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Abstract

In this work the two dimensional O(N ) symmetric non-linear � model is studied
with different blockspin Renormalization Group methods.

The idea of Part I is to compute the Renormalized Trajectory of the model in a renor-
malized coupling expansion by means of a scaling principle.

For the hierarchical approximation of the model the Renormalized Trajectory and
the associated improved observables are determined to high orders of the running cou-
pling. A numerical cross-check shows the range of validity of the method.

The Renormalized Trajectory of the full � model is computed to first order in the
running coupling. A Monte-Carlo simulation reveals that the improved action to this
order does not have an improved scaling behavior.

In Part II the two dimensional O(N ) symmetric non-linear � model is treated with
the Mean Field Renormalization Group. A convenient parametrization of fluctuations
on the sphere is presented and the fluctuation integral is performed in a saddle-point
approximation. This gives rise to an effective action. A saddle-point equation for the
background field is derived.

Zusammenfassung

In dieser Arbeit wird das zweidimensionaleO(N )-invariante nichtlineare�-Modell
mit verschiedenen Blockspin Renormierungsgruppen Methoden untersucht.

Die Idee des ersten Teils besteht darin, die Renormierte Trajektorie des Modells in
einer Störungsentwicklung in der renormierten Kopplung auf Grundlage eines Skalen-
prinzips zu bestimmen.

In der hierarchischen Approximation des Modells werden die Renormierte Trajek-
torie und die assoziierten verbesserten Observablen zu einer hohen Ordnung in der renormierten
Kopplung bestimmt. Ein numerischer Test zeigt den Gültigkeitsbereich der Methode
auf.

Die Renormierte Trajektorie des vollen �-Modells wird zur ersten Ordnung in der
renormierten Kopplungberechnet. Eine Monte-CarloSimulation zeigt, daß die verbesserte
Wirkung zu dieser Ordnung noch kein verbessertes Skalenverhalten aufweist.
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Introduction

A decade ago constructive field theorist like GAWEDZKI, KUPIAINEN, and BALABAN

developed conceptual and computational tools to obtain rigourous results from block-
spin renormalization group approaches. Their aim was to proove the existence of a con-
tinuum limit of lattice field theory.

This thesis is an attempt to link their concepts with today’s ideas and to exploit their
machinery with today’s computer power in order

The good old two dimensionalO(N ) symmetric non-linear� model serves as a test
and reference platform for the resulting new methods.

The thesis is split in two parts each of them coming with an introduction of its own.
Hence I will be brief here.
Part I is devoted to the computation of the Renormalized Trajectory by C. WIECZ-
ERKOWSKI’s scaling technique in renormalized perturbation theory.
Part II presents first attempts to apply G. MACK’s approximative RG to the �-model.
Chapter 1 contains an introduction to the notions of lattice field theory used in the sub-
sequent chapters.

In continuation of earlier work done in our group [Spe94] most of the programs in
the course of this thesis were written in C++. As a case study for the applicability of
object-oriented approaches to high-end numerics the main points of interest were per-
formance and reusabilty of the code. Another important software aspect of the work
was the developing of convenient general purpose data analysis tools for the numerical
practioner. This led to a monte-carlo analysis package mcstat and a data extraction
tool dat2tab. The latter program reached the finals of the European Software Award.
They can be obtained from http::\\lienhard.desy.de\˜xylander.
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Chapter 1

Lattice Field Theory

In this chapter a short introduction to lattice field theory is given. The relationship be-

tween the continuum limit, the Renormalization Group and Perfect Actions is clarified.

(See [RF92],[WK74],[GK] for additional material)

1.1 Field Theory On The Lattice

Consider a D dimensional scalar continuum field theory with an Euclidean bare action.
The theory is defined by the generating functional and its associated expectation values.
These are formally given by functional integrals over the continuum fields.

To make sense out of these formal expressions one has to regularize the theory by
introducing an infra-red (IR) and ultra-violet (UV) cutoff. The continuum theory is then
defined with respect to some limit process that removes these regularizations.

Lattice Regularization

In the case of lattice quantum field theory the regularization is achieved by replacing
the space-time continuum with a lattice 


a

with lattice spacing a and linear extension
L = Na. Periodic boundary conditions may be assumed.

The theory is then defined with respect to a bare lattice action S
a

0

[�

a

jf�

a

0

g]. As a
functional of lattice fields �

a

: 


a

! IR it may be thought of being parametrized by
some bare couplings f�

a

0

g. It can be obtained from the continuum action by replacing
the continuum fields with lattice fields, continuum derivatives with lattice derivatives
etc., but this process is by no means unique.

Under some assumptions [GJ87] the generating functional

Z

a

[J

a

] =

Z

D�

a

e

�S

a

0

[�

a

]+(J

a

;�

a

) (1.1)

6



and its expectation values

< O

a

[�

a

] >=

1

Z

a

[0]

Z

D�

a

O

a

[�

a

]e

�S

a

0

[�

a

] (1.2)

are now perfectly well defined mathematical objects.

Continuum Limit

A continuum limit a ! 0 of the lattice theory exists if it is possible to tune the bare
couplings �

a

0

= �

a

0

(a) while keeping some physical couplings fixed such that the
GREEN-functions

lim

a!1

<

n

Y

i=1

�

a

(z

a

i

) >

�

a

0

(1.3)

remain finite.
In contrast to other regularizations these expressions can be evaluated non-perturbativly

by means of Monte-Carlo simulations on the computer.
A computer can only handle numbers, i.e. dimensionless quantities. Therefore the

above formulas have to be expressed in the language of unit lattice spin systems. This
process is non-trivial because it might involve not only the canonical dimension of the
quantities but also a priori unknown anomalous scaling dimensions. The natural length
scale in the business is the lattice spacing a. E.g. the dimensionless action reads

S

0

[�] = S

a

0

[a

��

�(�=a)] (1.4)

Here � : 
 ! IR is a dimensionless lattice field living on a finite unit lattice 
. The
scaling dimension � of the field will be fixed later.

After feeding in values for the dimensionless couplings f�
0

g the computer returns
numbers for the correlation functions

<

n

Y

i=1

�(z

i

) >

�

0

(1.5)

or the expectation values of other observables.

Fixing the Scale

To make contact with the physical world one now has to evaluate some expectation val-
ues and relate them with their experimental counterparts. This fixes the renormalized
couplings.

A most prominent observable is the dimensionless correlation length � which is de-
termined from the long-range decay of the two-point connected correlation function

< �(z)�(0) >

�

0

jzj>>1

�

1

jzj

�

exp(�jzj=�): (1.6)
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It is a function of the bare couplings � = �(f�

0

g). By relating the correlation length
with the physical mass

mphys = (�a)

�1 (1.7)

the scale a is expressed in physical units.
As can be seen from eq. (1.7) the limit a ! 0 with fixed physical mass mphys can

only be achieved if the correlation length of the associated statistical system diverges
simultaneously. A statistical system with infinte correltaion length is called critical.
Therefore the bare dimensionless couplings f�

0

g have to be tuned to take their criti-
cal values f�

0

g ! f�crg. The manifold of critical actions will be called the critical
surface.

In other words: To study the continuum limit of quantum lattice field theory leads
to study the critical limit of a statistical system.

Numerically the approach to criticality means that larger and larger lattices have
to be used to simulate the statistical system (The correlation length has to fit inside).
Even worse, the method by which the Monte-Carlo algorithm generates new configura-
tions becomes more and more inefficient while approaching criticality (critical slowing

down).

1.2 Renormalization Group on the Lattice

The scale invariance of the critical statistical system is a result of fluctuations on all
length scales. This makes the problem so extremely difficult to tackle. The Renormal-
ization Group (RG) attacks it with a classical divide and conquer strategy. Instead of
performing the critical functional integrals (1.1,1.2) in one large step they are devided
into a cascade of simpler non-critical integrals.

The RG Recipe

The key ingredients of a dimensionless block-spin RG formalism are:

Block lattice: Starting from a base lattice 
 we introduce a blocked lattice �


 by com-
bining blocks of sD ; s 2 N

+

base points into single block points. The block
lattice has a dimensionless lattice spacing of s.

Blockspin: The blockspin field �

�(�z) is a lattice field living on the blocked lattice �z 2

�


. It is some kind of average of the base field �(z) on the blocks z 2 �z performed
by an averaging operator ��(�z) = �

C[�](�z).

Rescaling: After the blocking step the coarse lattice �


 is rescaled back to a unit lattice



0. In the thermodynamic limit of infinite lattices we have 
 = 


0. Otherwise
the volume has shrunk by s�D . The rescaled blockspin field �0 is obtained from
the non-rescaled one by virtue of a rescaling operator �0(x) = (S

[1]

�

�)(x) =

s

��

�

�(sx). The correct choice of the scaling dimension � is crucial to the entire
procedure. In general it may not only involve the canonical dimension but also
the anomalous dimension of the field. In this sense the latter can be considered
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as a parameter of the RG. It is convenient to go directly from the base lattice to
the rescaled block lattice by an rescaled averaging operator C = S

�

C.

Weight Functional: Let P[�] be some kind of weight functional with

Z

D�

0

P[C[�]; �

0

] = 1: (1.8)

As functional of the blockspin field it should be centered around those configura-
tions close to C[�]. Examples will be given later. Additionally it should respect
the symmetries of the action if the RG is supposed to preserve them.

Effective Action: By inserting eq. (1.8) into in the definition of the partition function
and exchanging the sequence of integration we obtain

Z =

Z

D�e

�S[�]

=

Z

D�

0

e

�S

0

[�

0

] (1.9)

with the effective action

e

�(RS)[�

0

]

:= e

�S

0

[�

0

]

:=

Z

D�P[C[�]; �

0

]e

�S[�]

: (1.10)

Effective Observables: Let O[�] be an observable. The associated effective observ-
able is given by

O

0

[�

0

] =

R

D�P[C[�]; �

0

]O[�]e

�S[�])

R

D�P[C[�]; �

0

]e

�S[�])

(1.11)

and has the same expectation value with respect to S0 asO has with respect to S

< O[�] >

S

=< O

0

[�

0

] >

S

0 (1.12)

Let us summarize: WILSON’s RG relates two actions describing the same physics.
The system is in equal means described by the base quantities S,O or by the blocked
quantitiesS0,O0, the latter having a decreased number of degrees of freedom. The price
for this is a more complicated action. Even when starting from a low-dimensional cou-
pling manifold the RG transformation will most likely place the effective action away
from this manifold. Of course not all of the generated couplings are equally important.
The problem remains to decide which of them are important and which are not.

Improved Actions

The blocking step leaves long-ranged properties like the correlation length unchanged.
Because of the rescaling step the dimensionless correlation length shrinks �0 = �=s. By
iterating the RG we therefore obtain a sequence of lattice actions S

[n]

with decreasing
correlation lengths.

�

[n]

= s

�n

�

[0]

(1.13)
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e

C

[n]

S

[n]

S

[n]

A

[n]

C

[n]







[n]




[n]

C

[n]

A

[n]

Figure 1.1: Lattices and operators. See appendix A for the notation. The index
[n]

de-

notes the number of RG steps

This feature can be exploitedas follows: The larger the correlation length the more com-
putational effort is required to produce a certain accurracy from a Monte-Carlo simula-
tion. If we a) were able to compute an effective action S

[n]

from a bare action S
[0]

and
b) had an efficient algorithm to simulate it we would have gained a lot: The physical
predictions of both theories are by construction the same. But since the effective theory
has a smaller correlation length it is easier to simulate.

Problem a) may even be solved by a simulation. Since the fluctuation integral is not
critical it does not suffer from critical slowing down. This method is called Monte-Carlo
Renormalization Group. The key problem in this field (and most other RG approaches)
is to find an appropriate parametrization and reasonable truncations of the action. Prob-
lem b) is closely related to locality. The less localized the action is the more complicated
is the program to simulate it. The propagators of the fluctuation fields are supposed to
be extremely local. They should fall off within one block exponentially. The hope of
WILSON therefore was that when starting with a local action the effective action would
be local again.

Iteration Limit

Consider now the iteration limit

lim

n!1

R

n

S =: S

�

(1.14)

Because of eq. (1.13) the correlation length of S
�

will be either 0 or1.
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Such a limit will be invariant under the RG

RS

�

= S

�

(1.15)

and is therefore a fixed-point (FP) of the RG. It turns out that these points encode the en-
tire critical physics. Fixed points with zero correlation length are called infra-red fixed-
points whereas those with diverging correlation length are termed ultra-violet fixed-
points.

Linearized RG

It is highly instructive to study the linearized RG transformation at a fixed-point because
it gives us some knowledge about the RG flow in the vincinity of the FP.

So let L
S

�

denote the linearization of R at S
�

. It turns out that L
S

�

is actually the
same transformation as the RG transformation eq. (1.11) for the effective observables
evaluated at the fixed-point.

(L

S

�

O)(�

0

) =

R

D�P[C[�]; �

0

]O[�]e

�S

�

[�])

R

D�P[C[�]; �

0

]e

�S

�

[�])

(1.16)

Being a linear operatorL
S

�

will have eigenobservables. They are classified accord-
ing to their eigenvalues. Observables with eigenvalue larger than zero are called rele-
vant. A perturbation in this direction is amplified by L

S

�

and hence by R. Those with
eigenvalue less than zero are termed irrelevant. Perturbations in these directions are at-
tracted to the FP. Eigenobservables with eigenvalue zero are called marginal. In order
to understand their behaviour under R the linear approximation L

S

�

is no longer suffi-
cient. There is a close relationship between the eigenvalues and the critical exponents
but we refrain from going into details here.

1.3 Renormalization, RG and Perfect Actions

Renormalization and RG

We now want to understand the relationship between the continuum limit and the RG.
Assume a RG topology with an UV fixed-point having one relevant direction and

an attractive IR fixed-point. Assume further a manifold of bare actions parametrized
by the couplings f�

0

g called canonical manifold. This manifold will generally have an
intersection with the critical surface of the UV fixed-point. These actions have critical
couplings f�crg and are attracted towards the UV fixed-point under the RG. The actions
away from the critical surface are not critical. If the RG is applied to them they are
driven towards the UV fixed-point in the irrelevant directions but are attracted towards
the IR fixed-point in the relevant direction. One can now imagine a one-dimensional
manifold connecting the two fixed-points, which will be called the Renormalized Tra-
jectory (RT). Its tangent at the UV fixed-point is given by the relevant direction. By
construction all actions on the RT are mapped on the RT again. The RT is a stable man-
ifold of the RG. The RG leaves an action on the RT invariant up to a flow of the relevant
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couplings, in our case here one coupling. This coupling is called renormalized coupling
�R for reasons that will be explained later on.

When iterating the RG all non-critical actions are asymptotically driven towards the
RT. This is the key to renormalizability and motivates its name. Start with an bare action
on the canonical manifold given by bare couplings f�

0
[N

0

]

g. After N
0

� 1 iterations
of the RG it will be mapped on an effective action very close to the RT. By construction
this action SRT(�R) = R

N

0

S

0

(�

0
[N

0

]

) describes the same physics as the bare one. Now
we turn the argumentation upside down and look for bare couplings f�

0
[N

0

+N ]

(�R)g

as function of the renormalized coupling such that the associated action is mapped on
SRT(�R) after N

0

+ N RG steps. All three actions describe the same physics. But the
two bare action have a different correlation length since S

0

(�

0
[N

0

+N ]

) is related to the
renormalized action byN additional RG steps.

�(�

0
[N

0

+N ]

(�R)) = s

N

�(�

0
[N

0

]

(�R)) (1.17)

If we now perform the limit N !1 the correlation length diverges and the bare cou-
plings approach their critical values

lim

N!1

�

0
[N

0

+N ]

(�R) = �cr (1.18)

By construction even in this limit the bare action is equivalent to the renormalized ac-
tion. The renormalized action is non-critical and leads to finite expectation values. Hence
this is true for the critical bare action, too. But that is what renormalizabilty is all about.

The conclude: Theories on the RT describe continuum theories.

Perfect Actions

Now let us consider an asymptotically free theory, e.g. the two dimensionalO(N ) sym-
metric non-linear � model . The action for this theory may be written as S[�] = �H[�]

with coupling � and HamiltonianH[�]. It turns out that the fixed-point action S
�

ruling
the model lies at � =1 and has only one relevant direction 1

The Perfect Action (PA) of HASENFRATZ and NIEDERMAYER is an asymptotic ap-
proximation to the RT. It is defined by the flow of a classical RG transformation. In
contrast to the full RG the classical RG does not perform the fluctuation integral but ex-
tremizes the action under the constraint of prescribed blockspin. Because of the asymp-
totic freedom � =1 the FP of the full transformation is the same as the classical one.
Away from the FP this is no longer true. But at least for the two dimensional O(N )

symmetric non-linear� model the RT seems to be parallel to the PA trajectory for quite
some distance. Since actions on the RT describe continuum physics actions close to it
should have excellent scaling properties. In the case of the Perfect Action of [HN94] it
was possible to compute continuum quantities on a 3� 3 lattice!

1Actually this direction is marginal in the linear approximation.[Wil]
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Part I

The Renormalized Trajectory of

the two dimensional O(N)

symmetric non-linear � model
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Chapter 2

Introduction

In this chapter the general philosophy of the method is described.

The main object of interest in quantum field theory on the lattice is the Renormalized
Trajectory. The reason being that lattice actions on the RT directly describe continuum
physics.

