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Abstract. We present one- and two-jet inclusive cross sections for 

�

 scattering

and virtual photoproduction in ep collisions. The hard cross sections are calculated

in next-to-leading order QCD. Soft and collinear singularities are extracted using the

phase-space-slicing method. The initial state singularity of the virtual photon depends

logarithmically its' virtuality. This logarithm is large and has to be absorbed into

the parton distribution function of the virtual photon. We de�ne for this purpose an

MS factorization scheme similar to the real photon case. We numerically study the

dependence of the inclusive cross sections on the transverse energies and rapidities of

the outgoing jets and on the photon virtuality. The ratio of the resolved to the direct

cross section in ep collisions is compared to ZEUS data.

PACS: 12.38.Bx, 12.38.-t, 13.87.-9, 14.70.Bh

1 Introduction

The topic of this work is the structure of the virtual photon as it can be deter-

mined in jet production in high energy collisions. In particular, we will study

electron proton scattering as is explored at HERA and the scattering of virtual

on real photons as is possible at e

+

e

�

colliders.

In the parton model [1] a hadron is thought to consist of point-like particles

that can be identi�ed mainly with the valence quarks. The valence quarks are

surrounded by a sea of virtual quarks and are bound by gluons. These parti-

cles obey the laws of Quantum Chromodynamics (QCD) which is a non-abelian

SU(3) gauge theory [2]. Hadrons are usually probed in high energy scattering ex-

periments. These experiments involve contributions from a wide range of scales.

An important property of QCD is its asymptotic freedom [3], which states that

the coupling between quarks and gluons vanishes for asymptotically small dis-

tances. Factorization theorems allow a separation of the short and the long dis-

tance contributions of the high energy scattering (for reviews on this subject see

[4, 5]). This permits the application of perturbative QCD to calculate the hard

part of the cross section. The contributions from long distances are parametrized

by the parton distribution functions (PDF's).

�
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At the HERA collider at DESY, the scattering of leptons on protons pro-

duces jets with large transverse energies E

T

. The ZEUS and H1 collaborations

have observed an important fraction of events at small virtualities P

2

' 0 of the

exchanged photon [6, 7]. The lepton is only weakly deected in these so-called

photoproduction events, so that it escapes unobserved in the beam direction. The

momentum spread and the slight o�-shellness of the photons that are radiated

by the lepton, is described by the Weizs�acker-Williams formula [8], where the

photons are assumed to be real (P

2

= 0). The exchange of the other electroweak

gauge boson, Z

0

, is largely suppressed for photoproduction and can be neglected.

The transverse energy E

T

serves as the large scale in photoproduction, which

allows a perturbative calculation of the hard part of the scattering. In leading

order (LO) two di�erent processes can be identi�ed in the hard cross section. In

the direct interaction, the photon couples as a point-like particle to the partons

from the proton, leading to the Compton scattering and the photon-gluon fusion

subprocesses. In the resolved interaction, the photon acts as a source of partons,

which can interact with the partons from the proton. The resolved photon is

described by the photon PDF. For quasi-real photons with virtuality P

2

' 0 the

parton content is constrained reasonably well by data from deep-inelastic 

�



scattering [9, 10]. Both LO processes produce two outgoing jets with large E

T

.

Studies of photoproduction events with two jets in the �nal state at HERA have

shown that both, the direct and the resolved processes are present for photons

with very small virtuality P

2

' 0 [6, 7]. Comparisons between theoretical pre-

dictions for dijet photoproduction rates and the data from [6, 7] have been done

in [11, 12, 13].

For the comparison between the data on jet cross sections and the theoretical

predictions in [11, 12, 13], the hard part of the scattering has been calculated

in next-to-leading order (NLO) QCD. In NLO, one encounters inital and �nal

state singularities, due to collinear and soft radiation of partons in the initial or

�nal state. There are two reasons for performing NLO calculations, which are

far more cumbersome than the LO ones. First, one wishes to reduce the unphys-

ical scale dependences. Second, only in NLO can one sensibly implement a jet

algorithm, which is needed for a comparison between theory and experiment.

However, the above discussed distinction between direct and resolved photopro-

duction becomes ambiguous in NLO. When two-jet events are observed in an

experiment, a disposition of energy near the beam pipe of the detector in the

forward region of the photon can be attributed either to the photon remnant of

a resolved photon or to a collinear �nal state particle from the direct interaction.

The collinear particle in the NLO direct cross section produces a large contribu-

tion that has to be subtracted and combined with the LO resolved term. This

introduces a dependence of the photon PDF on the factorization scale M



. The

factorization scale determines the part of the NLO direct contribution, which

has to be absorbed into the resolved contribution. The M



dependences of the

remaining NLO direct and the LO resolved contribution coming from the pho-

ton PDF cancel to a large extent. This cancellation has been demonstrated and

analyzed numerically in [13, 14, 15] for real photoproduction (see [16] for related

work).

Information complementary to the ep collision experiments from HERA can
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be obtained from e

+

e

�

colliders. Assuming the two leptons to emit quasi-real

photons that are both described by the Weizs�acker-Williams approximation, one

e�ectively has  scattering. Both photons can be point-like or act as a source

of partons. Three cases can be distinguished, according to the di�erent contribu-

tions to the cross section [17]. The interaction of a direct with a resolved photon

is denoted as the single resolved (SR) contribution. Interactions, where both

photons are resolved are called double-resolved (DR) contributions. These two

cases are also encountered in ep scattering, where the one resolved photon has to

be substituted by the proton. In addition to these possibilities, also both photons

can interact directly in  scattering, which gives the direct (D) contribution.

The region of high center of mass energies is of special interest for obtaining

information beyond the low E

T

region that is determined by soft physics. This

has been measured at LEP [18] and TRISTAN [19]. Comparison of the data in

[19] with theoretical predictions using similar methods as those employed in [14]

can be found in [13, 20, 21] for real photons.

Recently, data has been presented by the ZEUS [23] and the H1 [24] col-

laborations for electron-proton collisions involving photons with small, but not-

vanishing P

2

that allow a test of the virtual photon structure. So far, there

has only been one measurement of the virtual photon structure function from

the PLUTO collaboration at the PETRA e

+

e

�

collider [25]. In [26] we made a

comparison of theoretical NLO predictions for 

�

p inclusive jet production with

data from [23], by extending the methods used in [11, 12]. This extension will be

described in detail in this work. Some theoretical studies of inclusive 

�

p cross

sections in LO have been presented in [27, 28, 29]. We also include the case of



�

 scattering that will become important at LEP2 [30], which is an extension

of the work from [20, 21].

Since the partonic subprocesses of ep and 

�

 scattering are very similar, we

will take over the notation 'SR' and 'DR' from the  case to ep scattering to

simplify the discussion. In ep scattering, the SR component denotes the contri-

bution, where the virtual photon is directly interacting with the partons from

the proton, whereas in the DR component the resolved photon interacts with

the partons from the proton.

The extension from real to virtual photoproduction is done by taking the

Weizs�acker-Williams formula to describe the momentum spread of the virtual

photon, but keeping P

2

�xed, not integrating over the region of small P

2

and

not assuming P

2

= 0. This is described by the unintegrated Weizs�acker-Williams

formula. In the hard process, the matrix elements for �nite P

2

have to be taken.

The matrix elements and the initial and �nal state singularities for the SR con-

tribution with P

2

6= 0 have been calculated in [31, 32] in connection with deep-

inelastic ep scattering (DIS) at HERA, where P

2

is large. Since we consider P

2

to be �nite, the photon initial state singularities encountered in real photopro-

duction do not occur. Instead, when integrating over the phase-space of the �nal

state particles, a logarithm of the type ln(P

2

=E

2

T

) occurs. In DIS this logarithm

is small, since P

2

is of the order of E

2

T

, and thus has not to be considered sep-

arately. In virtual photoproduction though, P

2

is small and the logarithm gives

a large contribution. This large term has to be subtracted from the SR hard

cross section, where the virtual photon is direct, and combined with the resolved
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virtual photon from the DR contribution. This introduces a dependence of the

virtual photon PDF on the factorization scale M



, just as in the case of real

photons. The cancellation of the M



scale dependences of the NLO direct and

resolved contributions must hold also for virtual photoproduction with P

2

6= 0.

This has been worked out in [26] and will be studied numerically in this work.

The D contribution is needed for the direct interaction of one real and one

virtual photon in 

�

 reactions. The initial and �nal state corrections for the D

contribution are calculated here for the �rst time. For the real photon, the singu-

larities are handled as discussed in [13, 21]. For the virtual photon, the procedure

is equivalent to the one described for the SR contribution in ep scattering.

The theoretical calculation of the resolved cross sections requires the parton

distribution functions of real and virtual photons. Several parametrizations of

the parton contents of the real photon are available in the literature by now

[33, 34, 35] and seem to be consistent with dijet production data in ep scattering

[13, 14]. For virtual photons theoretical models have been constructed that de-

scribe the evolution with the scale Q

2

of the parton distributions and the input

distributions at scale Q

0

with changing P

2

[27, 36, 37]. However, these virtual

photon PDF's are not available in a form that parametrizes the Q

2

evolution in

NLO. Only the LO parametrizations for the virtual photon are given in [36, 37].

The outline of this work is as follows. In section 2 we will discuss the general

structure of factorization and renormalization for NLO corrections. Section 3

contains a calculation of the LO and NLO partonic cross sections for the D, SR,

and DR contributions with a virtual photon. We recall the virtual corrections

to the Born cross sections and present the inital and �nal state singularities,

using the phase-space-slicing method. The DR contribution has been calculated

in [13] and will be considered only briey. The parton distribution function of the

virtual photon is discussed in section 4. Section 5 contains numerical results for

inclusive single- and dijet production in ep scattering. Several numerical tests will

be presented and the available data is compared with our theoretical predictions.

Section 6 gives theoretical results for 

�

 collisions with the kinematics of LEP2.

Finally we present a summary and an outlook in section 7. The appendix contains

the analytic results for virtual, initial, and �nal state corrections.

2 General Structure of the Hadronic Cross Sections

The key to using perturbative QCD is the idea of factorization. It states that

a cross section is a convolution of di�erent factors that each depend only on

physics relevant at one momentum scale. In this section we explain how factor-

ization shows up in the hadronic cross sections we use in this work. Especially

we will discuss the divergences appearing in a NLO calculation of the pertur-

bative hard cross section and explain how these divergences are factorized and

absorbed by a rede�nition of the PDF's involved in each process. The general

procedure described in this section will be applied to the speci�c partonic NLO

cross sections that are calculated in section 3.
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2.1 Factorization of Hard and Soft Regions

The physical cross sections considered in this work have a general structure,

where the long-distance and short-distance parts are separated. The hadronic

cross section d�

H

of a process is given by a convolution of the hard cross section

d�

ab

and the PDF's f

a=A

(x

a

) and f

b=B

(x

b

):

d�

H

=

X

a;b

Z

dx

a

dx

b

f

a=A

(x

a

)d�

ab

f

b=B

(x

b

) : (1)

In general, the PDF f

i=A

(x) of a hadron A gives the probability of �nding a

parton i (quark or gluon) with momentumfraction xwithin the hadron. It cannot

be calculated perturbatively and has to be �xed by measurement. The partons

from the PDF are thought to interact in a hard process involving a large scale

that allows to make use of the asymptotic freedom of QCD [3], i.e. the vanishing

of the coupling between the partons for asymptotically small distances. For a

large scale �, the QCD coupling constant g(�) behaves as g(�) � 1= ln(�=�

QCD

)

and a perturbative expansion of the hard cross section in the strong coupling

constant can be applied. The hard process in (1) is described by the partonic

cross section

d�

ab

=

1

2x

a

x

b

s

jM

ab

j

2

dPS

(n)

; (2)

where 2x

a

x

b

s is the ux factor, jM

ab

j

2

are the partonic matrix elements and

dPS

(n)

represents the phase space of the n �nal state particles of the subprocess.

In the �nal state we are interested in jets for which suitable jet de�nitions have

to be de�ned in order to go from the partonic level to observable quantities. We

will come back to this in section 5. The general structure of the cross sections

discussed in this work is indicated in Fig. 1. For the case of ep scattering, A

A

B

x
b

x
a

        (p
t
)Jets

remnant A

remnant B

Fig. 1. Factorization of hard and soft processes in the hadronic cross section.

will be a lepton, that radiates a virtual photon and B will be a proton. The

remnant A will stem from the resolved virtual photon, whereas the remnant B

comes from the proton. In the case of 

�

 scattering, A is a virtual and B a real

photon. They can both have a hadronic structure, leading to the remnants A

and B. The di�erent subprocesses, encountered in these two cases are explained

in section 3.
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2.2 NLO Corrections

The matrix elements of the partonic cross section (2) can be calculated by sum-

ming up all Feynman diagrams to a given order. We will be interested in processes

with two initial and at least two �nal state particles. The calculation of the LO

contributions is straightforward. In NLO several di�culties are encountered. We

have to distinguish the virtual corrections to the 2! 2 partonic processes, which

contain self energy and vertex corrections, and the real corrections, which stem

from the radiation of an additional real parton from the 2! 2 processes, leading

to 2! 3 processes. Both these contributions contain characteristic divergences.

As an example for a 2! 3 process the Feynman diagrams for the amplitudes

of the Born subprocess q�q ! q�q and the O(�

s

) correction containing a real gluon

emission are drawn in Fig. 2. We consider a parton with momentum p

a

emitted

k

p
a

z
a

Fig. 2. Partonic cross section: Born graph and real gluon emission.

from a resolved photon. Taking k to be the momentum of the outgoing gluon,

the Feynman diagram contains a propagator of the form

G �

1

(p

a

� k)

2

�

1

M

2

: (3)

In the limit of massless quarks, the propagator diverges in certain regions of

phase space. The denominator

M

2

= (p

a

� k)

2

= �2p

a

k = �2jp

a

jjkj(1� cos �) ; (4)

where � is the angle between the gluon and the parton, vanishes if cos � = 1

(collinear divergence) and if jkj = 0 (soft divergence). Both, the collinear and

soft divergences are infra-red (IR) divergences that can be regularized in the

dimensional regularization scheme [38, 39]. In this scheme n = 4�2� dimensions

are chosen for the phase space integration, so that the singularities appear in

poles like 1=� and 1=�

2

. After the poles have been removed the limit � ! 0

is taken and the four-dimensional result is obtained. The singularity shown in

Fig. 2 is due to the radiation of a gluon in the initial state and is thus called

an initial state singularity. In addition to these, �nal state singularities occur,

when a parton is collinear or soft in the �nal state.

The virtual corrections involve loop integrals over internal momenta, that

lead to ultra-violet (UV) and IR divergences. These divergences can be extracted,

as the real corrections, in the dimensional regularization scheme as poles in 1=�

and 1=�

2

. The UV divergences are removed completely by adding a counter term

to the QCD Lagrangian, where the singularities are absorbed by a renormaliza-

tion of the quark charge, quark �eld, and gluon �eld.
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When the virtual and the real contributions are added, the IR divergences

cancel partly, leaving only initial state singularities. It can be proven that in the

remaining hard cross section the short distance �nite parts and the long distance

singular parts factorize [4, 5]. One de�nes a bare partonic cross section d�, that

is calculable in perturbative QCD, a renormalized �nite partonic cross section

d�� and transition functions �

i j

so that [40]

d�

ij

(s) =

X

k;l

Z

dz

a

dz

b

�

i k

(z

a

; �

A

)d��

kl

(z

a

z

b

s; �

A

; �

B

)�

j l

(z

b

; �

B

) : (5)

The variables z

a

; z

b

2 [0; 1] give the momentum fraction of p

a

; p

b

in the propa-

gator after a parton is radiated as can be seen in Fig. 2. The singular terms are

absorbed into the transition functions in such a way that the renormalized cross

section is �nite. This absorption depends on the scales �

A

and �

B

, which are the

factorization scales for the hadrons A and B, respectively. To obtain a hadronic

cross section, which is free of divergent parts, one needs renormalized PDF's

�

f ,

which are de�ned as

�

f

iA

(�

a

; �

A

) �

1

Z

0

1

Z

0

dxdzf

jA

(x)�

i j

(z

a

; �

A

)�(�

a

� x

a

z

a

)

=

1

Z

�

a

dz

a

z

a

f

jA

�

�

a

z

a

�

�

i j

(z

a

; �

A

) : (6)

As one sees, the factorization scale dependence of the transition functions leads

to a scale dependence of the renormalized PDF's. The factorization of the hard

and soft parts in the partonic cross section is pictured in Fig. 3 for the case

of a resolved photon with the subprocess depicted in Fig. 2. The factorization

x
a

z
a

Fig. 3. The factorization theorem for the singular part of the partonic cross

section.

scales �

A

and �

B

de�ne what is to be understood as the hard and the soft

part of the cross section. Referring to equation (3), M

2

gives the o�-shellness of

the propagator in the initial state of the partonic cross section. Interactions with

M

2

< �

A

are described with help of the PDF of hadron A, whereas forM

2

� �

F

one can apply perturbative QCD and calculate the partonic cross section.

