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Chapter 1

General Introduction

The dynamical structure of the proton [1] evolved from the pioneering deep inelastic scat-

tering (DIS) experiments at SLAC, through higher energy �xed target lepton{proton DIS

measurements till the present results of the HERA ep collider. The proton has three va-

lence quarks and a vast number of additional sea partons, each carrying a fraction x of the

proton's momentum. This information is obtained by `looking' at the proton with a probe

of virtuality represented by its negative squared mass Q

2

. The higher the Q

2

the smaller

the objects `inside' the proton that can be `observed'. These objects carry a fraction x

of the proton's momentum. The regions in the x{Q

2

plane studied before HERA started

to operate were up to about 300GeV

2

in Q

2

and down to about 10

�2

in x. The HERA

collider has extended the plane in both directions by more than two orders of magnitude,

as can be seen in �gure 1.1.

What do we expect to learn in this new kinematic region? How does the proton `look'

when probed at very high Q

2

? Can one detect substructure in the partons or in the

electron? Are there `exotic' particles such as leptoquarks? Can one detect supersymmetric

particles? What is the x distribution of the partons within the proton when probed at

di�erent values of Q

2

? How many partons are there as x becomes smaller and smaller?

The above is only a partial list of questions hoped to be answered by the HERA data.

The topic of these lectures is `Low{x physics at HERA'. Studying the low{x region actually

means studying the high probe{proton center of mass energy W . We will discuss the new

results obtained in this wider kinematic region. Since high energy phenomena have been

well described within the Regge picture, there will be a chapter devoted to this subject.

Next, the DIS kinematics will be introduced and the proton structure functions will be

de�ned. This will lead to the chapter discussing the QCD factorization theorem, the

de�nitions of the parton distributions and their evolution with Q

2

, with a special emphasis

on their behaviour at low x. The DGLAP and the BFKL evolution equations will be

reviewed, di�erent parton density parameterizations will be compared and some methods

to obtain the gluon density distribution in the proton will be described. The following

chapter discusses the structure function of the photon, the parton density distributions
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Figure 1.1: A contour of the x{Q

2

plane, indicating the regions covered by the �xed target

experiments and those at the HERA collider.

in the photon and the picture of the photon, real and virtual, emerging from the HERA

results. One of the unexpected results of HERA, di�raction in DIS, is preceded in the next

chapter by a general introduction about di�raction in hadroproduction, the concept of the

Pomeron is introduced and the large rapidity gap events in DIS are analysed from the point

of view of a partonic structure of the Pomeron. The �nal chapter is an attempt to give an

operational de�nition to `hard' and `soft' interactions and the interplay between the two.

This will include a discussion about the energy behaviour of the total DIS cross section as

well as that of exclusive production of vector meson in DIS.

Before indulging on this extensive program, I would like, as part of this general intro-

ductory chapter, to summarize the highlights of the HERA results so far. We start with a

short description of the machine and the two detectors.

1.1 HERA, H1 and ZEUS

HERA [2] is the e

�

p colliding beam facility at DESY in Hamburg. It collides at present

27:5GeV e

�

with 820GeV protons, providing a center{of{mass energy of 300GeV. The

two beams can be stored in up to 210 bunches each, and collide every 96 nanoseconds at

two interaction points.

Each of the two interaction regions is surrounded by a 4� detector. In the so{called

north hall, the H1 detector [3] is stationed, while the ZEUS detector [4] is in the south
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THE  H1  DETECTOR

Figure 1.2: The H1 detector.

hall. Both detectors use a sampling calorimeter, tracking detectors and muon detectors.

The H1 detector is depicted in �gure 1.2 and the ZEUS detector is shown in �gure 1.3.

Both the H1 and the ZEUS experiments have additional detectors downstream and

upstream up to a distance of about 100 meters from the interaction point. Their purpose

is to measure protons and neutrons in the proton beam direction (denoted throughout this

text as the `forward' region), and electrons and photons in the electron beam direction.

The photon detector is used to measure the luminosity by using the bremsstrahlung process

ep ! ep
 which can be accurately calculated through Quantum Electrodynamics (QED).

This measurement provides the luminosity with an accuracy of about 1{2%.

As is the case with any new machine, the integrated luminosity starts at a low value

but gradually keeps increasing, as shown in �gure 1.4.

The present level of luminosities is very well suited for studying the low and intermediate

Q

2

physics. It is planned to upgrade [5] HERA in about 2{3 years to increase the integrated

luminosity by an order of magnitude by going to the low � mode.

1.2 HERMES and HERA{B

The two beams are in separate rings and can be used also for other purposes. Thus, in

addition to the two collision points, the electron beam, which can have a polarization of

about 60%, interacts with a polarized stationary target. At that interaction point, situated
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Figure 1.3: The ZEUS detector.
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Figure 1.4: The delivered luminosity by HERA versus time for the years 1992{1995.

18



in the east straight section, the HERMES detector [6] records the results of the interactions

of the polarized particles. The aim of this experiment is to investigate the origin of proton

and neutron spin in inelastic electron{nucleon collision.

The proton beam will be used by the HERA{B experiment [7] to be installed in the

west area. This experiment will use the halo of the proton beam to produce B{mesons.

The experiment objective is to study CP violation in the B{meson system.

1.3 High Q

2

Neutral and Charged Currents

The ep reactions can be classi�ed into two categories. The events in which the outgoing

lepton is an electron are called neutral current (NC) events. In this case the particle

exchanged between the initial lepton and the proton is a neutral particle, predominantly a


 at lower Q

2

values and when Q

2

becomes high enough the Z

0

starts to also contribute

appreciably. The other class of events are those where the outgoing lepton is a neutrino.

In this case the charged W

�

is exchanged and the events are called charged current (CC)

events. These two classes of events can be represented by the two simple exchange diagrams

below:

�

p

e e

0


,Z

0

jet

�

p

e �

W

jet

neutral current DIS charged current DIS

(1.1)

The NC events can be identi�ed by observing the scattered electron which makes sure to

balance the transverse momentum, p

T

. In the case of CC events, the neutrino is undetected,

resulting in a large missing transverse momentum. Figure 1.5 shows on the top a typical

NC event in the ZEUS detector, where one sees the scattered electron leaving a track in the

central tracking detector and depositing energy in the rear part of the calorimeter (RCAL).

The current jet is produced in the upper part of the forward calorimeter (FCAL) and the

remnants of the proton produce energy in FCAL around the beam pipe. In the lower part

of the �gure one sees an example of a CC event, identi�ed by the large missing p

T

. Also

here one can see the current jet and the remnants depositing energy in the FCAL.

Using the transverse momentum information and the electron identi�cation it is possible

for both (e

+

and e

�

) beams to isolate the NC and CC events. In the 1993 data sample 436

NC events and 23 CC events with Q

2

> 400GeV

2

were found.
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Figure 1.5: A typical example of a neutral current event (upper part) and charged current

event (lower part) as observed in the ZEUS detector.

The cross{section for the unpolarized e

�

p NC DIS can be expressed as [8]:

d

2

�

dx dQ

2

=
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4

nh
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i
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o

(1.2)

The NC structure function F

2

can be written as:

F
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2

=
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where q

+
f

is the sum of the momentum density distributions of the quarks and antiquarks

of 
avour f , each having the electric charge e

f

. The a's and the v's are axial and vector

couplings of the electron or the quark to the Z

0

which has the mass M

Z

.

For CC reactions, neglecting heavy quarks, the cross section is given by:

d

2

�

dxdQ

2

=

G

2
F

2�

 

M

2

W

M

2

W

+Q

2

!

2

2x cos

2

�

c

h

u + c + (1� y)

2

�

d+ s

�i

(1.4)
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Figure 1.6: The di�erential cross section d�=dQ

2

as function of Q

2

for NC and CC events

as measured in the ZEUS detector using the 1993 data. The dashed line which does not

describe the data assumes an in�nite mass for the W .

where G

F

is the Fermi constant and M

W

is the mass of the W .