The Perfect Action of HASENFRATZ and NIEDERMAYER [HN94] for asymptoti-
cally free theories is an approximation to the true RT. It is obtained by solving a clas-
sical RG transformation at � ! 0 and then extrapolating to finite �. Although being
only an asmyptotic form of the RT the PA for the two dimensional O(N ) symmetric
non-linear � model already has excellent scaling properties.

The work presented here is in some sense an improvement scheme in which the ze-
roth order approximation is a PA. It is based on the ideas of C. WIEZCERKOWSKI and
is part of the Running Coupling Expansion for Renormalized Trajectories from Renor-

malization Invariance program [WX95a, WX95b, Wie96b, Wie96c, Wie96a].
As indicated by this lengthy name the concept is a combination of renormalized per-

turbation theory in a running coupling with the notion of scaling invariance.
Let the renormalized trajectory of the two dimensionalO(N ) symmetric non-linear

� model be parametrized in terms of a local coordinate f . Recall that it is a curve in the
space of O(N ) invariant actions which is stable under application of a RG transforma-
tion. In other words: The blockspin transformation leaves the action invariant up to a
flow of the coupling

RSRT[�jf ] = SRT[�j�(f)]: (2.1)

The action is said to scale.
The complete dynamics of the renormalization group on the renormalized trajectory

is encoded in the flow of the running coupling. We call �(f) Callan-Symanzik function
since it defines this discrete flow.

The essence of this work is: Eq. (2.1) can be solved perturbativly in an iterative
scheme without reference to any bare action.

A blockspin transformationcomes along with a linear mapping of observables which
preserves their expectation values. This mapping is the linearized renormalization group

14



transformation. We shall consider this linear mapping L to the blockspin transforma-
tion over the renormalized trajectory. An observable will be called an eigenvector with
eigenvalue �(f) if it satisfies the equation

LO[�jf ] = �(�(f))O[�j�(f)]: (2.2)

In accordance with the terminology for the action we will speak of this property as scal-
ing.

The space of eigenvectors defines a moving frame in the tangent space over the
renormalized trajectory. The set of eigenvalues will be called the spectrum of the the-
ory. It is exactly calculable at the fixed point. Moving away from the fixed point on the
renormalized trajectory it becomes perturbed.

In the vicinity of the ultraviolet fixed point it is therefore natural to perform a per-
turbation expansion in the running coupling to determine the spectrum from (2.2).

This entire program has been worked out for two dimensional O(N ) symmetric
non-linear � model in the so-called hierarchical approximation. The perturbative re-
sults have been cross-checked by numerical means with great success.

Additionally the setup for the program in the full model has been layed down. In
contrast to the hierarchical situation it was not possible to find an analytical solution for
the Perfect Action as starting point for the perturbative machinery. Instead the classical
RG had to be treated perturbativly, too. This gave rise to a first order improved action.
1. Software has been developed to check the scaling properties of improved actions.
First tests with the given action were performed.

We have used a linear blockspin in this work. Therefore the fields have fluctuating
length and are not living on the unit sphere. It is assumed that these general O(N ) in-
variant models are lying in the same universality class as the two dimensional O(N )

symmetric non-linear � model and therefore share the same physics (See 4.6).
This part of the thesis is organized as follows:
In chapter 3 the properties of a linear blockspin transformation for scalar fields are

discussed.
Chapter 4 is devoted to the implementation of above program for the two dimen-

sional O(N ) symmetric non-linear � model in the hierarchical approximation.
Finally, in chapter 5 the setup for the full model is described and first simulation

results of the improved action are presented.
Parts of this work have been published in [WX95a], [WX95b].

1The term improved might be confusing. It is not meant here in the sense of SYMANZIK. Symanzik-
improved actions converge faster towards the RT, i.e. the continuum limit. Our actions are scaling improved.
The question of convergence speed although related has not been adressed. See 4.6.
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Chapter 3

Renormalization Group (RG)

on the lattice

In this section the basic concepts and formulas for a linear blockspin RG on the lattice

are presented.

3.1 The RG-Transformation

The Averaging Operator

Let � be a scalar field on aD-dimensional unit lattice
 with action S[�] (See appendix
A for notation).

By means of the rescaled averaging operator C : H !H0 with

C(x; z) = s

�D��

�

x;

[

z

s

]

(3.1)

we define the blockspin field �0 = C�. Here s denotes a scaling parameter s 2 N
+

and
� = �

D�2

2

is the canonical dimension of �. The adjoint operator is given by

C

T

(z; x) = C(x; z) (3.2)

Fields on the blocked lattice
0 are interpolated by CT onto block-constant fields on the
base lattice 
. (see fig. 1.1 for lattices)

The following relations hold:

CC

T

= s

�

I

0 (3.3)

with � = �2��D

(D=2)

= �2.
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The Transformation

Throughout this part we will use the following RG transformationR

e

�(RS)[�

0

]

= e

�S

0

[�

0

]

�

Z

D� �

�

[C�� �

0

]e

�S[�] (3.4)

with Gaussian constraint

�

�

['] � exp

�

�

�

2

('; ')

�

: (3.5)

By virtue of the weight functional P['] = �

�

['] the functional integral over � is
centered around those field configutations obeying C� = �

0. The smearing parameter
� can be used later on to tune the locality properties of the resulting effective action.

GK Formalism

K. GAWEDZKI and A. KUPIAINEN have introduced [GK], [GK80] a formalism1 which
turns out to be very convenient for perturbative explorations.

They exploit the fact that the flow of a quadratic action S[�] = 1

2

(�; v

�1

�) under
R can be handled explicitly. One can easily see that the effective action S0 is again
quadratic but with an effective propagator v0 given by

v

0

= CvC

T

+

1

�

:= Rv: (3.6)

Neglecting the last term this transformationhas a very appealing interpretation: Prop-
agation of blockfields on the blocked lattice is done by interpolating to the base lattice
by means of CT propagating then with the base propagator v and finally blocking back
to the blocked lattice by virtue of C.

Obviouslyany actionS[�] = T

v

[�]+V [�] can be devided into a kinetic partT
v

[�] =

1

2

(�; v

�1

�) with an arbitrary free propagator v and an interaction part. The freedom to
choose the free propagator can be used to simplify the resulting equations or to optimize
the perturbative expansion [Gri97].

The so-called background field is now defined by the requirement that it minimizes
the free action part T

v

subject to the weight P

T

v

[ ] +

�

2

jjC � �

0

jj

2

= extremal: (3.7)

The linear ansatz  = A�

0 leads to the explicit solution

A = vC

T

v

0

�1

: (3.8)

By splitting the base field � =  + � into the background field  and a fluctuation
field � and making use of the convolution formula for Gaussian integrals (see Appendix
C) the RG transformationR eq. (3.4) can be rewritten as

e

�V

0

[�

0

]

= e

�(RV )[�

0

]

=

Z

d�

�

[�]e

�V [A�

0

+�] (3.9)

1Actually they treated the situation with � = 0 where the weighting functional �
�

becomes a �-
distribution.

17



with

� = v � Av

0

A

T

: (3.10)

The so-called interpolationoperatorA : H

0

!H interpolates blockspinfields to the
base lattice. In contrast to the adjoint averaging operator with its constant interpolation
A smears the fields more smoothly (see fig. 3.2). 2

As mentioned in chapter 1 the locality of the fluctuation propagator � is essential
for the entire RG philosophy. The GK fluctuation propagator is proven to have an ex-
ponential fall-off [GK]. See fig. 3.1.

Figure 3.1: Fall-off of the fluctuation propagtor �(z; 0) with z = (z

0

; z

1

). Computation

was done on a 16�16 lattice with scaling factor s = 4. Essentially the flucation propagtor

is zero outside the block.

What has been accomplished?. Instead of a RG flow of the action one now has a
flow of the covariance v and the interactionV (often missleadingly called the Effective
Potential) governed by RG transformations R andR.

For later reference we mention the following useful relations

A = ��C

T (3.11)

� =

�

v

�1

+ �C

T

C

�

�1

(3.12)

v

0

=

�

�I

0

� �

2

C�C

T

�

�1

: (3.13)

2The averaging operator is closely related to wavelets. On a multigrid this allows an orthogonal decom-
position of the field into its frequency components [Mac]
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Iteration Limit versus Scaling Limit

The word Group in Renormalization Group is usually motivated by demanding that R
fulfills the semi-group property

R(s)R(s) = R(s

2

): (3.14)

The Gaussian RG transformationR used here does not only depend 3 on the scaling
factor s but additionally on the Gaussian parameter �

R = R(s; �): (3.15)

A modified semi-group property holds

R(s; �)R(s; �) = R(s

2

; �

[2]

(s; �)) (3.16)

with

�

[n]

(s; �) =

1� s

�

1� s

n�

�: (3.17)

The continuum limit of a lattice field theory now can be approached by two methods.
Either by an infinite iteration of RG steps with fixed scale lim

n!1

R

n

(s; �). Or alterna-

tively one can consider the scaling limit of a single RG step lim

n!1

R(s

n

; �

[n]

(s; �)) with

appropriate tuning of the Gaussian parameter.

3.2 Quadratic Fixed-Points

Let us first focus on the flow of a covariance v =: v

[0]

under R. After n iterations we
find

v

[n+1]

= Cv

[n]

C

T

+

1

�

= C

2

v

[n�1]

C

T

2

+

�

1 + s

�

�

1

�

= C

3

v

[n�2]

C

T

3

+

�

1 + s

�

+ s

2�

�

1

�

...

= C

n

v

[0]

C

T

n

+

1� s

n�

1� s

�

1

�

| {z }

�

[n]

�1

(3.18)

where we have used eq. (3.3).

3Actually the transformation depends on the rescaling dimension�, too. For simiplicity we are using here
the canonical dimension of the field.
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The first term can be written as
�

C

n

v

[0]

C

T

n

�

(x; x

0

) = s

�2n(D+�)

X

y;y

0

�

x;[y=s

n

]

v(y � y

0

)�

x

0

;[y

0

=s

n

]

= s

�2nD

X

z22

n

(x)

z

0

22

n

(x

0

)

s

�2n�

v(s

n

z � s

n

z

0

)

= s

�2nD

X

z22

n

(x)

z

0

22

n

(x

0

)

s

�2n�

Z

p2[0;2�]

D

v(p)e

ips

n

(z�z

0

)

= s

�2nD

X

z22

n

(x)

z

0

22

n

(x

0

)

Z

q2[0;2�s

n

]

D

s

�n(2�+D)

v(q=s

n

)e

iq(z�z

0

)

:

(3.19)

Assuming that the inverese propagator can be expanded as

v

�1

(p) = C

0

+C

1

p

2

+ C

2

p

4

: : : (3.20)

we get

s

�n(2�+D)

v(q=s

n

) =

1

C

0

s

n(2�+D)

+C

1

s

n(2�+D�2)

q

2

+ C

2

s

n(2�+D�4)

q

4

=

1

C

0

s

2n

+C

1

q

2

+ C

2

s

�2n

q

4

: (3.21)

In this form the iteration limit n! 1 can be taken. If the original propagator v has a
mass term, i.e. C

0

6= 0 then this mass acquires a factor s2 in each RG step, eventually
yielding

lim

n!1

�

C

n

v

[0]

C

T

n

�

(x; x

0

) = 0: (3.22)

In this case the action flows towards a high-temperature fixed-point

lim

n!1

v

[n+1]

(x; x

0

) =

1

1� s

�

1

�

I=

1

�

�

I:= vht = Rvht: (3.23)

If on the other hand v
[0]

is a massless propagator 4 we end up in a massless fixed point
5

lim

n!1

v

[n+1]

(x; x

0

) =

Z

z22(x)

z

0

22(x

0

)

(�4)

�1

(z; z

0

) +

1

�

�

: (3.24)

4(z; z

0

) is the continuum Laplacian and 2(x) is the unit cube centered around x.

4The reader might be worried about the zero modes of the massless bare propagator. As shown [GK]
one can introduce an IR regulator to take care of these. Since the RG transformation does not depend on the
regulator in the scaling limit we will ignore this technical issue further on.

5Actually there is a line of fixed points parametrized by C
1

. Here we have set C
1

= 1. This can always
be achieved be means of a trivial wavefunction renormalization.
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Figure 3.2: Flow of the standard nearest neighbor lattice Laplacian��nn(z) = v

[0]

�1

(z)

towards v�1
ml

(z) after n iteration steps. Computation was done on a 32 � 32 lattice

with s = 2; � = 8 by means of WILSON’s blow-up technique. The values for z =

(0; 1); (1; 1); (2; 0); (2; 1); (2;2) are drawn with +; �; �;4;2;�.

This formula closely resembles eq. (3.6) if one uses the averaging operator C[1]

(B.7) from the appendix B. Essentially its kernel is a translated characteristic function
of the continuum unit cube. With these eq. (3.24) reads

vml = C
[1]

(�4)

�1

C

[1]

T

+

1

�

�

(3.25)

The quadratic FP vml is the inverse of the so-called Perfect Laplacian (see Appendix
B.4). It is obtained by blocking the inverse continuum Laplacian onto the unit lattice.
The spectrum of the Pefect Laplacian [BW74, HN94] is exact in the sense that it ful-
fills the continuum energy-momentum relation. This observation motivates the attribute
perfect. In contrast to the standard lattice Laplacian it has not only nearest neighbor cou-
plings yet the other couplings decay rapidly with the distance. See table 3.1. By tuning
the Gaussian parameter � one can modify this fall-off. It turns out that � � 8 leads to
the smallest interaction range. Please note that the limit (3.21) only exists because the
rescaling dimension � has been chosen appropriately (see [BW74]). This demonstrates
that the anomalous dimension of the field at the Gaussian fixed-point is zero.
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v

�1

ml (z) z

1

= 0 z

1

= 1 z

1

= 2

z

0

= 0 3.24027 -0.61802 -0.00199
z

0

= 1 -0.61802 -0.19033 -0.00067

z

0

= 2 -0.00199 -0.00067 -0.00162

Table 3.1: Perfect Laplacian for � = 8. All other couplings are smaller than 10

�4.

3.3 ML and HT Picture

As mentioned before one is free to choose the propagator v in the split of the action
S[�] = T

v

[�] + V [�]. With the quadratic fixed-points vml; vht we have two natural can-
didates. The RG transformationR for the action can therefore be expressed in two dif-
ferent waysRht;Rml for the potential. We will speak of the HT and the ML picture.

Later on it will be important to switch freely between the ML and HT picture. So
let us start at the massless fixed-point vml and study the flow of a quadratic perturbation
with kernel Kml

Vml[�] =

1

2

(�;Kml�) : (3.26)

The transformation law for this kernel reads

K

0

= Aml
T

�

K

�1

ml
+ �ml

�

�1

Aml = Aml
T

LmlKmlAml (3.27)

with Lml = (1 + �mlKml)
�1

.
What do we expect? Suppose that K has a non-vanishing zero mode. Therefore

the total propagator v = vml + K

�1

ml has a mass. According to eq. (3.22) it will then
flow towards the high-temperature fixed-point vht. This means that the kernel Kml flows
to Kml ! K

�

ml := v

�1

ht � v
�1

ml . Thus we have found the high-temperature fixed-point
in terms of the transformation at the massless fixed-point. It is instructive to prove this
directly from eq. (3.27) First note that

K

�

ml = v

�1

ht + �C

T

C �

�

v

�1

ml � �C
T

C

�

(3:12)

= �

�1

ht � �

�1

ml (3.28)

from which we deduce

L

�

ml = �ht�
�1

ml : (3.29)

On the other hand

K

�

ml

(3:13)

=

�

�I

0

� �

2

C�htC
T

�

�

�

�I

0

� �

2

C�mlC
T

�

= ��

2

C [�ht � �ml] C
T

:

(3.30)

Equipped with these relations we verify that K�

ml
is indeed a fixed point solution of eq.
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(3.27):

Aml
T

L

�

mlK
�

mlAml

(3:30;3:29)

= Aml
T

�

�

�1

ml � �

�1

ml �ht�
�1

ml

�

Aml

(3:8)

= �

2

C�ml

�

�

�1

ml � �

�1

ml �ht�
�1

ml

�

�mlC
T

= ��

2

C [�ht � �ml]C
T

(3:30)

= K

�

ml
(3.31)

We are now able to switch from the ML to the HT-perspective and vice versa. Define

Vml[�] =

1

2

(�;K

�

ml�) + Vht[�]: (3.32)

By means of eq. (C.4) and using the abbrevation  ml = Aml�
0 we find

e

�V

0

ml[�
0

]

= e

�

1

2

( ;LmlKml )

Z

d�

(�

�1

+Kml)
�1 [�]e

�Vml[Lml +�]
:

(3.33)

With L�ml ml = L

�

mlAml�
0

= �ht�
�1

ml ��mlC
T

�

0

= ��htC
T

�

0

= Aht�
0 the RG transfor-

mation with respect to vht reads as expected

e

�V

0

ht[�
0

]

�

Z

d�

�ht[�]e
�Vht[Aht�

0

+�]

: (3.34)

By interchanging the roles of HT and ML one yields the opposite relations.

3.4 Scaling Limit of the GAWEDZKI and KUPIAINEN Ker-

nels

In section 3.2 we have encountered with eq. (3.25) a first example of a scaling limit.
The lattice propagator vml can be written as a continuum propagator (�4)

�1

+

1

�

�

trans-

ported to the unit lattice by virtue of C[1]. By similar techniques the other kernels can
also be expressed in this way.