Using the de�nitions of the renormalized quantities, the IR safe hadronic

cross section reads

d�

H

(s) =

X

k;l

Z

d�

a

d�

b

�

f

kA

(�

a

; �

A

)d��

kl

(�

a

�

b

s; �

A

; �

B

)

�

f

lB

(�

b

; �

B

) ; (7)
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where the variables �

a

; �

b

2 [0; 1] are de�ned as �

a

= x

a

z

a

and �

b

= x

b

z

b

.

The connection between the IR safe and the bare hadronic cross sections can

be easily seen, by inserting the de�nition of the renormalized PDF's (6) into

(7) and performing the integrations over the delta functions, making use of the

de�nition (5). The factorization scale dependences of the renormalized partonic

cross section and the PDF's cancel to a large extend. The transition functions

that connect the renormalized partonic cross section and the PDF are, however,

not unique in NLO and arbitrary �nite parts can be shifted from the PDF's to the

renormalized partonic cross section. Therefore one has to de�ne a factorization

scheme to be used for a consistent calculation. Commonly used schemes are the

DIS [41] and the MS [42] schemes.

To extract the renormalized from the unrenormalized quantities, one assumes

d��; d� and the transition functions to have perturbative expansions in �

s

[40]:

d��(s) =

1

X

n

�

�

s

2�

�

n

d��

(n)

(s) (8)

d�(s) =

1

X

n

�

�

s

2�

�

n

d�

(n)

(s) (9)

�

i k

(z) = �

ik

�(1� z) +

1

X

n=1

�

�

s

2�

�

n

�

(n)

i k

(z) (10)

The LO contributions are understood to be the n = 0th order contributions. For

the DR partonic cross section it is of order O(�

2

s

), for the SR contribution is

of order O(��

s

) and for the D contribution it is of order O(�

2

). Inserting the

expansions (8){(10) into (5) gives up to O(�

s

)

d�

(0)

ij

(s) +

�

s

2�

d�

(1)

ij

(s) = d��

(0)

ij

(s) +

�

s

2�

�

d��

(1)

ij

(s; �

A

; �

B

)

+

X

k

Z

dz

1

�

(1)

i k

(z

1

; �

A

)d��

(0)

kj

(z

1

s)

+

X

k

Z

dz

2

d��

(0)

ik

(z

2

s)�

(1)

k j

(z

2

; �

B

)

�

: (11)

Comparing the left hand and the right hand side in LO gives d��

(0)

= d�

(0)

. The

NLO correction is obtained by comparing the left hand and right hand side to

order �

s

and rearranging the terms:

d��

(1)

ij

= d�

(1)

ij

�

X

k

Z

dz

1

�

(1)

i k

d�

(0)

kj

�

X

k

Z

dz

2

�

(1)

i k

d�

(0)

kj

: (12)

Thus the prescription for subtracting the singular parts from the bare cross

section is simple: the singularities are removed by a convolution of the �nite

Born cross section with the singular O(�

s

) transition functions.

As we have seen, the PDF's acquire a dependence on the factorization scales.

The evolution of the PDF's with the scale are predicted in perturbative QCD
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by the DGLAP evolution equations [43, 44, 45]. This is the following set of

integro-di�erential equations:

df

i

(x;Q

2

)

d lnQ

2

=

X

i

1

Z

x

dz

z

P

i j

(z; �

s

(Q

2

))f

j

�

x

z

;Q

2

�

: (13)

Here, Q

2

is a general scale, and P

ij

(z) are the splitting functions that represent

a process in which a parton with momentum fraction x radiates a parton with

momentum fraction (1 � z)x and continues with momentum fraction xz. The

splitting functions can be expanded in powers of the strong coupling constant

with �

s

� g

2

=4�:

P

i j

(z; �

s

) =

�

s

2�

P

(0)

i j

(z) +

�

�

s

2�

�

2

P

(1)

i j

(z) + : : : (14)

The evolution equations (13) predict the PDF's at a higher scale once they are

�xed at some input scale Q

2

0

.

2.3 Factorization for the Photon

In the previous section we have described, how the absorption of the singularities

works in the case, when A and B are hadrons or resolved photons. For the direct

photon one additional complication has to be taken into account.

As mentioned in the introduction, in LO the photon gives rise to direct and

resolved contributions in the hadronic cross section. In NLO, the creation of a

collinear q�q-pair in the initial state leads to initial state singularities in the direct

contribution. The only place for these singularities to be absorbed is the PDF

of the resolved photon. This leads to a point-like term in evolution equations of

the the photon PDF [46, 47]. A subtraction procedure for the real photon that

is consistent with the evolution of the photon PDF has been worked out in [48].

For the virtual photon, one actually has no real singularity, since the virtual-

ity P

2

regularizes the divergence. Integrating over the phase space of the q�q-pair

in the initial state leads to a logarithmic dependence on P

2

, namely ln(P

2

=Q

2

),

where Q

2

is the hard scale of the process. This logarithm becomes large for

P

2

� Q

2

and is absorbed into the PDF in much the same way as described in

[48]. This leads to an inhomogeneous term in the PDF of the virtual photon,

which di�ers somewhat from the point-like term in the case of the real photon.

This will be described in more detail in section 4, where the construction of the

virtual photon PDF is explained.

3 Partonic Cross Sections

In this more technical section, we proceed with a computation of the perturba-

tively calculable partonic cross sections. The partonic cross sections contributing

to ep and 

�

 scattering are very similar and will therefore be treated together

in this section. Both hadronic cross sections contain single resolved (SR) con-

tributions, in which the virtual photon couples directly to the subprocess and
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double resolved (DR) contributions, in which the virtual photon is resolved. In ep

scattering the virtual photon and its partonic content interact with the partons

of the proton, whereas in 

�

 scattering they interact with the parton content

of the real photon. In addition to the SR and DR contribution, in 

�

 scattering

one encounters the direct (D) interaction of both photons.

After an introduction to the notation of the various relevant subprocesses,

we give the formul� for the Born and virtual contributions. Then we explain the

phase-space slicingmethod as a tool to separate singular regions of phase space in

the partonic cross section, so that we can calculate the singular parts of the real

�nal and initial state corrections. The results from [31] for the SR contributions

are recalled for completeness and consistency. The DR contributions can be

found in [13] and will be considered only briey.

3.1 Notation

For the calculation of hadronic cross sections in sections 5 and 6, we will have

to calculate the matrix elements for the various partonic cross sections in LO

and in NLO. In LO the D contribution is of O(�

2

), the SR contribution is

of O(��

s

) and the DR contribution is of O(�

2

s

). In NLO the D, SR and DR

contributions are of one order higher in �

s

. Since the partonic cross sections

have to be convoluted with the PDF's of the photon, which are of order �=�

s

in

the high energy limit [46], the di�erent contributions will turn out to be of the

same order. The matrix elements jMj

2

from equation (2) are obtained by taking

the trace of the hadron tensor that corresponds to each subprocess. We de�ne

H � �g

��

H

��

. The Born contributions are labeled H

B

, the virtual corrections

are H

V

, and the real corrections are H

R

.

First, we have collected the de�nition of the LO Born matrix elements in

Tab. 1. The matrix elements for incoming anti-quarks are the same as those for

quarks and only give a factor 2 in the sum over all contributions in the hadronic

cross section. This holds also for the contributions in the other tables. Of special

interest in this work will be the NLO corrections to the Born matrix elements for

processes involving a virtual photon. These are the D and SR contributions, that

are collected in Tab. 2. The SR contributions with one virtual photon have been

Table 1. De�nition of the LO matrix elements.

D and SR Processes DR Contributions

B

1

= H

B

(

�

 ! q�q) B

4

= H

B

(qq

0

! qq

0

) B

9

= H

B

(q�q ! gg)

B

2

= H

B

(

�

q ! qg) B

5

= H

B

(q�q

0

! q�q

0

) B

10

= H

B

(qg ! qg)

B

3

= H

B

(

�

g ! q�q) B

6

= H

B

(qq ! qq) B

11

= H

B

(gg ! q�q)

B

7

= H

B

(q�q! q

0

�q

0

) B

12

= H

B

(gg ! gg)

B

8

= H

B

(q�q ! q�q)
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Table 2. De�nition of the NLO matrix elements for the D and SR processes.

Virtual Corrections 2! 2 Real Corrections 2! 3

V

1

= H

V

(

�

 ! q�q) H

1

= H

R

(

�

 ! q�qg) H

4

= H

R

(

�

q ! qq�q)

V

2

= H

V

(

�

q! qg) H

2

= H

R

(

�

q ! qgg) H

5

= H

R

(

�

g ! q�qg)

V

3

= H

V

(

�

g! q�q) H

3

= H

R

(

�

q! qq

0

�q

0

)

Table 3. De�nition of the NLO matrix elements for the DR contribution.

Virtual Corrections 2! 2 Real Corrections 2! 3

V

4

= H

V

(qq

0

! qq

0

) H

6

= H

R

(qq

0

! qq

0

g) H

7

= H

R

(q�q

0

! q�q

0

g)

V

5

= H

V

(q�q

0

! q�q

0

) H

8

= H

R

(qq ! qqg) H

9

= H

R

(q�q! q

0

�q

0

g)

V

6

= H

V

(qq! qq) H

10

= H

R

(q�q ! q�qg) H

11

= H

R

(qg ! qq

0

�q

0

)

V

7

= H

V

(q�q ! q

0

�q

0

) H

12

= H

R

(qg ! qq�q) H

13

= H

R

(q�q ! ggg)

V

8

= H

V

(q�q! q�q) H

14

= H

R

(qg ! qgg) H

15

= H

R

(gg ! q�qg)

V

9

= H

V

(q�q ! gg) H

16

= H

R

(gg ! ggg)

V

10

= H

V

(qg ! qg)

V

11

= H

V

(gg ! q�q)

V

12

= H

V

(gg ! gg)

studied by several authors [31, 32], the D and SR contributions for real photons

can be found in [13], whereas the D contributions with one virtual photon have

only been studied in this work, yet.

Because of their importance, we show in Fig. 4 the classes of matrix elements

as collected in Tab. 2 explicitly. We also show the de�nition of the momenta

which will be used throughout this work for all three, i.e. D, SR and DR, con-

tributions. In Tab. 3 the matrix elements of the NLO processes for the DR

case are collected. These matrix elements have been calculated in [49] and the

integrations over the singular regions of phase space where performed in [13].

3.2 The Two-Body Processes

For the 2! 2 processes we use the Mandelstam variables

s = (p

a

+ p

b

)

2

= (p

1

+ p

2

)

2

;
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p
a

p
b

p
2

p
1

p
3

γ*

γ

q
–

q

g

γ*

q

g

q

g

γ*

q

q
,

q

q
–,

γ*

q

q

q

q
–

γ*

g

q
–

q

g

Momenta H1 H2

H3 H4 H5

Fig. 4. Notation of the di�erent processes involving one virtual photon.

t = (p

a

� p

1

)

2

= (p

b

� p

2

)

2

; (15)

u = (p

a

� p

2

)

2

= (p

b

� p

1

)

2

:

Note, that in the D and SR case, p

a

= q with P

2

� �q

2

. In the D case p

b

is a

real photon, in the SR and DR cases p

b

is a massless parton. The partonic cross

section is given by the ux factor, the two-particle phase space and the matrix

elements:

d�(ij ! jets) =

1

2s

H(ij ! jets)dPS

(2)

: (16)

The two-particle phase space is given by

dPS

(2)

=

1

� (1� �)

�

4�

s

�

�

[z(1� z)]

��

dz

8�

; (17)

where z � (p

b

p

1

)=(p

a

p

b

). Expressed by the Mandelstam variables, the phase

space reads

dPS

(2)

=

1

� (1� �)

�

4�

stu

�

�

(s + P

2

)

�1+2�

dt

8�

; (18)

if the particle p

a

= q has mass �P

2

. This is valid for the D and SR case. In the

DR case all partons are massless, so we substitute P

2

= 0 and the phase space

reduces to

dPS

(2)

=

1

� (1� �)

�

4�s

tu

�

�

dt

8�s

: (19)

The Born matrix elements for the D and SR case read, using the notation of

Tab. 1,

B

1

= (16�

2

�

2

) (Q

4

i

8N

C

) T



(s; t; u) ; (20)

B

2

= �(16�

2

��

s

) (Q

2

i

2C

F

) T



(u; t; s) ; (21)

B

3

= (16�

2

��

s

) (Q

2

i

) T



(s; t; u) ; (22)
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where the de�nition of T



(s; t; u) can be found in the appendix, section 8.1. The

Born matrix elements for the DR case are given by

B

4

= (16�

2

�

2

s

)

1

4N

2

C

T

1

(s; t; u) ; (23)

B

5

= (16�

2

�

2

s

)

1

4N

2

C

T

1

(u; t; s) ; (24)

B

6

= (16�

2

�

2

s

)

1

2

1

4N

2

C

[T

1

(s; t; u) + T

1

(s; u; t) + T

2

(s; t; u)] ; (25)

B

7

= (16�

2

�

2

s

)

1

4N

2

C

T

1

(u; s; t) ; (26)

B

8

= (16�

2

�

2

s

)

1

4N

2

C

[T

1

(u; t; s) + T

1

(u; s; t) + T

2

(u; t; s)] ; (27)

B

9

= (16�

2

�

2

s

)

1

2

1

4N

2

C

T

3

(s; t; u) ; (28)

B

10

= �(16�

2

�

2

s

)

1

8N

2

C

C

F

T

3

(t; s; u) ; (29)

B

11

= (16�

2

�

2

s

)

1

16N

2

C

C

F

T

3

(s; t; u) ; (30)

B

12

= (16�

2

�

2

s

)

1

2

1

16N

2

C

C

F

T

4

(s; t; u) : (31)

The factors 1=2 in some of the expressions are symmetry factors for two identical

particles in the �nal state. The de�nitions of the matrix elements T

1

; : : : ; T

4

can

again be found in the appendix 8.1.

The virtual corrections for the SR case are calculated by multiplying the one-

loop diagrams for 

�

 ! q�q, 

�

q ! gq and 

�

g ! q�q with the corresponding

Born diagrams, which leads to an extra factor �

s

in the matrix elements. The

virtual corrections V

2

and V

3

are well known for quite some years from the

processes e

+

e

�

! q�qg [53, 54]. They are achieved by crossing from the known

matrix elements [31]. The contribution V

1

for the D case can be inferred from the

SR case by considering the contribution H

V

(

�

g ! q�q). Only the parts which

have no gluon self-coupling are taken into account and the color factors have

to be adjusted appropriately. To compare the singular structure of the virtual

corrections with those from the real corrections, we write down the �nal result

for the D and SR case in the form

V

1

= 16�

2

�

2

�

s

2�

�

4��

2

s

�

�

� (1� �)

� (1� 2�)

E

3

; (32)

V

2

= 16�

2

��

2

s

2�

2(1� �)

�

4��

2

s

�

�

� (1� �)

� (1� 2�)

�

C

2

F

E

1

�

1

2

N

C

C

F

E

2

+

1

�

�

1

3

N

f

�

11

6

N

C

�

C

F

T



(s; t; u)

�

; (33)

V

3

= 16�

2

��

2

s

2�

�

4��

2

s

�

�

� (1� �)

� (1� 2�)

�

C

F

E

3

�

1

2

N

C

E

4

+

1

�

�

1

3

N

f

�

11

6

N

C

�

T



(s; u; t)

�

: (34)

Terms of order O(�) have been neglected. The expressions E

1

; : : : ; E

4

are given

in the appendix 8.2. In the DR case, the Born processes B

4

; : : : ; B

12

have to be

multiplied by the corresponding one-loop processes. The results can be found in

[13]. They are given by V

4

; : : : ; V

12

in [22].
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3.3 Phase-Space-Slicing Method

As discussed in the section 2, the partonic 2! 3 corrections are singular in cer-

tain regions of phase space. One possibility is to integrate the hard cross section

over the complete phase space in n dimensions and to obtain analytical results

for the integrated matrix elements. We choose a somewhat di�erent method in

this work. We separate the singular regions of phase space from the �nite regions

by inserting an invariant mass cutt-o� y

c

into the integration, symbolically

1

Z

0

dPS

(3)

jM

2!3

j

2

=

y

c

Z

0

dPS

(3)

jM

2!3

j

2

+

1

Z

y

c

dPS

(3)

jM

2!3

j

2

: (35)

The �rst integral on the right hand side of this equation contains the singular

region of phase space and is integrated analytically in n = 4 � 2� space time

dimensions. If the cut-o� y

c

is chosen appropriately small, this singular phase

space separates into a 2! 2 phase space dPS

(2)

that will be kept and a remaining

part dPS

(r)

that is integrated out together with the matrix elements. For small

y

c

various approximations can be applied to the matrix elements, so that the

integration of the matrix elements over dPS

(r)

is simpli�ed considerably as will

become evident in sections 3.4{3.6. The non-singular second term on the right

hand side of (35) is integrated numerically, opening the possibility to adopt

a wide range of jet de�nitions and experimental cuts. This exibility allows a

detailed comparison between theory and experiment. Of course, the dependences

of the �rst and the second contribution on the parameter y

c

should compensate,

leaving a result independent of y

c

, since the cut-o� has no physical signi�cance.

This also provides a strong test of the results, which will be described in section

5. The method described here is referred to as the phase-space-slicing (PSS)

method [50].

