

+ �

uu

�Re�

tu

: (14)

Then

A

CP

(�S = 0) = L

a

L

B

�; a

CP

(�S = 0) = L

a

�

(�� �

0

)

2

+ �

2

�K

: (15)

Again the corrections to (15) are suppressed with four powers of� and therefore negligible. Now
(15) reveals that a measurement ofa

CP

likewise fixes a circle in the(�; �)-plane. This new circle
is centered at(�

0

; �

0

) and its radius equalsR
a

with

�

0

=

L

a

2a

CP

(�S = 0)

; R

2

a

= �

2

0

+K: (16)

Again in the approximation withK = �

0

= 0 adopted in (10) the circle defined by (15) is cen-
tered exactly on the�-axis. Its radius equals�

0

, so that it passes through the origin. In (10)sin 

comes withjV
cb

=V

ub

j, which is inverse proportional to
q

�

2

+ �

2. The geometrical construction
of  from a

CP

corresponding to (10) is therefore done by intersecting the circle in (15) with the
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one centered at(0; 0) stemming from any measurement ofjV
ub

=V

cb

j. Of course any other infor-
mation on the apex(�; �) of the unitarity triangle can be included in the usual way, and ideally
the hyperbola from�

K

[12, 13], the circle from�m
B

[13] and the new circles in (11) and (15)
intersect in the same point(�; �) — or we may find new physics.
We close this section by giving compact approximate expressions for the quantities in(12) and
(14), which enter the circles defined by (12b), (13) and (16):

L

B

=

�

0:0362 + 0:151 (x

c

� 0:3) + 0:58 (x

c

� 0:3)

2

�

�

�

1� 0:12 ln

�

m

b

+ 0:02 ln

2

�

m

b

�

uncertainty:0:80%

L

a

=

�

0:00734 � 0:0905 (x

c

� 0:3) + 0:220 (x

c

� 0:3)

2

�

�

�

1� 0:22 ln

�

m

b

+ 0:08 ln

2

�

m

b

�

uncertainty:3:6%

K =

�

� 0:0133 + 0:0219 (x

c

� 0:3) + 0:032 (x

c

� 0:3)

2

�

�

�

1� 0:44 ln

�

m

b

+ 0:16 ln

2

�

m

b

�

uncertainty:3:3%

�

0

=

�

� 0:0254 + 0:034 (x

c

� 0:3) + 0:12 (x

c

� 0:3)

2

�

�

�

1 + 0:03 ln

2

�

m

b

�

uncertainty:1:8%

(17)

In the last column we have listed the error of our approximate formulae compared to the exact
expressions for the range0:25 � x

c

� 0:35 and0:5 � �=m

b

� 2:0. Further�
s

(M

Z

) = 0:118 and
L

B

is calculated withB
SL

= 0:1045. The�-dependence in (17) results from the truncation of the
perturbation series and is small inL

B

, for which the dominant next-to-leading order corrections
are known. A future calculation of the fullO(�

s

) corrections toBr and theO(�2
s

) corrections to
A

CP

will change the numbers in the first brackets in (17) by a term of order�

s

(m

b

)=� and will
reduce the size of the coefficients ofln(�=m

b

) andln2(�=m
b

).

4. �S = 1 decays

To obtain thej�Sj = 1 hamiltonian from (1) we must simply replace�
q

by �(s)
q

= V

�

qb

V

qs

. Instead
of (5) we invoke the CKM angles

arg

�

��

(s)

t

�

(s)�

u

�

= �� = �

�

 � �

2

�

�

+O

�

�

4

�

;

arg

�

��

(s)

c

�

(s)�

t

�

= �" = ��

2

�

�

1 + �

2

(1 � �)

�

+O

�

�

6

�

;

arg

�

��

(s)

u

�

(s)�

c

�

=  � � +O

�

�

4

�

:

Hence the corresponding unitarity triangle with angles�� , � and" is squashed. In the limit of
vanishing penguin coefficients one has

A

CP

(�S = 1) / jV

ub

V

cb

j sin :
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Yet an approximate formula fora
CP

(�S = 1) similar to (10) cannot be found, because the
tree-level contribution toBr (�S = 1) is CKM suppressed and the different�

ij

’s are equally
important. An analogue of (10) would involve more than one CKM angle.
Next we expressBr, A

CP

anda
CP

as in (11) and (15):

Br (�S = 1) = L

0

B

h

(�� �

0

0

)

2

+ �

2

�K

0

i

; (18)

A

CP

(�S = 1) = L

0

a

L

0

B

�; a

CP

(�S = 1) = L

0

a

�

(�� �

0

0

)

