hep-ph/9802202 v2 3 Dec 1998

Revised Version DESY-97-208
MPI-Ph/97-043
TUM-HEP-281/97

MPI-Ph/97-043 DESY 97-208
TUM-HEP-281/97 hep-ph/9802202

Determination of the CKM angle and|V,;/V;| from
Inclusive direct CP asymmetries and branching ratios

in charmless3 decay$

Alexander Lenz,
Max-Planck-Institut fiir Physik — Werner-Heisenberg-Institut,
Féhringer Ring 6, D-80805 Miinchen, Germany,

Ulrich Niersté,
DESY - Theory group, Notkestrasse 85, D-22607 Hamburg, Germany,

and

Gaby Ostermaiér
Physik-Department, TU Miinchen, D-85747 Garching, Germany

Abstract

We have calculated inclusive direct CP-asymmetries for charnilésslecays. After summing
large logarithms to all orders the CP-asymmetriedAf 1= 0 andAS = 1 decays are found as

acp(AS =0) = (2.0%77) %, acp (AS =1) = (=1.0£0.5) %.

These results are much larger than previous estimates based on a work wittnowatson of
large logarithms. We further show that the dominant contributionte(AS = 0) is propor-
tional tosin~y - |V.,/V.s|. The constraints on the apéx,77) of the unitarity triangle obtained
from these two CP-asymmetries define circles in(fh&)-plane. We have likewise analyzed the
information on the unitarity triangle obtainable from a measurement of thegesaan-leptonic
branching ratiosBr(AS = 0), Br(AS = 1) and their sumBry.(B — no charm). These
CP-conserving quantities define circles centered orptheis of the(p,7)-plane. We expect a
determination oflV,;,/V.,| from Brx.(B — no charm) to be promising. Our results contain
some new QCD corrections enhancifg(AS = 1), which now exceed$ir(AS = 0) by
roughly a factor of two.
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2 1 INTRODUCTION

1. Introduction

CP-violation is a litmus test for the Standard Model, which parametrit€Paviolating quan-
tities by a single parameter, the complex phase in the Cabibbo-Kobayashi-Maskéaa ma-
trix. The related amplitudes are further suppressed due to the smallnessvbelékents and
loop graphs, so that new physics effects may become detectable. CP-violatimgableseare
commonly expressed in terms of the angless and~ of the unitarity triangle. Yet we can
determine its shape not only from its angles, but also from the length of its siled) are ob-
tained from measurements of CP-conserving quantities. This interplay isialdeature of the
CKM mechanism. In order to overconstrain the unitarity triangle one mustdiffidiently many
theoretically clean observables. While, for examplean be extracted without hadronic uncer-
tainties from the mixing-induced CP asymmetryfa — .J/¢ Ks, the angley is notoriously
hard to measure in experiments with and 3* mesons.

Direct CP-violation in exclusive3*-decays does not help to determine any of the angles be-
cause of the unknown strong phases in the decay amplitudes. On the contraryndirgdte
CP-asymmetries can be cleanly predicted, because quark-hadron duality thiéoreliable cal-
culation of strong interaction effects within perturbation theory. Suctctdirelusive asymme-
tries have been analyzed in [1-6] and mixing-induced inclusive CP-asymmstraied in [7]
are now investigated by the SLD collaboration [8]. Semi-inclusive digdttasymmetries have
been studied in [9]. While inclusive final states are experimentally dlffto identify, inclusive
branching ratios are huge compared to exclusive ones. As we will see in theifglonclusive
CP-asymmetries in charmless decays have a promising size, so thaobitlsvile to study them
experimentally. Further they can be obtained from branching ratios only anddtresdkf not
require an asymmetriB-factory.

In this paper we calculate direct inclusive CP-asymmetries in chaswi&-decays extending
our recent calculation of decay rates in [10]. In [10] the corresponding branching retve
been calculated in renormalization group improved perturbation theory ingulde dominant
contributions of the next-to-leading order. In the following section we set up outiogeand
summarize previous work on the subject. In sect. 3 we analyZe= 0 decays. We discuss
the relation of the CP-asymmetries to the angles of the unitarity trianglehemdimpact on
the determination of the improved Wolfenstein parameteasdr. Here we also investigate the
constraint or{p, 77) imposed by a measurement of the average branching raticaofi 3 decays
with AS' = 0. In sect. 4 we repeat the procedure fof = 1 decays. Readers mainly interested
in phenomenology may draw their attention to sect. 5, where we will give nurhpradictions
for the newly calculated quantities. In sect. 5 we also predict the th&haess non-leptonic
branching ratio of thés meson and exemplify how the unitarity triangle is constructed from the
branching ratios and CP-asymmetries. Finally we summarize our findings. Andipgentains
details of our analytical results.



2. Preliminaries

We start our discussion witl¥ decays corresponding to the quark level transitior> ¢gd,
q = u,d,s,c. They are triggered by the\ B| = 1, |AS| = 0 hamiltonianH :

_ Gr

=7

{ch (€0 +€0Y) —§IZCij}+h.c., & = ViV (D)

JEP

Here Q1; are the familiar current-current operators, which originate from the lénesd-1V/ -
exchange ih — ced andb — wud. FurtherP = {3,...6,8}, and@;_s and()s are the penguin
operators. More details can be found in [10], where the numerical values for teen/¢oeffi-
cientsC; are tabulated. For the following we only have to keep in mind that the coefifsig_g
andC’s accompanying; are much smaller in magnitude thah andCs.