An important step in the application of the PSS method is the separation of

the two-body phase space from the singular part, dPS

(3)

! dPS

(2)

dPS

(r)

. This

separation is di�erent for the three cases encountered in this work, which are

singularities in the �nal state, in the initial state for massless particles and in

the initial state for a massive virtual photon. In the next two subsections we

will provide the formul� that serve as a basis for the calculation of the singular

parts of the partonic cross sections in sections 3.4{3.6.

3.3.1 Singularities in the Final and in the Massless Initial State We

consider the splitting for a phase space containing one massive particle p

a

with

mass P

2

= �p

2

a

. In general, the 2 ! 3 phase space in n dimensions is given by

[51]

dPS

(3)

=

d

n�1

p

1

2E

1

(2�)

n�1

d

n�1

p

2

2E

2

(2�)

n�1

d

n�1

p

3

2E

3

(2�)

n�1

(2�)

n

�

n

(p

b

+ q � p

1

� p

2

� p

3

) :

(36)

It is useful to introduce the following irreducible set of invariants:

s

0

= 2p

a

p

b

� P

2

; t

1

= �2p

b

p

1

;
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s

1

= 2p

1

p

2

; t

2

= �2p

a

p

3

� P

2

; (37)

s

2

= 2p

2

p

3

:

These �ve invariants are pictured in Fig. 5 on the left. The separation pictured

on the right of Fig. 5 is achieved by inserting [52]

1 =

Z

ds

2

2�

Z

d

n�1

p

23

(2�)

n�1

2E

23

�

(n)

(p

23

� p

2

� p

3

)(2�)

n

(38)

into (36), where the de�nition s

2

= p

2

23

= (p

2

+p

3

)

2

is used and E

23

is the energy

of this intermediate particle. One obtains

dPS

(3)

=

ds

2

2�

�

d

n�1

p

1

2E

1

(2�)

n�1

d

n�1

p

23

2E

23

(2�)

n�1

�

n

(p

a

+ p

b

� p

1

� p

23

)(2�)

n

�

�

�

d

n�1

p

2

2E

2

(2�)

n�1

d

n�1

p

3

2E

3

(2�)

n�1

�

n

(p

23

� p

2

� p

3

)(2�)

n

�

: (39)

To perform the integration over the delta functions in (39) it is useful to de�ne

the kinematical variables in the c.m. system of the outgoing partons p

2

and p

3

.

The angles of the partons p

1

and p

2

; p

3

with respect to the parton p

b

are shown

in Fig. 6. To parametrize the angles, the variables b �

1

2

(1 � cos �) and z

1

�

(p

b

p

1

)=(p

a

p

b

) are used. After integrating over the delta functions and expressing

the variables by z

1

; b and the irreducible invariants introduced in (37), the three

particle phase space in n = 4� 2� dimensions reads

dPS

(3)

=

ds

2

2�

dz

1

64�

2

db

N

b

[b(1� b)]

��

d�

N

�

sin

�2�

�

� (2� 2�)

�

16�

2

s

2

z

1

(s

0

(1� z

1

)� s

2

)

�

�

;

(40)

with the normalization constants

N

b

=

1

Z

0

db[b(1�b)]

��

=

�

2

(1� �)

� (2� 2�)

and N

�

=

�

Z

0

d� sin

�2�

� =

4

�

�� (1� 2�)

�

2

(1� �)

:

(41)

For singularities in the �nal state the invariants s

2

and b will vanish, whereas

for the singularities in the initial state of the massless particle p

b

the invariant

t

1

and therefore z

1

will vanish.

pb

pa

p1

p2

p3

pb

pa

p1

p2

p3

s2

t1
s0

s1

s2

t1

t2

Fig. 5. Separation of the three particle phase space.
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pb

p1

p3

p2

z

φ

χθ

Fig. 6. The three particle �nal state in the c.m. system of the particles p

2

and

p

3

.

3.3.2 Singularities in the Initial State of a Virtual Photon For this

case, the mass P

2

= �p

2

a

of the photon with momentum p

a

serves as a regulator

for the integration. Therefore, the phase space (36) can be calculated in n = 4

dimensions. We introduce the �ve invariants

s

0

= 2p

a

p

b

� P

2

; t

1

= �2p

b

p

3

;

s

1

= 2p

1

p

2

; t

2

= �2p

a

p

1

� P

2

; (42)

s

2

= 2p

2

p

3

;

and separate the phase space analogously to the case discussed above by inserting

(38) into (36). Again we move to the c.m. frame of the particles p

2

and p

3

and

de�ne the variable b �

1

2

(1�cos �), but now � is de�ned as the angle between p

a

and p

3

. The singularities occur for t

2

! 0, which we parametrize by the variable

z

2

� (p

a

p

3

)=(p

a

p

b

). It is obvious from the de�nition of t

2

that the variable z

2

vanishes only for P

2

! 0. After integrating over the delta functions, the result

is simply

dPS

(3)

=

d�

�

ds

2

2�

dz

2

8�

db

8�

: (43)

3.4 Final State Singularities

The singularities in the �nal state appear when the invariant s

2

in equation (37)

becomes on-mass-shell. We de�ne the variable r � s

2

=s

0

and consider the limit

r ! 0. We start by considering the D and SR cases, for which we de�ne the

two-body Mandelstam variables as

s = (p

b

+ q)

2

= 2p

b

q � P

2

; ;

t = (p

b

� p

1

)

2

= �2p

b

p

1

; (44)

u = (p

b

� p

23

)

2

= �2p

b

p

23

:
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In the limit r ! 0 the �ve invariants (37) reduce to these variables, with s

0

! s

and t

1

! t. The de�nitions of s; t and u are only unique in the limit r! 0. In the

limit s

2

! 0 the phase space (40) separates according to dPS

(3)

= dPS

(2)

dPS

(r)

with

dPS

(r)

=

� (1� �)

� (2� 2�)

d�

N

�

sin

�2�

�

�

4�

s

�

�

s

16�

2

G

F

(r)drr

��

db

N

b

[b(1� b)]

��

(45)

where

G

F

(r) =

�

1�

r

(1� z)

�

��

= 1 +O(r) : (46)

The two-body phase space dPS

(2)

is given by equation (18). The limits of in-

tegration in dPS

(r)

are given by r 2 [0;�t=(s + P

2

)]; b 2 [0; 1] and � 2 [0; �].

The invariant s

2

is integrated up to s

2

� y

c

s

0

, which restricts the range of r to

0 � r � min[�t=(s+ P

2

); y

c

] � y

F

.

We have now achieved the separation of the phase space and have to inte-

grate the matrix elements over the region dPS

(r)

. Therefore the 2 ! 3 matrix

elements H

1

; : : :H

5

are expressed by the variables s; t; u; r; b and � in the limit

r ! 0, which leads to approximated matrix elements with �nal state singulari-

ties H

F1

; : : : ;H

F5

[31]. A di�culty arises for those squared matrix elements that

contain real gluons. In that case more than one invariant can vanish in a propa-

gator, so that the di�erent classes of singularities, such as initial and �nal state

singularities, are not properly separated. The separation is achieved by partially

fractioning the matrix elements.

After the matrix elements have been partially fractioned and approximated

in the limit r ! 0, the integration over the singular region of phase space yields

Z

dPS

(r)

H

Fi

= 8�

�

4��

2

s

�

�

� (1� �)

� (1� 2�)

(1� �)F

i

+O(�) : (47)

The �nal results for F

1

; : : : ; F

5

are listed in appendix 8.3. They contain the IR

collinear and soft singularities that cancel against those of the virtual corrections.

It is essential that the singular terms are proportional to the LO matrix elements

T



and that the variables s; t and u de�ned in (44) correspond to the two-body

variables in the above discussed limit. The contributions F

2

; : : : ; F

5

have been

calculated in [31]. The �nal state correction F

1

of the D contribution can be

derived from F

5

by keeping only the abelian part and adjusting the color factor.

One can compare the singularities for the case of direct real photons as stated in

[22] with the ones given in appendix 8.3. The real photon contributions F

1

; : : : ; F

5

in [22] follow from the contributions F

1

; : : : ; F

5

in this work by taking the limit

P

2

! 0, so that t+ u = �s.

Turning to the resolved photon case, the phase space is obtained from the

formula (45) by substituting q ! p

a

with p

2

a

= 0, so that s = 2p

a

p

b

. The

two-body variables in the resolved case are given by

s = 2p

a

p

b

; t = �2p

b

p

1

; u = �2p

b

p

23

: (48)

Note, that the two-body phase space for the DR case is given by equation

(19) of section 3.2. Expressing the matrix elements for the resolved processes



Inclusive Single- and Dijet Rates in NLO QCD : : : 18

H

6

; : : : ;H

16

as classi�ed in Tab. 3 through the variables s; t; u; r; b and � yields

the matrix elements containing �nal state singularities H

F6

; : : : ;H

F16

[13, 22].

The integral over the singular phase space is the same as in equation (47). The

�nal state corrections for the resolved case F

6

; : : : ; F

16

will not be stated here

again since they can be found in [22].

3.5 Initial State Singularities for Massless Particles

We turn to the discussion of the initial state singularities for particles with zero

mass. This includes the photon initial state singularity for the real photon for

the D case, the parton initial state singularities in the SR case and the parton

initial state singularities in the DR case. We start with the SR case, from which

the others can be inferred.

3.5.1 Parton Initial State Singularities in the SR Case In the SR case

parton initial state singularities arise for the incoming particle p

b

. The incoming

particle p

a

is the virtual photon with p

a

= q and P

2

= �q

2

. Using the notation

of section 3.3.1, the singularities appear when the invariant t

1

becomes on-mass-

shell, i.e. for z

1

! 0. The invariant s

2

does not vanish in the case of initial state

singularities but rather de�nes the partonic c.m. energy of the corresponding

two-body process. We de�ne the new variable

z

b

�

p

2

p

3

qp

b

=

s

2

s

0

+ P

2

2 [�

b

; 1] ; (49)

that gives the fraction of the momentum p

b

that participates in the subprocess

after a particle has been radiated in the initial state. The variable �

b

is given by

�

b

= x

b

z

b

. We de�ne the two-body variables as

s = (p

2

+ p

3

)

2

= 2p

2

p

3

;

t = (z

b

p

b

� p

2

)

2

= �2z

b

p

b

p

2

; (50)

u = (z

b

p

b

� p

3

)

2

= �2z

b

p

b

p

3

:

In the limit z ! 0 the variable s

2

reduces to s. In the same limit the phase space

(40) separates according to dPS

(3)

= dPS

(2)

dPS

(r)

, where

dPS

(r)

=

1

� (1� �)

d�

N

�

sin

�2�

�

�

4�

s

�

�

s

16�

2

G

I

(z

1

)

� dz

1

z

��

1

dz

b

z

b

�

1� z

b

z

b

�

P

2

s

�

��

�

1 +

P

2

(1� z

b

)

z

b

(z

b

s � (1� z

b

)P

2

)

�

1��

(51)

with

G

I

(z

1

) =

�

1� z

1

s � z

b

P

2

s(1� z

b

)� z

b

P

2

�

��

= 1 +O(z

1

) : (52)

The two-body phase space is given by equation (18). The integration over dPS

(r)

with z

1

2 [0;�u=(s+P

2

)], z

b

2 [�

b

; 1] and � 2 [0; �] is restricted to the singular

region of z

1

in the range 0 � z

1

� minf�u=(s+ P

2

); y

c

g � y

I

.
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Expressing the matrix elements for the direct photon case, listed in Tab. 2,

with the variables s; t; u; z

1

; z

b

; b and � and taking the limit z

1

! 0, one obtains

the matrix elements H

b

I2

; : : : ;H

b

I5

[31] that contain initial state singularities on

the parton side B. These are integrated according to

Z

dPS

(r)

H

b

Ii

=

1

Z

�

b

dz

b

z

b

8�

�

4��

2

s

�

�

� (1� �)

� (1� 2�)

(1� �)I

b

i

+O(�) : (53)

where results for I

b

2

; : : : ; I

b

5

are written down in appendix 8.4. They can also be

found in [31]. Apart from the two-body variables s; t; u and the cut-o� y

I

, they

still depend on the integration variable z

b

. The results for the I

b

i

contain IR

singularities proportional to 1=�

2

that cancel against the corresponding singu-

larities in the virtual corrections. The remaining singular parts are proportional

to 1=� and to the Altarelli-Parisi kernels in four dimensions. These are removed

by a rede�nition of the PDF's that are the source of particle p

b

, which can be

a hadron or a resolved photon. The rede�nition, as explained in section 2.2, is

achieved by equation (6) for the PDF's, introducing the factorization scale (M

b

)

dependence through the transition functions �

(1)

i j

:

�

f

iB

(�

b

;M

2

b

) =

1

Z

�

b

dz

b

z

b

�

�

ij

�(1 � z

b

) +

�

s

2�

�

(1)

i j

(z

b

;M

2

b

)

�

f

jB

�

�

b

z

b

�

: (54)

Here f

jB

�

�

b

z

b

�

is the PDF of hadron B in LO before absorption of the collinear

singularities. The NLO transition functions are given by

�

(1)

i j

(z

b

;M

2

b

) = �

1

�

P

i j

(z

b

)

� (1� �)

� (1� 2�)

�

4��

2

M

2

b

�

�

+C

ij

(z

b

) (55)

withC

ij

= 0 in the MS scheme. The renormalized partonic cross section d��(

�

i!

jets) for parton initial state singularities is calculated from the unrenormalized

cross section d� by

d��(

�

i! jets) = d�(

�

i! jets)�

�

s

2�

X

j

Z

dz

b

�

(1)

i j

(z

b

;M

2

b

)d�

B

(

�

j ! jets) :

(56)

The d�

B

's denote the Born level partonic cross sections that can be found in

section 3.2. The factor 4��

2

=M

2

b

in equation (55) is combined with the factor

4��

2

=s in equation (53) and leads to a factorization scale dependent term of the

form

�

1

�

P

i j

(z

b

)

��

4��

2

s

�

�

�

�

4��

2

M

2

b

�

�

�

= �P

i j

(z

b

) ln

�

M

2

b

s

�

: (57)

In this way, the subtracted partonic cross section will depend on the scale M

2

b

,

as does the PDF of the hadron B, f

iB

.
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3.5.2 Real Photon Initial State Singularities in the D Case In the D

case the direct real photon can split into a q�q pair that gives rise to a collinear

singularity if the partons are emitted parallel. The calculation proceeds along

the lines that have been described for the parton initial state singularities in

the previous section 3.5.1. The two-body variables are de�ned as in equations

(50). The phase space separation as well as the formula (53) for the integration

over the singular regions remains unchanged. For the singular matrix element

H

b

I1

= H

b

I

(

�

 ! q�qg) we have

Z

dPS

(r)

H

b

I1

=

1

Z

�

b

dz

b

z

b

8�

�

4��

2

s

�

�

� (1� �)

� (1� 2�)

(1� �)I

b

1

+ O(�) ; (58)

where I

b

1

is stated in the appendix 8.4. As remarked for the virtual and �nal

state corrections, the initial state correction for the D case can be infered from

the SR case with an incoming gluon instead of the real photon by dropping the

non-abelian terms and adjusting the color factor. The singularity appearing in

I

b

1

is proportional to the splitting function P

q 

(z

b

) given in appendix 8.1. This

function appears in the evolution equation of the PDF of the real photon as an

inhomogeneous (so-called point-like) term, as will be explained in more detail in

section 4. Therefore, the photon initial state singularities can be absorbed into

the real photon PDF, according to the procedure given in [48]. We de�ne the

renormalized PDF

�

f

qe

of a quark q in the electron as

�

f

qe

(�

b

;M

2

b

) =

1

Z

�

b

dz

b

z

b

�

�

q

�(1� z

b

) +

�

s

2�

�

(1)

q 

(z

b

;M

2

b

)

�

f

e

�

�

b

z

b

�

: (59)

The NLO transition functions are given by

�

(1)

q 

(z

b

;M

2

b

) = �

1

�

P

q 

(z

b

)

� (1� �)

� (1� 2�)

�

4��

2

M

2

b

�

�

+ C

q

(z

b

) (60)

with C

q

= 0 in the MS scheme. In the discussed order, P

g 

(z) = 0. The

partonic cross section d��(

�

 ! jets) for the photon initial state singularity is

calculated from the unrenormalized cross section d� by

d��(

�

 ! jets) = d�(

�

 ! jets)�

�

s

2�

Z

dz

b

�

(1)

q 

(z

b

;M

2

b

)d�

B

(

�

q! jets) :

(61)

The cross section d�

B

contains the LO virtual photon-parton scattering matrix

element B

2

given in section 3.2. The dependence of the real photon PDF on the

factorization scale enters in the same way as discussed for the SR case, section

3.4.1.

