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Abstract

The cross section of di�ractive J=	 lepto- (and photo-) production

on a polarized target is calculated in the leading log approximation

of pQCD assuming a nonrelativistic J=	 wave function. In this ap-

proximation the spin-spin asymmetry in the small x region is close to

2�G=G for the 


�

+p! J=	+p reaction, providing a promising tool

to study the spin dependent gluon distribution �G(x; q

2

).
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1. The process of di�ractive J=	 photo- (lepto-) production is very inter-

esting by two reasons. First, it can be calculated within perturbative QCD

and, secondly, its cross section is proportional to the gluon density squared.

For the unpolarized case the cross section was calculated in the Leading Log

Approximation (LLA) [1] assuming a nonrelativistic wave function for the

J=	 meson . This formula was used succesfully to extract the gluon dis-

tribution in the small x region from di�ractive J=	 production at HERA

[2].

Of course, the NLO contributions as well as the relativistic corrections to

the J=	 wave function should be taken into account; both were discussed in

[3]. Fortunately, the corrections cancel each other to a large extent and do in

any case not change the x behaviour of the cross section, which is controlled

by the x dependence of the gluon density.

In the present paper the same approach will be used to calculate the

elastic di�ractive J=	 electroproduction at small x on a polarized target. The

asymmetry turns out to be proportional to the normalized spin dependent

gluon density �G(x; q

2

)=G(x; q

2

). Therefore the elastic di�ractive process is

presumably a very promising tool to measure (at least to estimate) the value

of �G(x; q

2

) in the small x region.

2. The Born amplitude of the reaction 


�

+ p ! J=	 + p is described

by the sum of the two diagrams in shown �g.1. As the binding energy of the

S-wave c�c system is much smaller than the charm quark mass m

c

= m one

can follow ref.[4] and write (in no-relativistic approximation) the product of

two propagators (k and k

0

in �g.1) and the J=	 vertex (i.e. the J=	-wave

function integrated over the relative momenta of c and �c quark k'k' in the

J=	-rest frame) in the form g � (

^

k+m)


�

. The constant g may be expressed

in terms of the electronic width �

J

ee

of the J=	! e

+

e

�

decay,

g

2

=

3�

J

ee

m

J

64�

2

e:m:

; (1)

where m

J

is the mass of the J=	-meson and �

e:m:

= 1=137 is the electro-

magnetic coupling constant.

At large energies s = (q+ p)

2

>> jq

2

j+m

2

J

the main contribution comes

from the longitudinal polarizations of t-channel gluons (l and l+Q in �g.1),

i.e. the spin part of gluon propagator is given by

g

��

= g

?

��

+

p

0

�

q

0

�

+ q

0

�

p

0

�

(p

0

q

0

)

'

p

0

�

q

0

�

(p

0

q

0

)
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with

q

�

= q

0

�

+

q

2

s

p

0

�

; p

�

= p

0

�

+

m

2

N

s

q

0

�

' p

�

; s = 2(p

0

q

0

); p

02

= q

02

= 0

Herem

N

is the nucleon mass, p and q are the 4-momenta of the initial proton

and photon correspondingly.

However the longitudinal t-channel (Coulomb-like) gluon looses the in-

formation about the polarization of the target. Thus at least one gluon must

have transverse polarization. Indeed for the longitudinally polarized target

with spin vector s

�

kjp

�

the spin dependent part of the trace in the bottom

of the diagram �g.1 (the target loop) looks like

B

��

0

=

1

2

Tr[p̂
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�

(p̂+

^

l)


�

0

] = �2i�

��

0

��

l

�

p

�

(2)

where �

��

0

��

is the antisymmetric tensor and � (�

0

) corresponds to the polar-

ization of the left (right) t-channel gluon in �g.1. (Considering the forward

amplitude we put the momentum transfer Q ' 0.)

As p

�

is the longitudinal vector while the l

�

' l

t;�

, two other indices �; �

0

should be the transverse (say, g

��

= g

?

��

) and the longitudinal g

�

0

�

0

'

p

0

�

0

q

0

�

0

(p

0

q

0

)

ones. So the spin dependent part of the matrix element given by the graph

in �g.1a takes the form

M

(s)

a

= i

2

3

�

2

s

e

c

g

s

4

Z

�(l)Tr[:::]

a

d

2

l

t

(r

2

�m

2

)l

4

(3)

Here e

c

=

2

3

q

4�

137

is the electric charge of charm quark, �

s

is the QCD coupling

constant and

2

3

is the colour coe�cient. The function �(l) describes the

emission of a gluon pair (l and l+Q) by a proton. If l

t

is large in comparison

with the inverse proton radius R

N

(l >> 1=R

N

) each valence quark emits

its own pair of gluons (independently from the other quark-spectators) and

then �(l) ' 3.

Tr[:::]

a

= Tr[

^

E

ph

(

^

k +m)

^

E

	

p̂

0

(

^

k

0

+

^

l +m)ê

?

(r̂ +m)] �

Tr[

^

E

ph

(

^

k +m)

^

E

	

ê

?

(

^

k

0

+

^

l +m)p̂

0

(r̂ +m)] = s �mTr[

^

E

ph

^

E

	

ê

?

^

l

t

] =

= 4is �ml

2

t

(�

��

?

E

	;�

E

ph;�

) (4)
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where E

ph

and E

	

are the polarization vectors of the photon and the J=	-

meson, respectively, and the minus sign in front of the second trace re
ects

the antisymmetric nature of the �

��

0

��

tensor in eq.(2); p̂

0

and e

?