Now we express the decay rate for ¢qd as
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r ‘Re {|§u|2 Fuu + |§t|2 Ftt + |£c|2 Fcc + fufiruc + ftfzrtu + ftfirtc} . (2)

The coefficients’;; encode the various contributions of the differentoperatorsin (1). For example
in b — uud the interference of the tree diagram(@¥ in Fig. 1 with the penguin diagram @f;

with ¢ = ¢ in Fig. 2 contributes td',.. The average branching ratio for the decayf into
some inclusive final stat& reads

_ I(B*-X)+I (B = X)
Br = : 3)
2Ftot

Similarly we define the CP-asymmetries as

Acp = %[Br (B* - X) - Br (B~ = X)]. acp = %D- 4)

Of course the average branching ratio in (3) may also be considerés); fand B, instead of
BT and B~. We do not consider small spectator effects in this work, so that all givenulae
for Br likewise apply to the neutra® mesons. We will classify the inclusive final stateby

its strangeness quantum numbeHence if alsaB; mesons are included in the consideration of
Br, the strangeness 6f must be corrected for the non-zero strangeness of the spectator quark.
Our strategy is to expres8r and the CP-asymmetries in (4) in terms of the's. The con-
straints for the CKM matrix obtained from measurement&ofanda-p are most conveniently
expressed in terms of the improved Wolfenstein paramégers [11]. The calculation ofp, 77)
from Br andacp involves certain combinations of thg;’s, for which we will derive compact
approximate formulae. The exact expressions foldthie can be found in the appendix.

The three angles of the unitarity triangle are

arg (=8y) = @, arg (—&.67) = B, arg (—&u82) = 7- (5)
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Figure 1: Tree diagram apy ,. Figure 2: Penguin diagram involvin@%'.
It contributes the absorptive part necessary
for a non-zeraicp.

ThenBr and Aqp are easily found as

- 1
Br = P+ —— &l T + 617 T + &) Tee
Vo]
— |€.&.| cosyRel'y. — |€&u] cosaRel'y, — |&€.| cos BRel.] (6)
1 ) ) .
Acp = F- e = €] siny Im Ty — €€, sina Im Ty, + €| sin BIm Ty] . (7)

The common factof’ reads

Bsi [0.715 +3.0(x, — 0.3) + 11(z, — 0.3)2} : [1 — 0.041og | (8)

0.1045 mp
Herex. = m./m; andp = O(my) is the renormalization scalé. is inverse proportional to the
total decay raté’;.;, which we calculate vid';,; = I's,/Bsr, from the measured semileptonic
branching ratioBs;,. The numerical approximation in (8) holds to an accuracy of 1 % in the
range0.25 < z. < 0.35 and for variations of the renormalization scalén the rangen, /2 <
1 < 2m,. The exact expression can be found in the appendix.
From (7) one can nicely verify that one needs two different CKM structures amzhaero
absorptive parfmI';; in order to obtain a non-vanishindg-p. It is known for long that the
CPT theorem correlates the CP-asymmetries for different subsets oftates s in (4) [2, 5].
For exampleAcp(A|C| = 2,AS = 0) = —Acp(A|C] = 0,AS = 0), where A|C] = 2,
AS = 0) denotes the decay into the inclusive final state with total strangenessargeining a
¢ and ac quark, whileA|C'| = 0 corresponds to a charmless final state. In the following we will
focus on charmless final state and oml|t”'| = 0” in our notation. The non-zero contributions
to Acp(AS = 0) come from the absorptive parts of penguin diagrams (see Fig. 2) involving
the annihilation proces&:.,¢) — (4,9), ¢ = u,d,s. We have illustrated the leading(«;)
contribution tolm ', ImI';. andIm Iy, in Figs. 3 and 4. The results of all possible operator
insertions into Figs. 3 and 4 can be expressed in terms of a single fun¢tion/m;, i1/ms),
e.g.Iml. o« Img(x.,/my) (for details see the appendix and [10]). We will need some special
values:

g(0,1) = —0.67—093,  g(z.=03,1) = —0.69—0.23i, g(1,1) = 0.28.(9)



Figure 3: Diagram constituingn I',,. to ordera, for AS = 0 decays. The right cut marks the
final stateuwd. The left cut denotes the absorptive part of the penguin diagram of Fig. 2.