3.5.3 Parton Initial State Singularities in the DR Case The calculation

of the initial state singularities for the DR case is very similar to the calcula-

tions shown for the SR case, only now both incoming partons are massless. The
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calculations for the partons p

a

and p

b

yield identical results and thus we have

to consider these singularities only once. The singularities occur in the region

z

1

! 0. The formula for the phase space separation is obtained from equation

(51) by substituting q ! p

a

with p

2

a

= P

2

= 0, so that s = 2z

b

p

a

p

b

. With these

substitutions, the phase space (51) reduces to

dPS

(r)

=

1

� (1� �)

d�

N

�

sin

�2�

�

�

4�

s

�

�

s

16�

2

G

I

(z

1

)dz

1

z

��

1

dz

b

z

b

�

1� z

b

z

b

�

��

(62)

with

G

I

(z

1

) =

�

1�

z

1

1� z

b

�

��

= 1 +O(z

1

) : (63)

The two-body phase space in the case of initial state singularities is given by

(19). Expressing the resolved matrix elements H

6

; : : : ;H

16

with the variables

s; t; u; z

1

; z

b

; b and � in the limit z

1

! 0 leads to the resolved matrix elements

containing initial state singularities H

J

6

; : : : ;H

J

16

[13, 22]. These are integrated

similar to equation (53), leading to the results J

6

; : : : ; J

16

. These are not stated

here, they can be found in [13, 22]. The initial state singularities on the proton

side J

6

; : : : ; J

16

are given by R

a

6

; : : :R

a

16

in [22]. The cancellation of the poles

from the real and virtual corrections proceeds as in the SR case discussed above.

The remaining poles in 1=� are proportional to the Altarelli-Parisi kernels and

are absorbed into the PDF's of the hadrons A and B that emit the particles p

a

and p

b

.

3.6 Initial State Singularities for the Virtual Photon

The initial state singularities described in the previous section were extracted

and handled in the dimensional regularization scheme, i.e. in d = 4� 2� dimen-

sions. In the case of the real photon this is necessary, because the real photon is

massless. The singular terms are proportional to a simple pole in � multiplied by

the splitting function P

q 

. These initial state singularities are absorbed into

the PDF of the real photon. The NLO correction for the direct virtual photon

becomes singular only in the limit P

2

! 0. After integrating the phase space up

to the invariant cut-o� y

c

, the logarithm ln(P

2

=s) will occur that becomes large

in the limit of small P

2

. The logarithm has to be absorbed into the PDF of the

virtual photon, instead of the 1=� poles in the real photon case.

To show the subtraction of the logarithm explicitly, we start by de�ning the

two-body variables for the virtual photon initial state singularities. They are

given by

s = (p

2

+ p

3

)

2

= 2p

2

p

3

;

t = (p

b

� p

2

)

2

= �2p

b

p

2

; (64)

u = (p

b

� p

3

)

2

= �2p

b

p

3

:

We de�ne the variable z

a

as

z

a

�

p

2

p

3

qp

b

=

s

2

s

0

+ P

2

2 [�

a

; 1] (65)
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with �

a

= x

a

z

a

. It gives the momentum fraction of the three-body c.m. energy

that participates in the two-body process. The de�nition of the three-body vari-

ables is given in section 3.3.2, equation (42). As mentioned above, the mass P

2

regularizes the initial state singularities of the virtual photon. The singular terms

appear in the case t

2

! 0 in (42), which corresponds to z

2

! 0 for P

2

! 0. For

z

2

! 0 the phase space (43) separates according to dPS

(3)

= dPS

(2)

dPS

(r)

, with

dPS

(r)

=

s

16�

2

d�

�

dz

a

z

a

dz

2

and dPS

(2)

=

1

8�

dt

s+ P

2

: (66)

The limits of integration are given by z

2

2 [0;�t=(s + P

2

)], z

a

2 [�

a

; 1] and

� 2 [0; �]. Since the integration of z

2

is restricted to the singular region we

de�ne the integration range for z

2

by 0 � z

2

� minf�t=(s+ P

2

); y

c

g � y

J

.

Expressing the matrix elements for the direct photon case, listed in Tab. 2,

with the help of the variables s; t; u; z

2

; z

b

; b and � and taking the limit z

2

! 0, we

obtain matrix elements H

a

I1

; : : : ;H

a

I5

that contain the initial state singularities

on the virtual photon side. These are integrated according to

Z

dPS

(r)

H

a

Ii

=

1

Z

�

a

dz

a

z

a

8�I

a

i

: (67)

The results for I

a

1

; : : : ; I

a

5

are collected in appendix 8.5. They contain the sin-

gularities for the D and SR contributions. Apart from s; t; u and y

J

, the results

also depend on the integration variable z

a

. All �ve expressions I

a

1

; : : : ; I

a

5

contain

the term

M (P

2

) =

1

2N

C

P

q 

(z

a

) ln

�

1 +

y

J

s

z

a

P

2

�

(68)

which is large for P

2

� s and singular for P

2

= 0 as expected. The large

contribution has to be subtracted and absorbed into the PDF of the virtual

photon. Here, we have the same freedom as in the case of the real photon, as has

been described above for the D case. Finite parts can be shifted from the PDF

to the direct cross section and vice versa.

However, the virtual photon PDF's used later on in this work are constructed

in a scheme similar to the MS scheme for real photons and we have to use the

same scheme to obtain consistent results. Therefore, we subtract those terms

that will yield the MS scheme of the real photon in the limit P

2

! 0. In order

to make the comparison with the case of the real photon possible, we state here

the singular parts of the expressions I

a

1

; : : : I

a

5

, that appear for the real photon

in d = 4� 2� dimensions. They are given by [14]

M = �

1

�

1

2N

C

P

q 

(z

a

) +

1

2N

C

P

q 

(z

a

) ln

�

(1 � z

a

)

z

a

y

J

�

+

1

2

: (69)

The characteristic singularity proportional to 1=� is subtracted by absorbing the

transition function

�

(1)

q 

(z

a

;M

2



) = �

1

�

P

q 

(z

a

)

� (1� �)

� (1� 2�)

�

4��

2

M

2



�

�

(70)
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into the PDF of the real photon. This subtraction produces a factorization scale

dependence of the photon PDF and gives the �nite contributions to the cross

section. The expression remaining after the absorption is, in the MS scheme:

M

MS

= �

1

2N

C

P

q 

(z

a

) ln

 

M

2



z

a

y

J

s(1 � z

a

)

!

+

1

2

: (71)

In order to obtain the same �nite terms in M (P

2

) from equation (68) in the

limit P

2

! 0 for the virtual photon case, we absorb the transition function

�

(1)

q 

�

(z

a

;M

2



; P

2

) = ln

 

M

2



P

2

(1� z

a

)

!

P

q 

(z

a

) �N

C

(72)

into the PDF of the virtual photon. This leaves the �nite term

M

MS

(P

2

) = �

1

2N

C

P

q 

(z

a

) ln

 

M

2



z

a

(z

a

P

2

+ y

J

s)(1 � z

a

)

!

+

1

2

; (73)

that reduces to the expression M

MS

in (71) for real photons in the limit P

2

!

0. We therefore call this form of factorization the MS factorization for virtual

photons.

4 Parton Distribution Function of the Photon

As mentioned in the introduction and worked out in section 3, the photon pro-

duces a q�q-pair in the initial state of the NLO direct contribution that leads to

a large logarithm for virtual photons and a singularity for real photons. These

terms have to be absorbed into the PDF of the virtual and real resolved photons,

respectively, leading to a point-like term in the evolution equations of the photon

PDF's. In this section, we wish to introduce the PDF of the real and the virtual

photon.

After a general discussion of the origin of the photon structure, we de�ne the

structure function and the PDF of the real photon. The evolution equations will

be explained and the di�erences to the proton will be pointed out. A discussion

of the formalism for the virtual photon PDF resembling the formalism for the

real photon follows. Finally, we compare two parametrizations of the virtual

photon PDF which we use in our computations.

4.1 Origin of the Photon Structure

The photon is the elementary gauge boson of QED. However one knows from

soft low energy p reactions, that a photon can behave like a hadron. If the time

of the interaction between the proton and the photon is much smaller than the

uctuation time t

f

of the q�q-pair, the pair will interact with the proton rather

than with the photon itself and will give rise to a hadronic structure of the
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photon. The uctuation time for high energy photons with virtuality P

2

can be

estimated from the uncertainty principle by [55]

t

f

=

2q

0

P

2

+m

2

q�q

; (74)

where q

0

is the energy of the photon and m

q�q

is the mass of the pair. As P

2

increases, t

f

becomes smaller, giving back the photon its structureless character.

Thus, one can identify the direct photon, which interacts directly as a structure-

less object, and the resolved photon, which has a hadronic structure.

At this point it is important to further distinguish the possible con�gurations

of the q�q-pair which yield di�erent contributions to the resolved photon. The

photon can create a large size, asymmetric con�guration with small transverse

momentum k

T

that gives rise to soft non-perturbative e�ects and a small size,

symmetric con�guration with large k

T

that yields hard, perturbative interactions

[56]. The soft part will behave more like a hadron and it will therefore be called

the hadronic part of the resolved photon, whereas the hard part behaves more

like a point-like photon and will therefore be called the point-like part. A possible

physics interpretation of the soft part of the resolved photon is the uctuation

of the q�q-pair into a vector-meson with m

q�q

' m

V

, which is described by the

vector-meson dominance (VMD) model [57]. The coupling of the photon to the

vector-meson

4�

f

2

V

has been predicted by the VMD model, giving

f

2

�

4�

:

f

2

!

4�

:

f

2

'

4�

= 9 : 1 : 7 : (75)

These ratios have been con�rmed by measurements of the reaction e

+

e

�

!

hadrons.

We have introduced the distinction between direct and resolved photons,

but this distinction is unambiguous only in LO. In NLO the direct and resolved

parts of the photon become intermixed through the point-like part of the resolved

photon. A possibility to distinguish between the direct and the resolved photon

interaction has been suggested by Levy [56]. Consider photon-gluon fusion as

shown in Fig. 7. The diagram on the left is usually denoted as a direct process

p
T

k
T

Fig. 7. Direct and resolved photon processes for photon-gluon fusion.

in LO. The diagram on the right describes the uctuation of the photon into a

q�q pair with a given k

T

followed by the interaction of one of the partons with a

gluon, which produces a �nal state with some p

T

. If k

T

� p

T

, the process can
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be called a resolved interaction. For k

T

� p

T

the p

T

is too small for the �nal

state partons to form two separate jets, so the diagram looks like the diagram

on the left und thus can be considered as a direct interaction. For large P

2

it is

more likely that k

T

� p

T

so that the direct component is dominant. For low P

2

the resolved part will be more dominant.

4.2 Parton Distribution Functions of the Real Photon

The structure of the real photon has been analyzed in the process e ! eX,

depicted in Fig. 8. We de�ne x � Q

2

=(Q

2

+W

2

) with Q

2

= �q

2

and P

2

= �p

2

,

where W is the c.m. energy of the 

�

 system and y � (pq)=(pk). Denoting the

longitudinal polarization state of the photon as l and the transversal one as t,

we can de�ne photon structure functions

F



1

=

Q

2

4��

1

2x

�

tt

; (76)

F



2

=

Q

2

4��

(�

tt

+ �

lt

) : (77)

Using these de�nitions, the cross section for e scattering can be written as

d�(e ! eX)

dxdy

=

4��s

Q

4

�

(1� y)F



2

+ xy

2

F



1

�

: (78)

This is in complete analogy to the DIS ep reaction. The di�erence to the case of

ep scattering lies in the fact that the photon structure function can be calculated

perturbatively in the limit of large Q

2

. This is not possible for the proton struc-

ture function. The photon structure function is computable in the quark-parton

model (QPM) from the box diagram 

�

 ! q�q and gives in LO in the limit

m

2

q

i

� Q

2

, where m

q

i

are the quark masses, [59, 60, 61]

F

;pl

2

=

N

f

X

i=1

xq



i

(x;Q

2

) (79)

with

q



i

(x;Q

2

) = 3e

2

q

i

�

2�

�

[x

2

+ (1� x)

2

] ln

Q

2

(1� x)

m

2

q

i

x

+ 8x(1� x) � 1

�

: (80)

γ*
(q)

γ(p)

e(k)

X

Fig. 8. Single-tag DIS e experiment.
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The function q



i

can be interpreted as the PDF of the quark in the photon, in

analogy to the proton case.

The QPM result can be modi�ed substantially by QCD e�ects, such as mul-

tiple gluon radiation ladder diagrams. In the limit of large Q

2

these kind of

corrections where shown to be exactly calculable in LO [46] and NLO [47]. The

result is of the form

F

;asymp

2

= �

�

a(x)

�

s

(Q

2

)

+ b(x)

�

; (81)

where a(x) is the LO and b(x) the NLO result. Unfortunately F

;asymp

2

be-

comes negative for small values of x, which cannot be true, since the photon

structure function is measurable. The problem cannot be cured by adding the

VMD contributions that have been mentioned in the previous section, since this

non-perturbative contribution is expected to be well-behaved. Therefore it is not

possible to compute the photon structure function by perturbation theory alone.

To handle the problems of the photon structure function, Gl�uck and Reya [62]

have suggested to formally add all contributions to the photon structure, namely

the QPM, their QCD corrections and the VMD contributions into a single photon

structure function F



2

=

P

i

xq



i

(x;Q

2

) and �x the quark distributions at some

input scale Q

2

0

in analogy to the proton case. Then the photonic parton densities

at di�erent values of Q

2

follow from the inhomogeneous evolution equations, that

are in LO

dq



i

dt

= h

box

+

�

s

2�

1

Z

x

dz

z

h

P

q q

�

x

z

�

q



i

+ P

g q

�

x

z

�

g



i

(82)

dg



dt

=

�

s

2�

1

Z

x

dz

z

h

P

q g

�

x

z

�

q



i

+ P

g g

�

x

z

�

g



i

: (83)

Here, t � ln(Q

2

=�

2

) and the inhomogeneity is given by

h

box

= 3e

2

q

i

�

2�

[x

2

+ (1� x)

2

] : (84)

The solution of the homogeneous equations is similar to the solution of the

DGLAP equations for hadrons and can therefore be called F

;had

2

. The particular

solution of the inhomogeneous equation is due to the inhomogeneity that stems

from the point-like coupling of the photons to the quarks and can therefore be

called F

;pl

2

. The general solution of the inhomogeneous evolution equations for

the photon is thus given by

F



2

= F

;had

2

+ F

;pl

2

: (85)

This equation allows one to speak about the hadronic and the point-like part of

the photon structure function.

The measurement of the photon structure function is not as easy as for

the proton case. Due to limited detector acceptance, the measured hadronic

energy is not equal to the total hadronic energy, so that the photon energy is
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not determined well, which leads to large systematic errors. In addition, the

structure function F



2

is small and the cross section (78) is suppressed by 1=Q

4

,

which leads to large statistical errors. In spite of these di�culties, the photon

structure has been measured for various values of Q

2

. In Fig. 9 all existing data

for F



2

is presented as a function of x for di�erent values of Q

2

(taken from [58]).

One important di�erence in the behaviour of the proton and the photon

structure functions is that F



2

manifests strong scaling violation even in LO

without gluon radiation included. It is positive in the whole x region. Further-

more, F



2

should be large at large x due to the point-like part of the photon

structure function, while the structure function of the proton is small at large x.

Predictions from several parametrizations for the PDF of the real photon (solid

curve [33], dashed curve [34], dotted curve [37]) are also shown in Fig. 9.

Figure 2: The correlation of the visible W

vis

and generatedW hadronic invariant mass,

depending on the acceptance range used for the hadrons in the event. Figure (a) shows

the correlation for HERWIG and �gure (b) the correlation for F2GEN, in each case

for two cuts on the lower polar angle of the acceptance region; � > 25 mrad means

that the energy of the forward detectors is included, whereas � > 200 mrad indicates

that the forward detectors are not used in the calculation of W

vis

. The points show

the average W

vis

in each bin, and the error bar its standard deviation. The dashed line

represents W

vis

= W .

23

Figure 5.6: Comparison between the visible and the true W .

Figure 9: The measured energy ow per event, corrected for the detector ine�ciencies,

as a function of pseudorapidity �, compared to the generated energy ow of the HER-

WIG and PYTHIA Monte Carlo models and the energy ow of a sample of pointlike

events from the F2GEN model. The vertical error bars on the data points are the sum

of the statistical and systematic errors, the horizontal bars indicate the bin widths.

Note the di�erent bin width in the forward regions.

30

Figure 5.7: Comparison of the data on energy ow as function of the pseudorapidity with

predictions of di�erent Monte Carlo generators. The Q

2

values are in units of GeV

2

.

97

Figure 5.8: Compilation of all existing data on F



2

, compared to predictions of some parton

parameterizations.

the systematic errors are quite large. This can be see in �gure 5.8 where a compilation [14]

of all existing measurements of F



2

is presented as a function of x, for di�erent Q

2

values.

The curves are the predictions of some of the parameterizations [106, 107, 108] of the

parton distributions in the photon, to be discussed below. Note that there are very few

measurements in the low x region, due to the experimental di�culties to isolate the photon{

photon reactions from the e

+

e

�

annihilation �nal state at high W .