Interpolation Operator

Let � stand for ml or ht. Define a scale transformation

(S

�

�) (z) = s

��

�

�(sz) (3.35)

and rescaled interpolation operators

A

�

[m]

= S

m

�

A

m

�

: (3.36)

If the exponents �
�

are chosen suitably then A
�

[m] has a scaling limit A
�

[1]. For �ht

we find �ht = �D � � and for �ml we get �ml = �. An approximation of Aml
[1] is

shown in fig. 3.3.
Because of C[1]

Aml
[1]

= Ithe background field  = C

[1]

�

0 fulfills C[1]

 = �

0.
The background field is a continuum field with only one degree of freedom per unit
volume.
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Figure 3.3: Approach of the rescaled interpolationoperatorAml
[n]

(z; 0) to its scaling form

for n = 1; : : : ; 8 and s = 2. It was computed by blocking from quadratic lattices of

sidelength sn+3 with scaling factor sn making use of An(s; �) = A(s

n

; �

[n]

(s; �)). The

small picture shows the convergence ofAml
[n]

(0; 0) as function of n.

The K Kernel

We now want to find the scaling limit of K�

ml
. Starting point is the fixed point equation

eq. (3.31) which can be rewritten as

K

�

ml
= Aht

T

K

�

ml
Aml: (3.37)

In coordinates this reads

K

�

ml
(z

1

; z

2

) =

Z

x

1

;x

2

Aht
T

(z

1

; x

1

)K

�

ml
(x

1

; x

2

)Aml(x2; z2) (3.38)

=

Z

z

1

;z

2

s

��ht
Aht

T

(z

1

; sz

1

)s

�2D+�ht+�ml
K

�

ml(sz1; sz2)s
��ml

Aml(sz2; z2):

Now, taking the scaling limit s!1 one obtains

K

�

ml
(z

1

; z

2

) =

Z

z

1

;z

2

Aht
[1]

T

(z

1

; z

1

)K

�

ml

[1]

(z

1

; z

2

)Aml
[1]

(z

2

; z

2

): (3.39)
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The rescaled kernel K�ml

[1] turns out to be local

K

�

ml

[1]

(z

1

; z

2

) = lim

s!1

s

�2D+�ht+�ml
K

�

ml(sz1; sz2)

= lim

s!1

s

�2D+�ht+�ml

Z

p

K

�

ml(p)e
ips(z

1

�z

2

)

= lim

s!1

s

�D+�ht+�ml

Z

p

K

�

ml(p=s)e
ip(z

1

�z

2

)

(D=2)

= lim

s!1

Z

p

K

�

ml(p=s)e
ip(z

1

�z

2

)

(D=2)

= K

�

ml(p = 0)�(z

1

� z

2

): (3.40)

Since K�

ml = v

�1

ht � v
�1

ml and v�1ht (p = 0) = �

�

; v

�1

ml (p = 0) = 0 we ultimately get
the scaling form

K

�

ml(z1; z2) = �

�

Z

z

Aht
[1]

T

(z

1

; z)Aml
[1]

(z; z

2

): (3.41)

3.5 The Linearized Transformation

We now want to study perturbations of the fixed points vht and vml . Let v
�

stand for one
of these. The linearized version of (3.9) applied to an observableO

[0]

at V
[0]

= 0 reads

O

[1]

[�

[1]

] = (LO

[0]

)[�

[1]

] =

Z

d�

�

�

[�]O

[0]

[A

�

�

[1]

+ �] (3.42)

Please note, that this is the same transformation (1.16) as for effective observables at a
quadratic action.

Consider now the normal ordered observable

O

[0]

[�

[0]

] = : e

(�

[0]

;J)

:

v

�

= e

(�

[0]

;J)�

1

2

(J;v

�

J)

: (3.43)

One readily computes

O

[1]

[�

[1]

] =

Z

d�

�

�

[�] exp

�

(A

�

�

[1]

+ �; J)�

1

2

(J; v

�

J)

�

= exp

�

(A

�

�

[1]

; J)�

1

2

(J; [v

�

� �

�

] J)

�

= exp

�

(�

[1]

; A

T

�

J) �

1

2

(A

T

�

J; vA

T

�

J)

�

= : e

(�

[1]

;A

T

�

J)

:

v

�

(3.44)

25



from which we deduce

: �

[0]

(z

1

) � � ��

[0]

(z

n

) :

v

�

!

Z

x

1

;::: ;x

n

A

�

(z

1

; x

1

) � � �A

�

(z

n

; x

n

) : �

[1]

(x

1

) � � ��

[1]

(x

n

) :

v

�

:

(3.45)

We are seeking eigenobservables of L. Up to a folding with an interpolation kernel the
normal-ordered products are already invariant. Fortunately the rescaled interpolation
kernels have a scaling limitA

�

[1]. From their definition (3.36) we find

A

�

[m]

A

�

= S

�1

�

A

�

[m+1] (3.46)

and therefore

A

�

[1]

A

�

= S

�1

�

A

�

[1]

: (3.47)

Now define observables

O

(n)

�

[�

[0]

] :=

Z

z

:  

�

(z)

n

:

v

�

(3.48)

with a blockspin dependent continuum background field  
�

(�

[0]

) = A

�

[1]

�

[0]

.
Because of (3.45) we obtain

�

LO

(n)

�

�

[�

[0]

] =

Z

z2R

D

:

�

A

�

[1]

A

�

�

[0]

�

(z)

n

:

v

�

=

Z

z2R

D

:

�

S

�1

�

A

�

[1]

�

[0]

�

(z)

n

:

v

�

=

Z

z2R

D

s

n�

�

:

�

A

�

[1]

�

[0]

�

(z=s)

n

:

v

�

= s

n�

�

+D

Z

z2R

D

:

�

A

�

[1]

�

[0]

�

(z)

n

:

v

�

= s

n�

�

+D

O

(n)

�

[�

[0]

]: (3.49)

Hence the observablesO
(n)

�

[�

[0]

] are eigenobservables ofLwitheigenvalues sn��+D .
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Chapter 4

The Hierarchical O(N) model

In this chapter the RT of the hierarchical two dimensionalO(N ) symmetric non-linear

� model is calculated in perturbation theory.

4.1 Hierarchical Approximation

There are many different perspectives to look at the hierarchical approximation. Here
we will take the one promoted by C. WIECZERKOWSKI. Starting point is the RG trans-
formation in the high-temperature picture where the high-temperature fixed point vht =

1=�

�

Iis taken as free propagator.1

e

�V

0

ht [�
0

]

=

Z

d�

�ht[�]e
�Vht[Aht�

0

+�]

: (4.1)

Here we have introduced Vht = S � Tht . In the HT picture eqns. (3.8,3.10) read

Aht = C

T (4.2)

�ht =

1

�

�

�

I� C

T

C

�

: (4.3)

The entire RG philosophy is based on the assumption that the fluctuation propagators
are strongly decaying kernels. Only then the occuring fluctuation integral is non-critical
and the decomposition of the full (critical) partition function into slices makes sense.

In the hierarchical approximation this assumption is taken to its very end and the
fluctuation propagator is approximated by the pure local part 2 �ht =

1

�

�

I.

1For the ease of notation in this section scalar fields are treated
2C. WIECZERKOWSKI has embedded the hierarchical RG into a more general framework with the latter

as zeroth order approximation. In this quasi-hierarchical RG the non-locality CTC of eq. (4.3) is switched
on continously by some parameter � with � = 0 giving the hierarchical fluctuation propagator. The transfor-
mation for � > 0 then turns out to be a hierarchical transformation with a subsequent rescaling step. [Wie]
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If one further assumes that Vht is also ultra-local

Vht[�] =

Z

z

V(�(z)) (4.4)

then the flucutation integral eq. (4.3) factorizes completely and the effective potential
becomes ultra-local, too.

e

�V

0

ht(
^

�

0

)

=

"

Z

d�


ht (
^

�)e

�Vht

�

s

�

D+2

2

^

�

0

+

^

�

�

#

s

D

: (4.5)

This is the hierarchical RG transformation in the HT picture. We will mark local quan-
tities with ^ from now on.

Here we are only interested in the D = 2 case. In this special situation the ML
picture turns out to be more convenient. Proceeding as in 3.3, eq. (4.5) will now be

rewritten in the ML picture. Let ^

Aht = s

�

D+2

2 .
In the hierarchical version the quadratic fixed point 1

2

^

K

�

ht
^

�

2 of the equation eq. (4.5)
reads

^

K

�

ht = s

D

^

Aht
^

L

�

ht
^

K

�

ht
^

Aht (4.6)

Formally the only difference is the occurrence of a block volume factor. Using ^

L

�

ht =

(1� 
ht
^

K

�

ht )
�1 yields

^

K

�

ht =

s

�2

� 1


ht

: (4.7)

Define now 


�1

ml :=

^

K

�

ht + 


�1

ht which yields 
ht = s

�2


ml. Then ^

L

�

ht = s

2,^L�ht
^

Aht =:

^

Aml = 1 and therefore we get

e

�V

0

ml(
^

�

0

)

=

�

Z

d�


ml(
^

�)e

�Vml(
^

�

0

+

^

�

)

�

s

D

: (4.8)

This now is the hierarchical RG transformation in the ML picture.
Please note that in eq. (4.5) both integer parameters s, D can be continued to real

values. Additionally the value of 
ml or 
ht can be varied.

4.2 The RG Transformation

Let us consider the hierarchical blockspin transformation for N component fields

e

�

^

RV

0

(

^

�

0

)

= N

�

Z

d�




(

^

�)e

�V(

^

�

0

+

^

�)

�

2

: (4.9)

in D = 2 dimensions with scale parameter s =
p

2. The subspace of O(N ) invariant
interactions is stable under ^

R (4.9). If we restrict our attention to this subspaceO(N ) in-

variance requires V(^�) to be a function of the modulus j^�j. The normalization constant
in (4.9) is conveniently chosen such that the interaction is always zero at its minimum.
We will denote this minimum by r and call it the radius of the potential.
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4.3 Perfect Action and the Renormalized Trajectory

To calculate the Perfect Action [HN94] for the hierarchical O(N ) model we write the
potential in the form

V(

^

�) = r

2

~

V

 

j

^

�j

r

� 1

!

(4.10)

with r = 1

f

. The hierarchical transformation then takes the form

exp

�

�r

02

~

V

0

(j

^

�

0

j � 1)

�

=

"

N

�

2�


r

2

�

�

N

2

Z

d

N

^

� exp

 

�r

2

(

^

�

2

2


�

~

V(j

1

r

^

�

0

+

^

� j � 1)

)!#

2

:(4.11)

where the fluctuation field and the blockspin field have been rescaled by r. It turns
out in perturbation theory that the effective radius is

r

0

= r �




2

(N � 1)

1

r

+ O

�

1

r

3

�

: (4.12)

In the limit where r and hence also r0 are sent to infinity the fluctuation integral can be
evaluated by the saddlepoint method giving the FP-equation

~

V

FP
(j

^

�

0

j � 1) = 2 inf

^

�2IR

N

�

1

2


^

�

2

+

~

V

FP
(j

^

�

0

+

^

�j � 1)

�

: (4.13)

This equation can be solved by the ansatz cFP
2

(j

^

�j�r)

2 with a single parameter cFP
2

yield-
ing

c

FP

2

(j

^

�

0

j � 1)

2

= 2 inf

^

�2IR

N

�

1

2


^

�

2

+ c

FP

2

(j

^

�

0

+

^

�j � 1)

2

�

: (4.14)

Rexpressing this quadratic extremality condition as a Gaussian integral equation

exp

n

�c

FP

2

(j

^

�

0

j � 1)

2

o

=

�

N

Z

d�




(

^

�) exp

�

1

2


^

�

2

+ c

FP

2

(j

^

�

0

+

^

�j � 1)

2

��

2

(4.15)

one recognizes the FP equation of the original transformation with the wellknown HT
solution cFP

2

=

^

K

�

ml =
1

2


.
The Perfect Action approximation for the renormalized trajectory in this model is

hence given by

VPA(�) =

r

2

2


�

1

r

j

^

�j � 1

�

2

=

1

2

(

^

�

r

;

^

K

�

ml
^

�

r

) (4.16)

with ^

�

r

= j

^

�j � r.
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The right way to think of this formula is as a line of fixed points of the classical
renormalization group transformation parametrized by r. Note that unlike [HN94] the
action is not just multiplied by r2. We have tested this approximation numerically as
will be explained below.

A sufficiently general form of VRT(
^

�) for � models close to the renormalized trajec-
tory proves to be

VRT(
^

�) =

X

a�2

P

a

(f)(j

^

�j �

1

f

)

a (4.17)

with P
2

(f) =

1

2


+ O(f

2

) and P
a

(f) = O(f

a

) for a > 2.

The running coupling is given by the inverse radius. In this setup ^

� is not restricted
to take values on the sphere with radius 1

f

, the reason being that our recursion does not
preserve this condition. The normalization constantN is conveniently chosen such that
V(

^

�) = 0 for j^�j = 1

f

. We adopt this renormalization condition. When computing
single renormalization group transformations we will speak of the previous action as
the bare action and of the outcome as the effective or renormalized action.

Let us define the renormalized trajectory as the curve VRT(
^

�jf) in the space ofO(N )

invariant potentials, parametrized by the inverse radius f =

1

r

, with the following two
properties:

1) VRT(
^

�jf) is stable under the blockspin transformation ^

R. It follows that there exists
a function �(f) such that

RVRT(
^

�jf) = VRT(
^

�j�(f)): (4.18)

In other words: A blockspin transformation acts on the renormalized trajectory by
a transformation of the coordinate given by a �-function.

2) The asymptotic behavior of VRT(
^

�jf) as the running coupling f goes to zero is given
by

VRT(
^

�jf) = V

(1)

RT (

^

�jf) + O(f

2

);

V

(1)

RT (

^

�jf) = VPA(
^

�jf): (4.19)

Up to corrections of second order in the running coupling the renormalized trajec-
tory coincides with the Perfect Action.

4.4 Perturbation Theory

The perturbation expansion for the O(N ) model can be computed to high orders us-
ing computer algebra. Let us explain the method in a second order calculation for the
Perfect Action. As bare potential we take

V(

^

�) = VPA(
^

�) =

1

2


W (

^

�jf)

2 (4.20)
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with

W (

^

�jf) = j

^

�j �

1

f

: (4.21)

The effective potential will be O(N )–invariant. Without loss of generality we can

therefore take the blockspin to be given by ^

�

0

= (r+

^

�

0

r

)êwith ê being anN–component

unit vector, say (0; : : : ; 0; 1)

T . The shift of ^

�

0

r

serves to place us into the minimum of
the bare potential. We then decompose orthogonally the fluctuation field with respect
to the direction of ^

�

0 into ^

� = �̂ê+

^

� . The one component variable �̂ is the radial fluc-
tuation field while the N � 1 component variable ^

� is the tangential fluctuation field.
Now the bare potential is expanded in powers of the coupling f =

1

r

. Up to second
order it is given by

V(fr +

^

�

0

r

+ �̂ge+

^

�) =

1

2


(

^

�

0

r

+ �̂)

2

+ f

1

2


^

�

2

(

^

�

0

r

+ �̂)

�f

2

1

2


^

�

2

(

^

�

0

r

+ �̂)

2

+

1

8


^

�

4 (4.22)

One observes a zero order term which cannot be treated as perturbation. A closer look
reveals that this term is precisely the HT-fixed point. Splitting the bare potential

V(fr +

^

�

0

r

+ �̂ge+

^

�) =

1

2

(

^

�

0

r

+ �̂;

^

K

�

mlf
^

�

0

r

+ �̂g) + V

(1)

(

^

�

0

r

+ �̂;

^

�)

(4.23)

enables us to use eq. (C.4), yielding the RG equation

e

�V

0

(fr+

^

�

0

r

ge)

= e

1

2

(

^

�

0

r

;

^

K

�

ml
^

�

0

r

)

�

N

Z

d�


ht (�̂)

Z

d�


ml(
^

�)e

�V

(1)

(

^

Aht
^

�

0

r

+�̂;

^

�)

�

2

:

(4.24)

with ^

Aht =
1

2

.
In this mixed formulation the radial field is treated in the HT picture whereas the

angular field is treated in the ML picture. The bare potential takes the form

V

(1)

(

^

Aht
^

�

0

r

+ �̂;

^

�) = f

1

2
ml

^

�

2

(

1

2

^

�

0

r

+ �̂) � f

2

1

2
ml

^

�

2

(

1

2

^

�

0

r

+ �̂)

2

+

1

8
ml

^

�

4(4.25)

At this point perturbation theory is applicable. Although the potential is non–polynomial
to begin with only finitely many terms show up at finite order with a leading trilinear
vertex. Note that the Perfect Action is recovered when fluctuations are completely ne-
glected. The perturbation expansion is straight forward using the Gaussian correlations
(see C.7)

Z

d�


ht (�̂)�̂
2n

=

�


ml

2

�

n

n�1

Y

m=0

(2m+ 1) (4.26)

and

Z

d�


ml (
^

�)(

^

�

2

)

n

= 


n

ml

n�1

Y

m=0

(2m+ N � 1): (4.27)
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Computing the fluctuation integral to second order perturbation theory and neglect-
ing field independent terms we obtain an effective potential of the form

V

0

(fr +

^

�

0

r

ge) =

�

1

2
ml

�

3

8

(N � 1)f

2

�

^

�

0

2

r

+

1

2

(N � 1)f

^

�

0

r

+O(f

3

):

(4.28)

We then determine the value �r of ^

�

0

r

at which the effective potential attains its

minimum and substitute ^

�

0

r

=

^

�

0

r

0

+ �r. The change of r is due to the linear term in
^

�

0

r

. The meaning of this variable is ^

�

0

r

0
= j

^

�

0

j � r

0 with r0 = r + �r denoting the
renormalized radius.