The imaginary part of is y-independent. Incidentally we will omit the second argumert of
Let us now look at the CP-asymmetry related to a specific quark final faidefiniteness we
consideruud: The contribution fron1",. depicted in Fig. 3 involveg)5 and@y and is therefore
proportional toC?, while I';. andI', involve £ and a small penguin coefficiet,_ thereby.
NowImI',. o Img(z.) = —0.23 for z. = 0.3. The smallness din ¢(0.3) compared tdm ¢(0)

in (9) reflects the fact thdtn ¢g(«.) vanishes for:. > 1/2. Yet Gérard and Hou [2] have made the
important observation that this kinematic suppression is absent in the higher ondigowations

to I',., so that the result of Fig. 3 receives a correction of ordém,)/m - Im ¢(0)/Im g(x.) ~
30%. But these unsuppressed terms cancel in the dum(utud) + Acp (s3d) + Acp (dEd) =
Acp (AS =0) = —Acp (A|C] =2,AS = 0), because the latter asymmetry vanishes in the
kinematically forbidden region. > 1/2 [2,5]. In this work we will only calculate the inclusive
CP asymmetries for charmlessS = 0 and AS = 1 decays and therefore do not need to
include terms of ordes?. This, however, is not true for the separate inclusive CP-asymmetries
Acp (s3d') and Acp (dEd’), d'" = d,s, calculated to orde€’,Cs_gar, in [4]. In addition the
O(a?)-contributions to these quantities involve the large results of “double penguin” diagra
proportional toC? corresponding to the square of the diagram in Fig. 2.

Still there is an important difference between our calculations and thogq: iWwg use the ef-
fective hamiltonian of (1), while Gérard and Hou perform their calcatatn the full theory and
thereby invoke large logarithms, which are summed to all orders in our approaebe Targe
logarithms lead to an apparently large contribution of oketein [2], which had been found to
cancel the leading contribution of order numerically, so that the authors of [2] have claimed
the total inclusive asymmetries to be vanishingly small, of order of a few ifleriAs we will
see in the following, the correct summation of the large logarithms leads tfeeedit resultThe
inclusive CP-asymmetries acp(AS = 0) and acp(AS = 1) are sizeable, of the order of two and
one percent, respectively.

CP-asymmetries with resummed large logarithms have also been tatciig6], but for the
case of a lightn, ~ 15 GeV. In [6] therefore no penguin operatdys_ and()s appear. The
actual numerical results for, ~ 170 GeV are substantially different. In [6] also the observation
has been made that corrections of ordgare small forucp(AS = 0) andacp(AS = 1).
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Figure 4: The diagrams show the contributionditol',. andIm ', to ordera;. ImI';. corre-
sponds ta; = ¢ with the right cut denoting the final state wigh= w, d or s. LikewiseIm I';,

is obtained fow’ = u, but now also the left cut marks a possible charmless final state. Then the
right cut denotes the absorptive part of a penguin diagram with internal quasks, d, s or

¢. The contributions of this figure are suppressed with respect to those of Fig. Bsbdbay
involve a small penguin coefficient;_s.

3. AS = 0 decays

We first look at the dominant contributionsk andac»: Keeping only the lowest nonvanishing
order ina,; and neglecting the contributions of the small penguin coefficients one finds

2

‘/ub 5 acp (AS == 0) = —Im Fuc

Veb

v
Vi

Veb
Vib

Br(AS=0) = F|V,]?

sin~. (10)

Hence fromBr one can determing’,;/V.;|, becausd’ andV,,; are well-known. Likewise::p
measures the product gf v and|V,,/V,,|. The corrections to (10) stemming from the penguin
coefficients and higher order correctiongie are reliably calculable and small. The best way to
exploit (10) and to include these corrections is the use of the improved Wolfepsteimeters
A, A\, p andy [11]. ThenBr of (6) reads

Br(AS=0) = Lg|(p—7p)* +7 — K|. (11)



Here
LB = F )\2 [Ftt + Fuu — Re Ftu] (12&)
_ 2Ftt —I' Re [Fuc - Ftc - Ftu]
_ 12b
Po 2Ty + Tuu — Re Ty (12b)
1
K = : [_4Fuurﬁ + 40 ReTy + [ReTy.]” — 2Re T, Re Ty,

4 [Ty + Ty — Re Dy, ]”
— AT Ty + 4T ReTy, + [ReT]” — 2Re Ty Re Ty,

—ATy e + 4Ty Re Dy + [Re '] — 2Re 'y Re Iy . (12€)

We stress here that our notation/of(AS = 0) only comprises non-leptonic decays, but not the
semileptonic decay — X, /7,, which is measured in a different way. In addition to the quark
final statesutd, s3d andddd we have also included the decay— d ¢, which gives a small
contribution of order 3% td&r(AS = 0), but has a non-negligible impact dn andp,. Notice

that the Wolfenstein parametérdrops out in (12). The corrections to the formulae in (12) are of
order)® and therefore negligible. From (11) one sees that the measurement of the CP-cgnservi
quantity Br defines a circle in thés, 77)-plane centered &p,, 0) with radiusizz, where

Br(AS=0
Ry, — %H{. (13)

The centefp,, 0) and K™ are independent of the measured, they vanish in the limit considered
in (10). For the constraint from the CP asymmetry we likewise define

Im [Ftc - Ftu - Fuc]

L, = : (14)
Ftt —I' Fuu - Re Ftu

Then

i
— — — o (15)
(P—Po)* +7* — K
Again the corrections to (15) are suppressed with four powexsaof therefore negligible. Now
(15) reveals that a measurementef likewise fixes a circle in thép, 77)-plane. This new circle
is centered atp,, 7j,) and its radius equalg, with

Acp (AS: 0) = LaLB ﬁ, acp (AS: 0) = La

La 2 =2
— = K. 1
Mo QGCP (AS _ 0)7 Ra 770 —I_ A ( 6)

Again in the approximation witlhk" = p, = 0 adopted in (10) the circle defined by (15) is cen-
tered exactly on thg-axis. Its radius equalg,, so that it passes through the origin. In (2i@)y
comes with|V,/V,;|, which is inverse proportional tg's* + 7°. The geometrical construction

of v from acp corresponding to (10) is therefore done by intersecting the circle in (15) with the
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one centered g0, 0) stemming from any measurement|®f;/V.;|. Of course any other infor-
mation on the apekp, 77) of the unitarity triangle can be included in the usual way, and ideally
the hyperbola from [12, 13], the circle fromAm g [13] and the new circles in (11) and (15)
intersect in the same poify, 77) — or we may find new physics.