While the CC events are produced purely by a weak interaction, the NC events will

be dominanted by electromagnetic interactions at lower Q

2

, while at higher Q

2

the weak

interactions will start to play an important role. The expectations were thus that at

some high enough value of Q

2

the cross sections of the NC and CC will be of comparable

magnitude. These expectations have been borne out by the �rst HERA data, taken in

1993 where both collaborations, H1 [9] and ZEUS [10] have measured NC and CC events

at high Q

2

. The di�erential cross section of the NC and CC reactions as function of Q

2

are

shown in �gure 1.6.

One can see that in the region of Q

2

of the order ofM

2

Z

, the two cross sections are equal.

In addition one observes that the shape of the CC cross section is sensitive to theW mass.

By �tting the distribution to equation 1.4, one obtains the resultM

W

= 76� 16� 13GeV.

1.4 Determination of the strong coupling �

S

Multi{jet production in NC DIS events can be used to determine the strong coupling

constant �

S

. In particular, the measured rate of 2 + 1 jets, where the `+1' stands for the

proton remnant jet, can be compared to theoretical calculations in which �

S

is the only

free parameter.
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Figure 1.7: Measured value of �

S

(Q) for three di�erent Q

2

regions.

By using some kinematical cuts [11] which exclude the problematic region where higher

order e�ects are important and jets are not well measured in the experiment, the value

of �

S

was determined [12, 13] in three Q

2

regions in the range 120 < Q

2

< 3600GeV

2

,

and was found to decrease with Q

2

(�gure 1.7), consistent with the running of the strong

coupling constant.

The value of �

S

expressed at the Z

0

mass was determined to be:

�

S

(M

Z

0

) = 0:117 � 0:005(stat)

+0:004

�0:005

(sys

exp

) � 0:007(sys

th

)

which is in good agreement with the results obtained from the e

+

e

�

event shape (0:121 �

0:006) and Z

0

width (0:124 � 0:007).

1.5 The strong rise of F

2

at low x

From the measurements of the cross section of NC DIS events one can unfold the proton

structure function [14] F

2

which is a function of x and of Q

2

. The data from �xed target

experiments indicated that for a given value of Q

2

the structure function F

2

rose slowly

with decreasing x and seemed to level o� with further decrease. The new data [15, 16] of

HERA, which allowed to measure F

2

for higher Q

2

and lower x, showed that it rises sharply

with decreasing x. This can be seen in �gure 1.8 where the measurements of F

2

are shown

for Q

2

values from 1:5GeV

2

up to 5000GeV

2

and down to x values close to 10

�5

. The
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Figure 1.8: The structure function F

2

(x;Q

2

) as function of Bjorken{x, for �xed Q

2

values.
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rise with decreasing x is associated to the increase of the gluon density as x gets smaller.

One can see from the lines in �gure 1.8 that QCD can accommodate this behaviour in the

whole kinematic region where data exist.

Another way [17] to look at the behaviour of F

2

is through its connection to the total




�

p cross section:

�

tot

(


�

p) =

4�

2

�

Q

2

(1� x)

Q

2

+ 4m

2
p

x

2

Q

2

F

2

(W

2

; Q

2

) (1.5)

Figure 1.9 shows the behaviour of �

tot

(


�

p) as calculated from the data of F

2

(W

2

; Q

2

)

through equation 1.5. Also included are measurements of the real 
p cross sections as

function of W

2

. The curves are the expectations of the ALLM [18, 19] parameterization.

While the real photoproduction cross section shows a mild rise with energy, one sees a

steeper rise for the higher Q

2

data. There clearly is a transition. At which Q

2

value does

it happen? Is it gradual or is it sharp? What does the transition mean? We will discuss

these questions in later chapters.

1.6 Large rapidity gap events in DIS

The characteristic topology of a NC DIS event is expected to include a current jet as a result

of the interaction of the probing virtual photon with one of the partons from the proton.

In addition there is the proton remnant jet, usually concentrating around the beam pipe.

The region between the two is �lled with more particles resulting from colour forces and

gluon radiation. Thus the distribution of the angle � between a produced particle and the

incoming proton direction, or equivalently the pseudorapidity �, de�ned as � = � ln tan �=2,

is expected to fall exponentially.

One can look at the variable �

max

, de�ned as the maximum rapidity of a calorimeter

cluster of DIS events, displayed in �gure 1.10. While the shaded area is the behaviour

which was expected of �

max

as described above, the data [20] had a large excess of events in

the region of �

max

< 1:5. This corresponds to events with a large rapidity gap, of at least

2.8 units. The properties of these events were consistent with being di�ractively produced.

Thus the HERA experiments [20, 21] found that about 10% of all the DIS events are due

to a di�ractive process, a fact that came as a surprise and was not included in any of the

DIS generators written before the HERA experiments.

1.7 Summary

In this introductory chapter, some of the highlights of HERA have been described in a very

general way. The following have been mentioned:
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�

p cross section as function of W

2

, for di�erent Q

2

values. The

curves are the expectations of the ALLM parameterization.
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Figure 1.10: The distribution of the maximum rapidity �

max

of a calorimeter cluster in a

DIS event.

� The �rst experimental evidence to the expectation of the electroweak theory that

when Q

2

is close to M

2

Z

, the electromagnetic and the weak force become of equal

magnitude.

� From the jet rates of the NC DIS events one can determine �

S

with high precision

and can observe the running of �

S

in one experiment.

� The proton structure function F

2

(x;Q

2

) shows a dramatic increase as x decreases for

a large span of Q

2

values.

� Large rapidity gap events were observed in NC DIS reactions, indicating the presence

of di�ractive mechanisms also at higher Q

2

.

The �rst two items do not belong to the scope of these lectures and thus one is referred

to the original publications for further details. The last two items will be expanded in the

future chapters.
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Chapter 2

Introduction to Regge Theory

2.1 General introduction

Our understanding of particle physics has evolved in two directions. The static properties

of the hadronic spectrum pro�tted from the breakthrough of the SU(3) theory of Gell{

Mann and Ne'eman [22], which relates particles of di�erent internal quantum numbers but

the same spin{parity (and mass, in perfect SU(3) symmetry). The hadron dynamics has

been investigated by many theories. One of the successful ones which we will describe in

more detail here is the Regge theory [23, 24].

The Regge theory investigates the dynamics of hadrons by studying the two{particle

scattering A + B ! C + D. It relates the spin J and the mass M of particles with the

same internal quantum numbers (strangeness, isospin, baryon number, etc.). When one

plots all known particles in the Chew{Frautschi [25] plane (J vs M

2

) they all seem to lie

on a straight line called a Regge trajectory. As an example we show this plot for some of

the meson particles (�gure 2.1). A similar one exists for the baryons.

The Regge theory predicts some characteristics which can be tested experimentally for

the behaviour of hadronic interactions at high energies. One such prediction is that the

high energy behaviour of all processes where one exchanges the same quantum numbers

should be similar.
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Figure 2.1: Chew{Frautschi plot: Spin J versus mass squared for di�erent mesons. The

lines are the corresponding Regge trajectories.

2.2 One pion exchange (OPE)

The early description of two-body reactions was the picture of one pion exchange (OPE).

For instance, the reaction �p! �p could be well described by the following diagram:

�

�

p

�

p
�

(2.1)

It was realized soon that this picture is incomplete. There is no justi�cation for ignoring

the exchange of two or more pions or of other particles. In some reactions the exchange of

a pion is even not possible, like in elastic �p scattering where, due to G{parity, one cannot
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exchange a pion but a �:

�

�

p

�

p
�

(2.2)

Such problems are avoided in the Regge theory. Here one exchanges one or more

trajectories and instead of speaking about a particle that is exchanged one talks about

a Reggeon exchange. The exchange of a Reggeon is equivalent to the exchange of many

particles with di�erent spins:

�

IR

=

�

J = 0

+

�

J = 1

+

�

J = 2

+ : : : (2.3)

2.3 s and t channel

Before continuing with the development of the Regge theory, a short section to de�ne two

Lorentz invariant variables which are useful for further discussion. Let us denote by p

i

the

four{vector of particle i. The four momentum transfer squared t between A and C (or

equivalently between B and D) is then de�ned as:

t = (p

C

� p

A

)

2

= (p

�

A

+ p

C

)

2

= (p

B

� p

D

)

2

= (p

B

+ p

�

D

)

2

(2.4)

Note that t can also be viewed as the center of mass squared of the crossed reaction

B+

�

D!