To second order perturbation theory in f the change of the radius is �r = �
ml

2

(N�

1)f + O(f

3

). From this we find a renormalized coupling f 0 = 1

r

0

of the form

f

0

= f +


ml

2

(N � 1)f

3

+ O(f

5

): (4.29)

(The vanishing of the f4 term of the4� function follows from a fourth order calcu-
lation.) In particular we have confirmed that the model is perturbatively asymptotically
free for N > 1. That is, when perturbation theory applies we find a flow where the
coupling slowly grows and the radius slowly shrinks. The effective potential becomes

V

0

(

^

�

0

r

0

) =

�

1

2
ml

�

3

8

(N � 1)f

02

�

^

�

0

2

r

0

+ O(f

03

) (4.30)

in terms of ^

�

0

r

0

= j

^

�

0

j � r

0 and f 0. We also see that this action remains invariant in
the sense of scaling to first order. Scaling violation shows up in a second order flow
of the overall prefactor. In a zeroth improvement step they can be compensated for by
changing the bare action into

V(

^

�) =

�

1

2
ml

+ c

(2)

2

f

02

��

j

^

�j �

1

f

�

2

: (4.31)

The correct value of the improvement parameter is c
(2)

2

=

3

4

(N � 1). The resulting
action can then be seen to scale even to second order.

4.5 Improved Action

Let us now also remove the scaling violations of second order. As a bare potential we
take the second order improved one which we write in the form

V

(2)

(

^

�) = P

(2)

2

(f)

�

j

^

�j �

1

f

�

2

(4.32)

withP
(2)

2

(f) =

�

1

2
ml
�

3

4

(N � 1)f

02

�

The effective potential computed to third order

perturbation theory is given by
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V

0(2)

(

^

�

0

r

0
) =

�

1

2
ml

�

3

4

(N � 1)f

02

�

^

�

0

2

r

0

+

7

24

(N � 1)f

03

^

�

0

3

r

0

+ O(f

04

)

(4.33)

in terms of f 0. What is new is a cubic term in ^

�

0

r

0

= j

^

�

0

j � r

0. As it will be generated
anyway to third order it is natural to include it to this order in the bare action. In other
words let us make the ansatz

V

(3)

(

^

�) = P

(3)

2

(f)

�

j

^

�j �

1

f

�

2

+ P

(3)

3

(f)

�

j

^

�j �

1

f

�

3

(4.34)

with P
(3)

2

(f) = P

(2)

2

(f) + c

(3)

2

f

3 and P
(3)

3

(f) = c

(3)

3

f

3.
Here we have anticipated a possible cubic correction toP

2

(f) which in fact turns out
not to exist. The ansatz contains two new improvement parameters. Computing again

the effective potential to third order, the correct values of these are seen to be c
(3)

2

= 0

and c
(3)

3

=

7

18

(N �1). This action reproduces itself up to fourth order corrections. The
improvement scheme can now be iterated.

Suppose that we have found the potential

V

(n)

(

^

�) =

n

X

a=2

P

(n)

a

(f)

�

j

^

�j �

1

f

�

a

(4.35)

which scales up to order n. For the potential of the next improvement level n + 1 we
make the ansatz

V

(n+1)

(

^

�) =

n+1

X

a=2

P

(n+1)

a

(f)

�

j

^

�j �

1

f

�

a

(4.36)

containing polynomialsP
(n+1)

a

(f) =

h

P

(n)

a

(f) + c

(n+1)

a

f

n+1

i

fora � n andP
(n+1)

n+1

(f) =

c

(n+1)

n+1

f

n+1. This general form is reproduced to this order. The corresponding effective
potential is again of this form to order n + 1

V

0(n+1)

(

^

�

0

r

0

) =

n+1

X

a=2

P

0(n+1)

a

(f

0

)

^

�

0

a

r

0

+O(f

0n+2

) (4.37)

containing polynomials P 0
(n+1)

a

(f

0

) =

h

P

(n)

a

(f

0

) + c

0

(n+1)

a

f

0n+1

i

for a � n and

P

0

(n+1)

n+1

(f

0

) = c

0

(n+1)

n+1

f

0n+1.

The effective coefficients c0
a

(n+1) depend linearly on their bare counterparts c
(n+1)

a

.
(To order n+1 they have no other choice.) In order that there be no scaling violation to

order n+1 the polynomialsP
(n+1)

a

and P 0
(n+1)

a

have to be equal. From this we obtain

a system of linear equations for the coefficients c
(n+1)

a

. This system turns out to have a
unique solution. With the general form

P

(n)

a

(f) =

[

n�a

2

]

X

m=0

c

(2m+a)

a

f

2m+a (4.38)
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we find up to fifth order

c

(2)

2

= �

3(N � 1)

4

;

c

(4)

2

=

�

9(N � 1)

2

8

�

61(N � 1)

28

�


ml;

c

(3)

3

=

7(N � 1)

18

;

c

(5)

3

=

�

�

5(N � 1)

2

8

+

257(N � 1)

180

�


ml;

c

(4)

4

= �

15(N � 1)

56

;

c

(5)

5

=

31(N � 1)

150

;

(4.39)

We observe that the power series for P
a

(f) contains only even (odd) powers of f when
a is even (odd). Furthermore we observe that the signs of the coefficients alternate. The
complete series is not expected to converge due to instantonsingularities. It would how-
ever be very interesting to apply the machinery of resummation methods to a high order
approximation to the renormalized trajectory.

f

0

= f +

(N � 1)
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mlf
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+

�

3(N � 1)

2
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+

13(N � 1)
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ml
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5

+ O(f

6

)

(4.40)

For the sake of completeness we also include the recursion

r
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= r �

1

2


ml(N � 1)f �

�

1

8
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+
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12

(N � 1)

2

+

47

12

(N � 1)

�




3

mlf
5

+O(f

6

) (4.41)

for the effective radius.

4.6 Continuum Limit

Our definition of a renormalized trajectory does not refer to a continuum limit proce-
dure. It is nevertheless identical with the continuum limit effective potential of models
in theO(N ) universalityclass in the hierarchical renormalization scheme. To prove this
we can perform the continuum limit using (4.41) as bare interaction. Define the bare
coupling to be the n-fold preimage ��n(f) of a renormalized value f . By construction
of the renormalized trajectory it follows that

^

R

n

VRT(
^

�j�

�n

(f)) = VRT(
^

�jf)) (4.42)
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for all numbers n of renormalization group steps. The continuum limit n ! 1
is immediately performed since the right hand side of (4.42) is independent of n. All
that is needed is an analysis of the recursion relation defined by the �-function or rather
its inverse. This is a comparatively easy task. See for instance [GK86]. For N > 1 it
follows that the bare coupling tends to zero as n goes to infinity. (One needs to take into
account logarithmic corrections piled up by the term of third order in g2, fifth order in
f .) It follows that the perturbation expansion in the running coupling is valid. To make
contact with the hierarchical real world one should also assign a scale, for instance in
form of a lattice spacing a, to the point on the renormalized trajectory where the running
coupling is given by the renormalized value f . The bare cutoff in (4.42) is then s�na
with s the block scale.

The sceptical reader may worry to what extent this construction is connected to the
continuum limit of a bare theory defined by his favorite O(N ) invariant interaction.
Consider for instance the standard interaction of the linear O(N )-model defined by

V(

^

�jf) = �f

2

�

^

�

2

�

1

f

2

�

2

: (4.43)

Its continuum limit is constructed as the result of the infinite iteration

lim

n!1

^

R

n

V(

^

�jf

�n

(f)) = Vcont(
^

�jf): (4.44)

Here the bare coupling f
�n

(f) is tuned such that the minimum of ^

R

n

V(

^

�jf

�n

(f))

is located at the renormalized radius j^�j = 1

f

. The continuum limit is universal as we
have learnt from the work of Wilson [WK74]. Therefore the connection to the above
definition is simply

Vcont(
^

�jf) = VRT(
^

�jf): (4.45)

A rigorous proof of the existence of (4.44) and, inbetween the lines, also of (4.45)
has been given by Gawedzki and Kupiainen [GK86]. More generally, the set of all bare
interactions sharing (4.41) as their common continuum limit defines the universality
class of the hierarchical O(N )-model. (4.43) is known to belong to this class and so is
the original model with sharp constraint. So what we do, when we define the renormal-
ized trajectory by the above two conditions, is to completely disentangle the admittingly
also interesting questions if, how, and at what pace the continuum limit is reached by
some particular bare model.

In practice we may not be able to compute (4.41) to all orders of perturbation the-
ory in the running coupling for the models we are really interested in, for example the
full nonlinear O(N )-model in terms of blockspin transformation on a unit lattice. In
this situation the best one can do is to take the highest order approximation to (4.41)
accessible as bare interaction. In the hierarchical model for instance already the second
approximant

V

(2)

RT (

^

�) =

�

1

2
ml

+

3

4

(N � 1)f

02

��

j

^

�j �

1

f

�

2

: (4.46)
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turns out to be an excellent starting point for a numerical study of the renormalized tra-
jectory. Its main property is of course

^

RV

(2)

RT (

^

�jf) = V

(2)

RT (

^

�j�(f)) + O(�(f)

3

): (4.47)

It therefore coincides with the renormalized trajectory up to corrections of third or-
der in f .

Let us finally mention that the third order approximant would be ideally suited for a
rigorous construction along the lines of Gawedzki and Kupiainen [GK86] and of Pordt
and Reisz [PR91]. The perturbative part is trivial since the action reproduces itself to
third order. The construction therefore reduces to the proof of a stability bound which
controls non perturbative corrections. This bound is already implicitly contained in the
rigorous work on the O(N )-model with standard bare interaction (4.43).

4.7 Perfect Observables

Let us consider the hierarchical renormalization group transformation for local observ-
ables corresponding to (4.9) in the case of D = 2 dimensions with scale parameter
s =

p

2. It is given by the linear transformation

^

L

V

^

O(

^

�

0

) =
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^

�)e

�V(
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0

+

^

�)

^
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^

�

0

+

^

�)
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(

^

�)e

�V(

^

�

0

+

^

�)

: (4.48)

The block volume is sD = 2. (4.48) is the linearization of (4.9) divided by the block
volume

^

L

V

^

O(

^

�

0

) =

1

2

@

@t

^

R(V + t

^

O)

jt=0

: (4.49)

In other words the transformation of observables is the tangent map of the transfor-
mation of the potential.

By means of the transformations that led to eq. (4.24) one finds

^

L

V

^

O(f

^

Aht
^

�

0

r

+ �̂ge) = (4.50)
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^

�)e

�V

(1)

(

^

Aht
^

�

0

r

+�̂;

^

�)

At this point perturbation theory is again applicable. The expansion parameter is
the inverse radius f .

An observable is called a moving eigenvector to the moving eigenvalue �(f) if it
satisfies the renormalization group equation

^

L

V

^

O(

^

�jf) = �(�(f))

^

O(

^

�j�(f)): (4.51)

Solutions to (4.51) will be called perfect observables. A parametrization well suited for
perturbation theory is

^

O(

^

�jf) =

1

X

n=0

Q

n

(f)

�

j

^

�j �

1

f

�

n

: (4.52)
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Here the coefficients Q
n

(f) are taken to be power series in the running coupling
f . (The coefficients are not expected to exhibit any singularity at zero coupling.) We
will organize the solutions of (4.51) according to their zeroth order coefficients. The
zeroth order observables are simply normal ordered monomials. Let us also perform
the perturbation expansion for the observables of the form (4.52). Define

W (

^

�) = j

^

�j �

1

f

: (4.53)

As in the potential we find a term of order zero in the running coupling. Separating
it off we obtain

W (f

1

f

+

^

�

0

r

2

+ �̂)e +

^

�jf) =

^

�

0

r

2

+ �̂+W

(1)

(

^

�

0

r

2

+ �̂;

^

�jf):

(4.54)

In the limit when the radius becomes infinite V(1) vanishes. Since the zeroth order term
does not depend on ^

�, the transformation (4.50) reduces in this case to the convolution
with the radial Gaussian measure. This transformation is identical with that of a one-
component scalar field in two dimensions at the high-temperature fixed-point. We are
therefore immediately lead to normal ordered monomials.
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2
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. From eq. (C.8) it then follows that
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�

: (4.55)

Therefore the eigenvectors are normal ordered monomials to zeroth order as expected.
The zeroth order spectrum is �

n

=

1

2

n

. Let us write the normal ordered monomials in
the form

:

^

�

0

n

r

:




�

=

n

X

m=0

h

n;m

^

�

0

m

r

: (4.56)

They are of course rescaled Hermite polynomials in the variable ^

�

0

r

. We then write the
associated sequence of observables defined as solutions of the scaling equation (4.51)
in the form

^

O

n

(

^

�jf) =

1

X

m=0

Q

n;m

(f)W (

^

�jf)

m

: (4.57)

The coefficients Q
n;m

(f) are given by the power series expansions

Q

n;m

(f) =

1

X

l=0

d

(l)

n;m

f

l (4.58)

with zero order coefficients of the normal ordered form

Q

(0)

n;m

= h

n;m

: (4.59)
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That is, the observables are perturbations of normal ordered monomials. The per-
turbative form of the moving spectrum is

�

n

(f) =

1

X

m=0

�

(m)

n

f

m (4.60)

with zero order coefficients

�

(0)

n

=

1

2

n

: (4.61)

This completes the setup for the improvement program for observables. Let us then
turn to the question of how to compute the higher coefficients in the expansions (4.58)
and (4.60) for the moving eigenvectors and observables. The strategy is an adaptation
of the improvement program for the potential. Let us choose the first (nontrivial) ob-
servable ^

O

1

(

^

�jf) as an example and perform a third order computation to some detail.
The zeroth order argument provides us with the information that

^

O

1

(

^

�jf) = W (

^

�jf) + O(f); (4.62)

�

1

(f) =

1

2

+O(f): (4.63)

Let us denote the zeroth order approximation by ^

O(

^

�jf) = W (

^

�jf). As we will see
this observable already scales to second order. We immediately perform a perturbation
expansion to third order for the effective observable of the zeroth order approximation.
The result is

^
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0

)

3

; (4.64)

where the old running coupling f is expressed in terms of the new running coupling
f

0

= �(f).

( ^LRT is understood as an operator which is applied to the function ^

O(

^

�jf).) This
change of coupling prepares in particular the ground for further iterations. Let us em-
phasize that not only the coefficients but also the coordinate functions depend on the
running coupling and have to be adjusted. From this we conclude that the observable
already scales to second order. The eigenvalue is therefore already correct to second
order. To third order both a constant and a term quadratic in W (

^

�jf) are generated.
Therefore the observable does not reproduce its dependence on the field to third or-

der. To find the observable which scales to third order we make the ansatz

^
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^

�jf) = d

0

f

3

+W (

^
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2
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3

W (
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2

: (4.65)
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The ansatz involves two improvement parameters d
0

and d
2

. To determine their
value one again computes the effective observable starting from (4.65). The expansion
gives
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: (4.66)

The improvement parameters are then determined by the simple linear equations
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The solution is

d
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�(N � 1)
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ml: (4.68)

To third order we therefore find
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together with the eigenvalue
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(f) =

1

2
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(N � 1)
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4
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+ O(f

4

): (4.70)

Note that the eigenvalue does not have a term of third order in the running coupling.
This scheme is iterated in the obvious manner. Suppose that we have computed the ob-
servable to order t in the running coupling
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�jf) =

^
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(t)
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): (4.71)

Moreover suppose that the order t improved observable is given by the general form
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Then by induction it follows that the effective observable to order t+ 1 is again of this
general form. It follows that to every order of perturbation theory only finitely many
powers of the coordinate functionsW (

^

�jf) appear. The sums turn out to involve either

even or odd powers in the running coupling respectively. We assume that ^

O

(t)

1

(

^

�jf)

scales to order t. That is,
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): (4.73)

Then we take an ansatz of the form (4.72) to order t+1 treating the coefficients of order
t + 1 in the running coupling as improvement parameters. We compute the effective
observable. It depends linearly on the improvement parameters. To order t + 1 it has
no other choice. Then we claim invariance to obtain a linear system of equations for the
improvement coefficients. This system turns out always to have a unique solution: the
improved observable.