We close this section by giving compact approximate expressions for the quantiey end
(14), which enter the circles defined by (12b), (13) and (16):

Lp = (0.0362+0.151 (x. — 0.3) +0.58 (z. — 0.3)?)
(1-0121m +0.02 In* 1) uncertaintyf.80%
my my
Ly = (000734 — 0.0905 (2, — 0.3) +0.220 (x. — 0.3)?)
(1-022m +0.08 In* ) uncertainty3.6%
my my
(17)
K = (= 0.0133+0.0219 (2. — 0.3) + 0.032 (z, — 0.3)?)
(1-0441m L= +0.16 In* 1) uncertainty3.3%
my my

Po = (—0.0254+0.034(z. — 0.3) +0.12(z, — 0.3)%)
-(1 +0.03 In? i) uncertainty1.8%

myp

In the last column we have listed the error of our approximate formulae compatkd éxact
expressions for the range25 < z. < 0.35 and0.5 < u/my, < 2.0. Furthero,(Mz) = 0.118 and

L g is calculated withBs;, = 0.1045. Theu-dependence in (17) results from the truncation of the
perturbation series and is small i, for which the dominant next-to-leading order corrections
are known. A future calculation of the full(«;,) corrections taBr and theD(a?) corrections to
Acp will change the numbers in the first brackets in (17) by a term of afider,) /7 and will
reduce the size of the coefficientslof/m;) andin®(;/my).

4. AS =1 decays

To obtain thg A S| = 1 hamiltonian from (1) we must simply replaggby £(*) = V5 V. Instead
of (5) we invoke the CKM angles

arg (—¢¢0) = —o = —(y= N7+ 0 (N,
arg (—EEP) = —c = A2 (14 221 -p) + 0 (X)),
arg (—5}%?“) = vy—1+4+0 ()\4) )

Hence the corresponding unitarity triangle with angtes~, ¢ ande is squashed. In the limit of
vanishing penguin coefficients one has

Acp(Aszl) X |Vuchb|sin’y.



Yet an approximate formula forcp (AS = 1) similar to (10) cannot be found, because the
tree-level contribution td3r (AS = 1) is CKM suppressed and the differeint’s are equally
important. An analogue of (10) would involve more than one CKM angle.

Next we expres®r, Acp andacp as in (11) and (15):

Br(AS=1) = Ly|(p-p)+7 - K], (18)

- ]
Acp (AS: 1) = sz /B777 acp (AS: 1) = sz (ﬁ—ﬁ6)2 —|—ﬁ2 — [(/. (19)

The primed coefficients read

Ly = FX(14+2) (T +Tu —Relh),
o =20y + Re (I + e — Te)
PO = N1+ 22) (Tuw + T — Re )’
Im (Tye + ey — T'ie)
A (14 A?) (Dyy + Tyt — Re Ty’
—(1 =A%) (Iee + 'y — Re Ty [—20 + Re (Iyy, + Ly — o))

o n . (20
A (14 A2) (Do + Ty = ReT) — 4M (14 22)* (T + Tyt — ReTy,)? 20

L =

In L'z, p, and K’ we have kept corrections of ordst and omitted corrections of ordef and
higher in accordance with the adopted improved Wolfenstein approximation [11jpdwers

of X in the denominators gf, and K" are partially numerically compensated by the smallness
of the penguin coefficients entering thig’s in the numerators. The corresponding approximate
formulae read

Ly = (0.00185 +0.0077 (x, — 0.3) + 0.03 (x, — 0.3)?)
-(1 —0.121n - +0.02 In? i) uncertainty:1.0%
my my
I = (=0144+ 1.77(x. = 0.3)  —4(x. —0.3)?)
(1-022m - +0.08 In* 1) uncertainty#.3%
my my (21)
K' = (=508+484(x,—03) +12(z,—0.3)%)
(1-044 I 2 +0.16 In* 1) uncertainty2.9%
my my
7 o= (0498 —0.67 (2. —03) —24(x.—0.3))
-(1 +0.03 In? i) uncertainty:1.8%
my

Here we emphasize that in (21) we have not only included the final states with cpreteats
uus, dds and sss, but also the decay — s g, which gives a non-negligible contribution to
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Br(AS = 1) in (18). Further we had to include the contributions to the decay rate stemming
from the square of the penguin diagram in Fig. 2. These contributions are ofgrdeut are
proportional toC'? and the fourth power of. They belong td.. in (2) and amount to 13 %

of Br(AS = 1). The large contributions of penguin operators and penguin diagrams imply
that Br(AS = 1) is quite insensitive t@ and7. This is reflected by the large value &f in

(21). Consequentlyr(AS = 1) becomes only a useful observable to const(ai) once its
experimental accuracy is better than 10 %.