2

+ �

2

�K

0

: (19)

The primed coefficients read

L

0

B

= F �

4

�

1 + �

2

�

(�

uu

+ �

tt

�Re�

tu

) ;

�

0

0

=

�2�

tt

+Re (�

tu

+ �

tc

� �

uc

)

2�

2

(1 + �

2

) (�

uu

+ �

tt

� Re�

tu

)

;

L

0

a

=

Im (�

uc

+ �

tu

� �

tc

)

�

2

(1 + �

2

) (�

uu

+ �

tt

� Re�

tu

)

;

K

0

=

� (1 � �

2

) (�

cc

+ �

tt

� Re�

tc

)

�

4

(1 + �

2

) (�

uu

+ �

tt

� Re�

tu

)

+

[�2�

tt

+Re (�

tu

+ �

tc

� �

uc

)]

2

4�

4

(1 + �

2

)

2

(�

uu

+ �

tt

� Re�

tu

)

2

: (20)

In L0
B

, �0
0

andK 0 we have kept corrections of order�2 and omitted corrections of order�4 and
higher in accordance with the adopted improved Wolfenstein approximation [11]. Thepowers
of � in the denominators of�0

0

andK 0 are partially numerically compensated by the smallness
of the penguin coefficients entering the�

ij

’s in the numerators. The corresponding approximate
formulae read

L

0

B

=

�

0:00185 + 0:0077 (x

c

� 0:3) + 0:03 (x

c

� 0:3)

2

�

�

�

1� 0:12 ln

�

m

b

+ 0:02 ln

2

�

m

b

�

uncertainty:1:0%

L

0

a

=

�

� 0:144 + 1:77 (x

c

� 0:3) � 4 (x

c

� 0:3)

2

�

�

�

1� 0:22 ln

�

m

b

+ 0:08 ln

2

�

m

b

�

uncertainty:4:3%

K

0

=

�

� 5:08 + 8:4 (x

c

� 0:3) + 12 (x

c

� 0:3)

2

�

�

�

1� 0:44 ln

�

m

b

+ 0:16 ln

2

�

m

b

�

uncertainty:2:9%

�

0

0

=

�

0:498 � 0:67 (x

c

� 0:3) � 2:4 (x

c

� 0:3)

2

�

�

�

1 + 0:03 ln

2

�

m

b

�

uncertainty:1:8%

(21)

Here we emphasize that in (21) we have not only included the final states with quarkcontents
uus, dds andsss, but also the decayb ! s g, which gives a non-negligible contribution to
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Br(�S = 1) in (18). Further we had to include the contributions to the decay rate stemming
from the square of the penguin diagram in Fig. 2. These contributions are of order�

2

s

, but are
proportional toC2

2

and the fourth power of�. They belong to�
cc

in (2) and amount to 13 %
of Br(�S = 1). The large contributions of penguin operators and penguin diagrams imply
thatBr(�S = 1) is quite insensitive to� and�. This is reflected by the large value ofK 0 in
(21). ConsequentlyBr(�S = 1) becomes only a useful observable to constrain(�; �) once its
experimental accuracy is better than 10 %.
The geometrical constructions of the circles obtained fromBr(�S = 1) anda

CP

(�S = 1) is
done in a completely analogous way to sect. 3. One merely has to replace the unprimed quantities
in (13) and (16) by the primed ones of (21) to obtain the�S = 1 parametersR0

B

, �0
0

andR0

a

.
Since the denominator ofa

CP

(�S = 1) in (15) depends very weakly on� and�, a
CP

(�S = 1)

is almost proportional to� and both radiusR0

a

and offset�0
0

of the corresponding circle are very
large. This is very different from the situation in�S = 0 decays.
Finally we mention that

A

CP

(�S = 1) = �A

CP

(�S = 0) (22)

for m
s

= 0. This is a consequence of the CKM mechanism of CP violation. The relation in (22)
receives corrections by terms of orderm2

s

=m

2

b

andm
s

=m

b

� �

s

(m

b

)=�. A larger deviation from
(22) would be an experimental sign of non-standard CP-violation outside the quark mass matrix.