4.8 Hierarchical Fusion Rules

The outcome of our analysis is a system of observables ^

O

n

(

^

�jf) on the renormalized
trajectory parametrized by f . Under a hierarchical renormalization group transforma-
tion ^

O

n

(

^

�jf) is multiplied by the moving eigenvalue �
n

(�(f)) and the coordinate is
changed to �(f). This scheme is obviously iteratable which is the reason why we in-
troduced it from the beginning. To compute general correlation functions we need one
more ingredience which is the notion of hierarchical fusion rules. The general form of
our observables in terms of ^
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The normal ordering covariance is 

�

=

2

3


ml . Let us put 
ml = 1 to simplify the no-

tation. To zeroth order in f we rediscover normal ordered monomials in ^

�

0

r

. Their
perturbations along the renormalized trajectory prove to have no first order terms in the
running coupling f . To every order of perturbation theory in f we find only finitely
many normal ordered powers of ^

�

0

r

. The highest power is n+ r � 2 for r > 2. Asso-

40



ciated with this system of observables is a system of fusion rules defined by
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Furthermore from the fusion rules we obtain a symmetric bilinear form on the linear
space of observables. It is defined by

�
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�jf);

^
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(

^

�jf)

�

= N

n;m;0

(f): (4.76)

The physical significance of this bilinear form is that in the thermodynamic limit only
the overlap of an observable with the constant term is expected to survive. Since corre-
lation functions are expected to decrease with distance, the spectrum consists of eigen-
values strictly smaller than one on the renormalized trajectory. To zeroth order of per-
turbation theory we recapture the fusion rules of normal ordered products
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for jn�mj � l � n+m and n+m� l 2 2Z, zero else. Furthermore to zeroth order
the observables are orthogonal with respect to the bilinear form
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: (4.78)

The simple pattern (4.77), (4.78) becomes perturbed as one moves away from the ultra-
violet fixed point on the renormalized trajectory. The perturbationexpansion forN

1;1;l

(f)

to fifth order in f is for instance
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The perturbation expansion for N
1;2;l

(f) to fifth order in f is given by

N

1;2;0

(f) =

40(N � 1)

2

21

f

5

+ O(f

7

);

N

1;2;1

(f) =

4

3

+

10(N � 1)

9

f

2

�

�

40(N � 1)

2

27

�

598(N � 1)

63

�

f

4

+ O(f

6

);

N

1;2;2

(f) = �4(N � 1) f

3

+

�

34(N � 1)

2

3

�

404(N � 1)

7

�

f

5

+ O(f

7

);

N

1;2;3

(f) = 1�

4(N � 1)

21

f

4

+ O(f

6

);

N

1;2;4

(f) =

48(N � 1)

35

f

5

+ O(f

7

): (4.80)

All other fusion rules are zero to fifth order. We observe that orthogonality is violated
to fifth order for the first and second observable.

With the fusion rules we can compute correlation functions of our observables. Let
us consider for example a general two-point function. It depends on the hierarchical
distance k and the hierarchical lattice size k0 of the system. The explicit formula is
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(4.81)

for the two point function on the point of the renormalized trajectory parametrized by
f . This formula simply states that each observable is renormalized independently k-
times. Each renormalization step produces a factor given by the eigenvalue of the cor-
responding observable at the location on the renormalized trajectory. After k steps the
observables end up in the same block and are fused together there. The result of fusion
is then renormalized (k

0

� k)-times to obtain the value of the two point function. The
thermodynamic limit corresponds to k0 =1. The formula (4.81) still holds in this limit
provided one changes to a different parametrization of the renormalized trajectory at the
point where the running coupling f diverges.

4.9 Numerical Results

When dealing with perturbation theory it is natural to question its validity. To tackle this
problem we have determined our perfect observables and their corresponding eigenval-
ues numerically. The main technical task is to compute the transformations
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Both equations can be reduced to integrals of the type
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with certain scalar functions F ('). A shift ^� ! ^
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j) = (2�
)

N=2

Z

d

N

^

� exp

�

�

1

2
ml

[

^

�

2

+

^

�

0

2

] +

1


ml

^

�

0
^

�

�

F (j

^

�j):

(4.85)

By using polar coordinates and integrating out the polar angles we find for N = 3

I

F

(j

^

�

0

j) = N

1

Z

0

dR exp

�

�

1

2
ml

[R

2

+ j

^

�

0

j

2

]

�

sinh

 

j

^

�

0

jR




!

RF (R)

j

^

�

0

j

:

(4.86)

In this form the integral can be evaluated by standard numerical methods.
Equipped with integrators for (4.82) and (4.83) the strategy goes a follows: The first

step is to determine VRT. For this purpose we start with the perturbatively improved
action VpertRT (

^

�jr

0

) at a given radius r
0

as bare potential and iterate the RG transfor-
mation (4.82). In each step the resulting potential is driven closer and closer towards
the RT. After 10 steps we end up with a good approximation of VRT(r) at some radius
r = r(r

0

). In this iterative process the potential V(') is represented as a cubic spline
with N

'

equidistant knots '
i

in the range I
'

= ['

min

; '

max

]. For each iteration one

has to evaluate V0 = ^

RV at these points. The interval I
'

must to be chosen in such a
way that for the computation of V0(' 2 I

'

) contributions V(' 62 I
'

) are numerically
negligible in (4.82).

In the second step the eigenvalues and eigenoperators of the linearized RG trans-
formation ^

LRT at this very potential VRT(r) are computed. The operator ^

LRT acts on
the infinite dimensional space of observables. Naturally a computer can only handle
the restriction of ^

LRT to a finite subspace. Our program uses the space spanned by the
operators B

m

(

^

�jr) = (j

^

�j � r)

m with m = 0; : : : ;M . To obtain the representation

matrix L
n;m

of ^

LRT in this basis the image of every B
m

(

^

�jr) under ^

LRT is numerically

expanded by a finite difference method in terms of B
n

(

^

�jr

0

)

^

LRTBm(�jr) =

M

X

n=0

L

n;m

B

n

(�jr

0

): (4.87)

Finally, the desired eigenvectors ^

O

m

(r

0

) =

M

P

n=0

Q

n;m

(r

0

)B

n

(r

0

) and their eigenval-

ues �
n

(r

0

) are calculated from L

n;m

. Fig. 4.6 shows the flow of the largest eigenvalues
�

m

(r

0

). As in the case of the potential the perturbative predictionsare in excellent agree-
ment with the numerical results down to a radius of about r0 � 4. Then nonperturbative
effects show up forcing the eigenvalues to become smaller. A similar behaviour can be
found for the expansions coefficients Q

n;m

(r

0

) except that deviations already show up
at r0 � 10.

At r = r

cr

� 2:04 the effective radius r0(r) vanishes and r ceases to be an appro-
priate parametrization of the RT but the eigenvalues and eigenvectors continue to flow
against their fixpoint values at the HT-fixpoint.
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Figure 4.5: Flow of the radius in the IR. Perturbative (dashed) and numerical (solid) re-

sult. At r
c

� 2:04 the numerical effective radius vanishes with r0 � jr � r
c

j

0:5.
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Chapter 5

The full model

In this chapter the RT for the full two dimensionalO(N ) symmetric non-linear� model

is computed to first order perturbation theory.

5.1 The RG transformation

Now let � be a N -dimensional field on 
 with an O(N ) invariant action S[�]. Let r
denote the constant value of j�j that minimizes S[�].

�S[�]

��(z)

�

�

�

�

�(z)=re

N

= 0 (5.1)

As in the scalar case we define a Renormalization Group transformation S0 = RS
via

e

�S

0

[�

0

]

�

Z

D��

�

[C�� �

0

]e

�S[�]

: (5.2)

Our ultimate goal is to find the renormalized trajectory of the non-linear O(N )-
invariant �-model in perturbation theory. This means that up to a flow of the coupling
f

0

= �(f) the action on the SRT[�jf ] should be invariant with respect toR:

RSRT[�jf ] = SRT[�j�(f)] (5.3)

According to chapter 3 the RG transformation for the interaction V [�]with respect
to some bare propagator v reads

e

�V

0

[�

0

]

= e

�(RV )[�

0

]

=

Z

d�

�

[�]e

�V [A�

0

+�]

: (5.4)
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By the same line of arguments as in the hierarchical case 4.3 the Perfect Action is
obtained after a suitable rescaling from the fixed-point of the classical RG transforma-
tion

VPA[�] = RclVPA[�] = inf

�

�

1

2

(�;�

�1

�) + VPA[A�+ �]

�

: (5.5)

Unfortunatelythis equation can not be solved analytically in the full model. In [HN94]
the analogous equation is treated by semi-numerical methods. This could be done here
in principle, too. But we take a perturbative approach instead.

We will now perform a sequence of manipulations that finally give rise to an equiv-
alent but for our purposes more convenient form of the RG transformation.

1. First we split up the field into components � = � + � with � = j�je

N

and
�� = 0. Here e

N

denotes the unit vector in theN direction leading to a blockspin
independent split.

The RG transformation then reads

e

�S

0

[�

0

;�

0

]

�

Z

D�D��

�

[C� � �

0

]�

�

[C� � �

0

]e

�S[�;�]

: (5.6)

The action S[�; �] is supposed to be invariant under

� ! � � (�!�) e

N

� ! � + �!�: (5.7)

2. Then we seperate off the massless kinetic fixed point term from the action and
treat the potential at the shifted radial field �

r

= � � r with r = re

N

.

S[�; �] =

1

2

(� + �; v

�1

ml [� + �]) + Vml[�r; �] (5.8)

yielding the transformation

e

�V

0

ml[�
0

r

;�

0

]

=

Z

d�

�ml[�]d��ml[�] expf�Vml[Aml�
0

r

+ �;Aml�
0

+ �]g

(5.9)

3. Now we treat the shifted radial field �
r

at the high-temperature fixed-point.

Vml[�r; �] =

1

2

(�

r

;K

�

ml�r) + V

[1)

[�

r

; �] (5.10)

The interaction V [1)

[�

r

; �]must be chosen in such a way that Vml[�r; �] is invari-
ant under

� ! � � (�!�) e

N

� ! � + �!(�

r

+ r): (5.11)

From (5.9) we get

e

�V

0

ml[�
0

r

;�

0

]

=

Z

d�

�ml[�]d��ml(�)

exp

�

�

1

2

([Aml�
0

r

� r] ;K

�

ml [Aml�
0

� r])� V

[1)

[Aml�
0

r

� r + �;Aml�
0

+ �]

�

(5.12)
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Let  
r

= Aml�
0

� r. We now specialize to D = 2. Since in this case �ml =

�

D�2

2

= 0 we find Amlr = s

��ml
r = r and hence  

r

= Aml�
0

r

. As in section
3.3 we shift the radial fluctuation field �! (L

�

� I) 

r

+ � to obtain

exp f�V

0

ml[�
0

; �

0

]g = exp

�

�

1

2

(�

0

r

;K

�

ml
�

0

r

)

�

Z

d�

�ht[�]d��ml[�] exp

n

�V

[1)

[Aht�
0

r

+ �;Aml�
0

+ �]

o

: (5.13)

This transformationR is the starting point for our perturbative setup.

5.2 O(N) Invariance

Before we start with perturbation theory let us explore what kind of restrictions the
O(N ) invariance of the action S[�; �] imposes on

Vml[�; �] =

1

X

i=0

V

[i]

[�; �] =

1

2

(�

r

;K

�

ml�r)

| {z }

V

[0]

[�;�]

+V

[1)

[�

r

; �] (5.14)

and therefore on V [1)

[�

r

; �]. From eq. (5.11) we deduce the following Ward identities
for Vml[�; �]

�

�

�

�

a

;

�

��

r

�

+

�

�

r

+ r;

�

��

a

��

Vml[�r; �] = 0: (5.15)

To order t this reads
�

�

�

�

a

;

�

��

r

�

+

�

�

r

+ r;

�

��

a

��

V

[t]

(�

r

; �) = �

�

1;

�

��

a

�

V

[t+1]

[�

r

; �]:

(5.16)

Using K�

ml
= K

�

ml

T one finds for t = 0

� (�

r

;K

�

ml
�

a

) = �

�

1;

�

��

a

�

V

[1]

(�

r

; �): (5.17)

This equation has the solution

V

[1]

[�

r

; �] =

1

2

(�

r

;K

�

ml�
2

): (5.18)

5.3 Perturbation Theory

Let us start with with zeroth order in f =

1

r

. From eq. (5.13) we immediately conclude
that to this order the interaction

V

(0)

RT [�

r

; �] =

1

2

(�

r

;K

�

ml
�

r

) (5.19)
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is RG invariant if we define

r

0

:= r: (5.20)

This is the same situation as in the hierarchical model (4): The radial field is at the HT

fixed-point whereas the angular field resides at the ML fixed-point. Note that V
(0)

RT is
not O(N ) invariant but the corrections are of order O(f).

As mentioned in the last section the first order improvement is dictated by O(N )-
invariance giving

V

[1]

RT [�

r

; �] =

1

2

(�

r

;K

�

ml
�

2

) (5.21)

A first order calculation of the effective interaction yields
Z
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�ht[�]d��ml[�] exp
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�V
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[Aht�
0

r

+ �;Aml�
0

+ �]

o

= �
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�ht(�)d��ml(�)

f

2
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fAht�
0
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+ �gK

�

ml fAml�
0

+ �g

2

�

= �

f

2

�
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0

r

;K

�

ml fAml�
0

g

2

�

�

f

2

(N � 1)

Z

z

1

;z

2

(Aht�
0

r

)(z

1

);K

�

ml(z1 � z2)�ml(z2; z2)

The linear term in �0
r

results in a shift of the radius.
So the net effect of an RG transformation is that each �0

r

acquires the convolution
with an Aht kernel and each �0 acquires the convolution with an Aml kernel.

To find the invariant form of the interaction we apply the same technique as in 3.4
and perform the scaling limit. After one RG step the interaction can be written as

f

2

Z

z

1

;z

2

x

1

;x

2

;x

3

�

0

r

(x

1

)Aht
T

(x

1
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1
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�
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1
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(x
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(x

3

) = (5.22)
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�
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)�
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)

In D = 2 we obtain

s

2D+�ht+2�ml
K

�

ml
(sz

1

; sz

2

)

(D=2)

= s

2

K

�

ml
(sz

1

; sz

2

) = K

�

ml
(z

1

; z

2

)

(5.23)

This is exactly the same situation as in eq. (3.4) where we found

lim

s!1

K

�

ml = �

�

I: (5.24)

So we finally end up with the first order RT potential

V

(1)

RT [�

r

; �] =

1

2

�

�

(Aht
(1)

�

r

;Aml
(1)

�

r

) +

f

2

�

�

�

Aht
(1)

�

r

;

n

Aml
(1)

�

o

2

�

:

(5.25)
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Note that this potential is not O(N ) invariant to first order in f but the corrections to
fix this are of order O(f)2.

For numerical purposes it is convenient to write this in a manifest O(N ) invariant
form. With the decomposition

� = � + � = �e+ � = (r + �

r

)e + � (5.26)

(5.27)

we find

j�j = r + �

r

+

f

2

�

2

+ O(f

2

) (5.28)

1� (f j�j)

�1

= f�

r

+

f

2

2

�

2

+ O(f

2

) (5.29)

�

1� (f j�j)

�1

�

� =

�

�

r

+

f

2

�

2

�

e+ f�

r

(�

r

+ �) + O(f

2

): (5.30)

Therefore both

V

(1)

RT [�] =

1

2

(fj�j � rg ;K

�

ml
fj�j � rg) (5.31)

and

V

(1)

RT [�] =

1

2

��

�� r

�

j�j

�

;K

�

ml

�

�� r

�

j�j

��

(5.32)

have the same first order expansion eq. (5.25).
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5.4 Simulations

In this section the improved action is simulated. First the technical aspects of the sim-

ulations are explained. Then the scaling properties of the action are presented.

What has been accomplished so far? We have found a first order perturbative ap-
proximation to the renormalized trajectory which is RG invariant up to the flow in the
coupling. In the hierarchical model this approximation already had very good scaling
properties for sufficiently small values of the coupling f . We are therefore tempted to
test the approximation for the full model at this early stage of perfection numerically by
means of a Monte-Carlo simulation.

How can scaling be tested? The closer an action lies to the RT the better it describes
continuum physics. HASENFRATZ and NIEDERMAYER gave an extremly impressive
demonstration of their Perfect Action by simulating it on a 3 � 3 lattice. For a certain
observable they obtained expectation values that were compatible with the continuum
extrapolations gained from simulations with the standard action on much larger lattices.

It is by no means clear that all observables shouldexhibit such fantastic scaling prop-
erties. This would only be the case if the associated improved observables were used.

For the sake of comparability we have chosen to use the same observable as HASEN-
FRATZ and NIEDERMAYER: the step scaling function of M. LÜSCHER,P. WEISZ and
U. WOLFF [LWW91].

Let g2(L) = m(L)L be the running coupling where m(L) denotes the massgap
of the theory on a finite lattice with (spacial) length L = Na for some value of the
bare coupling �. The step scaling function �(s; g

2

; 1=N ) relates the running coupling
at length L with the running coupling at length L0 = sL

g

2

(sL) = �(s; g

2

(L); a=L): (5.33)

The continuum step scaling function �(s; g2) = lim

a!0

�(s; g

2

(L); a=L) is obtained
by interpolating a sequence of measurements with fixed (physical) coupling and de-
creasing a=L.

Practically this means the following: Choose a lattice size N . Tune the bare cou-
pling � until the measured running coupling takes a prescribed value. For historical
reasons this is g2 = 1:0595. Then simulate the theory at the same bare coupling but
with N 0

= 2N this yields �(2; 1:0595; 1=N ). Iterate the procedure with increasing
lattice sizes and try to extrapolate to the continuum limit.

To test our improved action in this sense we need the following ingredients:

� An efficient Monte-Carlo updater for the action

� A method to measure the massgap

� A method to tune the bare coupling

� Analysis software to compute the errors.
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These tasks are closely related and will be discussed now. It should be kept in mind
that the software is supposed to serve as framework for future explorationsof more com-
plicated actions. This requires a certain level of generality and motivates the effort put
into its development. As mentioned in the introduction the design of the programs was
a case study for the usage of the programming language C++ in high-end numerics.
The conclusions from this endeavour are presented in [SX96].

5.4.1 Monte Carlo Updater

We want to simulate a theory withO(N )-invariant action SRT[�].