The geometrical constructions of the circles obtained flomAS = 1) andacp(AS = 1) is

done in a completely analogous way to sect. 3. One merely has to replace the uiguiaméties

in (13) and (16) by the primed ones of (21) to obtain thé = 1 parameterdiy, 7, and k. .
Since the denominator @f-p(AS = 1) in (15) depends very weakly ghand7, acp(AS = 1)

is almost proportional tg and both radiug?!, and offsety;, of the corresponding circle are very
large. This is very different from the situation S = 0 decays.

Finally we mention that

Acp(AS=1) = —Acp(AS=0) (22)

for m; = 0. This is a consequence of the CKM mechanism of CP violation. The relation in (22)
receives corrections by terms of ordet/m? andmg/m, - a,(m;)/7. A larger deviation from
(22) would be an experimental sign of non-standard CP-violation outside the quark aiaigs m

5. Phenomenology

In this section we give numerical predictions for the branching ratios and Chaslyies and ex-
emplify, how the apexp, 77) is constructed from future measurement$of, (B — no charm),
GCP(AS = 0) andacp(AS = 1).

First we expres®r (B — no charm) analogously to (11) and (18):

Brxg (B — no charm) = Br(AS=0)+ Br(AS=1) = L (ﬁz—l-ﬁQ—jx’v’). (23)

There is no dependence grhere, i.ep, = 0, for the same reason as (22). It is easy to relase
andAk to Lg, L3, K and K’. The approximate formulae read

Ly = (0.0380 +0.158 (x; — 0.3) + 0.6 (x. — 0.3)*)
(1—012m 4o0.02m* ) | uncertaintyn.30%
my my
(24)
K = (—0272+046(2, —03) +0.7(z, —0.3)?)
(1-04a2m - o15m* L) | uncertainty2.7%.
my my

As usual the last column lists the error of the approximate formulae for the fe2igec =, <
0.35 and0.5 < g/my < 2.0 with a,(Mz) = 0.118 and Bsz, = 0.1045.



5.1 Numerical predicitions

11

Vib
Veb

= 0.06
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0.01271 000
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Table 1: The total nonleptonic charmless branching r&tig (B — no charm) as a function of
|V /Vis|. It is independent of.

5.1. Numerical predicitions

Next we predict the average branching ratios and the CP asymmetries as arfafii¢ti,, / V. |
and~. For this we recall the relation of these quantities to the improved WdH#engarameters

(7, 7) [11]:

Vib
Veb

)\2
= (1 + ?) AP+ T,

The predictions for the branching ratios can be found in Tabs. 1, 2 and 3.aFhes tabulated

in Tabs. 4 and 5. The range ¢fin the tables is the one favoured by the standard next-to-leading
order [12,13] analysis of the unitarity triangle frem andAm . The central values in the tables
correspond to the following set of input parameters:

tany = (25)

NI

x. = 0.29, u=my = 4.8 GeV,
as(Mz) =0.118, m;(m:) = 168 GeV, Bg/ = 0.1045. (26)

Herem, is the one-loop pole mass. The errors in the tables correspond to a variatipn=of
m./m, and the renormalization scalewithin the range

0.25 < z, < 0.33, 0.5 < p/my < 2.0.

The corresponding error bars are added in quadrature. The experimental uncartajntyas a
smaller impact on the listed quantities, the errors of the remaining input ¢earmi (26) have a
negligible influence.

From a comparison of Tab. 3 with Tab. 2 one realizes that charmless non-teptedecays
occur preferably withA S = 1, with Br (AS = 1) exceedingBr (AS = 0) by roughly a factor
of two:

B_A = U
PAS=0) _ (012 for Vel

Br(AS =1) Ve

Most of the dependence an stems from the normalization factét and cancels in ratios of
different Br’s. Theu-dependence aBr (AS = 1) is much larger than the one & (AS = 0)
leading to larger error bars in Tab. 2. This comes from the penguin dominarge(ds = 1)
and the fact that current-current type radiative corrections to penguin openai@ ot been
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Vi Vi Vi Vi Vi
vb = 0.06 vb = 0.07 vb = 0.08 vb = 0.09 vb =0.10
cb cb cb cb cb
v =60° || 0.0032%0000s | 0.0041700007 | 0.0052%0000s | 0.00647 00015 | 0.0077F 00015
v =75° || 0.0031F 0005 | 0.0040%0 000 | 0.0050%0000s | 0.0062200015 | 0.00757 010015
¥ =90° || 0.0029%0 0005 | 0.0038%0 0000 | 0.0048%000s | 0.0060 0010 | 0.0073 00010
v =105 || 0.0028"0000: | 0.0037 0000 | 0.004710000s | 0.0058%00015 | 0.0071F 00015
v =120° || 0.0027 5 000: | 0.0035 00006 | 0.0045%0000s | 0.0056%0 000 | 0.006970 0011

Table 2: The average inclusive branching ratio into nonleptonic final stategevittstrangeness,
Br(AS = 0), as afunction ofV,,/V.,| and.

calculated yet. The newly calculated contributions enhdhce\ S = 1) explaining the increase
of Bryn(B — no charm) in Tab. 1 compared to the result in [10]. In order to obtain the total
charmless branching ratiBr(B — no charm) one must add twice the charmless semileptonic
branching raticBr(B — X, (7,), for { = e and/ =  [14]:

Vao/ Vil \*
Br(B — X, v,) = (0.0012t8;888§)-(%) .