�

A+C. The center of mass squared s of the system A+B (= C+D) is given by:

s = (p

A

+ p

B

)

2

= (p

B

� p

�

A

)

2

= (p

C

+ p

D

)

2

= (p

C

� p

�

D

)

2

(2.5)

Thus s can also be interpreted as the four momentum transfer squared from B to

�

A of the

process B +

�

D !

�

A+ C.

One can therefore look at a given two{body reaction either in the s{channel or in the

t{channel, as described in the following diagram:

	

s-channel !

" t-channel

B

A

D
C

(2.6)

We can now resume the Regge theory discussion.
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2.4 The Froissart bound

A fundamental reason why single particle exchange as described above cannot be the correct

description of the two{particle hadronic processes at high energies is the following. Assume

an elastic collision between spinless particles, all of mass m, exchanging a meson of mass M

and spin J :




1

t�M

2

m
m

m
m

(2.7)

The transition amplitude can be written as:

T (s; t) �

P

J

(cos �

t

)

t�M

2

(2.8)

where P

J

is the Legendre-function and �

t

the scattering angle in the center of mass system

of the t{channel reaction B +

�

D!

�

A + C. The angle can be expressed as:

cos �

t

= 1 +

2s

t� 4m

2

(2.9)

At �xed t, as s grows, cos �

t

� s, and thus

T (s; t)

s!1

�! s

J

(2.10)

For J > 1 this violates the Froissart [26] bound. What is the Froissart bound?

Froissart showed, that in the partial wave expansion of the scattering amplitude all

partial waves with l � l

max

= c

p

s ln s (where c is some constant) are negligible. Summing

the partial wave series and assuming maximum scattering in each partial wave he obtained:

� � c ln

2

s as s!1: (2.11)

The constant c is limited theoretically:

c �

�

m

2
�

: (2.12)

Thus the cross section is bound by:

� �

�

m

2
�

ln

2

s ' (60mb) ln

2

s: (2.13)

This bound is known as the Froissart bound, also referred to sometimes as the Martin [27]{

Froissart bound.
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Figure 2.2: The � trajectory as determined from the charge exchange reaction �

�

p! �

0

n.

2.5 Regge trajectories

In this section we will describe the main steps leading to the Regge trajectory. Let us

assume that there exists a bound state in the t{channel with angular momentum l = L

and mass M

B

< 2m. The t{channel partial wave amplitude f

L

(t) has then a pole at

t = t

B

� M

2

B

. Similarly, if in the t{channel there is a resonance with mass M

R

, width �

and l = L, one gets a pole at a complex value t = t

R

� M

2

R

� iM

R

�.

The sequence f

l

(t); l = 0; 1; 2; ::: can be generalized to a function f(l; t) which should

be equal to f

l

(t) for l = 0; 1; 2; :::. This function is de�ned also for complex l. The sequence

of poles for l = L

1

at t = t

1

, l = L

2

at t = t

2

; : : : is interpreted as a single moving Regge

pole at l = �(t). The function �(t) is a trajectory function such that �(t

1

) = L

1

; : : :.

When �(t) is equal to an integer value L at t = t

L

, this corresponds to a bound state or

resonance with l = L and mass and width given by t

l

=M

2

L

� iM

L

�. The trajectory which

gives a resonance with l = L and complex t

L

will also cause a pole at the real value t =M

2

L

when l has the complex value L+ Im�(t). Therefore the real values t

l

where Re�(t

l

) = L

give the massesM

2

L

= t

l

of the particles with spin L. This can be demonstrated in �gure 2.2

where the � trajectory is determined from the charge exchange reaction �

�

p! �

0

n. When

the trajectory gets to the mass of the � its value is equal to the spin of the �: �(M

2

�

) = 1. In

the Chew{Frautschi plot shown earlier in �gure 2.1 one sees more examples of trajectories

having the same feature.

Originally, Regge was interested in the behaviour of the t{channel scattering amplitude

in the unphysical limit cos �

t

!�1. The usual partial-wave series diverges when j cos �

t

j =

1+�. So he used the function f(l; t) to convert the sum into a contour integral in the complex
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l plane, which allowed cos �

t

!�1. He obtained

T

t

(t; s) � (cos �

t

)

�(t)

(2.14)

where �(t) is the trajectory whose real part is largest for the given t.

It was Mandelstam who realised that the limit cos �

t

! �1 in the t{channel reaction

B +

�

D !

�

A + C corresponds to s ! 1 in the s{channel reaction A + B ! C +D (see

Eqn. 2.9 with �xed (negative) t).

Since the transition amplitude ful�ls T

s

(s; t) = T

t

(t; s) one gets at �xed t:

T

s

(s; t) � s

�(t)

(2.15)

More precisely, at �xed t:

T

s

(s; t)

s!1

�! 
(t)

�

s

s

0

�

�(t)

(2.16)

where s

0

is a scale factor. The function 
(t) is closely related to the residue of f(l; t) at

the pole l = �(t).

In the relativistic case one needs to consider the signature ( + for even J , - for odd J)

and one gets:

T

s

(s; t) = 


�

(t)

1� e

�i��(t)

sin��(t)

�

s

s

0

�

�(t)

: (2.17)

The functions 


�

(t) factorize. This means that for A+B ! C +D one can write:


(t) = 


AC

(t)


BD

(t): (2.18)

If several sets of t{channel internal quantum numbers are possible, one includes a con-

tribution from the leading trajectory of each type.

2.6 Shrinkage

Before the Regge theory was fully developed, one had a simple phenomenological description

of a large number of two{body reactions. The energy behaviour of the forward di�erential

cross section of these reactions could be described by the form:

d�

dt

(s; t = 0) =

A

s

2

�

s

s

0

�

2�

e�

(2.19)

The values of �

e�

obtained from �tting the data are given in table 2.1. Regge theory

identi�es �

e�

with �(t = 0) of the dominant Regge trajectory contributing to the reaction.

The value �(t = 0), also denoted sometimes by �

0

, is called the intercept of the Regge

trajectory.
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Table 2.1: Coe�cients �

e�

and the possible exchanged{particles for various processes.

Reaction t-channel � �

e�

�

�

p! �

0

n � 0.5

K

�

p!

�

K

0

n �; a

2

0.5


p! �

0

p �; ! 0.5

�

�

p! K

0

� K

�

; K

�

2

0.2

K

�

p! �

0

� K

�

; K

�

2

0.2

�

�

p! p�

�

� 0

�

+

p! p�

+

N;� 0

The Chew{Frautschi plot shows that the trajectories are linear in t and can be expressed

in a simple form:

�(t) = �

0

+ �

0

t (2.20)

The slope of the trajectory, �

0

is positive and has the value �

0

� 1GeV

�2

for most trajec-

tories.

If one pole dominates one can write the di�erential cross section in the form:

d�

dt

=


(t)

s

2

�

s

s

0

�

2�(t)

=


(t)

s

2

�

s

s

0

�

2�

0

+2�

0

t

(2.21)

=


(t)

s

2
0

�

s

s

0

�

2(�

0

�1)

e

2�

0

t ln

�

s

s

0

�

(2.22)

This expression gives both the s and the t dependence of the cross section. Since t < 0,

the exponential cuto� in t becomes sharper as s increases. In other words, the higher the

energy, the larger the exponential coe�cient of the di�erential cross section, where the

growth of the steepness is determined by �

0

. This phenomena is called shrinkage and one

says that

d�

dt

shrinks as s grows. An example [28] of the shrinkage phenomena is shown in

�gure 2.3 for the elastic pp reactions. We will return to the shrinkage phenomena in the

last chapter.