�

= i�

��

?

l

�

correspond to the gluon polarizations; �

��

?

is the two-dimensional antisym-

metric tensor acting in the transverse plane.

For the last equality in eq.(4) we have averaged over the direction of

~

l

t

in the

azimuthal plane.

Recall that in our small x = (jq

2

j +m

2

)=s limit l

�

' l

t;�

and in the no-

relativistic approximation for the forward (Q

t

= 0) amplitude k

t

= k

0

t

= 0,

while the longitudinal components k

z

= �k

0

z

= q

z

=2; r

2

� m

2

= �(jq

2

j +

m

2

)=2 = �2�q

2

.

To obtain the contribution of the diagram in �g.1b it is enough to replace

the factor (r

2

�m

2

) in the denominator of eq.(3) by (r

02

�m

2

) and to put

the

Tr[:::]

b

= �Tr[

^

E

ph

(

^

k �

^

l+m)p̂

0

(

^

k +m)

^

E

	

ê

?

(r̂

0

+m)] +

Tr[

^

E

ph

(

^

k �

^

l +m)ê

?

(

^

k +m)

^

E

	

p̂

0

(r̂

0

+m)] = s �mTr[

^

E

ph

^

E

	

ê

?

^

l

t

] (5)

instead of Tr[:::]

a

. (r

0

= (k � l � q); r

02

�m

2

= �2�q

2

� 2jl

t

j

2

).

The negative sign in front of the �rst trace in eq.(5) re
ects another colour

sign of the antiquark in �g.1b.

3. Note that as the Tr[:::]

a

= Tr[:::]

b

/ l

2

t

we have the logarithmic dl

2

t

=l

2

t

integration in eq.(3) This is nothing else but the �rst step of the DGLAP evo-

lution of the spin dependent gluon distribution �G(x; �q

2

) with the splitting

function [5] �P

gq

= 2C

F

1�(1�z)

2

z

' 4C

F

for z << 1 (C

F

= (N

2

c

� 1)=2N

c

=

4=3). In order to make the (Born) calculation more realistic we have to in-

clude the ladder 'evolution' gluons (shown by the dashed lines in �g.1). This

is achieved by the replacements [1]

C

F

Z

�

s

�

�(l)

dl

2

t

l

2

t

! �G(x; �q

2

) : (6)

Strictly speaking, even at zero transverse momentum Q

t

= 0 one does not

obtain the exact gluon structure function, as a non-zero component of the

longitudinal momentum is transferred through the two-gluon ladder. How-

ever, in the region of interest, x << 1, the value of jt

min

j = m

2

N

x

2

is so small

that we may safely put t � Q

2

= 0 and identify the ladder coupling to the

proton with �G(x; �q

2

) (see [3] for more details). The arguments of the gluon
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structure function should be x = (jq

2

j +m

2

)=s and �q

2

= (jq

2

j +m

2

)=4; the

scale �q

2

re
ects the fact that the gluons couple to a quark which carries away

one half of the initial photon momentum.

Now in the leading log(q

2

) approach the spin dependent part of the am-

plitude takes the form

M

(s)

��

= i16�

2

�

s

e

c

gm

2�q

2

�G(x; �q

2

) � 2i�

?

��

(7)

where we have summed up the contributions of the graphs in �g.1a and �g.1b

and taken into account that there are two types of such diagrams (a gluon l

can interact with a c-quark k or �c-antiquark k

0

).The indices �; � correspond

to the initial photon and outgoing J=	-meson, respectively.

4. In the same notation the forward amplitude for the unpolarized case

(and a transversely polarized photon) looks like:

M

(u)

��

= i16�

2

�

s

e

c

gm

(2�q

2

)

2

xG(x; �q

2

) � sg

?

��

(8)

In other words we have

M

��

/ i

�

G(x; �q

2

)g

?

��

��G(x; �q

2

) � i�

?

��

�

(9)

Here the � sign re
ects the helicity (polarization) of the target proton and

the identity s=2�q

2

= 2=x was used.

In terms of the spin-spin asymmetry A = A

LL

eq.(9) means that for the

elastic di�ractive reaction 


�

+ p! J=	+ p

1

A =

�

"#

� �

""

�

"#

+ �

""

=

2�G(x; �q

2

)G(x; �q

2

)

(G(x; �q

2

))

2

+ (�G(x; �q

2

))

2

'

2�G(x; �q

2

)

G(x; �q

2

)

(10)

The arrows indicate the helicities of the incoming photon and the target

nucleon.

It turns out that the asymmetry of di�ractive production (in the small x

approximation) is close to A ' 2�G=G. The factor 2, extremly favourable

when extracting �G=G from experimental asymmetry data, comes in because

1

The polarization of the photon emitted by the 100% polarized initial lepton in DIS is

P

ph

=

1�(1�y)

2

1+(1+y)

2

, where y is the lepton momentum fraction carried by the photon in the

target proton rest frame.
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the cross section of the di�ractive process is proportional to the gluon density

squared.

It is anticipated that the main part of the corrections (NLO contributions

and the relativistic corrections to the J=	 wave function) are cancelled when

calculating the asymnmetry by eq.(10). Indeed, it was shown in [3] that the

corrections do mainly a�ect the absolute normalization of the cross section

(see also [6]). For example, the uncertainty coming from the value of the

QCD coupling constant ( more exactly from the scale at which �

s

is evalu-

ated) do cancel in the ratio eq.(10). Thus the accuracy of the expression (10)

for the asymmetry is expected to be even better than that of the unpolarized

difractive amplitude (8) [1].
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