5. Phenomenology

In this section we give numerical predictions for the branching ratios and CP asymmetries and ex-
emplify, how the apex(�; �) is constructed from future measurements ofBr

NL

(B ! no charm),
a

CP

(�S = 0) anda
CP

(�S = 1).
First we expressBr

NL

(B ! no charm) analogously to (11) and (18):

Br

NL

(B ! no charm) = Br (�S = 0) +Br (�S = 1) =

e

L

B

�

�

2

+ �

2

�

f

K

�

: (23)

There is no dependence on here, i.e.e�
0

= 0, for the same reason as (22). It is easy to relatee

L

B

andfK toL
B

, L0
B

,K andK 0. The approximate formulae read

e

L

B

=

�

0:0380 + 0:158 (x

c

� 0:3) + 0:6 (x

c

� 0:3)

2

�

�

�

1� 0:12 ln

�

m

b

+ 0:02 ln

2

�

m

b

�

uncertainty:0:80%

f

K =

�

� 0:272 + 0:46 (x

c

� 0:3) + 0:7 (x

c

� 0:3)

2

�

�

�

1� 0:42 ln

�

m

b

+ 0:15 ln

2

�

m

b

�

uncertainty:2:7%:

(24)

As usual the last column lists the error of the approximate formulae for the range0:25 � x

c

�

0:35 and0:5 � �=m

b

� 2:0 with �
s

(M

Z

) = 0:118 andB
SL

= 0:1045.
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V
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�

= 0:06

�

�

�

�

V

ub

V

cb

�

�

�

�

= 0:07

�

�

�

�

V

ub

V

cb

�

�

�

�

= 0:08

�

�

�

�

V

ub

V

cb

�

�

�

�

= 0:09

�

�

�

�

V

ub

V

cb

�

�

�

�

= 0:10

0.0127+0:0057
�0:0034

0.0136+0:0058
�0:0035

0.0147+0:0060
�0:0036

0.0159+0:0062
�0:0038

0.0172+0:0064
�0:0040

Table 1: The total nonleptonic charmless branching ratioBr

NL

(B ! no charm) as a function of
jV

ub

=V

cb

j. It is independent of.

5.1. Numerical predicitions

Next we predict the average branching ratios and the CP asymmetries as a function of jV
ub

=V

cb

j

and. For this we recall the relation of these quantities to the improved Wolfenstein parameters
(�; �) [11]:

�

�

�

�

V

ub

V

cb

�

�

�

�

=

 

1 +

�

2

2

!

�

q

�

2

+ �

2

; tan  =

�

�

: (25)

The predictions for the branching ratios can be found in Tabs. 1, 2 and 3. Thena

CP

is tabulated
in Tabs. 4 and 5. The range of in the tables is the one favoured by the standard next-to-leading
order [12,13] analysis of the unitarity triangle from�

K

and�m
B

. The central values in the tables
correspond to the following set of input parameters:

x

c

= 0:29; � = m

b

= 4:8 GeV;

�

s

(M

Z

) = 0:118; m

t

(m

t

) = 168 GeV; B

exp

SL

= 0:1045: (26)

Herem
b

is the one-loop pole mass. The errors in the tables correspond to a variation ofx

c

=

m

c

=m

b

and the renormalization scale� within the range

0:25 � x

c

� 0:33; 0:5 � �=m

b

� 2:0:

The corresponding error bars are added in quadrature. The experimental uncertainty in �
s

has a
smaller impact on the listed quantities, the errors of the remaining input quantities in (26) have a
negligible influence.
From a comparison of Tab. 3 with Tab. 2 one realizes that charmless non-leptonic B–decays
occur preferably with�S = 1, with Br (�S = 1) exceedingBr (�S = 0) by roughly a factor
of two:

Br (�S = 0)

Br (�S = 1)

= 0:50 � 0:12 for
jV

ub

j

jV

cb

j

= 0:08:

Most of the dependence onx
c

stems from the normalization factorF and cancels in ratios of
differentBr’s. The�-dependence ofBr (�S = 1) is much larger than the one ofBr (�S = 0)

leading to larger error bars in Tab. 2. This comes from the penguin dominance ofBr (�S = 1)

and the fact that current-current type radiative corrections to penguin operatorshave not been
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�

�

�

�

V
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�
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�

�

= 0:06

�
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�

V
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V

cb

�

�

�

�

= 0:07

�

�

�

�

V

ub

V

cb

�

�

�

�

= 0:08

�

�

�

�

V

ub

V

cb

�

�

�

�

= 0:09

�

�

�

�

V

ub

V

cb

�

�

�

�

= 0:10

 = 60

� 0.0032+0:0007
�0:0005

0.0041+0:0009
�0:0007

0.0052+0:0011
�0:0008

0.0064+0:0014
�0:0010

0.0077+0:0017
�0:0012

 = 75

� 0.0031+0:0007
�0:0005

0.0040+0:0009
�0:0007

0.0050+0:0011
�0:0008

0.0062+0:0014
�0:0010

0.0075+0:0016
�0:0012

 = 90

� 0.0029+0:0007
�0:0005

0.0038+0:0009
�0:0006

0.0048+0:0011
�0:0008

0.0060+0:0013
�0:0010

0.0073+0:0016
�0:0012

 = 105

� 0.0028+0:0007
�0:0005

0.0037+0:0009
�0:0006

0.0047+0:0011
�0:0008

0.0058+0:0013
�0:0010

0.0071+0:0016
�0:0012

 = 120

� 0.0027+0:0007
�0:0005

0.0035+0:0008
�0:0006

0.0045+0:0010
�0:0008

0.0056+0:0013
�0:0009

0.0069+0:0015
�0:0011

Table 2: The average inclusive branching ratio into nonleptonic final states withzero strangeness,
Br (�S = 0), as a function ofjV

ub

=V

cb

j and.

calculated yet. The newly calculated contributions enhanceBr (�S = 1) explaining the increase
of Br

NL

(B ! no charm) in Tab. 1 compared to the result in [10]. In order to obtain the total
charmless branching ratioBr(B ! no charm) one must add twice the charmless semileptonic
branching ratioBr(B ! X

u

`�

`

), for ` = e and` = � [14]:

Br (B ! X

u

`�

`

) =

�

0:0012

+0:0002

�0:0002

�

�

 

jV

ub

=V

cb

j

0:08

!

2

:

Hence for the input of (26) one finds from Tab. 1:

Br(B ! no charm) = 0:0097

+0:0051

�0:0030

+

�

0:0073

+0:0012

�0:0009

�

 

jV

ub

=V

cb

j

0:08

!

2

:

The present experimental result for the total charmless branching ratio reads

Br

exp

(B ! no charm) = 0:002 � 0:041;

obtained in [15] from CLEO data [16].
We conclude that the measurement ofBr (�S = 0) provides a competitive method to deter-
mine jV

ub

=V

cb

j compared to the standard analysis from semileptonic decays. Once a complete
next-to-leading order calculation is done for the�S = 1 decays, the error bars in Tab. 1 will
reduce significantly andBr

NL

(B ! no charm) will likewise become a promising observable to
measurejV

ub

=V

cb

j.
The most important results of our calculations, however, are those listed in Tab. 4 and Tab. 5.
Adding the errors stemming from the uncertainties injV

ub

=V

cb

j and in quadrature to the ones
already included in the tables, we predict:

a

CP

(�S = 0) =

�

2:0

+1:2

�1:0

�

%; a

CP

(�S = 1) = (�1:0� 0:5)%: (27)
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�

�

�

�

= 0:09

�

�

�

�

V

ub

V

cb

�

�

�

�

= 0:10

 = 60

� 0.0095+0:0051
�0:0029

0.0095+0:0051
�0:0029

0.0095+0:0051
�0:0029

0.0095+0:0051
�0:0029

0.0096+0:0051
�0:0029

 = 75

� 0.0096+0:0051
�0:0029

0.0096+0:0051
�0:0029

0.0097+0:0051
�0:0029

0.0097+0:0051
�0:0030

0.0097+0:0051
�0:0030

 = 90

� 0.0097+0:0051
�0:0030

0.0098+0:0051
�0:0030

0.0098+0:0051
�0:0030

0.0099+0:0051
�0:0030

0.0099+0:0051
�0:0030

 = 105

� 0.0098+0:0051
�0:0030

0.0099+0:0051
�0:0030

0.0100+0:0051
�0:0030

0.0101+0:0052
�0:0030

0.0102+0:0052
�0:0030

 = 120

� 0.0100+0:0051
�0:0030

0.0100+0:0052
�0:0030

0.0101+0:0052
�0:0030

0.0102+0:0052
�0:0030

0.0103+0:0052
�0:0030

Table 3: The average inclusive branching ratio into nonleptonic final states withstrangeness one,
Br (�S = 1), as a function ofjV

ub

=V

cb

j and.

These results have to be contrasted with those of Table 1 in [2], where predictions for thea
CP

’s
are given, which are five times smaller than those in (27). This discrepancyis partly due to the fact
that we sum large logs to all orders whereas this has not been done in [2]. It is further related to
the use of an extremely smallj sin  �V

cb

=V

ub

j in [2]. The reduction of the�-dependence in Tab. 4
and Tab. 5 requires the calculation ofIm� to order�2

s

. The corresponding diagrams are obtained
by dressing Fig. 3 and Fig. 4 with an extra gluon. A part of this calculation has beenperformed
in [3]. In a perfect experiment the detection ofa

CP

(�S = 0) = 2% withBr (�S = 0) = 5�10

�3

at the3� level requires the production of4:5 � 106 B� mesons. This should be worth looking at
by our experimental colleagues. Finally we remark that our results satisfy

a

CP

(�S = 1) �Br (�S = 1) = �a

CP

(�S = 0) �Br (�S = 0) :

as required by (22).