2.7 The Pomeron

From the form of equation 2.19 one can see that the forward scattering amplitude of the

elastic scattering has an energy dependence given by:

d�

dt

(s; t = 0) �

�

s

s

0

�

2(�

0

�1)

: (2.23)
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Figure 2.3:

d�

dt

for di�erent s for pp reactions.

The total cross section is related to the imaginary part of the forward elastic scattering

amplitude by the optical theorem. Therefore one can write:

�

tot

�

�

s

s

0

�

�

0

�1

: (2.24)

Since all the known trajectories of existing particles have �

0

< 1, the conclusion from

equation 2.24 is that �

tot

should decrease with energy. Experimentally, however, �

tot

seemed

to approach a constant value as s increased. This is shown in �gure 2.4 where the total

cross section for various particles on proton target is plotted as function of the incoming

beam momentum [28]. Note that this �gure already includes later data which showed that

at high energies the total cross section starts to increase. This was not yet known at that

time and the belief was that it reaches a constant energy{independent value.

In order to keep the Regge picture consistent with the experimental data, one needed to

assume the existence of a trajectory with an intercept �

0

' 1. Though this idea was orig-

inally suggested by Gribov, the trajectory was named by Gell{Mann after Pomeranchuk,

who derived in 1958 his theory [29] about the asymptotic behaviour of the di�erences of

cross sections. The trajectory was �rst called the Pomeranchukon trajectory, and was later
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Figure 2.4: Total cross section measurements for various reactions.

abbreviated to the Pomeron. This trajectory (IP) was assumed to have the form:

�

IP

(t) = �

IP

(0) + �

0
IP

t (2.25)

with an intercept of �

IP

(0) ' 1 and a slope [30] of �

0
IP

' 0:25GeV

�2

. These values are

di�erent from all those of the known trajectories, some of which are given in table 2.1. So

far no particle was found which corresponds to the Pomeron trajectory.

2.7.1 The Pomeranchuk Theorem

Since we mentioned earlier the Pomeranchuk theorem, lets say a few words about it. Pomer-

anchuk studied [29] the high energ behaviour of the di�erences between the total cross

sections, ��, de�ned as:

�� � �(

�

AB)� �(AB) (2.26)

for any particles A,

�

A and B. The scattering should become purely `di�ractive' (in the

optical sense) at high energies. The elastic scattering should be just the shadow of the

inelastic reactions. In this picture, via the optical theorem, one expects the amplitudes to
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be almost purely imaginary. Under the assumption that

ReT (s; 0)

ImT (s; 0)

s!1

�! 0 (2.27)

and if �(

�

AB) ! C

1

and �(AB) ! C

2

, Pomeranchuk proved that C

1

= C

2

. This led to

his theorem that at high energies the di�erences between particle and antiparticle cross

sections should vanish:

�� ! 0 (2.28)

This is known as the Pomeranchuk theorem. The experimental data seem to support this

prediction, as can be seen from �gure 2.5.

Figure 2.5: Total cross section di�erences for various reactions

2.8 High energy behaviour of �

tot

As we mentioned above, the total cross section actually starts rising with energy. What

changes does one have to make to the Pomeron trajectory parameters? Clearly, in order

to describe the rise, the intercept has to be bigger than 1. By how much? One way to

�nd out is to �t the total cross section data to the form given in equation 2.24. However,

we know that there are also other trajectories which can be exchanged in addition to the

Pomeron.

Donnachie and Landsho� (DL) [31] attempted a global �t to all existing �

tot

data. They

realized that all the Reggeon intercepts can be represented by one e�ective intercept having
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a value of �

IR

(0) � 0:55. Also, the elastic scattering data can be described by having two

exchanges, a Reggeon and a Pomeron.

�

IR; IP

B

A

B
A

(2.29)

When a Reggeon is being exchanged, one usually exchanges quantum numbers, while in the

case of the Pomeron exchange there is the exchange of vacuum quantum numbers. Using

the optical theorem, one expects also the total cross section to be described by the sum of

these two exchanges. Thus motivated, DL �tted the total cross section data to a sum of

two terms:

�

tot

= Xs

�

IP

(0)�1

+ Y s

�

IR

(0)�1

(2.30)

In order to get the rising cross section at high energies they parametrized the Pomeron

intercept as �

IP

(0) = 1 + �. The value of the Reggeon intercept was �xed to 0.55 (ac-

tually 0.5475). In addition, DL used the Pomeranchuk theorem for the �rst term which

describes the Pomeron exchange. Since at high energies only the Pomeron term remains,

they constrained the coe�cients X to be the same for particle and for antiparticles. For

example, they require X(�

+

) = X(�

�

). The combined �t can be seen in �gure 2.6 and

gives a good description of the data. The resulting value for the Pomeron parameter was

� ' 0:08 (actually 0.0808). The rising power of the total cross section is small enough and

violates the Froissart bound only at energies of about 10

3

TeV.

2.8.1 �

tot

(
p) at HERA energies

By using the results of their �t and Vector Dominance Model (VDM) [32] arguments,

DL [31] predicted the behaviour of the total photoproduction cross section:

�

tot

(
p) = 0:0677s

0:0808

+ 0:129s

�0:4525

(2.31)

where the units are such that the cross section is in mb. All existing data above

p

s = 6GeV

up to the highest center of mass energy for which data existed on �

tot

(
p), about 20GeV,

were well described by the predictions of DL. It was very interesting whether the prediction

would hold also for higher energies and thus the �rst measurements of HERA were eagerly

awaited. This was in particular the case since in addition to DL and other [18] Regge

motivated predictions, there were so{called 'mini-jet' models [33] which predicted that the

total photoproduction cross section at HERA energies (

p

s � 200GeV) could be as large

as about 1mb, compared to about 0:15mb as predicted by the Regge based models.

What does photoproduction have to do with HERA? As already mentioned in the earlier

chapter, the exchanged particle at the lepton vertex in NC events is a virtual photon,

37

Figure 2.6: Fits of a simple Regge form containing two terms to total cross section mea-

surements of pp, �pp, �

�

p, K

�

p, pn and �pn reactions.

provided the Q

2

is not very large. As we will show in the next chapter, Q

2

is a function of

the energies of the incoming (E) and outgoing (E

0

) electrons and the scattering angle � of

the outgoing electron with respect to the incoming proton direction. The exact relation is:

Q

2

= 2EE

0

(1 + cos �) (2.32)

One sees that when the outgoing electron continues close to the incoming electron's direc-

tion (� � �), Q

2

� 0 and can be considered as the exchange of an almost{real photon.

The two experiments, H1 and ZEUS, have each [34, 35, 36, 37] a small calorimeter at a

distance of about 30m from the interaction point which allows to detect electrons which

are scattered by less than 5mrad with respect to the incoming electron direction. This

ensures that the virtuality of the photons is in the range 10

�8

< Q

2

< 0:02GeV

2

, with

the median Q

2

� 10

�5

GeV

2

. A diagramatic example of a photoproduction event is shown
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Figure 2.7: A diagramatic example of a photoproduction event in the ZEUS detector, where

the scattered electron is detected in the small angle electron calorimeter LUMIE.

in �gure 2.7. Since the cross section for photoproduction reactions is large compared to

that of DIS events, even a low luminosity run can be su�cient for determining �

tot

(
p).

Thus this was the �rst measurement [38, 39] done when the HERA collider was turned on

in summer of 1992. Using the photoproduction events taken during a net running time of

7 minutes, the �rst measurement of �

tot

(
p) was obtained at

p

s = 200GeV (�gure 2.8).

Although the measurement had a large uncertainty, it was enough to establish that there is

no dramatic rise of the cross section between 20 and 200GeV, thus excluding some of the

predictions. Clearly the Regge based predictions, labelled DL [31] and ALLM [18], were

consistent with the data.

2.9 Summary

In this chapter the following subjects have been covered:

� We have shown that the simple single particle exchange picture is in variance with

the Froissart bound.