5.7 Parton distribution in the photon

The parameterizations of the parton distributions in the photon are of two types. The

one [109] uses the separation of the photon structure function into the point{like and

98

Fig. 9. Compilation [10] of all existing data on F



2

in comparison to predictions

of the PDF parametrizations in [33, 34, 37].
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4.3 Parton Distribution Functions of the Virtual Photon

We now turn to a discussion of the virtual photon structure. Some old data

from the PLUTO collaboration [25] exist, which show the structure function of

a target photon with virtuality P

2

' 0:4 GeV

2

at Q

2

' 5 GeV

2

. At HERA

information about the structure of the virtual photon has been obtained by two

di�erent methods [23, 24]. One was by tagging photons with a mean virtuality

of P

2

' 10

�5

GeV

2

with the electron calorimeter of the luminosity system.

Another method was to use the beam-pipe calorimeter to tagg photons with a

range in virtuality of 0:1 < P

2

< 0:6 GeV

2

. The ratio of the resolved to the

direct contribution can be plotted as a function of the photon virtuality P

2

,

where an experimental de�nition of the direct and the resolved part of the cross

section has to be given. We will come back to this data in section 5, where we

calculate one- and two-jet cross sections in NLO for ep scattering under HERA

conditions. We will compare the ratios as de�ned in the experiment with our

theoretical predictions.

Here, we concentrate on the construction of the PDF's for a virtual photon.

First, we state the LO QPM result for virtual photons, which substitutes the

result (80) for real photons. The virtuality P

2

serves as a regulator in this case

and in the limit �

2

� P

2

� Q

2

one obtains [59, 60, 61]

q



�

i

(x;Q

2

) = 3e

2

q

i

�

2�

�

[x

2

+ (1� x)

2

] ln

Q

2

x

2

P

2

+ 6x(1� x)� 2

�

: (86)

The evolution equations in Q

2

for virtual photons and the resulting PDF's are

exactly calculable in perturbative QCD in a limited range of photon virtuality,

�

2

� P

2

� Q

2

[60, 61]. The PDF's of the real photon are known for the region

P

2

� �

2

, as described in section 4.2. At HERA, though, the intermediate region

P

2

' �

2

is of special interest, as has been noted above. The aim of Gl�uck, Reya

and Stratmann (GRS) in [36] and Schuler and Sj�ostrand (SaS) in [37] was to

construct PDF's for virtual photons, that are valid in the whole P

2

-region, i.e.

0 � P

2

� Q

2

. We explain the constructions of these PDF's in the following.

4.3.1 The PDF's of GRS Gl�uck, Reya and Stratmann have used for their

construction a VMD inspired interpolation between the PDF's of real photons

and those valid at P

2

� �

2

[36], since the PDF's f



i

(x;Q

2

; P

2

) obey evolution

equations similar to those of the real photon. The question therefore reduces to

�nding appropriate boundary conditions at Q

2

= P

2

. De�ning

�(P

2

) �

m

4

�

(m

2

�

+ P

2

)

2

; (87)

where m

2

�

= (0:77)

2

GeV

2

refers to some e�ective mass in the vector-meson

propagator, PDF's valid for all values of P

2

are de�ned as

f



�

(x;Q

2

= P

2

; P

2

) = �(P

2

)f



�

had

(x; P

2

) + [1� �(P

2

)]f



�

pl

(x; P

2

) : (88)

In this formula, the perturbatively calculable pointlike part f



�

pl

is given by the

function q



�

i

(x;Q

2

= P

2

) from equation (86) and g



�

(x;Q

2

= P

2

) = 0 in NLO.
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For a LO construction, f



�

pl

(x;Q

2

= P

2

) = 0. These results are for the DIS



scheme [33], which is connected to the MS-scheme via the transformations

q



�

DIS



= q



�

MS

+ q



i

(x;Q

2

= m

2

i

)

g



�

DIS



= g



�

MS

; (89)

where q



i

(x;Q

2

) is given by (80). These transformations are valid only for the

NLO distributions, whereas the LO distributions are equal in both schemes. The

reason for introducing the DIS



scheme was that the di�erences between the LO

and the NLO result are small. The hadronic, non-perturbative input is given by

f



�

had

(x; P

2

) = �

4��

f

2

�

�

�

f

�

(x; P

2

) ; P

2

> �

2

f

�

(x; �

2

) ; 0 � P

2

� �

2

(90)

where �

2

LO

= 0:25GeV

2

and �

2

NLO

= 0:3GeV

2

. The function �(4��=f

2

�

)f

�

(x; �

2

)

is just the prescription for the boundary conditions at input scale Q

2

= �

2

for

real photons. As one observes,

�(P

2

= 0) = 1 and 1� �(P

2

� �

2

)! 1 : (91)

Thus, the usual real photon PDF is regained for P

2

= 0, whereas the perturba-

tively calculable part dominates for P

2

� �

2

. The number of avors is set to

N

f

= 3. The heavy quark sector (c; b; : : :) is supposed to be added as predicted

by perturbation theory of �xed order with no active c and b quarks in the proton

and photon PDF's. In LO this amounts to adding the processes 

�

g ! c�c and



�

g ! b

�

b to the cross section, keeping m

c

;m

b

6= 0.

In [27] GRS have provided PDF's of the virtual photon in a parametrized

form in LO that can be conveniently used for numerical calculations. The input

scale is Q

0

= 0:5 GeV and the restriction P

2

� Q

2

=5 is implemented as to

ful�ll the condition P

2

� Q

2

. We show the x-distribution for the up-quark at

a scale of Q

2

= 50 GeV

2

for three di�erent values of P

2

, namely P

2

= 0; 1 and

5 GeV

2

in Fig. 10 a. As one observes, the distribution decreases with increasing

P

2

. For P

2

= 0 the real photon PDF of Gl�uck, Reya, Vogt [33] is reproduced

exactly and the curves fall on top of each other. The use of the MS scheme for

the LO distributions has to be explained. The authors GRS and SaS both give

distributions in the DIS



scheme, but their schemes di�er slightly. SaS actually

also give MS distributions. In order to make the results comparable, we treat the

distributions of GRS formally as in NLO and use the transformation equations

(89) also for the GRS LO distributions.

It should be mentioned, that GRS have calculated NLO distributions in [27].

Distinct di�erences occur for larger P

2

and x > 10

�3

which is mainly due to

the di�erent NLO perturbative boundary condition at P

2

= Q

2

, which does not

exist for the real photon structure function.

4.3.2 The PDF's of SaS Schuler and Sj�ostrand represent the solution of the

inhomogeneous evolution equations of the real photon as a sum of a perturbative
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Fig. 10. (a) The GRS LO prediction in the MS scheme for the up-distribution of

a virtual photon atQ

2

= 50 GeV

2

and various �xed values ofP

2

. For comparison,

the LO prediction of GRV for a real photon [33] is shown, which lies exactly on

top of the PDF of GRS for P

2

= 0; (b) SaS1M PDF's.

and a non-perturbative term [37]

f



(x;Q

2

) =

X

V

4��

f

2

V

f

;VMD

(x;Q

2

;Q

2

0

) +

�

2�

X

i

2e

2

q

i

Q

2

Z

Q

2

0

dk

2

k

2

f

;q�q

(x;Q

2

; k

2

) :

(92)

Here, Q

2

0

� �

2

is the input scale for the non-perturbative solution f

;V MD

of the

homogeneous evolution equations, which can be interpreted as a uctuation of

the real photon into vector-mesons. The second term represents the anomalous

perturbative solutions of the  ! q�q uctuations, where k

2

is the virtuality of

the q�q-pair, which has a continuous spectrum. As noted above, the evolution

equations of the PDF's of the virtual photon can be exactly calculated in the

range Q

2

0

� P

2

� Q

2

. For real photons in the region of P

2

� Q

2

0

, the PDF's
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Fig. 11. (a) Comparison between the GRS and SaS1M LO predictions for the

up-distribution of a virtual photon at Q

2

= 50 GeV

2

and P

2

= 1:0 GeV

2

and

the purely perturbative contribution in the MS scheme; (b) P

2

= 10 GeV

2

. The

distribution for GRS lies exactly atop of the SaS1M curve.

are given by equation (92). To obtain results valid for the whole P

2

region, SaS

make use of the dispersion relation

f



�

(x;Q

2

; P

2

) =

�

2�

X

i

2e

2

q

i

Q

2

Z

0

dk

2

k

2

�

k

2

k

2

+ P

2

�

2

f

;q�q

(x;Q

2

; k

2

) : (93)

This model provides the correct behaviour for both P

2

! 0 and the above

described perturbative region. Now, the region of low k

2

can be associated with

the discrete set of vector-mesons, so that by introducing the cut-o� Q

2

0

in the

k

2

-integration SaS obtain [37]

f



�

(x;Q

2

; P

2

) =

X

V

4��

f

2

V

�

m

2

V

m

2

V

+ P

2

�

2

f

;V MD

(x;Q

2

;

~

Q

2

0

)
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+

�

2�

X

i

2e

2

q

i

Q

2

Z

Q

2

0

dk

2

k

2

�

k

2

k

2

+ P

2

�

2

f

;q�q

(x;Q

2

; k

2

) : (94)

These parton distributions are the solutions of the inhomogeneous evolution

equations of the virtual photon. Note, that the input scale for the VMD PDF's

has been shifted from Q

2

0

!

~

Q

2

0

with Q

2

0

<

~

Q

2

0

. This is motivated by a study

of the evolution equations in [63], which shows that the evolution for virtual

photons starts later in Q

2

.

The authors SaS have provided the PDF's of the virtual photon in a para-

metrized form in LO for N

f

= 4 in [37] for two di�erent input scales, namely

Q

0

= 0:6 GeV and Q

0

= 2 GeV. We will use the lower scale in this work.

In contrast to the GRS parametrization, the c quark is included as a massless

avor in the PDF that undergoes the usual evolution as the other massless quarks

except for a shift of the starting scale Q

0

. We show the up-quark distribution in

comparison to the ones obtained by GRS in Fig. 10 b for the same scale and P

2

values as in Fig. 10 a. They show roughly the same behaviour and deviate only

in the small x region. For P

2

= 0, the GRV [33] distribution of the real photon

is recovered more or less. We have used the SaS1M parametrization, which is

given in the MS scheme, to make the SaS results comparable with the GRS

distributions.

In section 3.5 we have calculated the part of the hard cross section for an

incoming virtual photon that couples directly to the subprocess, leading to the

logarithmic terms ln(P

2

=Q

2

). The logarithm is absorbed into the PDF of the

virtual photon. As we suspect from the above discussion, the PDF of the virtual

photon should reduce approximately to the perturbatively calculable contribu-

tion (72) in the region of large P

2

. Thus, comparing the contribution (72) directly

with the, say, up-quark distribution for virtual photons should lead to results of

the same order of magnitude for large P

2

. They cannot give exactly the same

results, since the perturbative part of the u-quark distribution is evolved with

help of the evolution equations. In Fig. 11 a, b we show the purely perturba-

tive contribution in comparison to the u-quark distributions GRS and SaS1M

at Q

2

= 50 GeV

2

for the two values P

2

= 1 GeV

2

and P

2

= 10 GeV

2

in the

MS-scheme. As one observes, the perturbative solution and the u-distribution

coincide rather well for the larger P

2

value, especially in the large x range, with

a slight enhancement of the perturbative curve near x = 1.

5 Electron-Proton Scattering at HERA

We come to an analysis of inclusive jet-rates in electron-proton scattering for

slightly o�-shell photons. After the introduction of the hadronic cross section,

using the calculated partonic cross sections of section 3, we explain the matching

of theoretical and experimental jet de�nitions. Afterwards, some numerical tests

are discussed, and �nally numerical results for one- and two-jet inclusive cross

sections are given. A comparison with present HERA data is shown.
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5.1 Hadronic Cross Section

We write electron-proton scattering for the production of two jets as

e(k) + P (p)! e(k

0

) + Jet

1

(E

T

1

; �

1

) + Jet

2

(E

T

2

; �

2

) +X : (95)

Here, k and p are the momenta of the incoming electron and proton, respectively,

and k

0

is the momentum of the outgoing electron. The jets in the �nal state

are characterized by their transverse momenta E

T

i

and rapidities �

i

, which are

observables in an experimental setup. The interaction of the electron with the

proton is mediated by an electroweak vector boson with four-momentum q �

(k � k

0

) and virtuality P

2

� (�q

2

). The process is dominated by a photon,

especially for the small virtualities under consideration. We therefore concentrate

on the photon and neglect contributions from the other electroweak bosons. The

phase space of the electron can be parametrized by the variables y � (pq)=(pk)

and P

2

. In the case of small virtualities P

2

� q

2

0

, where q

0

is the energy of the

virtual photon, y gives the momentum fraction of the electron energy E

e

, carried

away by the virtual photon, so y ' q

0

=E

e

. The c.m. energy of the hadronic

system is given by s

H

= (p+ k)

2

, whereas the c.m. energy of the photon-proton

subsystem is W

2

= (p+ q)

2

.

We have discussed the factorization of hard and soft regions of the electron-

proton cross section in section 2. The hadronic cross section d�

H

may be written

as a convolution of the hard scattering process d�

e=k

with the PDF of the proton

f

k=P

(x

b

), where x

b

is the momentum fraction of the parton from the proton:

d�

H

(s

H

) =

X

k

Z

dx

b

f

k=P

(x

b

)d�

e=k

(x

b

s

H

) : (96)

The hard process is given by the squared matrix element jMj

2

, which has to be

divided by the ux factor 2s

H

x

b

and multiplied by the phase space of n �nal

state particles of the subprocess and the electron, dPS

(n+1)

:

d�

e=k

=

1

4s

H

x

b

jMj

2

dPS

(n+1)

: (97)

The matrix element jMj

2

separates into the hadron tensor H

��

and the lepton

tensor L

��

= 4(k

�

k

0

�

� k

0

�

k

�

� g

��

kk

0

):

jMj

2

=

4��

P

4

L

��

H

��

: (98)

The constant � is the electromagnetic coupling constant. The separation of the

phase space into a part depending only on the electron dL and a part depending

only on the �nal state particles of the subprocess dPS

(n)

is easily achieved by

inserting a delta function for the intermediate virtual photon and gives

dPS

(n+1)

= dLdPS

(n)

with dL =

P

2

16�

2

d�

2�

dydP

2

P

2

: (99)

Here � is the azimuthal angle of the outgoing electron. This degree of freedom

can be integrated out, yielding

1

4P

2

Z

d�

2�

L

��

H

��

=

1 + (1� y)

2

2y

2

H

g

+

4(1� y) + 1 + (1� y)

2

2y

2

H

L

; (100)
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with the de�nitions H

g

� �g

��

H

��

and H

L

� (4P

2

)=(s

H

y)

2

p

�

p

�

H

��

. Since we

will consider the range of small photon virtualities P

2

throughout this work,

the contribution H

L

proportional to P

2

will be neglected. We approximate the

spectrum of the virtual photons by

df

=e

(y)

dP

2

=

�

2�

1 + (1� y)

2

y

1

P

2

; (101)

which is the unintegrated Weizs�acker-Williams [8] formula. For later use we de-

�ne the virtuality P

2

eff

= 0:058 GeV

2

. By inserting P

2

eff

into the unintegrated

Weizs�acker-Williams formula, we obtain the value for the Weizs�acker-Williams

formula integrated in the region P

2

min

� P

2

� P

2

max

= 4 GeV

2

using the mini-

mum photon virtuality P

2

min

:=

m

2

e

y

2

1�y

. In this way, we can reproduce the P

2

' 0

results.

De�ning the partonic cross section

d�

=k

=

1

4x

b

ys

H

H

=k

dPS

(n)

; (102)

the hard scattering (97) integrated over the angle � can be written as

d�

e=k

= d�

=k

df

=e

(y)dy : (103)

As discussed in the previous section, a photon with moderate virtuality in-

teracts with a proton not only as a point-like particle, but also via its hadronic

content. The hadronic structure of the photon is described by a PDF f

=l

(x

a

),

introducing the new variable x

a

that gives the momentum fraction of the parton

from the photon. To simplify the notation, the case of a direct photon is included

into the PDF of the photon via the delta function f



(x

a

) = �(1�x

a

). Summa-

rizing the above results, the hadronic cross section d�

H

(s

H

) may be written as

a convolution of the hard scattering d�

k=l

with the PDF of the photon f

=l

(x

a

)

and of the proton f

k=P

(x

b

), multiplied by the photon spectrum df

=e

(y):

d�

H

=

X

k;l

Z

dx

a

dx

b

dy df

=e

(y) f

=l

(x

a

)d�

l=k

f

k=P

(x

b

) : (104)

The hard cross section d�

kl

now describes the interactions of the partons from

the photon (and the photon itself) with the partons from the proton and is given

by the trace of the hadron tensor, multiplied with the phase space of the �nal

state particles, divided by the ux factor:

d�

l=k

=

1

4x

a

x

b

ys

H

H

l=k

dPS

(n)

: (105)

The factorization (104) is visualized in Fig. 12.

For electron-proton scattering, the SR case, in which the virtual photon cou-

ples directly to the partons from the proton, and the DR case, in which the

photon serves as a source of partons, are present. As mentioned in section 2, the

matrix elements cannot be integrated over the whole region of phase space in
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e

P

P
2
 = -q

2

y

x
b

x
a

        (p
t
)Jets

photon remnant

proton remnant

Fig. 12. Factorization of hard and soft contributions in electron-proton scatter-

ing.