SRT[�] =

1

2

(�;2ml�)�

1

2

(j�j � r;K

�

mlfj�j � rg) (5.34)

After rescaling the field �! �

r

2

and introducing

� = r

2 (5.35)

this reads

SRT[�] =

�

2

(�;2ml�) �

�

2

(j�j � 1;K

�

ml fj�j � 1g): (5.36)

The covariances 2ml = v

�1

ml andK�

ml = v

�1

ht �v
�1

ml have more than nearest-neighbor
interactions (see 3). This has to be taken into consideration when designing the updater.

Field Decomposition

It is convenient to decompose the Field � = �� into a radial field �(z) 2 R
+

and an
angular field �(z) 2 S

N�1

. This transformation of variables induces a change of the
measure D� = D��

N�1

D�. Introducing

SRT[�; �] = SRT[��]� (N � 1)

Z

z

ln�(z) (5.37)

the partition functionZ can be written as

Z �

Z

D�e

�SRT[�]
�

Z

D�D�e

�SRT [�;�]
: (5.38)

We are seeking a Monte-Carlo update procedure that generates configurations (�; �)
with the stationary distribution exp(�SRT[�; �]). Let P(�0; �0  �; �) be the corre-
sponding transition probability from an initial configuration (�; �) to a final configura-
tion (�

0

; �

0

). The stationarity condition reads

exp(�SRT[�
0

; �

0

]) =

Z

D�D�P(�

0

; �

0

 �; �) exp(�SRT[�; �]):

(5.39)
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The MC procedure we used is obtained by consecutively applying a cluster update for
the angular field and a Metropolis update for the radial field. Both of these algorithms
fulfill detailed balance,i.e.

PC(�; �
0

 �)e

�SRT[�;�]
= PC(�; �  �

0

)e

�SRT [�;�
0

] (5.40)

PM(�
0

 �; �)e

�SRT[�;�]
= PM(� �

0

; �)e

�SRT[�
0

;�] (5.41)

but the composition

P(�

0

; �

0

 �; �) = PM(�
0

 �; �

0

)PC(�; �
0

 �) (5.42)

generally does not. NeverthelessP leeds to the wanted stationary distributionas one can
see by inserting eq. (5.42) into the rhs. of eq. (5.39) and making use of eqns. (5.40,5.41)
and the normalization of PC;PM:

Z

D�

0

PC(�; �
0

 �) = 1 (5.43)

Z

D�

0

PM(�
0

 �; �) = 1: (5.44)

The same is true for

P(�

0

; �

0

 �; �) = P

mM

M (�

0

 �; �

0

)P

mC

C (�; �

0

 �) (5.45)

with mC;mM 2 N+

.

Cluster Algorithm

For the updating of the anguler field � a modified WOLFF-Cluster-Algorithm ([Wol89])
was used. The modification is due to the more-than-nearest-neighbor-coupling of the
action. For this reason not only bonds to the nearest-neighbors but to all coupled neigh-
bors had to be considered for activation. Consider a spin �(z) that has been flipped.
The bond to a coupled site z0 is then activated with the probability

p(�(z); �(z

0

)) = 1� exp fmin [0;�2�2ml(z; z
0

)(R�(z))(R�(z

0

)]g :

(5.46)

Here R denotes the randomly chosen reflection plane for the one-cluster.
A recursive implementation for the algorithm was used. For analysis purposes the

program keeps track of the value of the action. Since the computation of this value from
scratch after every update is extremely costly only the differences due to an update were
taken into account.

One has to be very careful when using a recursive algorithm in this situation, be-
cause the bond-energy that is computed at some stage may be changed in the course of
the recursion.
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Radial Metropolis Updater

As mentioned above the radial field �was updated with a standard 4-hit Metropolis pro-
cedure. Consider a local update � ! �

0 with �0(z) = �(z) for z 6= z(0). For the
change of the action one finds

�S[z

0

j�

0

 �] =

�

2

[j�

0

(z

0

)j � j�(z

0

)j] (2ml(0)�K
�
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+ �
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1
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0
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0
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1

) fj�(z

1

)j � 1g

3

7

5

(5.47)

By inserting� = �� one easily obtains the change of the action for a pure radial update
�! �

0. Eq. (5.47) for a full update was used to check the combined Cluster-Metropolis
algorithm.

The ratio between Metropolis sweeps and Cluster updates was tuned manually in
such a way that the number of local updates was approximately the same1.

Local Randomization

Within the local updating routine random trial values for the field �(z) are needed.
Random angular fields �(z) are drawn from a uniform distribution on the unit sur-

face S
N�1

with the usual method ([WPF92],[Kal90]): GenerateN equidistributed ran-
dom numbers '

i

2 [0; 1) until '2 � 1. Then set �(z) = '=jj'jj.
A trial radius �0 is produced with reference to its old value � by

�

0

= j�� �=2 + �xj (5.48)

with x 2 [0; 1) being a uniform (pseudo-) random number. The parameter � can be
tuned to optimize the accept/reject ratio of the local updater.

Interaction Covariances

The Perfect Laplacian 2ml was computed in momentum space by means of eq. (B.18)
and then transformed into position space with a FFT. Since eq. (B.18) is only valid
on an infinite lattice, small corrections had to be made in order to keep the propaga-
tor massless. After initialization of the propagator with the infinite lattice values it was
normalized such that

R

z

2ml(z) = 0 and
R

z

2ml(z)z
2

= �4 (see [HN94]). Both 2ml

and K�

ml couple to more than just nearest-neigbors, actually their support is the entire
lattice. Since they fall off rather fast (see (B)), the program allows to vary the range of
interaction taken into account. Numerically 2 levels seem to be enough.

1On a lattice with M sites the Metropolis algorithm makes M local updates per sweep. If the average
cluster size was C thenM=C cluster updates were made.
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5.4.2 Measurements

In this section we are specializing to D = 2. Lattice points z 2 
 are written as z =

(t; x). The temporal extent is denoted by T and the spacial extent by L.

Correlation Function

Let

�(t) =

L�1

X

x=0

�(t; x) (5.49)

be the timeslice field associated with the lattice field �(z). �(t) is the partial fourier
transform of �(z) at zero spacial momentum.

The connected zero momentum timeslice correlation function is defined as

C(� ) := h�(t

0

)�(t

0

+ � )ic: (5.50)

Massgap

We want to measure the massgap which is determined by the long range properties of
C.

For T = L =1 the mass gap is given by

C(� ) � e

�mj�j

: (5.51)

To determine the mass gap on a finite lattice with periodic boundary conditions both
in temporal and spacial direction the following methods were used:

� By fitting C(� ) self-consistently to

a

0

+ a

1

h

e

�m�

+ e

�m(T��)

i

(5.52)

in the range � = 2m

�1

: : : T =2 [Wol89].

� In the effective mass method described in [MM94] the mass gap is computed

from the ratios of the correlation function r
ij

=
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(5.53)

Here we have used the notationm = � logx and t
i

=

T

2

� �

i

.

For both methods the measured observable was

D(� ) =

1

T

T�1

X

t=0

�(� + t)�(t) (5.54)
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with � = 0; : : : ; T � 1. The two methods have the disadvantage that the decay of
the correlation function is poluted by higher energy states of the transfer matrix. This
problem is circumvented on a lattice with free boundaryconditions in temporal direction
(Assuming T > 3L).

� In this situation the method of [LWW91] is used. The massgap is there deter-
mined by

e

�m(L)

=

D(L)

D(L)

: (5.55)

Here the observable is

D(� ) =

1

T � 2L� �

T�1�L��

X

t=L

�(� + t)�(t): (5.56)

Improved Estimators

In the case of the cluster updater the statistical error of the observables can be reduced
by an order of magnitude when using improved cluster estimators [Wol89]

Let O(�) be an observable with average

< O(�) >=

1

Z

Z

D�O(�)e

�SRT[�]
: (5.57)

Then

OC(�; �) =
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O(��
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)PC(�; �
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 �) (5.58)

has the same average:
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= < O(�) > : (5.59)

Following the arguments of Wolff one finds for the two-pointcorrelation functionO(�) =
�(z

1

)�(z

2

)

OC(�) = N

j
j

jCj
�C(z1)�C(z2)[R�(z1)][R�(z2)]: (5.60)
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�-shift

As described in 5.4 one has to tune the bare coupling � such that the running coupling
takes some specific value. This can be done as follows [LWW91]: Because of

< O >

�

0

+��

=

< O exp (��S) >

�

0

< exp (��S) >

�

0

(5.61)

the expectation value of O at � = �

0

+�� can be obtained by measuring at �
0

. Here
�S =

��

�

0

S. As shown in [LWW91] an improved cluster estimator for

O

��

[�] = �(z

1

)�(z

2

) exp (��S[�]) (5.62)

is given by
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]
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:(5.63)

Here �0 denotes the spin-flipped cluster configuration. For each measurement the
S[�] and S[�0] are written out.

Error Analysis

Because of the �-shift requirement we decided to split the simulation and the analysis
totally. Therefore the simulation program did not perform any binning or averaging but
wrote huge amounts (typically 100MB) of raw data on disk. The data were organized in
rows ofD[0]; D[1]; : : : ; D[T=2�1]; S for unimproved andDC[0]; DCC[1]; : : : ; DCC[T=2�
1]; DCC[T=2� 1]; S; S

0 for improved correlation functions. In the latter case DC[t]
andDCC[t] refer to sums over the cluster and sums over the complement of the cluster
as given by eq. (5.63).

We have developed an interactive analysis package based onIDL, Interactive

Data Language to perform the statistical analysis. Here a brief list of features:

� Computation of averages and errors of primary quantities by binning, integrated
autocorrelation time, exponential autocorrelation time.

� Computation of averages and errors of secondary quantities with Jackknife and
Bootstrap method. The function by which the secondary quantity is calculated
may be chosen at runtime. This makes it easy to use e.g. different massgap defi-
nitions.

� Automatic handling of �-shifts. Some secondary functions not only take observ-
able values but also their errors as argument (e.g. for fitting). Because of eq.
(5.61) even shifted primary quantities are actually secondary ones. Therefore a
Jackknife within the Jackknife is performed to compute the correct statistical er-
rors for the subsequent application of the secondary function.

� Compact visualization of the relevant statistical information.
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5.4.3 Numerical Tests

Simulation program and analysis program are rather complicated pieces of software.
Before using them for production an extensive testing phase was run. In the follow-
ing �-Metropolis refers to a simulation where the full field � was updated by a 4-hit
Metropolis procedure. �-Metropolis + �-Cluster means, that only the radial field � was
updated with Metropolis, whereas for the angular part � the cluster algorithm was used.

The Gaussian Model

For a pure Gaussian S[�] = �

2

(�; v

�1

�) all expectation values can be computed ana-
lytically. As covariance we used the � = 8 Perfect Laplacian v�1 = v

�1

ml
+M

2. with
additional mass M = 1 The two-point function yields

< �(z

1

)�(z

2

) >= Nv(z

1

� z

2

): (5.64)

Tab. 5.1 shows the results. The different methods are in excellent agreement with the

Method v(0; 1) v(1; 1)

Exact 0.180188 0.107227

�-Metropolis,� = 1:0 0.1801(3) 0.1074(3)
�-Metropolis,� = 1:1! 1:0 0.1803(5) 0.1071(5)

�-Metropolis + �-Cluster,� = 1:0 0.180(1) 0.108(1)
�-Metropolis + �-Cluster,� = 1:1! 1:0 0.1803(5) 0.1074(5)

�-Metropolis + �-Cluster, improved, � = 1:0 0.1812(8) 0.1076(7)

Table 5.1: Results for the two-point function of a Gaussian action. Simulations were

performed on a 8 � 8 lattice with periodic boundary conditions at M = 1:0. The

average cluster size was 2:6. Too small for the cluster algorithm to outrun the 4-hit

Metropolis.

analytic prediction.

Mass Gap Determination

For a test of the mass gap determination we have recomputed values for the standard
action.

In [Wol89] the massgap for the standard model on a periodic lattice at � = 1:4

were cited. The results in tab. 5.2 are in good agreement with the literature value. The
effective mass method seems to be less stable than the massgap by self-consistent fitting.

In [LWW91] the massgap on a lattice with free boundary conditions in temporal
direction were presented. These results could be reproduced as tab. 5.3 shows.

Judging from these numbers the software appears to work correctly.
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Method m

[Wol89] 0.1449(7)
mass fit 0.143(5)

eff. mass 0.143(9)

Table 5.2: Comparison of the methods to determine the massgap with WOLFF for peri-

odic lattice T = 64; L = 64; � = 1:4. Simulation was done with a cluster updater and

improved observables

Method m(5)

[LWW91] 0.2119(1)
non-improved 0.214(3)

improved 0.2113(5)

Table 5.3: Comparison with LÜSCHER ET AL for free temporal and periodic spacial

boundaryT = 64; L = 5; � = 1:5699. The Simulation was performed with a cluster

updater and the massgap was determined with the ratio method.

5.4.4 Numerical Scaling Results

After these lengthy preliminaries we are now able to perform the scaling test of HASEN-
FRATZ and NIEDERMAYER for our improved action.

� The first task was to tune the bare coupling � such that Lm(L) = 1:0598. We
choose L = 5 and measured the massgap. Fig. 5.1 shows that the massgap value
m(5) = 0:2119 is compatible within our accuracy for bare couplings �

0

in the
range [1:8460; 1:8475].

� In a second step we performed at �
0

= 1:84665a simulation on a lattice withL =

10. In the above �
0

-range this yields values �(2; 1:0595; 1=5) 2 [1:364; 1:378]

for the step scaling function.

These numbers have to be compared with standard results.
The usual standard action gives [LWW91]

�(2; 1:0595; 1=5) = 1:2905(10) (5.65)

the Perfect Action [HN94] yields

�(2; 1:0595; 1=5) = 1:264(1): (5.66)

The value for the continuumextrapolationof the step-scaling function is cited in [LWW91]
as

�(2; 1:0595; 0 = 1:264(2): (5.67)
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In words: Our action is further away from the continuum limit than the standard
action.

This is not totally surprising. Looking at eq. (5.22) we observe that the perturba-
tion theory predicts asymptotic freedom for N > 1. Eq. (5.22) means that the running
coupling does not change to first order: f 0 = f + O(f).

Hence higher orders will have to be taken into account to improve the scaling prop-
erties. This work is in progress.

Figure 5.1: �-shifted results for the massgap on L = 5 and L = 10. Simulation was

done for T = 32 with free boundary conditions in temporal direction. The updates were

performed with the mixed �-Metropolis+�-Cluster algorithm at � = 1:84665. Simulation

runs with the other updaters and the other massgap definitionsgave similar results but with

less accuracy.

5.5 Conclusion

This part of the thesis is based on the idea to compute a renormalized trajectory in terms
of a scaling analysis of a single renormalization group step [Wie96c]. It was worked
out for the two dimensionalO(N ) symmetric non-linear� model in a running coupling
expansion.

For the hierarchical approximation of the model it was possible to determine the
renormalized trajectory and the associated improved observables to high orders of the
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running coupling. By numerical means the range of validity of the method was deter-
mined to reach down to f = 0:25.

The setup for the full model has been fixed and the renormalized trajectory was com-
puted to first order. A Monte-Carlo simulation revealed that the improved action scales
even worse than the standard action. This negative result does not come totally unex-
pected. The absence of a wavefunction renormalization to this order leads to a wrong
N � 1 asyomtotic freedom prediction. In a second order calculation with a continu-
ous momentum cutoff RG of the POLCHINSKI-type [Pol84] C. WIECZERKOWSI has
proven that the correct asymptoticN � 2 behaviour can be restored when an appropri-
ate wavefunction renormalization is performed. From the latter and this work it is in
principle clear what has to be done to get a nicely scaling lattice action. Unfortunately
this involves the computation of complicated sums over lattice kernels. The software
developed in course of this thesis will be the foundation for this future work. Despite the
technical difficulties, the merrits of a lattice calculation should not be underestimated.
The possibility to check the validity of the method by hard numerical numbers distin-
guishes the blockspin renormalization group from other RG approaches.
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Part II

Mean Field Renormalization

Group (MFRG) study of the two

dimensional O(N) symmetric

non-linear � model
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Chapter 6

Introduction

From the conceptual point of view the RG is a beautiful tool to explore quantum field
theory and critical phenomena. But whenever one tries to realize the RG in a compu-
tational scheme one has to deal with a potentially infinite dimensional space of cou-
plings. This inevitably requires a parametrization and - because of finite computer re-
sources - a truncation of the effective actions.1 Usually this is done ad hoc by neglect-
ing terms that are irrelevant in a perturbative sense. This is not really justified. The RT
is a low-dimensional manifold parametrized by the renormalized (relevant) couplings.
This means that when the renormalized couplings are given all the infinitely many non-
relevant couplings are already determined. This is what renormalizability means. It
does not mean that the non-relevant couplings are zero!

In [GMXP96] a new method for the calculation of RG flows on the lattice was pre-
sented. The key feature being a parametrization of the action that is preserved under an
approximative RG transformation. The approximations have a limited range of valid-
ity. One advantage of the method is that it signals the breakdown of its own applicabil-
ity. This is not be underestimated. Hereby even the non-applicablity of the scheme to
a model is a physically relevant result.

In chapter 7 the essentials of the method for the scalar case are briefly summarized.
Chapter 8 then contains first attempts to apply the method to the two dimensionalO(N )

symmetric non-linear � model .
The (computational) link to part I is the appearance of the GK kernels providing

us with a framework to perform functional integrations over high-frequency fields. A
comparison between the results of a MFRG and pure GK perturbation theory as used in
part I may be found in [Gri97].