� The Regge trajectory has been introduced and some of the properties have been re-

viewed for the trajectories which have corresponding particles. All known trajectories

seem to be linear and can be expressed as �(t) = �

0

+�

0

t, with an intercept not bigger

than 0:5 and a slope of about 1GeV

�2

.

� The shrinkage phenomena has been introduced for further discussion in the chapter

on di�raction. As long as the slope of the Regge trajectory is non{zero, one expects

to have a steeper fall of the di�erential cross section as one goes to higher energies.
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Figure 2.8: The HERA �rst measurement of �

tot

(
p), together with lower energy data.

The curves are predictions of di�erent models for the HERA energy range region.

� The Pomeron trajectory was introduced in order to explain the behaviour of the total

cross section at higher energies. This trajectory has so far no corresponding particle.

It has an intercept which is somewhat bigger than 1 and a slope of about 0:25GeV

�2

.

� The Pomeranchuk theorem was mentioned. It predicts that the di�erences between

the total cross section of particles and antiparticles should approach zero at high

energies.

� We introduced the two{term expression of Donnachie and Landsho� which is based

on the Regge approach and can explain all the data on total cross sections. By using

a �xed e�ective intercept of about 0.55 for the Reggeon trajectory, and by using the

Pomeranchukon theorem for the Pomeron term, DL obtained an intercept of 1.08 for

the Pomeron by performing a joint �t to all the data existing in 1992.
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� After explaining how the total 
p cross section can be measured at HERA, we showed

that the measurement of �

tot

(
p) at HERA shows a mild increase, like other hadronic

cross sections and thus consistent with the predictions of Regge based models and

excluding those which predicted a dramatic rise.
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Chapter 3

Deep Inelastic Scattering at HERA

In this chapter we will �rst discuss the kinematical variables used in DIS, describing �rst

the �xed target con�guration and then that of the colliding beams at HERA. The second

section will be devoted to de�ning the inelastic structure function and its relation to the

total 


�

p absorption cross section. The ratio of the longitudinal to transverse part of that

cross section, R will also be discussed. In the third section we will mention shortly the

important issue of radiative corrections and the chapter will �nish with a section describing

the experimental determination of the structure function.

3.1 Kinematics

We shall start with the most general case of a deep inelastic scattering of a lepton with

mass m

l

and four vector k(E

l

;

~

k) on a proton with mass m

p

and four vector p(E

p

; ~p), as

depicted in �gure 3.1. The outgoing lepton has a mass of m

0
l

with four vector k

0

(E

0

l

;

~

k

0

) and

the scattered hadrons emerge with a mass m

h

and four vector p

h

(E

h

; ~p

h

). The exchanged

particle can be a gauge boson 
; Z

0

or W

�

, depending on the circumstances. The four

vector of the exchanged boson is q(q

0

; ~q).

�

p(E

p

,~p)

k(E

l

,

~

k)

p

h

(E

h

, ~p

h

)


,Z

0

,W

�

�

k

0

(E

0

l

,

~

k

0

)

Figure 3.1: Deep inelastic lepton{proton{scattering.
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With these notations one can de�ne the following variables:

q = k � k

0

= p

h

� p (3.1)

� �

p � q

m

p

(3.2)

y �

p � q

p � k

(3.3)

W

2

= (p+ q)

2

(3.4)

s = (k + p)

2

(3.5)

The meaning of the variables � and y is most easily realized in the rest frame of the proton

(see �xed target subsection). The variable W

2

is the center of mass squared of the gauge{

boson proton system, and thus also the invariant mass squared of the hadronic �nal state.

The variable s is the center of mass squared of the lepton proton system.

The four momentum transfer squared at the lepton vertex can be approximated as

follows (for m

l

;m

0
l

� E;E

0

):

q

2

= (k � k

0

)

2

= m

2
l

+m

0
l

2

� 2kk

0

� �2EE

0

(1� cos �) < 0 (3.6)

Note that in this expression the scattering angle � is de�ned with respect to the incoming

lepton direction. The variable which is mostly used in DIS is the negative value of the four

momentum transfer squared at the lepton vertex:

Q

2

� �q

2

(3.7)

One is now ready to de�ne the other variable most frequent in DIS, namely the dimension-

less scaling variable x:

x �

Q

2

2p � q

(3.8)

3.1.1 The physical meaning of the Bjorken{x variable

In order to understand the physical meaning of the scaling variable x, de�ned by Bjorken,

let us consider the diagram presented in �gure 3.2.

An exchanged boson with four momentum q interacts with a parton having a fraction z

of the incoming proton four momentum, producing a parton with four momentum p

0

. Using

the de�nitions in the previous section one can obtain the following:

(zp+ q)

2

= p

0

2

(3.9)

z

2

p

2

� Q

2

+ 2zp � q = m

2
p

0

(3.10)
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p

k

zp

q

p

0

k

0

Figure 3.2: Explanation of the Bjorken x variable

which �nally leads to:

z =

Q

2

+m

2
p

0

� z

2

p

2

2p � q

= x

 

1 +

m

2
p

0

� z

2

m

2
p

2p � q

!

(3.11)

If one can assume that the partons have zero mass, which is a good assumption in the

in�nite momentum frame, then one gets:

x = z (3.12)

This means that x is the fraction of the proton momentum taken by the parton which is

hit by the exchanged boson in the DIS interaction.

3.1.2 Fixed target kinematics (~p = 0)

Before HERA started to operate, all DIS experiments [40, 41, 14] were on �xed targets (~p =

0). For this case, some of the variables de�ned earlier have a simple physical interpretation.

The variable �:

� �

p � q

m

p

=

p � (k � k

0

)

m

p

=

m

p

(E � E

0

)

m

p

= (E �E

0

) = q

0

(3.13)

Thus, for �xed target experiments, � is the energy of the exchanged boson. Another

expression for � is:

� =

p � (p

h

� p)

m

p

=

m

p

(E

h

�m

p

)

m

p

= E

h

�m

p

(3.14)

which is the energy transfer at the hadronic vertex.

The second scaling variable de�ned by Bjorken is y. It has the following meaning in

the case of a �xed target:

y �

p � q

p � k

=

m

p

�

p � k

=

�

E

(3.15)
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which is the fraction of the incoming lepton energy carried by the exchanged boson, also

called inelasticity. It can be calculated either at the lepton vertex or at the hadron vertex:

y =

(

E�E

0

E

leptons

E

h

�m

p

E

hadrons

(3.16)

Clearly one sees that the value of y is limited to:

0 � y � 1 (3.17)

What are the limits on the value of the Bjorken{x? The Bjorken variable x can be

written as

x �

Q

2

2p � q

=

Q

2

2m

p

�

(3.18)

On the other hand we can express W

2

as follows:

W

2

= (p + q)

2

= p

2

� Q

2

+ 2p � q = m

2
p

� 2p � qx+ 2p � q = m

2
p

+ 2p � q(1 � x) (3.19)

Since the invariant mass squared of the hadronic system has to be equal or bigger than the

proton mass squared, W

2

� m

2
p

, one gets:

0 � x � 1 (3.20)

which is consistent with the physical interpretation of x being the fraction of the proton's

momentum carried by the struck parton.