NLO. A cut-o� has to be introduced that separates the singular from the �nite

regions. The results for the integration over the singular regions were given in

section 3 and the factorization of singular terms has been discussed. Although

the calculation of the NLO matrix elements is straightforward, especially using

algebraic programs like REDUCE [64], the results for the full matrix elements are

too cumbersome to be stated here. For both, the SR and the DR cross section,

we have a set of two-body contributions and a set of three-body contributions.

Each set is completely �nite, as all singularities have been canceled or absorbed

into PDF's. Each part depends separately on the phase space slicing parameter

y

c

. The analytic calculations are valid only for very small y

c

, since terms O(y

c

)

have been neglected in the analytic integrations. As explained in section 3.3, the

two separate pieces have no physical meaning. When the two-body and three-

body contributions are superimposed to yield a suitable inclusive cross section,

as for example the inclusive one- or two-jet cross section, the dependence on the

cut-o� y

s

will cancel. This has been checked explicitly and will be demonstrated

in section 5.4.

We now come to the kinematics of electron-proton scattering. We �rst con-

centrate on the SR cross section, for which the kinematics is most easily treated

in the c.m. system of the virtual photon and the proton, where for the three-

vectors p+ q = 0. We denote the momenta of the �nal state particles as p

1

and

p

2

, which can be expressed by their transverse momenta E

T

1

= E

T

2

= E

T

and

their rapidities �

1

and �

2

in the 

�

P c.m. system by p

i

= E

T

(cosh �

i

; 0; 0; sinh�

i

)

(remember that the azimuthal angle has been integrated out). From energy and

momentum conservation one obtains

W = E

T

(e

��

1

+ e

��

2

) ; (106)

y =

W

2

+ P

2

s

H

; (107)

x

b

= 1 +

2W

W

2

+ P

2

E

T

(sinh �

1

+ sinh�

2

) : (108)
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The phase space, including the integration over x

b

and y, can be expressed as

dPS

(2)

dx

b

dy =

W

2

W

2

+ P

2

2E

T

s

H

dE

T

(2�)

2

d�

1

d�

2

: (109)

The Mandelstam variables s; t and u are de�ned as

s = (p

b

+ q)

2

= (p

1

+ p

2

)

2

;

t = (q � p

1

)

2

= (p

b

� p

2

)

2

; (110)

u = (q � p

2

)

2

= (p

b

� p

1

)

2

:

In the DR case, the rapidities of the �nal state partons �

0

1

and �

0

2

are expressed

in the c.m. system of the two partons and have to be boosted into the photonic

c.m. system via

�

i

= �

0

i

+

1

2

lnx

a

for i = 1; 2 : (111)

Inserting these transformed rapidities into the above equations (106){(109) the

correct formul� in the case of the resolved photon for x

a

; x

b

; y and W , now

containing �

0

i

, are obtained. For x

a

= 1, which de�nes the SR case, the two

systems are identical and �

0

i

= �

i

.

For a comparison with HERA data the rapidities and transverse momenta

have to be transformed from the photonic c.m. system to the HERA laboratory

system. The calculation of the SR and DR cross sections proceed as for real

photoproduction, i.e. the transverse momentum (q

T

) of the virtual photon and

other small terms proportional to P

2

are neglected so that the virtual photon

momentum is in the direction of the incoming electron and q

0

= E

e

y. The

transformation from the c.m. system into the HERA laboratory system is as for

real photoproduction:

�

lab

i

= �

i

+

1

2

ln

E

p

yE

e

: (112)

5.2 Snowmass Jet De�nition

The factorization of hard and soft regions in the hadronic cross section has been

discussed so far for the initial state. The non-perturbative and not calculable

regions are parametrized through the PDF's of the hadron or the resolved pho-

ton. A similar problem occurs in the �nal state. The partons that are emitted

from the subprocess cannot be observed directly due to the con�nement of color

charge. The hadronization of partons into single hadrons in the �nal state can be

described, similarly to hadrons in the initial state, by fragmentation functions.

Another possibility is the observation of a shower built from a large number of

hadrons without resolving the speci�c type of hadrons emitted. One then has

to de�ne jets in order to identify the hadron showers with individual partons or

their combinations from the subprocess. The combination of hadrons into jets

is done by cluster algorithms, where jet de�nitions can be implemented. The jet

de�nitions should ful�ll a number of criteria [65], such as they should be simple

to implement in theory and experiment, be well de�ned and yield �nite cross
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sections in any order of perturbation theory and give cross sections that are more

or less insensitive to the hadronization processes.

Looking at the theoretical side of inclusive two-jet cross sections, in LO there

is a one-to-one correspondence between the parton from the subprocess and the

jet in the �nal state. Therefore the theory is not sensitive to any speci�c cluster

algorithm used in the experiment. This is not sensible, because the experimental

results depend strongly on the used algorithm. Only in NLO can one imple-

ment certain jet de�nitions on the theoretical side, because the jet can obtain a

substructure due to the nearly collinear radiation of a parton in the �nal state.

Several jet de�nitions have been proposed to date, one of the �rst being the

(�; �) criterion of Sterman and Weinberg [66] (see also [50]). We will adopt the jet

de�nition of the Snowmassmeeting [67]. According to this de�nition, two partons

i and j are recombined, if R

i;J

< R, where R

i;J

=

p

(�

i

� �

J

)

2

+ (�

i

� �

J

)

2

and

�

J

; �

J

are the rapidity and the azimuthal angle of the combined jet respectively,

de�ned as

E

T

J

= E

T

1

+E

T

2

; (113)

�

J

=

E

T

1

�

1

+E

T

2

�

2

E

T

J

; (114)

�

J

=

E

T

1

�

1

+ E

T

2

�

2

E

T

J

: (115)

The cone-radius R is chosen as in the experimental analysis. Thus, two partons

are considered as two separate jets or as a single jet depending on whether they

lie outside or inside the cone with radius R around the jet momentum. In NLO,

the �nal state may consist of two or three jets. The three-jet sample contains all

three-body contributions, which do not ful�ll the cone condition. The rapidities

used for the cone constraint are evaluated in the HERA laboratory system.

5.3 Numerical Input

We now describe the input for the numerical calculations. We have chosen the

CTEQ3M proton structure function [68] which is a NLO parametrization in the

MS scheme, with �

(4)

MS

= 239 MeV. This � value is also used to calculate �

s

from the two-loop formula

�

s

(�) =

12�

(33� 2N

f

) ln

�

2

�

2

 

1�

6(153� 19N

f

)

(33� 2N

f

)

2

ln(ln

�

2

�

2

)

ln

�

2

�

2

!

: (116)

We use this formula for both the LO and NLO calculations. In the case of

photoproduction, the scale � is set equal to the transverse momentum of the

jets, since this is the only hard scale present in the interactions. Here, P

2

� E

2

T

,

so that we also set � = E

T

. Equivalently, the factorization scales are chosen to

be M



= M

p

= E

T

.

For the PDF's of the virtual photon we choose either the GRS [36] set or the

SaS1M set [37]. Both sets are given in parametrized form for all scalesM

2



so that

they can be applied without repeating the computation of the evolution. As men-

tioned in section 4, both sets are given only in LO, i.e. the boundary conditions
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for P

2

= M

2



and the evolution equations are in LO. Since neither of the two

PDF's is constrained by empirical data from scattering on a virtual photon tar-

get we consider these LO distribution functions as su�cient for our exploratory

studies on jet production and treat them as if they were obtained in NLO. As

noted in section 4, the heavy quarks are supposed to be added as predicted by

�xed order perturbation theory with no active heavy quarks in the PDF's of

the proton and the photon. Since in this section we are primarily interested in

studying the sum of the direct and resolved contributions and the inuence of

the consistent subtractions of the NLO direct part we refrain from adding the

LO or NLO cross sections for direct heavy quark production as suggested in

[27, 36]. So, our investigations in connection with the GRS parametrization of

the virtual photon PDF are for a model with three avors only. For consistency

we take also N

f

= 3 in the NLO corrections and in the two-loop formula for

�

s

. Of course, the proton PDF has been obtained for N

f

= 4. In comparison to

the GRS parametrization, we studied the relevant cross sections also with the

virtual photon PDF's of SaS [37], which are for N

f

= 4.

The cross sections we have computed are for kinematical conditions as in

the HERA experiments, for which positrons of E

e

= 27:5 GeV which collide

with protons of E

p

= 820 GeV. To have the equivalent conditions as in the

ZEUS analysis we choose the constraints y

min

= 0:2 and y

max

= 0:8 for the

variable occuring in the unintegrated Weiz�acker-Williams approximation. The

cone radius is set to R = 1.

5.4 Numerical Tests

Since the separation of the two-body and three-body contributions with the

slicing parameter y

c

is a purely technical device in order to distinguish the phase

space regions where the integrations are done analytically from those where they

are done numerically, the sum of the two- and three-body contributions should

be independent from y

c

. The dependence of the two-body contributions on the

slicing parameter is logarithmic, giving rise to (ln y

c

)- and (ln

2

y

c

)-terms. The

parameter y

c

has to be quite small to guarantee that the approximations in the

analytical calculations are valid. Typically, y

c

is of the order of 10

�3

, forcing

the two-body contributions to become negative, whereas the three-body cross

sections are large and positive. In Fig. 13 a, b we have checked for two di�erent

values of P

2

, by varying y

c

between 10

�4

and 10

�2

, that the superimposed two-

and three-body contributions are independent of y

c

for the inclusive single-jet

cross sections integrated over the whole kinematically allowed � region for �xed

E

T

= 20 GeV. Only the SR contribution is tested, since the insensitivity of the

DR contributions on y

c

has been checked in [13, 22].

Furthermore, we have explicitly checked that the SR one- and two-jet cross

sections for virtual photons are in perfect agreement with the ones from real

photoproduction given in [14, 13] by integrating the virtuality numerically over

the region of small P

2

with P

2

min

� P

2

� 4 GeV

2

. The main contribution to the

cross section comes from the lower integration boundary, where the dependence

of the matrix elements on P

2

is small.

Both, the y

c

-dependence test and the comparison with the results from [14,

13], give us con�dence that our computer program for the calculation of jet
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Fig. 13. (a) Single-jet inclusive cross section integrated over the physical � region

for E

T

= 20 GeV and for the virtuality P

2

= 0:058 GeV

2

as a function of the

slicing parameter y

c

. The solid line gives the sum of the two- and the three-body

contributions; (b) P

2

= 10:0 GeV

2

.

cross sections in electron-proton scattering yields reliable results. It is interesting

now to study the scale dependences of the LO and NLO cross sections. The

relevant scales are the renormalization scale �, the factorization scale for the

virtual photon M



and that for the proton M

p

. Since the dependence on these

scales should vanish in an all-order calculation, we expect the dependences to

be reduced by going from LO to NLO.

Of special interest is the dependence of the cross section on the factorization

scale M



, which comes from the factorization of the photon initial state singu-

larities. The dependence is logarithmic, since terms proportional to ln(M

2



=P

2

)

have been subtracted from the NLO cross section for the direct virtual photon,

as indicated in equation (72). The dependence of the NLO direct single-jet in-

clusive cross section, integrated over the region � 2 [�1:875; 1:125] for E

T

= 7

GeV, on the parameterM



=E

T

for two di�erent values of P

2

is shown in Fig. 14
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a, b as the dashed curve. It is compared to the resolved virtual photon contri-

bution in LO, which gives the dotted curve. It is su�cient to use the LO matrix

elements, since the mainM



dependence of the resolved contribution stems from

the dependence of the photon PDF on the negative logarithm� ln(M

2



=P

2

). For

the comparison we used the SaS1M parametrization of the virtual photon, which

is given in the MS scheme. As one can see from the Fig. 14 a, b, the dependences

on the logarithms of the direct and the resolved contributions cancel rather well

in the sum.
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Fig. 14. (a) Single-jet inclusive cross section integrated over � = [�1:875; 1:125]

for E

T

= 7 GeV and for the virtuality P

2

= 1:0 GeV

2

as a function of the scale

parameter M



=E

T

. The MS-SaS1M parametrization with N

f

= 4 is chosen. The

solid line gives the sum of the NLO direct and LO resolved virtual photon cross

sections; (b) P

2

= 10:0 GeV

2

.

Finally, we study the renormalization scale dependence of the NLO correc-

tions as compared to the LO cross section. We consider only the SR contribu-

tions, since the DR have been tested and shown to have a reduced scale de-

pendence in [13, 22]. In Fig. 15 a, b we have plotted the one-jet inclusive cross
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section integrated over � 2 [�1:875; 1:125] for E

T

= 7 GeV and P

2

= 1; 10 GeV

2

.

We have used the two-loop formula for �

s

also in the LO calculation for better

comparison. For P

2

= 1 GeV

2

the scale dependence of the NLO curve is reduced

considerably. At P

2

= 10 GeV

2

though, the NLO cross section falls o� slightly

for the smaller scales below � ' E

T

. This could be attributed to the fact, that

the scale and the virtuality are of the same order in this region and the condition

P

2

� Q

2

required in the construction of the virtual photon PDF begins to be-

come violated. Actually, for a full test of the renormalization scale dependence

it would be necessary to vary all scales � = M



= M

p

simultaneously, since

also the structure functions are renormalization scale dependent. It is an em-

pirical fact, that the scale dependence of the proton structure function is small.

The dependence of the photon structure function on the renormalization scale

is large, but this can only be accounted for by the resolved contributions. The

reduced renormalization scale dependence of the sum of the direct and resolved

contributions has already been demonstrated in [13, 22].

5.5 Single-Jet Inclusive Cross Sections

In this section, we present numerical results for inclusive one-jet cross sections

as a function of the virtuality P

2

. We choose the following notation of the curves

as to make the discussion clearer: the SR cross sections shall be denoted as Dir

(reminding of the direct character of the virtual photon), whereas the DR cross

sections are labeled Res. In addition, the sum of the SR and DR contributions is

shown and labeled Sum. Note, that in the case of electron-proton scattering the D

component does not exist. As has been calculated in section 3, large logarithmic

contributions occur for small photon virtualities for the, direct virtual photon

that can be subtracted and absorbed into the PDF of the virtual photon. The SR

cross sections, where these logarithmic terms have been subtracted, are speci�ed

by the index s, giving the contributions Dir

s

. All plots in this section are taken

from ref. [26].

We �rst concentrate on predictions with the PDF's of GRS. In Fig. 16 a, b, c,

the results for d

3

�=dE

T

d�dP

2

are shown as a function of E

T

integrated over � in

the interval�1:125 � � � 1:875, which are the boundaries employed in the ZEUS

analysis [23]. We show results for the the three values of P

2

= 0:058; 0:5 and 1

GeV

2

. For all three P

2

the cross section is dominated by the Res component at

small E

T

. Near E

T

= 20 GeV the Dir

s

contribution is of the same magnitude as

the Res cross section. The sum of the cross sections as a function of P

2

falls o�

nearly uniformly in the considered E

T

range with increasing P

2

. This decrease

is stronger for smaller E

T

.

Next, we studied the � distribution of the Dir

s

contribution at �xed E

T

=

7 GeV and the same P

2

values as in Fig. 16. The results are shown in Fig.

17 a, b, c, where two approximations are shown, namely the LO cross section

and the NLO cross section from [13]. There, P

2

= 0 everywhere, except for

the unintegrated Weizs�acker-Williams approximation, which leads to a 1=P

2

dependence. Obviously this approximation is good for P

2

= 0:058 GeV

2

. At the

larger P

2

however it overestimates the cross section and should not be used.

This means that the P

2

dependence of the Dir

s

part, although the strongest
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Fig. 15. (a) Single-jet inclusive cross section integrated over � = [�1:875; 1:125]

for E

T

= 7 GeV and for the virtuality P

2

= 1:0 GeV

2

as a function of the scale

parameter �=E

T

. The MS-SaS1M parametrization with N

f

= 4 is chosen. The

solid line gives the NLO direct prediction, whereas the dashed curve shows the

LO cross section; (b) P

2

= 10:0 GeV

2

.
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logarithmic P

2

dependence has been subtracted, should be taken into account.

In the sum of the Dir

s

and Res cross sections the di�erence is small as long as

the Res part dominates. This holds for the smaller E

T

's. The LO prediction is

evaluated with the same structure functions and �

s

value as the NLO result. It is

smaller than the NLO result, which it approaches with increasing P

2

. Of course,

this �nding depends on the chosen value of R because the NLO cross section

depends on R, whereas the LO curve does not, as we have already noted before.

Estimates of the inclusive cross section with LO calculations can therefore only

be trusted for large cone radii.

The results shown so far are for a model with three avors only and therefore

should not be compared to the experimental data except when the contribution

from the charm quark is added at least in LO. A more realistic approach is to use

the photon PDF's SaS1M [37] which are constructed for four avors. In Fig. 18 a,

b, c results are presented for d

3

�=dE

T

d�dP

2

integrated over � 2 [�1:125; 1:875]

as a function of E

T

for P

2

= 0:058; 0:5 and 1:0 GeV

2

. We can compare these

curves with the results in Fig. 16a, b, c obtained with the PDF of GRS, where

N

f

= 3. The sum of the Dir

s

and Res contributions changes by 10% to 30% in

the small E

T

region and approximately 50% in the large E

T

region. The larger

cross section for N

f

= 4 results mainly from the Dir

s

contribution. The direct

component is more important for larger E

T

than for smaller E

T

. Therefore the

increase is stronger in the large E

T

region.