Hence for the input of (26) one finds from Tab. 1:

Br(B — no charm) =

Vis/Vis|\*
0.0097H590%% + (0.007370:0052) (%) .

The present experimental result for the total charmless branching ratio reads

Br*"(B — no charm) = 0.002 & 0.041,

obtained in [15] from CLEO data [16].
We conclude that the measurementff (AS = 0) provides a competitive method to deter-
mine |V, /V.;| compared to the standard analysis from semileptonic decays. Once a complete
next-to-leading order calculation is done for theé' = 1 decays, the error bars in Tab. 1 will
reduce significantly an@r (B — no charm) will likewise become a promising observable to
measureV,, / V..
The most important results of our calculations, however, are those listeabirdTand Tab. 5.
Adding the errors stemming from the uncertaintie$lin, /V.,| and~ in quadrature to the ones
already included in the tables, we predict:

acp(AS =0) = (2.0177) %. acp (AS =1) =

(—1.0£05)%.  (27)
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‘é‘: = 0.06 ‘é‘: = 0.07 ‘é‘: = 0.08 ‘é‘: = 0.09 ‘é‘: =0.10

v =60° || 0.0095% 0000t | 0.0095 0 0o | 0.0095 000! | 0.0095T000! | 0.00961 0 cne

v =75° || 0.0096 0 00os | 0.0096 0 0o | 0.0097 0 ooas | 0.00970001 | 0.0097 0 ns

v =90° || 0.0097 0 00ee | 0.0098 0 00a | 0.0098 (o0 | 0.0099 0 00as | 0.00991 0 oae

v =105° || 0.0098T0001 | 0.00991 000t | 0.0100 0 e | 0.01017 0 ooae | 0.01027 00022
v =120° || 0.020070000 | 0.01001 0002 | 0.0101 0 e | 0.01027 00022 | 0.0103T ) 00oe

Table 3: The average inclusive branching ratio into nonleptonic final statestnatihgeness one,
Br(AS = 1), as afunction ofV,,/V.,| and.

These results have to be contrasted with those of Table 1 in [2], where jpvedifdr theacp's

are given, which are five times smaller than those in (27). This discrefmpaytly due to the fact
that we sum large logs to all orders whereas this has not been done in [2]. It ig heftited to
the use of an extremely sma#iin v - V., /V,,| in [2]. The reduction of the--dependence in Tab. 4
and Tab. 5 requires the calculationlaf I' to ordera?. The corresponding diagrams are obtained
by dressing Fig. 3 and Fig. 4 with an extra gluon. A part of this calculation haspexésrmed
in[3]. In a perfect experiment the detection®fr (AS = 0) = 2% with Br (AS = 0) = 5-107?

at the3o level requires the production df5 - 10° B* mesons. This should be worth looking at
by our experimental colleagues. Finally we remark that our results satisfy

GCP(AS: 1) E(AS: 1) == —GCP(ASZO)'E(ASZO).

as required by (22).

5.2. Construction of (p,7)

In this section we exemplify how the circles in tfw 77)-plane will be constructed from a fu-
ture measurement dfr (B — no charm), Br (AS = 0), Br (AS = 1), acp (AS = 0) and
acp (AS == 1)

We first show this construction for the CP-conserving quantities. We assuntledltlatee charm-
less non-leptonic branching ratios are measured as

Bryy (B — no charm) = 1.47%,

Br(AS =0) = 0.50%, Br(AS=1) = 0.97%.

For illustration we assume an experimental erros @f in all quantities and neglect the present
theoretical uncertainty here by setting= m;, andx. = 0.29. The three circles are defined by
(11), (18) and (23). To draw the circles we must only read off the coefficients (i@ (21)
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Vib
Veb

Vib
Veb

Vib
Veb

Vib
Veb

Vib
Veb

= 0.06 = 0.07 = 0.08 = 0.09 = (.10

v =60° || 0.02150 | 0.019% 50 | 0.01755557 | 0.016% 55 | 0.014% 10

v =75 | 002450010 | 0.022%0005 | 0.02070008 | 0.018%000: | 0.0167 0007

v =90° | 0.026%00;7 |0.023%0015 | 0.0217075 | 0.01970750e | 0.017F050:

v =105° || 0.0267001; | 0.0237001%2 | 0.021 0 0es 1 0.019T001 | 0.017 0 00

v =120° || 0.0247001% | 0.022%0005 | 0.019°550 | 0.01870%07 | 0.016% 57

Table 4: The inclusive indirect CP-asymmetry for charmless final statbszero strangeness,
GCP(AS == 0)

or (24) and calculate the radiiz, R} and R from (13). The results are shown in Fig. 5. The
figure reveals thabr (AS = 0) is a very good observable for the phenomenology of the unitarity
triangle. This remains true even if the actual theoretical uncertainBp &f is included. By
contrastBr (AS = 1) is not very sensitive t¢p, 77) and thereby yields a much poorer information
on the unitarity triangle. Still the centép,, 0) of the circle largely deviates from the origin, so
that upper or lower bounds oRr (AS = 1) could help to exclude a part of th@, 7)-plane
allowed by other observables. Also Fig. 5 shows tBat;;.(B — no charm) is a very useful

observable to determin;éﬁ2 + 772, once the largg-dependence of the entries in Tab. 1 is reduced
by a complete next-to-leading order calculation of the& = 1 decay rates.