5.2. Construction of (�; �)

In this section we exemplify how the circles in the(�; �)-plane will be constructed from a fu-
ture measurement ofBr

NL

(B ! no charm), Br (�S = 0), Br (�S = 1), a
CP

(�S = 0) and
a

CP

(�S = 1).
We first show this construction for the CP-conserving quantities. We assume thatthe three charm-
less non-leptonic branching ratios are measured as

Br

NL

(B ! no charm) = 1:47%;

Br (�S = 0) = 0:50%; Br (�S = 1) = 0:97%:

For illustration we assume an experimental error of5% in all quantities and neglect the present
theoretical uncertainty here by setting� = m

b

andx
c

= 0:29. The three circles are defined by
(11), (18) and (23). To draw the circles we must only read off the coefficients from(17), (21)
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 = 60

� 0.021+0:010

�0:009

0.019+0:009

�0:008

0.017+0:009

�0:007

0.016+0:008

�0:007

0.014+0:007

�0:006

 = 75

� 0.024+0:012

�0:010

0.022+0:011

�0:009

0.020+0:010

�0:008

0.018+0:009

�0:008

0.016+0:008

�0:007

 = 90

� 0.026+0:013

�0:011

0.023+0:012

�0:010

0.021+0:011

�0:009

0.019+0:010

�0:008

0.017+0:009

�0:007

 = 105

� 0.026+0:013

�0:011

0.023+0:012

�0:010

0.021+0:011

�0:009

0.019+0:010

�0:008

0.017+0:009

�0:007

 = 120

� 0.024+0:012

�0:010

0.022+0:011

�0:009

0.019+0:010

�0:008

0.018+0:009

�0:007

0.016+0:008

�0:007

Table 4: The inclusive indirect CP-asymmetry for charmless final states with zero strangeness,
a

CP

(�S = 0).

or (24) and calculate the radiiR
B

, R0

B

and eR
B

from (13). The results are shown in Fig. 5. The
figure reveals thatBr (�S = 0) is a very good observable for the phenomenology of the unitarity
triangle. This remains true even if the actual theoretical uncertainty of20% is included. By
contrastBr (�S = 1) is not very sensitive to(�; �) and thereby yields a much poorer information
on the unitarity triangle. Still the center(�

0

; 0) of the circle largely deviates from the origin, so
that upper or lower bounds onBr (�S = 1) could help to exclude a part of the(�; �)-plane
allowed by other observables. Also Fig. 5 shows thatBr

NL

(B ! no charm) is a very useful

observable to determine
q

�

2

+ �

2, once the large�-dependence of the entries in Tab. 1 is reduced
by a complete next-to-leading order calculation of the�S = 1 decay rates.

The circles from the CP-asymmetries are likewise obtained from (16). Here the measured value
of a

CP

enters the�-coordinate�
0

or �0
0

of the center of the circle and its radiusR
a

orR0

a

. For the
CP-asymmetries we assume an experimental precision of20% and

a

CP

(�S = 0) = 2:0%; a

CP

(�S = 1) = �1:0%:

The results are displayed in Fig. 6. If one switches off the effects of penguin operators, the circle
froma

CP

(�S = 0) touches the�–axis in the point(0; 0). The distance of the points on the circle

to the origin is therefore proportional tosin , so thata
CP

(�S = 0) measuressin =
q

�

2

+ �

2

in this limit as found in (10). The circle froma
CP

(�S = 1), however, looks totally different:�
0

andR0

a

are so large that only a small fraction of the circle can be seen in Fig. 6.a

CP

(�S = 1)

weakly depends on� and yields good information on�. Hence from Fig. 6 we learn that inclusive
CP-asymmetries yield interesting information on the unitarity triangle,which is complementary
to the one obtained from other observables in theB system. Alternatively one can multiplya

CP

with the measuredBr and obtainA
CP

of (4), which defines a horizontal straight line in the
(�; �)-plane (see (15) and (19)).
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 = 60