Of interest are also the rapidity distributions for �xed E

T

. These are shown

for E

T

= 7 GeV as a function of � between �1 � � � 2 choosing P

2

= 0:058; 1; 5

and 9 GeV

2

in Fig. 19 a, b, c, d. We show the subtracted Dir

s

cross section, the

Res cross section and their sum. The Res component has its maximum shifted to

positive �'s in contrast to the Dir

s

component, as expected. The Dir

s

component

decreases quite rapidly with increasing �. This stems from the subtraction of

the (lnP

2

=M

2



) terms as can be seen by comparison with the unsubtracted cross

section, denoted Dir, in Fig. 19 a, b, c, d. The sum of the resolved and subtracted

direct cross section Dir

s

is more or less constant for the smaller P

2

values and

decreases with increasing � for P

2

= 5 and 9 GeV

2

.

In section 4.3 we have checked by a direct comparison, that the subtraction

term (72) approximates the PDF of the photon rather well for large enough P

2

.

Thus, for these large virtualities we expect the unsubtracted cross section (Dir)

to be the correct one, rather than the sum of the subtracted direct Dir

s

and the

resolved contributions, at least for small �. The larger P

2

, the closer does the

full direct cross section Dir approach the sum Res+Dir

s

, as can be observed in

Fig. 19 a, b, c, d. As we have seen in section 4.3, there still is a deviation of the

pure perturbative contribution from the evolved PDF in the small x region. This

corresponds to the kinematic region of large �, which is the forward direction of

the proton. This deviation is evident in the Fig. 19 a, b, c, d as well; at P

2

= 9

GeV

2

the two cross sections di�er at � = 2 by approximately 30 %. Another

di�erence shows up in the backward direction at � = �1. In this region, which

corresponds to the region in the photon PDF where the perturbative component

dominates, no deviation is expected. The cause might be the neglection of the

transverse momentum q

T

of the virtual photon in the calculation of the Dir and

Res cross sections, which becomes especially important for larger P

2

. Actually,
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Fig. 16. (a) Single-jet inclusive cross section integrated over � 2 [�1:125; 1:875]

for the virtuality P

2

= 0:058 GeV

2

. The MS-GRS parametrization with N

f

= 3

is chosen. The solid line gives the sum of the subtracted direct and the resolved

term; (b) P

2

= 0:5 GeV

2

; (c) P

2

= 1:0 GeV

2
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Fig. 17. (a) Single-jet inclusive cross sections for E

T

= 7 GeV and P

2

= 0:058

GeV

2

. The MS-GRS parametrization with N

f

= 3 is chosen. Only the SR part

with subtraction (Dir

s

) is plotted. The solid line gives the LO contribution. The

dashed curve is the full NLO cross section, whereas the dotted curve gives the

NLO cross section, where the NLO matrix elements have no P

2

-dependence; (b)

P

2

= 0:5 GeV

2

; (c) P

2

= 1:0 GeV

2

.
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Fig. 18. (a) Single-jet inclusive cross section integrated over � 2 [�1:125; 1:875]

for the virtuality P

2

= 0:058 GeV

2

. The MS-SaS1M parametrization with N

f

=

4 is chosen. The solid line gives the sum of the subtracted direct and the resolved

term; (b) P

2

= 0:5 GeV

2

; (c) P

2

= 1:0 GeV

2

.
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Fig. 19. (a) Comparisons of single-jet inclusive cross sections for E

T

= 7 GeV

and the virtuality P

2

= 0:058 GeV

2

. The MS-SaS1M parametrization with N

f

=

4 is chosen. The solid line gives the sum of the subtracted direct and the resolved

term. The dash dotted curve is the direct contribution without subtraction; (b)

P

2

= 1 GeV

2

; (c) P

2

= 5 GeV

2

; (c) P

2

= 9 GeV

2

.

looking at Fig. 10 b from section 4, the purely perturbative curve, which will

occur in the unsubtracted Dir component, overestimates the up-distribution at

x = 1, which corresponds to the backward � region. So, also in this region, the

sum of the Dir

s

and the Res components could still be a better estimate of the

cross section, than the Dir component alone.

It is clear that the resolved and the direct cross sections decrease with in-

creasing P

2

for �xed � and E

T

. It is of interest to know how the ratio of Res

to the Dir cross section behaves as a function of P

2

. This has been analyzed in

[26]. Apart from the fact that the ratios cannot be measured directly, we found

a strong dependence of the ratio on the scheme chosen for the photon PDF and

very large corrections when going from LO to NLO. As one can deduce from

these results, it is not very sensible to compare the Dir and Res contributions

directly. Rather one has to introduce a parameter that experimentally separates
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Dir and Res contributions. We will introduce this parameter in the following

section.

5.6 Dijet Inclusive Cross Sections

In comparison to single-jet cross sections, dijet cross sections provide a much

stronger test of QCD, since they depend on one variable more. We will now

present inclusive dijet cross sections d

4

�=dE

T

d�

1

d�

2

dP

2

as a function of P

2

.

The variable E

T

is de�ned according to [12, 13] to be the transverse momentum

of the measured (trigger) jet, which has rapidity �

1

. The second rapidity �

2

is associated with the second jet, where the two measured jets are those with

highest E

T

in the three-jet sample, i.e. E

T

1

; E

T

2

> E

T

3

.

In principle we could predict � distributions similar to those in [12]. Since

experimental data on these distributions are not expected in the near future be-

cause of limited statistics, we refrain from showing such plots here and present

only the E

T

distributions integrated over the interval �1:125 < �

1

; �

2

< 1:875

following the constraints of the ZEUS analysis [23]. The results for P

2

= 0:058; 0:5

and 1:0 GeV

2

are shown in Fig. 20 a, b, c, where the full curve is given by the

cross section d

4

�=dE

T

d�

1

d�

2

dP

2

as a function of E

T

integrated over �

1

and �

2

in the speci�ed interval and for 0:2 < y < 0:8 (the plots in this section are taken

from ref. [26]). The functional dependence on E

T

does not change as a function

of P

2

, only the absolute value of the cross section decreases with increasing P

2

.

Furthermore we show the so-called enriched direct and resolved cross section

in Fig. 20. These two contributions are de�ned with a cut on the variable x

obs



,

which is given by

x

obs



�

P

i

E

T

i

e

��

i

2yE

e

; (117)

where the sum runs over the two highest E

T

jets. The variable x

obs



gives the

fraction of the photon energy going into the two measured jets. It is a good

estimate of the theoretically de�ned variable x

a

, that de�nes the fraction of the

photon momentumparticipating in the hard interaction, see Fig. 12. For x

a

= 1,

the photon couples directly to the subprocess, whereas for x

a

< 1 some of the

photon energy goes into the production of a remnant jet, leading to resolved

processes. Note, that in LO x

a

= x

obs



. For experimental considerations, one

de�nes the direct enriched contribution for x

obs



> 0:75, whereas the resolved

enriched component has x

obs



< 0:75. Both enriched cross sections contain con-

tributions from the direct and the resolved part. In Fig. 20 a, b, c the sum of the

Dir and Res curves is equal to the full cross section d

4

�=dE

T

d�

1

d�

2

dP

2

with no

cut on x

obs



. The curves in Fig. 20 are for the GRS parton distributions in the

MS scheme. As to be expected, with increasing P

2

the full cross section is more

and more dominated by the Dir component, in particular at the larger E

T

. This

means that the cross section in x

obs



< 0:75 decreases stronger with P

2

than in

the x

obs



> 0:75 region. This could be studied experimentally by measuring the

ratio of the two cross sections as a function of P

2

for �xed E

T

. This has not

been done yet.
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Fig. 20. (a) Dijet inclusive cross section integrated over �

1

; �

2

2 [�1:125; 1:875]

for the virtuality P

2

= 0:058 GeV

2

. The MS-GRS parametrization with N

f

= 3

is chosen. The solid line is the sum of the direct and the resolved contribution.

The dashed line is the direct-enriched contribution with x

obs



> 0:75 and the

dotted curve is the resolved enriched contribution with x

obs



< 0:75; (b) P

2

= 0:5

GeV

2

; (c) P

2

= 1:0 GeV

2

.
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Fig. 21. The ratio of the resolved-enriched to the direct-enriched contributions

as calculated in Fig. 20 a, b, c, integrated over E

T

1

; E

T

2

> 4 GeV in LO (dotted)

and NLO (full) for the SaS1M parametrization with N

f

= 4 compared with

ZEUS data.

Instead, the ZEUS collaboration [23] has presented data on the ratio r =

Res=Dir, where Dir and Res refer to the enriched direct and resolved cross sec-

tions. The ZEUS data in [23] has actually been obtained by integrating the

transverse momenta of the two-jet cross sections over the region E

T

1

; E

T

2

� 4

GeV and the rapidities in the range �1:125 < �

1

; �

2

< 1:875 for various P

2

-bins.

With the integration cut on the transverse momenta of the two hardest jets, the

transverse momentum of the unobserved jet can vanish, which is not IR safe in

NLO QCD. We therefore allow the second jet to have less than 4 GeV if the

third unobserved particle is soft (i.e. has a transverse momentum of less than 1

GeV) [12]. Through this procedure, a y

c

dependence is avoided. We calculated

the ratio r as a function of P

2

up to P

2

= 0:6 GeV

2

and compared it with the

ZEUS [23] data in Fig. 21 in LO (dotted curve) and NLO (full curve), using the

SaS1M photon PDF with N

f

= 4 avors. We �nd quite good agreement of the

NLO prediction with the data points for P

2

� 0:25 GeV

2

. The curve deviates

from the data for P

2

' 0:2 GeV

2

, though, and even more for the point P

2

' 0,

which lies about 30% above the prediction. Surely the photoproduction data is

much more precise then the other points shown in Fig. 21. For photoproduction

it has been shown in [12], that the measured enriched resolved component is

larger than the predicted one for a small cut in the transverse momentum. This

has been attributed to additional contributions from multiple interactions with

the proton remnant jet in the resolved cross section, which have not been in-

cluded in the NLO calculations. This underlying event contribution is reduced for

larger E

min

T

and for cone radii smaller than 1. These problems must be present

in the comparison shown here for the smallest P

2

value as well. As it seems, the

underlying event contribution is also reduced by going to higher values of P

2

.

This could be studied more directly by measuring rapidity distributions for the
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enriched resolved 

�

sample as was done for the photoproduction case [12].

6 Photon-Photon Collisions

In this section we predict inclusive jet rates for the case of photon-photon colli-

sions in kinematic regions that will become available in LEP2 experiments. We

�rst introduce the notation and kinematics for the hadronic cross section and

then discuss some numerical results.

6.1 Jet Production Cross Section and Kinematics

To obtain a close correspondence between ep scattering discussed in the previous

section and 

�

scattering to be discussed here, we use similar notations. Thus,

we deviate somewhat from the notation used in section 4. We start from electron-

positron scattering for two-jet production, which may be written as

e

+

(k

1

)+e

�

(k

2

)! e

+

(k

0

1

)+e

�

(k

0

2

)+Jet

1

(E

T

1

; �

1

)+Jet

2

(E

T

2

; �

2

)+X : (118)

We assume, that the interaction of the electrons is processed via the interaction

of one quasi-real and one virtual photon, that are radiated by the electron and

positron, respectively. Thus, we consider the subprocess



�

a

(p) + 

b

(q)!

X

(Jet)

i

+X ; (119)

with p � k

1

� k

0

1

and q � k

2

� k

0

2

. The electron-positron c.m. energy is given

by s

H

= (k

1

+ k

2

)

2

, whereas the 

�

c.m. energy is given by W

2

= (p + q)

2

.

Since both, the real and the virtual photon, acquire some hadronic substructure

through the resolved processes, it is not quite clear which is the probing and

which is the probed photon.We therefore will not speak about target and probing

photon, but simply of the real and the virtual photon. We de�ne the virtuality

of the real photon as Q

2

� �q

2

with Q

2

' 0 and that of the virtual photon

as P

2

� �p

2

. Next, the momentum fractions of the photon in the electron and

positron y

a

and y

b

have to be de�ned, which are given by

y

a

�

pk

2

k

1

k

2

and y

b

�

qk

1

k

1

k

2

'

E



E

e

: (120)

Here, E



is the energy of the real photon and E

e

is the electron energy in the

e

+

e

�

c.m. system.

Considering jet production, the interaction of the photons have three di�erent

parts [20, 21, 22]. First in the direct (D) contribution, both photons can interact

directly, which yields the QPM box diagram in LO. The NLO QCD corrections

consist of the radiation of one additional gluon in the �nal state and the virtual

corrections. Next, the single-resolved (SR) components have to be considered,

which result from the hadronic structure of either of one of the photons. Since the

resolved real and the resolved virtual photon have di�erent hadronic structures,

described by di�erent PDF's, we will specify the SR contribution of a resolved

virtual photon as SR

�

, whereas the single resolved real photon contribution is
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γ*

γ

D

γ*

γ
SR

γ*

γ

SR*

γ*

γ
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Fig. 22. The di�erent components contributing in 

�

scattering.

simply denoted SR. Finally, the contribution from two resolved photons is called

the double-resolved (DR) contribution. The di�erent components are pictured

in Fig. 22.

The resolved photons are considered as sources for partons, which afterwards

interact in a subprocess. The factorization of hard and soft regions in the e

+

e

�

cross section is given by

d�(e

+

e

�

! jets) =

X

k;l

Z

dx

a

dx

b

f



�

=l

(x

a

)d�

k=l

f

k=

(x

b

)

df



�

=e

(y

a

)f

=e

(y

b

)dy

a

dy

b

: (121)

It is written as a convolution of the PDF's of the virtual and the real photons

f



�

=l

(x

a

) and f

k=

(x

b

), respectively, with the hard partonic cross section d�

ij

and the spectra of the photons, that are described by the Weizs�acker-Williams

approximation. The spectrum of the real photon is integrated over the low Q

2

region from Q

2

min

=

m

2

e

x

2

1�x

to Q

2

max

= 4 GeV

2

, giving

f

=e

(y

b

) =

�

2�

1 + (1� y

b

)

2

y

b

ln

�

Q

2

max

Q

2

min

�

: (122)

The function f



�

=e

is given by equation (101). The kinematics can be described

most easily in the c.m. system of the virtual photon and the electron that radiates



b

. We start from the D case, for which from energy-momentum conservation

one has

W = E

T

(e

��

1

+ e

��

2

) ; (123)

y

a

=

W

2

+ P

2

s

H

; (124)

y

b

= 1 +

2W

W

2

+ P

2

E

T

(sinh �

1

+ sinh�

2

) : (125)

Both variables y

a

and y

b

are integrated out and are included in the phase space

for convenience, which gives

dPS

(2)

dy

a

dy

b

=

W

2

W

2

+ P

2

E

T

2s

H

dE

T

(2�)

2

d�

1

d�

2

: (126)
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In the SR and DR cases, the additional variables x

a

and x

b

have to be introduced.

They give the momentum fractions of the partons in the resolved photons. We

neglect the transverse momentum of the incoming virtual photon q

T

as we have

done in the case of electron-proton scattering, so the partons are traveling in the

direction of the incoming photons. Thus the energies of the partons p

a

and p

b

are given by x

a

E



�

and x

b

E



, respectively. The rapidities are boosted by

�

0

i

= �

i

+

1

2

ln(x

a

x

b

) : (127)

In the DR case, x

a

6= 1 and x

b

6= 1, whereas in the SR case only one of the

variables x

a

or x

b

is less then 1.

6.2 Predictions for Inclusive Jet Rates

We now come to a presentation of numerical results for the scattering of a virtual

on a real photon. First we note that the factorization and renormalization scale

dependences of the D contribution is tested indirectly with the tests done in

section 5.4, since the matrix elements for the D case are proportional to the

abelian color class for the subprocess g ! q�qg which is included in the SR

case. All tests hold for each color class separately, since e.g. the cancellation

and factorization of singularities holds for each color class separately. The M



dependence of the D and the SR

�

contribution compensate each other, just as

for the SR and DR components, as tested in section 5.4.

For producing our plots we assume kinematical conditions that will be en-

countered at LEP2, where the photons are emitted by colliding electrons and

positrons, both having the energy of E

e

= 83:25 GeV. We choose the con�gu-

ration, where the virtual photon travels in the positive z-direction. We focus on

one-jet cross sections and do not present results on dijet rates, since the studies

here have only exploratory character. For the same reason we have used only the

MS-GRS [36] parametrization of the photon PDF, for obtaining our results and

do not consider the SaS PDF's [37]. We have implemented the PDF of GRS for

both, the real and the virtual photon, since the GRS parametrization goes over

into the GRV [33] parametrization for the real photon, when choosing Q

2

= 0.