The following relations are useful if one wants to calculate the kinematic limits which

one can achieve on Q

2

and x in the �xed target experiments.

s = (p + k)

2

= p

2

+ k

2

+ 2p � k = m

2
p

+

2p � q

y

= m

2
p

+

Q

2

xy

(3.21)

which leads to:

Q

2

= (s�m

2

)xy (3.22)

Thus the maximum value of Q

2

, given a lepton beam of energy E, is:

Q

2
max

= s �m

2
p

� 2m

p

E (3.23)

and the minimum value obtainable for x is:

x

min

=

Q

2

s�m

2
p

=

Q

2

2m

p

E

(3.24)

The �xed target experiments used typically muon beams with energies of a few hundred

GeV. Thus, for example, for E = 200GeV, and Q

2

= 4GeV

2

, the minimum value of x is

x

min

� 10

�2

.
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3.1.3 HERA kinematics

At HERA, an electron (we will use electron to mean both electron or positron) beam

of energy E collides with a proton beam of energy E

p

. At present E = 27:5GeV and

E

p

= 820GeV. The +z axis is chosen in the proton beam direction and the scattering angle

of the outgoing electron is measured with respect to the proton beam. The four vectors

of the incoming electron (k), outgoing electron (k

0

), incoming proton (p) and outgoing

hadrons (p

h

) are de�ned as follows:

k =

0
B
B
B
@

E

0
0

�E

1
C
C
C
A

k

0

=

0
B
B
B
@

E

0

E

0

sin �

0

E

0

cos �

1
C
C
C
A

p =

0
B
B
B
@

E

p

0
0

E

p

1
C
C
C
A

p

h

=

0
B
B
B
@

E

h

p

xh

p

yh

p

zh

1
C
C
C
A

(3.25)

Since the detectors at HERA have an almost complete 4� coverage, one can determine

the x and Q

2

DIS variables by more than one method [42]. One can use the outgoing

electron, the outgoing hadrons or a combination of both. This allows therefore a consistency

check on the determination by comparing the results from the di�erent methods. Each

method has its kinematical range in which it can determine the variables with a better

precision than the others. In the following we will discuss the three di�erent methods.

Electron variables

In this case, as used to be done in the �xed target experiments, only the four vector of the

scattered electron is used:

Q

2

= �(k � k

0

)

2

= 2EE

0

(1 + cos �) (3.26)

y �

p � q

p � k

= 1 �

pk

0

pk

= 1�

pk

0

2EE

p

= 1 �

E

p

E

0

�E

p

E

0

cos �

2EE

p

= 1 �

E

0

2E

(1 � cos �) (3.27)

Using Q

2

and y one can get x:

x =

Q

2

4EE

p

y

(3.28)

Some further useful relations in this case can be obtained in the following way:

Q

2

2EE

0

= 1 + cos �

2E(1 � y)

E

0

= 1� cos � (3.29)

Q

2

2E(1 � y)

2EE

02

= sin

2

�
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e p

Figure 3.3: A sketch for understanding the Jacquet{Blondel method.

Therefore one gets:

Q

2

=

E

02

sin

2

�

1� y

=

p

2
Te

1� y

(3.30)

Since in the NC case the p

T

of the electron balances that of the hadronic �nal state, the

last relation means also that Q

2

= p

2
Th

=(1� y), a relation to be used in the description of

the hadronic method.

Hadronic variables

One can clearly determine the y, Q

2

and x variables if one measures all the outgoing

hadrons. However, some of the hadrons escape through the uncovered region in the beam

pipe, as shown in the sketch in �gure 3.3. Nevertheless, as was shown by Jacquet and

Blondel [43], one can still determine to a good approximation the above variables.

The variable y can be calculated in the following way:

y =

p � (p

h

� p)

p � k

=

p � p

h

2EE

p

=

E

p

E

h

�E

p

p

zh

2EE

p

=

E

h

� p

zh

2E

(3.31)

Since most of the missing hadrons which do not make it into the detector have a small p

T

,

their contribution to E

h

�p

zh

is negligible and thus one gets a good estimate of y using this

formula. When determined this way, it is usually denoted y

JB

, namely y Jacquet{Blondel.

The other two variables can be now calculated in the following way:

Q

2

=

p

2
xh

+ p

2
yh

1 � y

JB

(3.32)
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Figure 3.4: The two angles used in the double angle method.

and

x =

Q

2

4EE

p

y

JB

(3.33)

The double angle method

When using a method based on a mixture of the electron and the hadron variables, one

can choose di�erent combinations. The one described here is called the double angle (DA)

method and uses measurements of two angles. One is the scattering angle � of the outgoing

electron (see �gure 3.4). The other angle is that of an object which has a simple meaning

in the naive parton model: assuming that the struck parton is massless, it would scatter

by an angle 
. In this interpretation the p

T

of the proton remnant is zero. Note that

these assumption are necessary only for the physical interpretation of the angle 
. The

calculation is however exact.

De�ning the four vector of the scattered electron k

0

and that of the mathematical

massless object � as follows:

k

0

=

0
B
B
B
@

E

0

E

0

sin �

0

E

0

cos �

1
C
C
C
A

� =

0
B
B
B
@

�

� sin


0

� cos 


1
C
C
C
A

(3.34)

one gets from the scattered electron measurements:

Q

2

=

E

0

sin

2

�

1 � y

(3.35)

and

y = 1�

E

0

2E

(1� cos �) (3.36)
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Using the measurements coming from the hadrons one obtains:

Q

2

=

p

2
Th

1 � y

=

�

2

sin

2




1 � y

(3.37)

and

y =

E

h

� p

zH

2E

=

�(1� cos 
)

2E

(3.38)

which leads to the calculation of the angle 
:

cos 
 =

p

2
Th

� (E

h

� p

zh

)

2

p

2
Th

+ (E

h

� p

zh

)

2

(3.39)

We are now ready to de�ne Q

2

and x using only the two angles (in addition to the given in-

coming energies of the beams). The variables calculated this way usually have the subscript

DA to denote that they were obtained through the double angle method:

Q

2
DA

= 4E

2

"

sin
(1 + cos �)

sin
 + sin � � sin(� + 
)

#

(3.40)

and

x

DA

=

 

E

E

p

!"

sin
 + sin � + sin(� + 
)

sin
 + sin � � sin(� + 
)

#

(3.41)

The advantage of the DA method is that one is less sensitive to a scale uncertainty in

the energy measurement of the �nal state particles since the angle 
 is obtained by ratios

of energies.

Kinematical limits at HERA

What are the kinematical limits on x and Q

2

that one can reach at HERA? Since s = 9�

10

4

GeV

2

, this is also the value of Q

2
max

. With the present luminosities, the two experiments

have enough data for measurements up to about 10

4

GeV

2

, as shown in �gure 1.1 of the

�rst chapter. Amazingly enough, the HERA experiments made big e�orts to obtain data

at very low Q

2

, down to about 0:2GeV

2

, for reasons to be mentioned later. Thus they also

reached very low x values, close to 10

�6

.

One of the aims of these measurements is to obtain the structure function of the proton,

which is the subject of the next section.

3.2 Inelastic structure function

In analogy to the Rosenbluth formula [44] in the elastic case the deep inelastic cross{section

can be written as [45]:

d

2

�

d
dE

0

=

4�

2

E

02

Q

4

"

2W

1

sin

2

�
2

+W

2

cos

2

�
2

#

(3.42)
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where W

1;2

(�;Q

2

) are two structure functions which can be related to the absorption cross

section of the virtual photon 


�

. In order to see the relation, note that the DIS cross

section is obtained from a product of two tensors, a leptonic one and a hadronic tensor.

The hadronic tensor W

��

can be related through the optical theorem to the 


�

p cross

section, as shown in the following diagram:

W

��

/

X

x

�

p



�

X

p




�

(3.43)

The cross section for a real photon is de�ned as

�

tot

�

(
p! X) =

4�

2

�

K

�

�

�

�

�

�
�

W

��

(3.44)

where K is the 
ux factor, �

�

is the polarisation vector and � is the helicity of the photon.

The 
ux of real photons is K = � and the allowed helicities are � = �1.

In order to extend the discussion to virtual photons, we need to know the polarization

vectors and the 
ux of a virtual photon beam. To this end we will use the expressions of

the polarization vectors derived for a massive vector meson:

�

�
�1

= �

1

p

2

(0; 1;�i; 0) (3.45)

�

�
0

= �

1

p

Q

2

(

q

�

2

+Q

2

; 0; 0; �) (3.46)

From parity conservation one can write (for the case where the incoming lepton is e or �

and the target proton is unpolarized) �

+1

= �

�1

. The two independent cross sections are

de�ned as:

�

T

=

1
2

(�

+1

+ �

�1

) �

L

= �

0

(3.47)

where �

T

and �

L

are the transverse and longitudinal 


�

p cross section.