� -0.007+0:003

�0:003

-0.008+0:003

�0:004

-0.009+0:004

�0:004

-0.010+0:004

�0:005

-0.012+0:005

�0:005

 = 75

� -0.008+0:003

�0:003

-0.009+0:004

�0:004

-0.010+0:004

�0:004

-0.011+0:004

�0:005

-0.013+0:005

�0:005

 = 90

� -0.008+0:003

�0:003

-0.009+0:004

�0:004

-0.010+0:004

�0:004

-0.012+0:005

�0:005

-0.013+0:005

�0:006

 = 105

� -0.007+0:003

�0:003

-0.009+0:003

�0:004

-0.010+0:004

�0:004

-0.011+0:004

�0:005

-0.012+0:005

�0:005

 = 120

� -0.007+0:003

�0:003

-0.008+0:003

�0:003

-0.009+0:003

�0:004

-0.010+0:004

�0:004

-0.011+0:004

�0:005

Table 5: The inclusive indirect CP-asymmetry for charmless final states with strangeness one,
a

CP

(�S = 1).

6. Ten messages from this work

1) Inclusive direct CP-asymmetries in charmlessB

�–decays are larger than previously be-
lieved:

a

CP

(�S = 0) =

�

2:0

+1:2

�1:0

�

%; a

CP

(�S = 1) = (�1:0� 0:5)%:

2) The dominant contribution toa
CP

(�S = 0) satisfies

a

CP

(�S = 0) /

sin 

jV

ub

=V

cb

j

(28)

with small and calculable corrections.

3) The constraints on the apex(�; �) of the unitarity triangle obtained from a measurement
of a

CP

(�S = 0) anda
CP

(�S = 1) are circles in the(�; �)-plane. These constraints are
complementary to the information from other observables inK andB physics.

4) Inclusive direct CP-asymmetries are theoretically clean: The uncertainties can be con-
trolled and systematically reduced by higher order calculations.

5) The CP-conserving observablesBr (�S = 0), Br (�S = 1) andBr
NL

(B ! no charm)

define circles in the(�; �)-plane centered on the�-axis.

6) Br (�S = 0) is well suited to determinejV
ub

=V

cb

j, with little sensitivity to.

7) “Double penguin” contributions, which are part of the next-to-next-to-leading order, en-
hanceBr (�S = 1) by 13%.
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Figure 5: The black annulus shows the region allowed by a measurement ofBr (�S = 0). The
dark shading corresponds toBr

NL

(B ! no charm) and the lightly shaded area shows the con-
straint on(�; �) obtained fromBr (�S = 1).

8) The present incomplete next-to-leading order (NLO) result imposes a large�-dependence
on Br (�S = 1). Here a calculation of all NLO corrections to penguin operator matrix
elements is necessary.

9) Br (�S = 1) exceedsBr (�S = 0) by roughly a factor of two.

10) The determination ofjV
ub

=V

cb

j fromBr

NL

(B ! no charm) is competitive to the standard
method from semileptonic decays, once the NLO calculation mentioned in 8) has been
done.
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Figure 6: The lightly shaded area shows the constraint stemming froma

CP

(�S = 0) and the
dark shading marks the area allowed froma

CP

(�S = 1).

Acknowledgements

A.L. appreciates many stimulating discussions with Iris Abt. U.N. thanksAndrzej Buras for his
hospitality at the TUM, where part of this work has been done. We thank him and Ahmed Ali for
proofreading the manuscript.

A. Exact formulae

Here we show how the quantities entering sect. 3 and sect. 4 are related to the results of [10].
These expression are useful for readers who are not satisfied with the approximate formulae
for F , L

B

, L
a

, etc. They are also helpful, if one wants to calculate the branching ratios and
CP-asymmetries in extensions of the Standard Model. Then one needs to change the Wilson
coefficients entering the�

ij

’s accordingly.



18 A EXACT FORMULAE

NowF [14] reads

F =

G

2

F

m

5

b

jV

cb

j

2

64�

3

�

tot

 

1 +

�

1

2m

2

b

!

=

G

2

F

m

5

b

jV

cb

j

2

64�

3

�

B

exp

SL

�

SL

 

1 +

�

1

2m

2

b

!

=

3B

exp

SL

f

1

(x

2

c

) [1 + �

s

(�)=(2�)h

SL

(x

c

)]� 6 (1 � x

2

c

)

4

�

2

=m

2

b

(29)

in terms of the notation of [10]. Here we have used the common trick to evaluate�

tot

= �

SL

=B

SL

via the semileptonic rate and the experimental value of the semileptonic branchingratioB
SL

.
This eliminates various uncertainties associated with the theoreticalprediction for�

tot

. The non-
perturbative corrections involving the kinetic energy parameter�

1

has been factored out in (29),
because�

1

cancels inBr andA
CP

.
Likewise for the decay rates corresponding to the quark level transitionb! qqd

0, q = u; d; s and
d

0

= d; s, one has

�

uu

= t

2

X

i;j=1

C

i

C

j

"

b

ij

 

1� 6

�

2

m

2

b

!