The real photon will be integrated over Q

2

using the Weizs�acker-Williams ap-

proximation for the region described before equation (122), whereas the virtual

photon will have �xed P

2

-values. Because of the high c.m. energies encountered

at LEP2, we have set the number of avors to N

f

= 4, adding the contributions

from photon-gluon fusion by �xed order perturbation theory. We took the value

�

(4)

MS

= 239 MeV for the QCD scale, which is also used in the �

s

two-loop for-

mula, for which � = E

T

. The factorization scales are set equal, as in the case of

electron-proton scattering, with M



= M



�

= E

T

. The Snowmass jet de�nition

[67] is used as explained in section 5.

The D and SR curves presented in the following are the NLO contributions

for the direct virtual photon, where the large logarithm has been subtracted

and should therefore be denoted D

s

and SR

s

in accordance with the notation in

section 5. Since we do not present curves for the unsubtracted cross sections, we

suppress the index s to simplify the notation.
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Fig. 23. (a) Single-jet inclusive cross section integrated over � 2 [�2; 2] for

the virtuality P

2

= 0:058 GeV

2

. The MS-GRS parametrization with N

f

= 4

is chosen. The upper full curve is the sum of the D, SR, SR

�

and the DR

components; (b) P

2

= 0:5 GeV

2

; (c) P

2

= 1:0 GeV

2

.
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Fig. 24. (a) Single-jet inclusive cross section as a function of � for �xed E

T

=

10 GeV and virtuality P

2

= 0:058 GeV

2

. The MS-GRS parametrization with

N

f

= 4 is chosen. The upper full curve is the sum of the D, SR, SR

�

and the

DR components; (b) P

2

= 1 GeV

2

; (c) P

2

= 5 GeV

2

; (d) P

2

= 9 GeV

2

.

In Fig. 23 a, b, c the E

T

spectra

1

for the virtualities P

2

= 0:058; 0:5 and

1:0 GeV

2

for the cross section d

3

�=dE

T

d�dP

2

are shown, integrated over the

interval �2 � � � 2, which are the boundaries being presently used at LEP1.5.

As explained in section 5, the value P

2

eff

= 0:058 GeV

2

is chosen as to reproduce

the P

2

' 0 case. As one can see, the SR (lower full) and SR

�

(dash-dotted) curves

coincide in Fig. 23 a, where the real photon is approximated by the integrated

Weizs�acker-Williams formula and the virtual photon has the value of P

2

eff

. The

full cross section (upper full curve) is dominated by the DR component only

in the small E

T

range for small P

2

values. For P

2

= 0:5 and 1:0 GeV

2

, the

DR and D contributions are of the same order around E

T

= 4 GeV, but the

DR component falls o� quickly for the higher E

T

's, leaving the D component

as the dominant contribution. This is expected, as the resolved virtual photon

1

I thank T. Kleinwort for the consent in using his computer program for producing the SR

�

and DR curves.
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is important for smaller P

2

and suppressed for the larger virtualities. For the

same reason, the SR

�

contribution falls below the SR curve when going to higher

values of P

2

(remember that the resolved real photon is not suppressed by P

2

).

In all curves, both SR contributions do not play an important role for the full

cross section. Of course, all contributions decrease with increasing P

2

, so that

the full cross section falls of with increasing P

2

.

We turn to the �-distribution of the single-jet cross section for �xed E

T

= 10

GeV between �2 � � � 2 for the virtualities P

2

= 0:058; 1; 5 and 9 GeV

2

. As

one sees in Fig. 24 a{d, the D and DR distributions for the lowest virtuality

P

2

eff

are almost symmetric, because of the identical energies of the incoming

leptons. The SR curve falls o� for negative �, whereas the SR

�

component is

suppressed for positive �. Going to higher P

2

values, the D contribution stays

more or less symmetric and dominates the full cross section, as we have already

seen in Fig. 23 a, b, c for the larger E

T

values. The components containing

contributions from the resolved virtual photon DR and SR

�

fall of in the region

of negative � so that they become more and more asymmetric. This is clear, since

we have chosen the virtual photon to be incoming from the positive z-direction

and the resolved virtual photon is falling o� for higher virtualities. To observe

the compensation of the ln(P

2

=M

2



) term, subtracted from the direct virtual

photon, with the similar but negative behavior of the resolved virtual photon,

one has to compare the DR and SR, and the D and SR

�

components (see Fig.

22). The DR and SR contributions are of the same magnitude in the negative

� region and the DR component is dominant for the larger � values, where the

resolved photon is more important. We have observed these �ndings already for

ep scattering. The same holds for the D and SR

�

distributions in the negative

� region, only here the D component is far more dominant then the SR

�

one in

the whole � region.

7 Summary and Outlook

We have calculated single- and dijet inclusive jet cross sections for 

�

p and 

�



scattering through a consistent extension of methods used in the calculation of 

scattering and of photoproduction in ep scattering. The partonic cross sections

for the considered reactions were calculated in NLO QCD using the phase-space

slicing method, where a technical cut-o� y

c

is introduced to separate singular and

�nite regions of phase space. The spectrum of the real photon was approximated

with the integrated, whereas the spectrum of the virtual photon was approxi-

mated by the di�erential Weizs�acker-Williams formula. For the resolved virtual

photon contribution we used the parton distributions of the virtual photon in a

LO parametrization.

For the hard cross section, we have in particular worked out the subtraction

of singularities that appear when integrating the phase space over the collinear

region of the virtual photon. Contrary to real photons, the singularity appearing

for the virtual photon is not regulated in the dimensional regularization scheme

but by the virtuality P

2

of the photon. This leads to a logarithm depending on

P

2

, which is absorbed into the PDF of the virtual photon. Through this proce-

dure, the PDF becomes scheme and scale dependent. The terms remaining in the



Inclusive Single- and Dijet Rates in NLO QCD : : : 57

subtracted cross section are constructed in such a way, that the corresponding

real photon term is obtained in the limit P

2

! 0 in the MS scheme.

We have presented several tests of the numerical program [69] for the evalu-

ation of the cross sections. We have shown, that the dependence on the slicing

parameter y

c

vanishes when the regulated singular and �nite contributions are

added. Furthermore, the factorization scale dependences of the NLO direct and

the LO resolved contributions cancel to a large extend. The renormalization scale

dependence was shown to be reduced in NLO compared to LO.

The jet cross sections for 

�

p scattering were computed under HERA con-

ditions using the Snowmass jet de�nition. We presented distributions in the

transverse energy and rapidity of the observed jet. For very small P

2

we found

good numerical agreement between real and virtual photoproduction. For the

larger P

2

values, the unsubtracted direct contribution corresponding to the case

of deep inelastic scattering approximates the sum of the subtracted direct and

resolved contribution rather well, at least for not too large rapidities. This is in

accordance with the result that the perturbatively calculable subtracted term

agrees quite well with the evolved quark distributions of the virtual photon PDF

in the larger x range. Di�erences between the unsubtracted direct and the sum

of the subtracted direct and resolved components can be attributed to small dif-

ferences in the subtraction term and the quark distribution and to e�ects from

neglecting the transverse momentum of the incoming virtual photon.

Furthermore we have calculated distributions in the transverse energy for

inclusive dijet cross sections. For experimental considerations the variable x

obs



has been introduced, which is used for a separation of the direct and resolved

contributions. The resolved part was de�ned for x

obs



< 0:75, whereas the direct

part was given for x

obs



> 0:75. In this way, both contributions contained non-

negligible direct and resolved parts. The sum of the enriched direct and resolved

curves of course showed to be independent of the value of x

obs



. As an application

we have calculated the ratio of the resolved to the direct enriched cross sections,

that could be compared to ZEUS data. The ratio shows signi�cant NLO e�ects

and is in good agreement with ZEUS data for P

2

> 0:2 GeV

2

. For smaller

virtualities the experimental data points lie above the theoretical prediction,

which can be attributed to, e.g., multiple scattering between the photon and

proton remnants.

The jet cross sections for 

�

 scattering were evaluated for conditions to be

met at LEP2. As for ep scattering we used the Snowmass jet de�nition. We

showed distributions in the transverse energy and the rapidity only for single in-

clusive cross sections with one parametrization of the virtual photon. In contrast

to the ep scattering, for 

�

 scattering one additional subprocess is encountered,

which is the direct interaction of the real with the virtual photon. The singulari-

ties of the real photon were regularized in the dimensional regularization scheme,

whereas the virtual photon singularities have been handled as described above

by subtracting the large logarithm. The direct component was shown to be the

most dominant one for larger E

T

. The resolved virtual photon contributions were

suppressed for larger values of P

2

due to the suppression of the virtual photon

PDF for larger virtualities.

Future investigations on virtual photoproduction will require more data on
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single inclusive jet production at large transverse energy. A detailed dijet analysis

of an infrared safe cross section such as d

4

�=dE

T

d�

1

d�

2

dP

2

, where the trans-

verse energies of the two jets are not cut at exactly the same value, will provide

an improved insight into the structure of the virtual photon. Furthermore, choos-

ing a k

T

-cluster-like jet de�nition with smaller cone radii will reduce both the

uncertainties in the jet algorithm and in the underlying event. On the theoretical

side, one possible improvement is the correct treatment of the transverse mo-

mentum of the incoming photon for larger P

2

including a correct transformation

from the photonic c.m. frame to the HERA or LEP laboratory systems. For a

consistent NLO treatment, the inclusion of NLO parton densities for the photon

is necessary. These are, however, needed in a parametrized form and should also

be studied in correlation with deep inelastic e

�

scattering data.
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A General De�nitions

To simplify the notation, we state some de�nitions here that will be used through-

out the appendix. The Mandelstam variables s; t and u are de�ned in the usual

way. The scale M

2

that appears in the virtual, initial and �nal state corrections

is normally set equal to the virtuality of photon P

2

, only in the photoproduction

limit P

2

! 0 we set M

2

= s. The Born terms that appear throughout this work

are given by

T



(s; t; u) = (1� �)

�

t

u

+

u

t

�

� 2P

2

s

ut

� 2� ; (128)

T

1

(s; t; u) = 4N

C

C

F

�

s

2

+ u

2

t

2

� �

�

; (129)

T

2

(s; t; u) = �8C

F

(1� �)

�

s

2

ut

� �

�

; (130)

T

3

(s; t; u) = 4C

F

(1� �)

�

2N

C

C

F

ut

�

2N

2

C

s

2

�

(t

2

+ u

2

� �s

2

) ; (131)

T

4

(s; t; u) = 32N

3

C

C

F

(1� �)

2

�

3�

ut

s

2

�

us

t

2

�

st

u

2

�

: (132)
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For the initial state corrections the plus distribution function

R

+

(x; z) :=

0

@

ln

�

x

�

1�z

z

�

2

�

1� z

1

A

+

(133)

is needed. As the integration over z in the initial state singularities runs from

z

min

to 1, the plus distribution function is de�ned as

R

+

[g] =

1

Z

z

min

dz R(x; z)g(z)�

1

Z

0

dz R(x; z)g(1); (134)

for any regular function g(z). This leads to additional terms not given here

explicitly when (134) is transformed so that both integrals are calculated in the

range [z

min

; 1]. The singular terms in the initial state corrections are proportional

to the Altarelli-Parisi splitting functions

P

q 

(z) = N

C

(1 + 2z(1� z)) ; (135)

P

q q

(z) = C

F

�

1 + z

2

(1� z)

+

+

3

2

�(1� z)

�

; (136)

P

g q

(z) = C

F

�

1 + (1� z)

2

z

�

; (137)

P

g g

(z) = 2N

C

�

1

(1� z)

+

+

1

z

+ z(1� z) � 2

�

+

�

11

6

N

C

�

N

f

3

�

�(1� z); (138)

P

q g

(z) =

1

2

�

z

2

+ (1� z)

2

�

: (139)

The plus functions appearing here are de�ned, in contrary to equation (134), in

the limits [0; 1]. In the virtual corrections the function

L(x; y) = ln

�

�

�

x
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2

�

�

�

ln
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�
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�
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�

�

�
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(140)

appears [31], where L

2

(x) is the Dilogarithm function. In the limiting case P

2

!

0 one �nds for L

2

(x)

L

2

�

x

P

2

�

= �

�

2

6

�

1

2

ln

2

�

x

P

2

�

: (141)

The square of the logarithm has two di�erent values according to the sign of x:

ln

2

�

x

P

2

�

=

�

ln

2

(�x=P

2

)� �

2

for x < 0

ln

2

(x=P

2

) for x > 0

: (142)
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Therefore, ones obtains the following three cases for the function L(x; y) appear-

ing in the virtual corrections of the real photon with P

2

= 0:

L(x; y) =

�

2

2

�

1

2

ln

2

�

x

y

�

for x > 0; y > 0 ; (143)

L(x; y) =

3�

2

2

�

1

2

ln

2

�

x

y

�

for x < 0; y < 0 ; (144)

L(x; y) = �

2

�

1

2

ln

2

�

�

x

y

�

for

�

x > 0; y < 0

x < 0; y > 0

: (145)

B Virtual Corrections

In this subsection we give the explicit expressions for the virtual corrections that

arise from the interference of the LO Born processes for 

�

 ! q�q, 

�

q ! gq

and 

�

g ! q�q with the corresponding one-loop amplitudes. The expressions can

be found in [31]. The results depend on the two-body variables s; t and u:
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� 8� ln

2

�u

M

2

�

T



(s; t; u)

� 4 ln

�u

M

2

�

2u

s + t

+

u

2

(s + t)

2

�

� ln

s

M

2

�

4u+ 2s

u+ t

�

st

(u+ t)

2

�

� ln

�t

M

2

�

4u+ 2t

u+ s

�

st

(u+ s)

2

�

+ 2L(�u;�s)

u

2

+ (u + t)

2

st

+ 2L(�u;�t)

u

2

+ (u+ s)

2

st

�

�

4u

s + t

+

u

s + u

+

u

u+ t

�

+

�

u

s

+

u

t

+

s

t

+

t

s

�

(146)

E

2

=

�

2

�

2

+

2

�

�

ln

�u

M

2

� ln

s

M

2

� ln

�t

M

2

��

T



(s; t; u)

+

�

�

�

2

3

� ln

2

�u

M

2

+ ln

2

s

M

2

+ ln

2

�t

M

2

+ 2L(�s;�t)

�

T



(s; u; t)

� 4 ln

�u

M

2

�

2u

s + t

+

u

2

(s + t)

2

�

+ ln

s

M

2

2s

u+ t

+ ln

�t

M

2

2t

u+ s

+ 2L(�u;�s)

u

2

+ (u + t)

2

st

+ 2L(�u;�t)

u

2

+ (u+ s)

2

st

� 2

�

2u

s + t

�

u

s

�

u

t

�

s

t

�

t

s

�

(147)

E

3

=

�

�

2

�

2

+

1

�

(2 ln

s

M

2

� 3) +

2�

2

3

� 8� ln

2

s

M

2

�

T



(s; u; t)

+ 4 ln

s

M

2

�

2s

u+ t

+

s

2

(u+ t)

2

�

+ ln

�u

M

2

�

4s + 2u

s + t

�

ut

(s + t)

2

�

+ ln

�t

M

2

�

4s + 2t

s + u

�

ut

(s + u)

2

�



Inclusive Single- and Dijet Rates in NLO QCD : : : 61

� 2L(�s;�u)

s

2

+ (s + t)

2

ut

� 2L(�s;�t)

s

2

+ (s+ u)

2

ut

+

�

4s

u+ t

+

s

u+ s

+

s

s + t

�

�

�

s

u

+

s

t

+

u

t

+

t

u

�

(148)

E

4

=

�

2

�

2

+

2

�

�

ln

s

M

2

� ln

�u

M

2

� ln

�t

M

2

��

T



(s; u; t)

+

�

4�

2

3

+ ln

2

�u

M

2

� ln

2

s

M

2

+ ln

2

�t

M

2

+ 2L(�u;�t)

�

T



(s; t; u)

+ 4 ln

s

M

2

�

2s

u+ t

+

s

2

(u+ t)

2

�

� ln

�u

M

2

2u

s+ t

� ln

�t

M

2

2t

u+ s

� 2L(�s;�u)

s

2

+ (s + t)

2

ut

� 2L(�s;�t)

s

2

+ (u+ s)

2

ut

+ 2

�

2s

u+ t

�

s

u

�

s

t

�

u

t

�

t

u

�

: (149)

C Final State Corrections

In the following we give the real �nal state corrections that appear when the

2 ! 3 matrix elements are integrated over the singular region of phase space.

The expressions depend on the invariant mass cut-o� y

F

and on the two-body

variables s; t and u. Terms of order O(�) have been neglected. The contributions
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can be found in [31].
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D Initial State Corrections for Massles Partons

Here, we state the parton initial state singularities as functions of the invariants

s; t and u, the cut-o� parameter y

J

and the additional variable of integration

z
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. Again, terms of O(�) have been neglect. The contributions I
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can be

found in [31].
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E Initial State Corrections for the Virtual Photon

A virtual photon can decay into a q�q-pair. After the integration over the collinear

region of phase space the Born matrix elements factorize. There are three types

of Born matrix elements, namely the processes qq

0

! qq

0

(denoted by T
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), qq !

qq (denoted by T
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and T
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) and q�q ! gg (denoted by T
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). The divergence is

regularized by the virtuality of the photon P
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. The corrections depend on the

two-body variables s; t and u, on the cut-o� parameter y
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and on the additional

variable of integration z
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