3.2.1 Flux of virtual photons

The de�nition of the 
ux is a matter of convention, but the principle is that in the limit

of approaching the real photon case (Q

2

! 0), the 
ux K should be equal that of a real

photon beam (K ! �). We shall mention two 
ux conventions, that of Gilman [46] and

that of Hand [47]. Gilman adds the Q

2

of the virtual photon to the 
ux de�nition:

K

Gil

=

q

�

2

+Q

2

(3.48)
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Hand de�nes the 
ux K as that energy which a real photon would need in order to

create the same �nal state. Thus K

Hand

can be calculated using the following argument.

The invariant mass squared of the hadronic �nal state for a 


�

p interaction is given by:

W

2

= (p+ q)

2

= m

2
p

+ 2m

p

� � Q

2

(3.49)

The same quantity for a real photon of energy K

Hand

is given by:

W

2

= m

2
p

+ 2m

p

K

Hand

(3.50)

Therefore

K

Hand

= � �

Q

2

2m

p

(3.51)

Clearly both de�nitions ful�l the requirement that when Q

2

! 0 then K ! �.

The two structure functions W

1;2

(�;Q

2

) are related to the total 


�

p transverse and

longitudinal absorption cross sections in the following way:

W

1

(�;Q

2

) =

K

4�

2

�

�




�

p

T

(3.52)

W

2

(�;Q

2

) =

K

4�

2

�

Q

2

Q

2

+ �

2

(�




�

p

T

+ �




�

p

L

) (3.53)

3.2.2 The ratio R = �

L

=�

T

The ratio of the longitudinal to transverse 


�

p cross section carries information about the

spin of the quarks in the quark{parton model. In order to see that we can use equation 3.53

to write:

R �

�

L

�

T

=

W

2

W

1

(1 +

�

2

Q

2

)� 1 (3.54)

One can use QED to calculate the exact expressions for the two structure functions W

1

and W

2

for the case of the scattering of two point{like spin{1/2 fermions e�! e�:

W

e�

2

=

1
�

�(1 �

Q

2

2m

�

�

) (3.55)

W

e�

1

=

Q

2

4m

2
�

�

�(1 �

Q

2

2m

�

�

) (3.56)

By substituting this result into equation 3.54 and using the �{function condition, one gets:

R

�

=

4m

2
�

Q

2

Q

2

!1

�! 0 (3.57)
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Adopting this results for quarks, one expects R to approach 0 if quarks have spin 1/2. In

other words:

�

L

! 0 for spin

1
2

(3.58)

How can one measure R experimentally? One can rewrite the cross section given by

equation 3.42 in the form:

d

2

�

d
dE

0

= �(�

T

+ ��

L

) (3.59)

where the photon polarization � is expressed as:

� = [1 + 2

Q

2

+ �

2

Q

2

tan

2

�
2

]

�1

(3.60)

and the photon 
ux � is written in the form:

� =

K�

2�

2

Q

2

E

0

E

1

1� �

(3.61)

Thus the cross section can be written as:

d

2

�

d
dE

0

= ��

T

�

1 + �

�

L

�

T

�

= ��

T

(1 + �R) (3.62)

The polarization � is a function of �, Q

2

and �. By keeping � and Q

2

�xed and by changing

� and E one expects a straight line when plotting the di�erential cross section as function

of �, as shown in �gure 3.5. Thus one can �t directly the intercept (= ��

T

) and the slope

(= R) and once R is known,

d

2

�

d
dE

0

depends only on one structure function.

We see therefore that measuringR not only gives information about the spin structure of

the proton constituents but is also necessary if one wants to obtain the structure functions

from the measured cross sections. Before describing how one determines the structure

functions, one needs to take into account an additional important e�ect, namely radiative

corrections, which are described in the next section.

3.3 Radiative corrections

In order to determine the structure functions, one needs to know the Born cross section.

However, the measured cross section includes in addition to the Born one contributions

from a whole set of electroweak radiative processes. The radiation can come from the

electron (either from the incoming or from the outgoing one), it can come from the hadron

side, by having a quark radiate a photon and there are interference terms. On top of that

there are loop and vertex corrections. In the following we present some of the diagrams

included in the calculations of radiative corrections.
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d σ2

slope

ε

Figure 3.5: The di�erential cross section as function of the photon polarization � for �xed

� and Q

2

.

First, the radiation from the electron line. These contributions are the source of the

largest corrections. In the diagrams (a) and (b) the simplest O(�

3

) graphs for real photon

emission at the leptonic vertex and in (c) and (d) the O(�

3

) contributions from virtual

photons associated with the leptonic vertex are shown.

�

p

e

�

p

e

�

p

e

�

p

e

(a) (b) (c) (d)

(3.63)

The radiative corrections coming from the hadron line are less important than the

contributions of photons radiated o� the electron. The following three diagrams have to

be corrected for the radiation of a photon from quarks:

�

e

q

�

e

q

�

e

q

(a) (b) (c)

(3.64)
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Figure 3.6: QED radiative corrections: (a) from the lepton line, (c) from the quark lines,

and (b) from their interference.

Finally there are the interference term corrections described diagramatically as:

�

q
e

�

q
e

(a) (b)

(3.65)

One can get a feeling for the magnitude of these corrections [48] at HERA from the

plots shown in �gure 3.6. As one sees, the corrections depend strongly on the kinematical

region and for small x and high y can be very large.
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3.4 Experimental determination of the structure func-

tions

The expression of the Born cross section contains two structure functions,W

1

andW

2

. One

can use instead the structure function F

1

and F

2

which are related to the former ones as

follows:

F

1

= W

1

(3.66)

F

2

=

�W

2

m

p

(3.67)

Thus one can write the Born cross section in the form:

d

2

�

Born

dxdQ

2

=

4��

2

xQ

4

[

y

2

2

2xF

1

+ (1 � y)F

2

] (3.68)

The �rst measurements of the structure functions showed that the data were compatible

with the Callan{Gross [49] relation

2xF

1

(x) = F

2

(x): (3.69)

With more precise DIS data covering a larger range of x and Q

2

a clear scale breaking was

observed and thus one needs information about the di�erence between the two structure

functions, de�ned as F

L

� F

2

� 2xF

1

. By de�ning the ratio of the structure functions R

L

as follows:

R

L

�

F

L

F

2

(3.70)

one can express the Born cross section as:

d

2

�

Born

dxdQ

2

=

4��

2

xQ

4

F

2

Y

+

(1�

y

2

Y

+

R

L

); Y

+

= 1 + (1� y)

2

(3.71)

However, in addition to the Born cross sections there are radiative processes. So the cross

section which includes these radiative processes is expressed in the form:

d

2

�

rad

dxdQ

2

=

4��

2

xQ

4

F

2

Y

+

(1 �

y

2

Y

+

R

L

)[1 + �

r

(x;Q

2

)] (3.72)

where �

r

(x;Q

2

) are the contributions coming from the radiative processes.

If one had an ideal detector which measures every outgoing particle from the reaction

with a 100% precision and with a background{free identi�cation of the processes, this

would be the cross section from which the structure function would be determined. In
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reality one measures something which is somewhat di�erent than the above expression.

The measured cross section is connected to the one in equation 3.72 in the following way:

d

2

�

meas

dxdQ

2

=

Z

dx

0

Z

dQ

02

d

2

�

rad

dx

0

dQ

02

A

cc

(x

0

; Q

02

)S(x;Q

2

; x

0

; Q

02

) + background (3.73)

Here A

cc

is the probability that an event which is produced at x

0

; Q

02

will be seen in the

detector, which is thus a function of the geometry and e�ciency of the detector, and S is

a smearing function which gives the probability that an event which is produced at x

0

; Q

02

was measured at x;Q

2

.