The circles from the CP-asymmetries are likewise obtained from (16§ tHermeasured value
of acp enters th&j-coordinatej, or 77, of the center of the circle and its radifs or .. For the
CP-asymmetries we assume an experimental precisiphfand

acp (AS = 0) = 2.0 %, acp (AS: 1) = —1.0 %

The results are displayed in Fig. 6. If one switches off the effects of penguintopeithe circle
fromacp (AS = 0) touches theg—axis in the point0, 0). The distance of the points on the circle

to the origin is therefore proportional tn v, so thatacp (AS = 0) measuresiny//p* + 7

in this limit as found in (10). The circle from-p (AS = 1), however, looks totally differentj,
and R, are so large that only a small fraction of the circle can be seen in Fig::6.AS = 1)
weakly depends omand yields good information ap Hence from Fig. 6 we learn that inclusive
CP-asymmetries yield interesting information on the unitarity triangkech is complementary
to the one obtained from other observables infhgystem. Alternatively one can multiphy p
with the measured3r and obtainA.p of (4), which defines a horizontal straight line in the
(p,7)-plane (see (15) and (19)).
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‘é‘: = 0.06 ‘é‘: = 0.07 ‘é‘: = 0.08 ‘é‘: = 0.09 ‘é‘: = 0.10

v =60° || -0.0077000, | -0.008%000: | -0.00970 004 | -0.0107000s | -0.0127 000

v =75 || -0.008%0 005 | -0.009% 050 | -0.010%0:00; | -0.011%0¢0s | -0.013% 000

~ = 90° || -0.0081 0 s | -0.009T000% | -0.01010 00 | -0.0121 0 00e | -0.013¥0 000

v =105° || -0.007 000 | -0.009 0007 | -0.0101000: | -0.0111000¢ | -0.012100%°
v =120° || -0.007*5:005 | -0.008%0005 | -0.0097 0007 | -0.010%000; | -0.011% 550

Table 5: The inclusive indirect CP-asymmetry for charmless final statbsstvangeness one,
GCP(AS == 1)

6. Ten messages from this work

1) Inclusive direct CP-asymmetries in charmléss—decays are larger than previously be-
lieved:

acp (AS =0) = (2.0713) %, acp (AS =1) = (=1.0£0.5) %.

2) The dominant contribution tecp» (AS = 0) satisfies

sin

AS =0
aor(B5=0) o

(28)

with small and calculable corrections.

3) The constraints on the apéx, 77) of the unitarity triangle obtained from a measurement
of acp (AS = 0) andacp (AS = 1) are circles in thép, 77)-plane. These constraints are
complementary to the information from other observables iand B physics.

4) Inclusive direct CP-asymmetries are theoretically clean: The woges can be con-
trolled and systematically reduced by higher order calculations.

5) The CP-conserving observablBs (AS = 0), Br (AS = 1) and Bry(B — no charm)
define circles in thép, 77)-plane centered on theaxis.

6) Br(AS = 0) is well suited to determing/,, /V.;|, with little sensitivity to~.

7) “Double penguin” contributions, which are part of the next-to-next-to-leading order, en-
hanceBr (AS = 1) by 13 %.
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Figure 5: The black annulus shows the region allowed by a measuremBnt(dfS = 0). The
dark shading corresponds f&rx (B — no charm) and the lightly shaded area shows the con-
straint on(p, 77) obtained fromBr (AS = 1).

8) The present incomplete next-to-leading order (NLO) result imposes alatgpendence
on Br (AS = 1). Here a calculation of all NLO corrections to penguin operator matrix
elements is necessary.

9) Br(AS = 1) exceeds3r (AS = 0) by roughly a factor of two.

10) The determination d¥/,;,/V.,| from Bry.(B — no charm) is competitive to the standard
method from semileptonic decays, once the NLO calculation mentioned in 8) has been
done.
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Figure 6: The lightly shaded area shows the constraint stemmingdreniAS = 0) and the
dark shading marks the area allowed frogp (AS = 1).
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A. Exact formulae

Here we show how the quantities entering sect. 3 and sect. 4 are raldtezlresults of [10].
These expression are useful for readers who are not satisfied with the appeotonmaulae

for F, Lg, L,, etc. They are also helpful, if one wants to calculate the branching ratios and
CP-asymmetries in extensions of the Standard Model. Then one needs to changestire Wil
coefficients entering thg;;’s accordingly.