1As mentioned by HASENFRATZ and NIEDERMAYER in [HN94] this problem prevented the field of im-
proved actions to become a numerical success for years. Their Perfect Action for the two dimensionalO(N)

symmetric non-linear� model requires the solution of the FP equation of a classical RG transformation which
was performed semi-analytical. As stated in [HN94] the big success was only possible because they were able
to parametrize the action in a suitable way
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Chapter 7

MFRG for scalar fields

In this chapter a short presentation of the MFRG method for scalar fields is given.

The approximative RG scheme presented [GMXP96] is based on two approxima-
tions: Starting from a lattice action given by a certain parametrization the fluctuation
integral is performed in a saddle-point approximation. It turns out that the RG transfor-
mation repects the parametrization. The result is a functional recursion relation for the
action. By means of an additional localization approximation one obtains a simplified
relation that can be solved by the computer. For details the reader is refered to [Gri97].
Here only those aspects are elucidated that are needed for the subsequent chapter. For
pedagogical reasons we will use dimensionfull quantities in this part. Therefore the lat-
tice 
i has a lattice spacing a

i

etc.

7.1 Saddle Point Approximation

In contrast to part I a fixed-blockspin RG will be used now

e

�S

i+1

[�]

=

Z

D��(C

i

�� �)e

�S

i

[�]

: (7.1)

It can be obtained from eq. (3.4) in the limit �!1. This limit is an essential require-
ment for the method to work.

The index i denotes that the action Si[�] is obtained after i RG steps from a starting
action S0.

The background field  in the GK-formalism of chapter 3 was defined via eq. (3.7)
as the field that minimized the free action subject to the (smeared) Gaussian constraint.
This definition led to the linear relation  = A�

0 between background and blockspin
field. Additionally it induced a split of the base field into the high- and low-frequeny
components � =  + �.

Here the mean field 	

i is determined as the field that minimizes the full action

S

i

[	

i

] = min
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subject to the constraint

C

i

	

i

= �: (7.2)

This way of proceeding was proposed by T. BALABAN in his work on gauge theories
[TB]. It has the advantage over the GK-scheme that it preserves manifest gauge invari-
ance.

The functional relation between the background field and the blockspin field is in
general no longer linear.

But with the method of Lagrange one obtains a nonlinear equation for 	i[�]

S

i0

[	

i

] = C

i

T

�

i

; (7.3)

C

i

	

i

= � (7.4)

where �i[�](x) are Lagrange multipliers, x 2 


i+1. The prime denotes a derivative
with respect to �. Again the field is split

�(z) = 	

i

[�](z) + �

i

(z)

into background field 	

i

[�] and fluctuation field �i. But since we are now at the real
minimum the expansion of the action around 	

i

[�] has no linear term in �i. Making a
saddle-point approximation we can therefore compute the effective action analytically.
The result is

S
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[�] = S

i
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[�]]�

1

2

tr ln�i[	i[�]]: (7.5)

This is the parametrization of the action mentioned above. In words: The action
S

i+1

[�] depends on the field � through a functional 	i[�]. To find 	

i

[�] is the same
crucial step as in the case of HASENFRATZ and NIEDERMAYER.

The fluctuation propagator is given by1
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(7.6)

and is the pseudo-inverse of Si00
�1

[	

i

] on the spaceHi
C

of lattice fields �i with vanish-
ing blockaverage Ci�i = 0

2.
For W i

[�] = �S

i00

[�] and �Si0[�] a recursion relation can be derived. They are
depicted graphically in fig. 7.2,7.3 with the notation of fig. 7.1. This recursion rela-
tion refers to the derivative of the background field with respect to the blockspin field.
Fortunatly a convenient formula for this quantity can be found:

	

i

;x

[�](z) �

�

��(x)

	

i

[�] = (1� �

i

S

i00

)C

i

T

(z; x): (7.7)

1This equation is to be compared with eq. (3.10). Replace Si00
�1

by T

00�1

= v and make use of
v

0

= CvC

T

;A = vC

T

v

0�1 .
2These additional relations are the advantage of the fixed-blockspin method
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Figure 7.1: Graphical notation for the derivatives of the action and the background field
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Figure 7.3: Recursion relation for �Si+10 in the mean-field approximation
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7.2 Localization Approximation

We will now present a line of thought that introduces and justifies the localization ap-
proximation

1. Consider the action Si+1[�] at level i+1. It will contain a kinetic term that makes
configurations with large derivatives very unlikely. We may therefore assume
that � ist not very rough on scale a

i+1

.

2. The background field 	

i

[�] interpolates from the coarse lattice 
i+1 to the finer
lattice 


i. It is determined by extremizing the action Si[�]. By the same argu-
ment as above the kinetic term in Si will suppress high-frequency fluctuations
and render the background field a smooth function on scale a

i

.3. For big enough
scaling factor s = a

i+1

=a

i

we may therefore consider 	i[�] as approximatly
constant over distances a

i

.

3. This leads to the essence behind the localization approximation: Since the action
S

i+1

[�]depends on the field� only through the background field	i[�] and since
the latter behaves smoothly we claim: To computeSi+1[�]we only have to eval-
uateSi[�] for nearly constant fields. More precisely one will need to compute the
first and second derivative of Si for constant fields.

4. As mentioned in chapter 1 the basic assumption of the RG is that it preserves lo-
cality. Hence Si00[�](zw) should have the locality properties of a Laplacian: It is
zero if z and w are seperated by more than a lattice spacing a

i

. Because of argu-
ment 3 this means that Si00[	i[�]](zw) can only depend on	i[�] at these points.
Hence it is justified to make the following hermitean localization approximation
for W i

�S

i00
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�

W

i

(z; wj	

i

(z)) +W

i

(z; wj	

i

(w))

�

:

(7.8)

The kernels W i are supposed to behave like a Laplacian, too.

5. It is possible to compute Si+1 up to a constant. given Si0[� = const] and Si00.
Hence it is sufficient to have recursion relations for these two.

6. The recursion relation for W i+1

(x; y) (fig. 7.2) involves three different quanti-
ties:

� Being the inverse of Si00[	i] on the space of fields with Ci� = 0 the fluc-
tuation propagator is expected to fall-off within one block lattice spacing
a

i+1

.

� The kernels W i

(z; w) have according to argument 4 a range of one lattice
spacing a

i

.

� The derivative of the background field 	

i0 being determined by the latter
two quantities has an exponential decay with decay length a

i+1

.

3The interpolation operatorsA from part one may serve as example for this behaviour. See fig. 3.3
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This shows that W i+1

[�] has similar locality properties on the scale of the new
lattice spacing a

i+1

asW i had on the scale a
i

and gives rise to a recursion relation
for the localized kernels W i [GMXP96]. These relations are obtained from the
recursion relations fig. 7.2, 7.3.

In other words: We have found a localized parametrization of the action that is pre-
served under the flow of the RG in our approximation.

The assumptions that lead to the approximation may break down. A striking feature
of the method is that such a breakdown can be monitored [Gri97]. Hence even a failure
of the method can provide physical insight.
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Chapter 8

MFRG for the two dimensional

O(N) symmetric non-linear �

model

In this chapter first attempts to apply the MFRG method to the two dimensional O(N )

symmetric non-linear � model are presented.

Let us go through the RG recipe from chapter 1.2 and try to collect the ingredients.

8.1 Choice of the Blockspin

The first decision to be made is the choice of the blockspin.
In contrast to part I we will here use a non-linear averaging operator.

�

0

(x) = C[�](x) :=

(C�)(x)

j(C�)(x)j

(8.1)

which preserves the unit length of the fields.
This definition is equivalent to demanding that the blockspin field �0(x) solves the

equation

F [�

0

j�] := C� � �

0

(�

0

� C�) = P

�

0

C� = 0: (8.2)

where P�
0

= I� �

0


 �

0 denotes the projector on fields perpendicular to �0.
In words: The blockspin field �0 2 SN�1 is determined in such a way that the

average of the components of � perpendicular to �0 vanishes. Because of �0 �F [�0j�] =
0 this gives N � 1 independent conditions. See appendix A for our index notation.
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8.2 Background Field

Before going into a detailed calculation in local coordinates let us explore the conse-
quences of the above blockspin choice for the determination of the background field.

As in chapter 7 the background field  is defined with respect to an extremality con-
dition

S[ ] = extr., subject to C[ ] = �

0

, CP

�

0

 = 0 (8.3)

but additionally it has to fulfill the constraint  2 = 1. This requires the introduction of
a second Lagrange multiplier field �(z) besides �. From

W [ ; �; �j�

0

] := S[ ] + (�; f 

2

� 1g) + (C

T

P

�

0

�;  ) = extr. (8.4)

we deduce

S

0

[ ] + 2� + P

�

0

C

T

� = 0: (8.5)

By multiplying this eq. with  the Lagrange multiplier � can be eliminated eventually
yielding

P

 

h

S

0

[ ] + C

T

P

�

0

�

i

= 0 (8.6)

This equation substitutes for eq. (7.3) in the scalar case. The appearance of the
blockspin dependent projectors P , P�

0

makes the situation far more difficult.

8.3 Weight Functional

We will now introduce the blockspin into the partition function by means of the weight
functional P[C[�]; �0] = ^

�[C[�]; �

0

] obeying
Z

^

D�

0

^

�[C[�]; �

0

] = 1: (8.7)

Here ^

D denotes the O(N )-invariant functional measure over SN�1 and ^

� is the spher-
ical delta-functional.

Consider a local parametrization � = (�

0

; : : : ; �

N�1

) = (�

0

;

~

�) of the half-sphere

with local coordinates �
a

; a = 1; : : : ; N � 1 and �
0

=

q

1�

~

�

2. In these coordinates
eq. (8.7) reads

Z

^

D�

0

^

�[C[�]j�

0

] =

Z

 

N�1

Y

a=1

D�

0

a

!

�

�

�

�

det

�F

b

��

0

c

�

�

�

�

 

N�1

Y

d=1

�[F

d

[�

0

j�]]

!

= 1:

(8.8)

where � is the usual cartesian delta functional for the d-th component. Please note that
the determinant is taken from a N � 1�N � 1 matrix not a N � N matrix. 1

1The determinant is as in the FADDEEV-POPOV-trick a generalization of
Z

x

�(f(x)) =

Z

x

1

jf

0

(x)j

�(x� x

0

)

where f(x
0

) = 0.
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Because ofO(N )-invariance we are free to choose the coordinate system such that
e

0

= C[�]. With this choice one finds

F

d

[�

0

j�] = ��

0

d

�

0

0

C�

0

(8.9)

and hence

�F

b

��

0

c

= C�

0

�

��

0

0

�

b;c

+

�

0

b

�

0

c

�

0

0

�

(8.10)

The determinant of this expression can be written manifestly covariant as
�

�

�

�

det

�F

b

��

0

c

�

�

�

�

= j�

0

C�j

N�1

: (8.11)

We finally yield the expression
Z

D

N�1

~

�

0

j�

0

C�j

N�1

�

N�1

[P

�

0

C�] = 1 (8.12)

with DN�1~�0 :=
Q

N�1

d=1

D�

0

d

; �

N�1

:=

Q

N�1

d=1

�

d

.

8.4 Effective Action

Inserting eq. (8.12) into the partition functional and changing the order of integration as
usual, one obtains the effective action S0[�0]. In a local coordinate system with e

0

(x) =

�

0

(x) it is defined as

e

�S

0

[�

0

]

=

Z

D

N�1

~

��

N�1

[P

�

0

C�]e

�E[�;�

0

]

: (8.13)

The exponent functional is given by

E[�; �

0

] = S[�] + (N � 1)

Z

x

�

0

(x)(C�)(x)�

1

2

Z

z

ln(1�

~

�

2

)

(8.14)

where the last term comes from the SN�1-measure. This fluctuation integral will now
be treated in the saddle-point approximation with the background field  extremizing
E[�; �

0

] subject to the constraint (P�
0

C�)

a

= 0. The constraint  2 = 1 is automati-
cally fulfilled in the local coordinate system.

8.5 Split of the Field

Suppose we have succeeded to determine the background field. The next step is then to
introduce a local split of the basefield into background and fluctuation field.

�(z) = G( (z); �(z)) (8.15)

Its purpose is to decouple the low-frequency components of the field from the high-
frequency components. Apart from this there are some technical restrictions on G:
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� When inserting the split into the weight functional this should result into a lin-

ear constraint on �. Only then we are able to make use of the GK formalism to
transform the functional integral eq. (8.13) into a Gaussian fluctuation integral
with fluctuation propagator �. A look at the blockspin definition reveals that this
requires �0([z])�(z) = 0, i.e. the fluctuation fields are from the tangentspace
T

�

0

([z])

S

N�1 to SN�1 at the blockspin field.

� We want to expand the action around the background field  (z). This naturally
leads to fluctuation fields being from the tangentspace T

 (z)

S

N�1 toSN�1. This
is the N � 1 dimensional linear space tangent to the background field  .

To fulfill both requirements simultaneously we will use fluctuation fields perpendic-
ular to �0 but will have to transform the derivatives.

Consider the following two coordinate systems2 fe�(z)g; fe
0

�

(z)g with

e

0

(z) = �

0

(z) (8.16)

e

0

0

(z) =  (z) (8.17)

and arbitrary ea; e
0

a.
The split of the field in these systems reads

� =

q

1�

~

�

2

e

0

+ �

a

e

a

=

q

1�

~

�

0

2

e

0

0

+ �

0

a

e

0

a

: (8.18)

Additionally a shift of �
a

is performed. We write �
a

(z) = �

a

(z)+ 

a

(z) with 
a

(z) =

( (z)�e

a

(z)). The two coordinate vectors ~� and ~�0 are related to each other by a transfo-

mation ~�0 = ~

�

0

[

~

�] with ~�0[0] = 0. 3 Following above strategy the exponent functional

will be re-expressed in terms of the fluctuation coordinates ~�0 and is then expanded with
respect to the fluctuation coordinates ~�:

E[

~

�

0

[

~

�]j ] = E[0j ] (8.19)

+

 

�E[

~

�

0

[

~

�]j ]

�

~

�

0

?

?

?

0

�

~

�

0

[

~

�]

�

~

�

?

?

?

0

;

~

�

!

+

1

2

 

~

�;

(

�

~

�

0

[

~

�]

�

~

�

?

?

?

0

�

2

E[

~

�

0

[

~

�]j ]

�

~

�

0

�

~

�

0

?

?

?

0

�

~

�

0

[

~

�]

�

~

�

?

?

?

0

)

~

�

!

+

1

2

 

~

�;

(

�E[

~

�

0

[

~

�]j ]

�

~

�

0

?

?

?

0

�

2

~

�

0

[

~

�]

�

~

��

~

�

?

?

?

0

)

~

�

!

= E[0j ] + (E

;

[0j ];

~

�) +

1

2

(

~

�;E

;;

[0j ]

~

�) (8.20)

Here ; denotes a derivative with respect to ~�0.

2This parametrization is in the spirit of the one used by POLYAKOV in his famous proof of asymptotic
freedom of the two dimensionalO(N) symmetric non-linear � model [Pol75]

3This follows from
p

1� (

~

�+

~

 )

2

�

0

+ (�

a

+  

a

)e

a

=

p

1�

~

�

0

[

~

�]

2

 + �

0

a

[

~

�]e

0

a
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The background field is defined by requiring that the term linear in ~� vanishes sub-
ject to the constraint that P�

0

C = 0 or in coordinates C 
a

= 0.

Z

z

0

�E[

~

�

0

[

~

�]j ]

��

0

b

(z

0

)

?

?

?

0

��

0

b

[

~

�](z

0

)

��

a

(z)

?

?

?

0

= C

T

�

a

(z): (8.21)

Let

Q

T

ab

(z; x) :=

Z

z

0

��

0�1

b

[

~

�

0

](z)

��

0

a

(z

0

)

?

?

?

0

C

T

(z

0

; x) (8.22)

then the saddle-point condition reads

�E[

~

�

0

[

~

�]j ]

��

0

a

(z)

?

?

?

0

=

�

Q

T

�

�

a

(z) (8.23)

This is as close as one can get to the scalar case. The geometrical constraint is imple-
mented by the operator

Q

T

(z; x) : T

�

0

(x)

S

N�1

! T

 (z)

S

N�1 (8.24)

Since �
a

e

a is perpendicular to �0 and because of the constraint C 
d

= 0 the delta
functional in the ~� coordinates becomes

�

N�1

[P

�

0

C�] =

N�1

Y

d=1

�[C�

d

]: (8.25)

This situation is now suited for the application of aN�1 dimensional GK-formalism
with fluctuation propagator

�[ ] = E

;;�1

[0j ]� E

;;�1

[0j ]C

i

T

(CE

;;�1

[0j ]C

T

)

�1

CE

;;�1

[0j ]

(8.26)

yielding the effective action in the saddle-point approximation

S

0

[�

0

] = E[ [�

0

]]�

1

2

tr ln �[ [�0]]: (8.27)

8.6 Conclusion

The evaluation of eq. (8.27) is still in progress. The points to be attacked next are:

� With eqns. (8.27), (8.26), (8.23) we have at least formally been able to perform
the saddle-point approximation. In the scalar case it was possible to derive an ex-
tremely useful equation for the derivative of the background field. In the present
case this is obstructed because of the blockspin dependent projectors in the saddle-
point eq. (8.23). Alternative equations will have to be derived.
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� The derivatives E;;

[0j ] have to be computed in coordinates. For this purpose a
nice trick from POLYAKOV is useful [Pol75]: He introduced a gauge field

A

0��

�

= e

0

�

(z + �)

�

@

�

e

0

�

�

(z) (8.28)

and a covariant derivative

D

0��

�

= @

�

�

��

+ A

0��

�

(8.29)

such that e.g. the bare action can be rewritten as

S[�] = S[

~

�

0

j ] =

�

2

Z

z

(D

0

�

�

0

)

2

(z): (8.30)

In the above formula �0
0

is as usual an abbreviation for

q

1�

~

�

0

2

. From these
expressions it is easy to compute the derivatives.