+ �b

ij

+

�

s

4�

2Re [h

ij

+ g

ij

(0)]

#

�

uc

= t

�

s

2�

C

2

2

g

22

(x

c

)

�

tu

= �2

X

i=1;2

j=3;:::6

C

i

C

j

"

t b

ij

 

1� 6

�

2

m

2

b

!

+ t �b

ij

+

�

s

4�

�

g

ij

(0) + tg

�

ji

(x

c

)

�

#

� C

8

C

2

�

s

2�

b

28

t

�

tc

= �2

X

i=1;2

j=3;:::6

C

i

C

j

�

s

4�

g

ij

(x

c

)

�

tt

=

X

i;j=3;:::6

C

i

C

j

"

b

ij

 

1 � 6

�

2

m

2

b

!

+ �b

ij

#

+

�

s

2�

C

8

X

j=3;:::6

C

j

b

j8

�

cc

=

�

�

s

4�

�

2

C

2

2

k

22

�

x

c

; x

c

;

�

m

b

�

: (30)

Heret = 1 for b ! uud

0, while t = 0 for b ! ssd

0 andb ! ddd

0. TheC
j

’s, �
s

and the loop
functionsh

ij

; g

ij

in (30) are understood to be evaluated at the scale� = O(m

b

). The�
ij

’s depend
sizeably on� andx

c

as indicated in the approximate formulae in sect. 3. Further they depend
onm

t

andM
W

, this dependence, however, is marginally small.g

22

(x

c

) = g(x

c

; �=m

b

) is the
fundamental penguin functions entering allg

ij

’s. For this work we have newly calculated

g

42

�

x

c

;

�

m

b

�

= g

62

�

x

c

;

�

m

b

�

= n

f

g

�

0;

�

m

b

�

+ g

�

x

c

;

�

m

b

�

+ g

�

1;

�

m

b

�

; n

f

= 3;

g

32

�

x;

�

m

b

�

= g

�

0;

�

m

b

�

+ g

�

1;

�

m

b

�

; g

52

�

x;

�

m

b

�

= 0;

g

�

1;

�

m

b

�

= �

16

27

ln

�

m

b

+

98

8

�

8

p

3

� +

32

81

�

2

: (31)

These quantities correspond to the diagrams of Fig. 4 withq

0

= u, q = u; d; s; c; b and the left cut
marking the final stateuud. For the remainingg

ij

’s we refer to [10], where also analytic formulae
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for g(x; �=m
b

) and theb
ij

’s andh
ij

’s [17] can be found. In (30) the leading nonperturbative
corrections are also included, the�b

ij

’s [18] depend on�
2

= 0:12 GeV2. The values in (31)
correspond to the NDR scheme, the vanishing ofg

52

involves in addition the standard finite
renormalization ofQ

5

introduced in [19] and related to the definition of the “effective” coefficient
C

8

.
Another new result is�

cc

in (30). We have calculated the “double penguin” contribution stem-
ming from the square of Fig. 2 withq0 = c. Although being of order�2

s

this term is numerically
relevant in�S = 1 decays, because it is proportional toC2

2

and the tree-level result is CKM
suppressed. We have also included�

cc

in the�S = 0 coefficients of (17). Approximately one
finds

k

22

(x

c

; x

c

; x

�

) =

�

1 �

r

6

�

h

1:52 � 11:5 (x

c

� 0:3) + 7 (x

c

� 0:3)

2

+

�

1:84� 5:6 (x

c

� 0:3)� 19 (x

c

� 0:3)

2

�

lnx

�

+ 0:79 ln

2

x

�

i

: (32)

with r = 0 for the quark final statesuud, uus, ssd, dds, andr = 1 for ddd andsss. The result
in (32) receives corrections of order(x

c

� 0:3)

3 and reproducesk
22

with an error of 2.6 % for
0:25 � x

c

� 0:35 and0:5 � �=m

b

� 2:0.
Our results forBr (�S = 0) andBr (�S = 1) also include the decay rates forb ! s g and
b! d g. Here to order�

s

all �
ij

’s are zero except for

�

tt

(b! s g) = �

tt

(b! d g) =

8

3

�

s

(�)

�

C

2

8

:

The approximate formulae in (17), (21) and (24) further correspond to�

s

(M

Z

) = 0:118 cor-
responding to�

s

(� = 4:8GeV) = 0:216. The dependence on�
s

(M

Z

) is non-negligible, but
smaller than the�-dependence.
When calculatingA

CP

for the inclusive�S = 0 or �S = 1 final state, we must add the�
ij

’s
for b ! uud

0, b ! ssd

0 and b ! ddd

0. Im�

tu

containsImg(0), which, however, cancels
when summingIm�

tu

for the three decay modesb ! uud

0, b ! ssd

0 andb ! ddd

0, so that
A

CP

(�S = 0) andA
CP

(�S = 1) vanish forx
c

� 1=2 as required by the CPT theorem. The
cancellation takes place when summing the contributions of different cuts of the diagrams in
Fig. 4 as found in [2].
One comment is in order here: The terms of order�

s

in (30) depend on the renormalization
scheme. This originates from the fact that when renormalizingH in (1) one already uses the
unitarity relation�

u

+ �

c

+ �

t

= 0. After using this relation to eliminate, say,�
c

in (2) one
finds the coefficients ofj�

u

j

2, j�
t

j

2 and�
t

�

�

u

scheme independent. Consequently by changing the
scheme one can shift terms inA

CP

in (7) from e.g. the term proportional tosin  to the one
multiplying sin�. This scheme ambiguity, however, is suppressed by a factor ofC

3�6

=C

1;2

with
respect to the dominant contribution toa

CP

. The constraints on(�; �) derived fromBr anda
CP

are scheme independent, of course.

References

[1] M. Bander, D. Silverman and A. Soni, Phys. Rev. Lett. 43 (1979) 242.



20 REFERENCES

[2] J.-M. Gérard and W.-S. Hou, Phys. Rev. D43 (1991) 2909.

[3] H. Simma, G. Eilam and D. Wyler, Nucl. Phys. B352 (1991) 367.

[4] R. Fleischer, Z. Phys. C 58 (1993) 483.

[5] L. Wolfenstein, preprint no. NSF-ITP-90-29 (unpublished), and Phys. Rev. D43 (1991) 151.

[6] Yu. Dokshitser and N. Uraltsev, JETP. Lett. 52 (1990) 509.
N. Uraltsev, hep-ph/9212233.

[7] M. Beneke, G. Buchalla and I. Dunietz, Phys. Lett. B393 (1997) 132.

[8] M. Daoudi for theSLD Collaboration (K. Abe et al.), hep-ex/9712031, talk atInternational

Europhysics Conference on High-Energy Physics (HEP 97), 19-26 Aug 1997, Jerusalem.

[9] T.E. Browder, A. Datta, X.-G. He and S. Pakvasa, hep-ph/9705320.

[10] A. Lenz, U. Nierste and G. Ostermaier, Phys. Rev. D56 (1997) 7228.

[11] A. J. Buras, M. E. Lautenbacher, G. Ostermaier, Phys. Rev. D50 (1994) 3433.

[12] S. Herrlich and U. Nierste, Nucl. Phys. B419 (1994) 292.
S. Herrlich and U. Nierste, Nucl. Phys. B476 (1996) 27.
S. Herrlich and U. Nierste, Phys. Rev. D52 (1995) 6505.
U. Nierste, hep-ph/9609310,Proceedings of the Workshop on K Physics, Orsay, 30 May- 4
June 1996, ed. L. Iconomidou-Fayard, 163-170, Editions Frontieres 1997.

[13] A. J. Buras, M. Jamin and P. H. Weisz, Nucl. Phys. B347 (1990) 491.

[14] Y. Nir, Phys. Lett. B221 (1989) 184.

[15] M. Neubert, hep-ph/9801269, plenary talk atInternational Europhysics Conference on

High-Energy Physics (HEP 97), 19-26 Aug 1997, Jerusalem.

[16] CLEO coll. (T.E. Coan et. al.), hep-ex/9710028.

[17] G. Altarelli, G. Curci, G. Martinelli and S. Petrarca, Nucl. Phys. B187 (1981) 461.
G. Buchalla, Nucl. Phys. B391 (1993) 501.
E. Bagan, P. Ball, V.M. Braun and P. Gosdzinsky, Nucl. Phys. B432 (1994) 3.

[18] I.I. Bigi, B. Blok, M. Shifman and A. Vainshtein, Phys. Lett. B323 (1994) 408.

[19] M. Ciuchini, E. Franco, G. Martinelli, L. Reina and L. Silvestrini, Phys. Lett. B316 (1993)
127.