18 A EXACT FORMULAE

Now F' [14] reads

b GEmpVal? (1 M ) _ Gpmi|Val | BSY (1 . L)
64131 o 2m? 643 Lsr, 2m?
erp
_ 3Bg; (29)
@) [+ aq(p )/(%)hSL( )] = 6(1 —a2)* Ao/mj

in terms of the notation of [10]. Here we have used the common trick to evalyate ['s;, / Bsy,
via the semileptonic rate and the experimental value of the semileptonic bramebim@s;. .
This eliminates various uncertainties associated with the theorptedilction forl’;,,;. The non-
perturbative corrections involving the kinetic energy paramegtdras been factored out in (29),
because\; cancels inBr and A p.
Likewise for the decay rates corresponding to the quark level transitionjgd’, ¢ = u, d, s and
d = d, s, one has

2 )\
lw = > CC; [sz (1 — ) + 8b;; T} . ~ 2 Re [hy; +g”(0)]]
ij=1 mg
O
Fuc — tgcg,QQQ(xc)
T = .05 |tb; A 5b - CsCy 2 b
tu = —22221:2 L0 —Gm—Z +1 2]-|-4 (92](0)+t9ﬁ (ilfc)) — bsba g 28t
j=3,..6
O
I' c = —2 i Gig e
¢ i§200]47rg](x )
7=3,...6
Ao
Ftt — CZC] b” 1—6— —|—(Sb” 2 Cg Z Cb]8
§,j=3,..6 mj j=3,..6
2
r. — (O‘—) C2 ki (:1;:1; i) . (30)
47 my

Heret = 1 for b — wud’, whilet = 0 for b — ssd’ andb — ddd'. TheC}’s, o, and the loop
functionsh,;, g;; in (30) are understood to be evaluated at the scateO(m; ). Thel';;’s depend
sizeably on: andz,. as indicated in the approximate formulae in sect. 3. Further they depend
on m,; and My, this dependence, however, is marginally small(x.) = g(x., p/ms) is the
fundamental penguin functions entering@lis. For this work we have newly calculated

ga2 (l’c, i) = dJs2 (l’c, i) = nyg (0 _) —I_g (xcv i) —I_g (17 i) 5 ny = 37
my my my my
) s a0 2). ) -
my my my
" 6 u 98 8 32,
UL R L P/ DU I £ 31
g(’mb) TR N ST (31)

These quantities correspond to the diagrams of Fig. 4¢vithu, ¢ = u, d, s, ¢, b and the left cut
marking the final statewd. For the remaining,;'s we refer to [10], where also analytic formulae
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for g(x,u/my) and theb;;'s andh;;’s [17] can be found. In (30) the leading nonperturbative
corrections are also included, thg;'s [18] depend om\; = 0.12 Ge\2. The values in (31)
correspond to the NDR scheme, the vanishingygfinvolves in addition the standard finite
renormalization of); introduced in [19] and related to the definition of the “effective” coefficient
Cs.

Another new result ig'.. in (30). We have calculated the “double penguin” contribution stem-
ming from the square of Fig. 2 witff = c. Although being of ordea? this term is numerically
relevant inAS = 1 decays, because it is proportional®g and the tree-level result is CKM
suppressed. We have also includédin the AS = 0 coefficients of (17). Approximately one
finds

kyy (2o, 2oy ,) = (1 - %) [1.52 = 115 (2. — 0.3) + 7 (z, — 0.3)?

+(1.84 = 5.6 (v, — 0.3) — 19 (2, — 0.3)) Inz, +0.791n” 2, . (32)

with » = 0 for the quark final statesud, vus, s5d, dds, andr = 1 for ddd andsss. The result
in (32) receives corrections of order. — 0.3)* and reproduces,, with an error of 2.6 % for
0.25 < z, < 0.35 and0.5 < p/my, < 2.0.

Our results forBr (AS = 0) and Br (AS = 1) also include the decay rates for— sg and
b — dg. Here to order; all I';;'s are zero except for

8 ag

The approximate formulae in (17), (21) and (24) further correspond td/;) = 0.118 cor-
responding tax,(¢ = 4.8GeV) = 0.216. The dependence am,(M ) is non-negligible, but
smaller than the.-dependence.

When calculatingd¢p for the inclusiveAS = 0 or AS = 1 final state, we must add tHg;’s
for b — wud, b — s3d’ andb — ddd'. ImT;, containsIm ¢(0), which, however, cancels
when summindgm I';, for the three decay modés— uud’, b — s3d' andb — ddd’, so that
Acp(AS = 0) andAcp(AS = 1) vanish forz. > 1/2 as required by the CPT theorem. The
cancellation takes place when summing the contributions of different cuts of dgeadis in
Fig. 4 as found in [2].

One comment is in order here: The terms of orderin (30) depend on the renormalization
scheme. This originates from the fact that when renormaliZzingp (1) one already uses the
unitarity relation¢, + & + & = 0. After using this relation to eliminate, sag, in (2) one
finds the coefficients dt, |2, |¢;|? and&:&: scheme independent. Consequently by changing the
scheme one can shift terms iyp in (7) from e.g. the term proportional ton v to the one
multiplying sin 3. This scheme ambiguity, however, is suppressed by a factos_f/ C'; » with
respect to the dominant contributiondepr. The constraints ofp, 77) derived fromBr andacp
are scheme independent, of course.
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