� Motivated by the studies of other models [Gri97],[JW97] it might by necessary to
perform a self-consistent normalordering in advance of the saddle-point approx-
imation to avoid instabilities.

� A convenient localization approximation has to be made. This is essential to end
up with manageable equations.

In his famous work [Pol75] POLYAKOV used a similar RG technique to prove the
asymptotic freedom of the model. The key difference is that he used sharp momen-
tum cutoffs yielding a clean separation of the high- and low-frequency field modes. Al-
though the technical problems introduced by the lattice are severe the prospect to be
able to simulate the effective action and hence be able to check the validity of the as-
sumptions justifies further efforts.
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Appendix A

Notational preliminaries

In this appendix our notation is fixed

Let the base lattice




[0]

=

�

Z=N

[0]

Z

�

D

(A.1)

be a finite D dimensional hyper-cubic lattice with unit lattice spacing and extension
N

[0]

in every dimension. Position-space fields �
[0]

(z) are supposed to meet periodic
boundary conditions. Therefore the corresponding momentum-space fields �

[0]

(p) are
periodically defined on the lattice.

~




[0]

=

�

2�

N

[0]

Z=N

[0]

Z

�

D

(A.2)

with lattice spacing 2�

N

[0]

and length 2�. Introducing the symbols

Z

z

:=

X

z2


[0]

Z

p

:=

1

N

[0]

D

X

p2

~




[0]

(A.3)
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we retrieve the familiar equations

�

[0]

(z) =

Z

p

�

[0]

(p)e

+ipz

�

[0]

(p) =

Z

z

�

[0]

(z)e

�ipz (A.4)

�

[0]

(z) =

Z

p

e

ipz

=: I

[0]

(z) �

[0]

(p) =

Z

z

e

�ipz

=: I

[0]

(p) (A.5)

�

[0]

(z) =

Z

z

0

�

[0]

(z

0

)�(z � z

0

) �

[0]

(p) =

Z

p

0

�

[0]

(p

0

)�(p� p

0

) (A.6)

�

�

[0]

; �

[0]

�

=

Z

z

j�

[0]

(z)j

2

�

�

[0]

; �

[0]

�

=

Z

p

j�

[0]

(p)j

2

: (A.7)

The Hilbertspace associated with the above inner products is denoted asH(

[0]

) or
H

[0]

. The functional measure onH(

[0]

) is defined as

D�

[0]

:=

Y

z

d�

[0]

(z): (A.8)

For the block lattice 

[1]

and its momentum-space counterpart ~

[1]

analog expres-
sions can be written down simply by changing the index

[0]

into
[1]

and using N
[1]

=

N

[0]

s

with a blocking factor s 2 N. The objects after n blocking steps are indexed as
[n]

.
Sometimes the index

[0]

for base quantities will omitted and the blocked quantities are
then denoted with a prime 0.

It is convenient to define the following two lattices

� = (Z=sZ)

D

~

� =

�

2�

s

Z=sZ

�

D

: (A.9)

Then any z 2 


[0]

or p 2 ~




[0]

can be decomposed into

z = sx+ w p =

q

s

+ l (A.10)

with w 2 �; x 2 


[1]

; q 2

~




[1]

; l 2

~

�. Defining

Z

w

:=

X

w2�

Z

l

:=

1

s

D

X

l2

~

�

(A.11)

we can split the integrals

Z

z

=

Z

w

Z

x

Z

p

=

Z

q

Z

l

: (A.12)

Additionallyto the covariant (scale) objects
[n]

we introduce their contravariant coun-
terparts.
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For example




[n]

=

�

s

�n

Z=N

[n]

Z

�

D

(A.13)

is a lattice with lattice spacing s�n. The associated Hilbertspace of lattice fields is de-
noted byH[n]. In the limit n!1 we identify 
[1] with IR

D.
The transition between both worlds is performed by scale transformations S [n] :

H

[0]

!H

[n] being defined as

S

[n]

(z; z) := s

�n�

�

[0]

(z � s

n

z): (A.14)

Due to our definitions of integrals and delta-functions this means

S

[n]

T

(z; z) := s

�n(�+D)

�

[n]

(z � s

n

z) (A.15)

S

[n]

�1

(z; z) := s

�n�

�

[n]

(

z

s

n

� z): (A.16)

Up to now only scalar fields � have been introduced. When refering to a N com-
ponent field this is written as � = (�

0

; : : : ; �

N�1

).
In order to confuse the reader we will heavily make use of the following implicit

conventions

�; �; etc 2 f0; : : : ; N � 1g (A.17)

a; b; etc 2 f1; : : : ; N � 1g (A.18)

A;B; etc 2 f2; : : : ; N � 1g (A.19)

z 2 


[0]

(A.20)

x 2 


[1]

(A.21)

z 2 


[n] (A.22)

We used the following notation for pertubative orders. A quantityQ(n) is improved
up to order n. Q[n] contains only terms that are exactly of order nwhereas Q[n) has no
terms of order less than n.
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Appendix B

GK-Kernels

In this appendix the momentum space representations for the GAWEDZKI and KUPI-
AINEN kernels are derived.

In joint work with M. GRIESSL a C++ -class library for the GK kernels has been
written. It provides structural classes like Lattice, Layer, SymKernel together
with appropriate access methods and application classes like the kernels. The wide ad-
justability of parameters (lattice dimension, extension etc.) and options (dimension-
full/less, Delta- or Gauss-blockspin) makes it a very convenient and flexible tool for
lattice RG calculations. The kernels are computed in momentum space by the follow-
ing formulas and then are shuffled to position space by a FFT.

B.1 The Averaging Operator C

The averaging operator C and its adjoint CT are defined in position-space via

C(x; z) := s

���D

�

x;

[

z

s

]

=: C

T

(z; x) (B.1)

with
�

z

s

�

denoting theZD part of z
s

. Its fourier representation reads

C(x; z) =

Z

p

C(p)e

ip(sx�z)

C(p) :=

Z

z

C(0; z)e

ipz (B.2)

with

C(p) = s

���D

D

Y

�=1

�

sin(p

�

s=2)

sin(p

�

=2)

e

�ip

�

(s�1)=2

�

: (B.3)
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Note that

C(x; z) = C(x � x

0

; z � sx

0

) 8x

0

2 


[1]

(B.4)

CC

T

= s

�2��D

I

[1]

(B.5)

C(l) = s

��

�

D

l;0

: (B.6)

Let C
[n]

(s) := C(s

n

). We now introduce a contravariant averaging operator (see A

for notation) C[n] : H[0]

!H

[n]

by means of

C

[n]

(x; z) :=

�

C

[n]

S

[n]

�1

�

(x; z) = �

[n]

(x� [z]) = �

x;[z]

: (B.7)

In the infinite volume case one can take the limit n ! 1. C[1] turns out to be the
characteristic function of the unit cube at x

C

[1]

(x; z) :=

�

1 for z� x 2 [0; 1]

D

0 otherwise
: (B.8)

Its Fourier-transform reads

C

[1]

(p) =

D

Y

�=1

�

sin(

p

�

2

)

p

�

2

e

+i

p

�

2

�

: (B.9)

Later on we will need C[1]

(p) with p = p+k. Refering to the identities sin(
p

�

+k

�

2

) =

(�1)

k

�

2�

sin(

p

�

2

) = e

i

k

�

2

sin(

p

�

2

) one finds in this case

C

[1]

(p+ k) =

D

Y

�=1

"

sin(

p

�

2

)

p

�

+k

�

2

#

e

+i

p

�

2

: (B.10)

B.2 The Base-lattice Propagator v
[0]

The base-lattice propagator v
[0]

is formally defined as the inverse of the negative base-
lattice Laplacian

2

[0]

(z

1

; z

2

) = �

D

X

�=1

�

�

[0]

(z

1

� z

2

+ �) + �

[0]

(z

1

� z

2

� �)� 2�

[0]

(z

1

� z

2

)

�

(B.11)

2

[0]

(p) = p̂

2 (B.12)

with p̂
�

= 2 sin

�

p

�

2

�

.

B.3 The Block-lattice Propagator v
[1]

The block-lattice propagator v
[1]

is defined as

v

[1]

:= Cv

[0]

C

T

+

1

�

I

[1]

: (B.13)

81



This leads to the Fourier representation

v

[1]

(x

1

; x

2

) =

Z

q

v

[1]

(q)e

iq(x

1

�x

2

)

v

[1]

(q) =

Z

x

v

[1]

(x; 0)e

�iqx (B.14)

with

v

[1]

(q) =

Z

l

C(

q

s

+ l)v

[0]

(

q

s

+ l)C

�

(

q

s

+ l) +

1

�

: (B.15)

Note that

v

[1]

(q = 0) = s

�2��D

v

[0]

(0) +

1

�

(B.16)

v

[1]

(q) = v

[1]

(q + sl) 8l 2

~

�: (B.17)

B.4 Perfect Laplacian

The Perfect Laplacian can be obtained by two methods. Either by numerical iteration
of the blocking procedure or directly by its fourier representation.

The first method is instructivefor itself and was implemented by BELL and WILSON

[BW74]. Using a computer one is obviously limited to finite lattices. It is not feasible
nor necessary to start from a say (2

10

)

D lattice and to iterate down to (2

4

)

D lattice.
Instead WILSON suggested to blow-up the lattice after each RG step by inserting zeros
in the middle of the matrix representing the propagator-kernel (fig. B.1). Then it is
possible to perform an arbitrary number of iteration steps on moderately sized lattices (
e.g. (32)D). Beware: Since the insertion has to respect the lattice symmetry one has to
take care of even/odd lattice extensions. We will now derive the fourier representation

)

blocking
)

blowing

Figure B.1: WILSON’s blow-up technique

of the Perfect Laplacian. With eq. (B.10) it is easy to compute the fourier transform of
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the GK-propagator

vGK(z1 � z

2

) =

Z

z

1
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2
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�
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ip(z

1
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: (B.18)

Here we have made use of k
�

= 2�

^

k

�

and therefore exp(ikz) = 1. Note that v�1GK (p =

0) = 0.

B.5 The Interpolation Operator A

Being defined as

A(z; x) =

Z

z

0

;x

0

v

[0]

(z; z

0

)C

�

(z

0

; x

0

)v

[1]

�1

(x

0

; x) (B.19)

the fourier representation of the interpolation operator reads

A(z; x) =

Z

p

A(p)e

+ip(z�sx)

A(p) =

Z

z

A(z; 0)e

�ipz (B.20)

with

A(p) = v

[0]

(p)C

�

(p)v

[1]

�1

(sp): (B.21)

From this we find

A(l) =

1

s

���D

+

s

�

�v

[0]

(0)

�

l;0

(B.22)

s

���D

Z

z

A(z; x) = 1�

1

�v

[0]

(p = 0)s

�2��D

+ 1

(B.23)

Z

x

A(z; x) =

1

s

���D

+

1

�v

[0]

(0)

: (B.24)
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B.6 The Fluctuation Propagator �

The fluctuation propagator � is defined as

� = v

[0]

�Av

[1]

A

T

: (B.25)

This yields the fourier representation

�(z

1

; z

2

) =
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l

1

;l

2
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q

1
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1

; q
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i(
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1
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1
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1
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1
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2

)z

2 (B.26)

with

�(l

1

; q

1

; l

2

) = v

[0]

(

q

1

s

+ l

1

)s

D

�

l

1

;l

2

�A(

q

1
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+ l

1

)v

[1]

(q

1

)A

T

(

q

1
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(B.27)

We deduce

�(l

1

; 0; l

2

) =

8

<

:

v

[0]

(l

1

)s

D

�

l

1

;l

2

l

1

6= 0

1

�

s

D

s

�2��D

+

1

�v

[0]

(0)

l

1

= 0

: (B.28)

The fluctuation propagator is invariant under block-translations:

�(z

1

; z

2

) = �(z

1

+ x; z

2

+ x) with x 2 �: (B.29)

Without loss of generality it is therefore sufficient to consider only �(z; z

0

) with z0 =
w

0

2 � which will be denoted by �(z; w

0

).
Sometimes it is more convenient to write this as

�(w; x;w

0

) := �(w + x;w

0

): (B.30)

For computational purposes it is important to know how many independent values
of �(z; w0) have to be calculated in order to determine it’s behavior completely. At first
sight (B.30) there are (N

[1]

sN

[1]

)

D values, which is e.g. 531441 for N
[0]

= 9; s =

3; D = 4. This number can be reduced drastically by taking the lattice symmetry of the
blocking procedure into account which is given by the averaging operator C(x�z). The
center of symmetry C lies in the middle of the first block.1 All lattice symmetries S can
be reduced to reflections at planes through C. To make this more clear let us rearrange
the base-lattice 


[0]

:

1. Shift the block-center C into the origin z = 0 of the lattice.

ẑ

�

7!

�

ẑ

�

�

s�1

2

: s odd
1 + (ẑ

�

�

s

2

)2 : s even
(B.31)

1If s is even this point does not belong to the block-lattice 

[1]

.
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2. Center the lattice by virtue of periodic boundary conditions

ẑ

�

7!

8

>

<

>

:

ẑ

�

�N

[0]

: ẑ

�

>

N

[0]

�1

2

and N
[0]

odd, s odd

: ẑ

�

>

N

[0]

2

and N
[0]

even, s odd
ẑ

�

� 2N

[0]

: ẑ

�

> N

[0]

� 1 and N
[0]

even, s even

The case N
[0]

odd, s odd can not occur since N
[0]

must be a multiple of s.

Figure B.2 shows the symmetries for two-dimensional lattices. The generalization
to higher dimensions is obvious.

�(N

[0]

� 1)=2

...

-(s-1)/2

0

(s-1)/2

...
(N

[0]

� 1)=2

N

[0]

� 1

...

s � 1

...

0

(a)

�N

[0]

=2 + 1

-(s-1)/2

0

(s-1)/2
...

N

[0]

=2

N

[0]

� 1

...

s � 1

...
0

(b)

�(N

[0]

� 1)

...
-(s-1)...s-1

...
N

[0]

� 1

N

[0]

� 1

...

s � 1

...
0

(c)

Figure B.2: Symmetries of the blocking-procedure for a two-dimensional lattice N
[0]

.

The first block is framed with a dashed line. Symmetry-axes are drawn as solid lines

and the wedge is colored grey. (a) N
[0]

odd, s odd (b) N
[0]

even, s odd (c) N
[0]

even,

s even.

We see that any arbitrary z 2 


[0]

can be transformed into a reduced variable �z =

Sz 2 wedge(D; s;N
[0]

) with

wedge(D; s;N
[0]

) :=

�

z 2 


[0]

j 0 � ẑ

D

� : : : � ẑ

1

	

(B.32)
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by means of an appropriate symmetry transformation S = S(z).
From lattice symmetry follows

�(z; w) = �(Sz; Sw) = �(�z; Sw): (B.33)

In general Sw does not lie in wedge(D; s;N
[0]

). Thus we deduce that �(z; w) has no
more than ]wedge(D; s;N

[0]

)� N

[1]

independent values.
To compute this estimate we make use of the following recursion relation:

]wedge(D > 1; s;N

[0]

) =

�(s;N

[0]

)

X

n=1

]wedge(D � 1; s; n) (B.34)

]wedge(D = 0; s; n) = 1 (B.35)

�(s;N

[0]

) :=

8

>

<

>

:

N

[0]

�1

2

+ 1 : for s odd, N
[0]

odd
N

[0]

2

+ 1 : for s odd, N
[0]

even
N

[0]

2

: for s even, N
[0]

even

In the above case D = 4; N

[0]

= 9; s = 3 one finds ]wedge(4; 3; 9) = 70 so the
number of �-values to be calculated reduces to 5670! This estimate is good enough for
our applications although there is still symmetry left unused in the w-sector. A brute-
force application of all symmetry operations shows that the exact number of indepen-
dent values in our case amounts to 2380.

86



Appendix C

Gaussian measures

In this chapter a few properties of Gaussian Measures are collected (See [GJ87]).

Any real, positive, symmeteric linear operator � on H(
) will be called a covari-
ance operator.

The Gaussian measure with mean zero for the N -component field � is defined as

d�

�

[�] := det(2��)�
N

2

D�e

1

2

(�;�

�1

�)

: (C.1)

It is characterized by its generating functional
Z

d�

�

[�]e

(J;�)

= exp

�
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2

(J;�J)
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: (C.2)

For covariance operators �;�
1

;�

2

with � = �

1
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the convolution theorem holds
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]: (C.3)

By making use of eq. (C.1) one obtains the extremely useful relation
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with L = (1 + �K)

�1

.
Normalordering with respect to a covariance � is defined by

: e

(�;J)

:

�

= e
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: (C.5)

For the ultra-local case with
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we mention the Wick formula
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For N = 1 we find
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