The experimental procedure to measure the structure functions includes thus the fol-

lowing steps:

� One selects a sample of events likely to be NC DIS events. This means that one

needs to have a good electron �nder [50] which has both high e�cience and high

purity for electron identi�cation. This requirement usually results in the fact that

only electrons having energies above a certain values can be identi�ed.

� The values of x and Q

2

are determined by one of the methods described in the

kinematic section.

� The background coming from non{DIS events has to be subtracted. An example of

such a background could be a photoproduction events, where the scattered electron

remained undetected in the beam pipe, in which a �

0

was produced which decayed into

two photons, one of which produced an electromagnetic shower and was mistakenly

identi�ed as an electron. This background can be measured in certain kinematic

regions and has to be estimated in others.

� Using the luminosity measurements one gets the measured cross section, from which

one has to unfold the one given by equation 3.72.

� One needs to apply the radiative corrections to get the Born cross section. In order

to be able and do the calculations, one needs good parameterizations of structure

functions at lower Q

2

down to the photoproduction region.

� Finally, in order to get the structure function F

2

, one needs information on F

L

, or

equivalently on R

L

. This ratio was measured [51, 52] in some of the �xed target

experiments but is limited to relatively high x values. There is no measurements

on R in the HERA x range and so far one needs to rely on its estimates calculated

from QCD. This is one of the sources of the systematic errors of F

2

.

We have already shown the latest results of F

2

as measured in the whole kinematic

region, as function of x, for �xed values of Q

2

(�gure 1.8), and which show the dramatic

rise of the structure function as x decreases. Here we show the values of F

2

as function of Q

2

,
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Figure 3.7: The structure function F

2

(x;Q

2

) as function of Q

2

, for �xed x values.
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for �xed values of x (�gure 3.7). In addition to the HERA measurement, the �gure includes

data from some �xed target experiments. A clear scale breaking with Q

2

is observed. The

curves are the results of a QCD �t to the data.

3.5 Summary

In this chapter we discussed the following issues:

� The di�erent kinematical variables which are used in the study of DIS have been

de�ned. In particular, we saw that the scaling variable x, de�ned by Bjorken, can

be interpreted as the fraction of the proton momentum carried by the struck parton,

under the assumption of an in�nite momentum frame with massless partons. The

variable y is the inelasticity of the exchanged photon in a system where the target

proton is at rest. In that system � is the energy of the exchanged photon and y is

the fraction of the incoming lepton taken by the exchanged photon.

� We described three di�erent methods for the determination of x and Q

2

at HERA: the

electron method, the hadron method (Jacquet{Blondel) and a mixed method using

two angles (double{angle). We calculated the kinematic limits at HERA obtaining

Q

2
max

= 9� 10

4

and x

min

� 10

�6

. At present HERA has measurements at Q

2

values

as high as about 10000GeV

2

and as low as 0:2GeV

2

.

� The proton structure functions have been de�ned and their relation to �(


�

p) has

been given. Two de�nitions of the 
uxes for this relation, the Gilman and the Hand

one have been given. The ratio of the longitudinal to transverse cross section of the




�

p system was de�ned and we showed that it can be determined by measuring the

DIS cross section as function of the photon polarization, for �xed � and Q

2

.

� The radiative processes have been described brie
y and their importance in the struc-

ture function determination has been discussed. The size of the corrections depend

on the kinematical regions in x and y and can be very large in the high y region.

� The di�erent steps necessary for the experimental determination of the proton struc-

ture function have been described. One of the missing measurements in order to

reduce the systematic error on F

2

in the HERA kinematic region is that of R, the

ratio of the longitudinal structure function F

L

to F

2

.
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Chapter 4

Parton Distributions in the Proton

In the last chapter we have seen how to obtain the proton structure function from the

measured DIS cross section. What does it teach us about the structure of the proton?

How can one use it to learn about the behaviour of the proton's constituents?

In order to do so, one needs a theory which connects the parton distributions within

the proton to its measured structure function [53]. For short distance forces one can use

perturbative calculations in QCD to get such a relation. However, there are also long dis-

tance dependencies where non{perturbative e�ects are present. One of the most important

results of Field theory is the proof that the structure function can be factorized into short

distant dependences, calculable in perturbative QCD (pQCD), and non{perturbative long

distance dependences. This QCD factorization theorem will be the subject of the �rst

section.

We will proceed with the DGLAP evolution equations of partons and discuss the struc-

ture function in the low{x region. This will lead to the BFKL evolution equation and to a

short discussion about saturation. The last two sections will be devoted to parameteriza-

tions of parton distributions in the proton and to experimental determination of the gluon

density in the proton.

4.1 The QCD factorization theorem

The QCD factorization theorem [54] discusses the situation where one measures an inclusive

reaction, like the NC DIS one: ep ! eX. In this case one can prove that the structure

functions can be factorized into short-distance dependences calculable in pQCD and into

long-distance dependences which need to be taken from outside the theory. If we denote

by F

V h

a

the structure function for a hadron h which is probed by a vector V , where a can

be 1, 2 or 3 (in case of Z

0

exchange) the QCD factorization theorem allows to write the
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following equations:

F

V h

1;3

(x;Q

2

) =

X

f;

�

f;g

1

Z
x

dz

z

C

V i

1;3

 

x
z

;
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2

�

2

;

�

2
F

�

2

; �

S

(�

2

)

!

f

i=h

(z; �

F

; �

2

) (4.1)

F

V h

2

(x;Q

2

) =

X

f;

�

f;g

1

Z
x

dz C

V i

2

 

x
z

;

Q

2

�

2

;

�

2
F

�

2

; �

S

(�

2

)

!

f

i=h

(z; �

F

; �

2

) (4.2)

The coe�cient functions C

V i

a

are independent of long distance e�ects and are computable

in pQCD. The functions f

i=h

are the parton distribution functions which are speci�c to the

hadron h but are universal as far as a and V are concerned. They are not calculable in

pQCD but have to be measured experimentally.

There are two mass scales in the problem. One is the renormalization scale �. The other

one is the factorization scale �

F

. If we denote by k

2

the o�{shellness, then for k

2

> �

2
F

one

has the coe�cient functions while for k

2

< �

2
F

one has the parton distribution functions.

This can be pictured for the DIS case in the following diagram:

�

f

i=h

V

�

F

C

V i

(4.3)

In the absence of any interaction (


�

is absorbed by the quark i which continues) these

functions are, in leading order, the following:

C


i(0)

a

(x) = e

2
i

�(1� x) (4.4)

f

(0)

i=i

(z) = �(1� z) (4.5)

Beyond the leading order, there is considerable ambiguity and one has to specify in which

scheme one works. There are usually two di�erent schemes: the DIS and the MS schemes.

In the DIS scheme, order by order in perturbative theory all corrections to F

V h

2

are absorbed

into the distribution functions of q and �q (for � = �

F

= Q):

C

V q

2

(x) = e

2
q

�(1� x) (4.6)

C

V �q

2

(x) = e

2

�q

�(1� x) (4.7)

C

V g

2

(x) = 0 (4.8)

The MS scheme (modi�ed minimal subtraction) follows from the idea of dimensional reg-

ularization by 'tHooft and Veltman [55].
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4.2 The QCD evolution equation for partons

Though, as we noted above, the parton distribution functions can not be calculated by

pQCD, the theory provides a way to predict how these distributions should evolve with

the scale Q

2

, once they are given at an initial scale. Before we proceed to describe these

evolution equations, we would like to note that the QCD factorization theorem was proven

only in leading twist and thus the expression for the structure function includes also higher

twist terms (note that we have somewhat simpli�ed the notation):

F (x;Q

2

) =

X

i

1

Z

x

dz C

i

 

x
z

; �

S

(�

2
F

);

Q

2

�

2
F

!

f

i

(z; �

2
F

) +O

 

�

2

Q

2

!

(4.9)

where � is the QCD scale.

F is a measurable quantity and therefore can not depend on �

F

:

�

2
F

dF (x;Q

2

)

d�

2
F

= 0 (4.10)

The splitting functions P

ij

(z; �

S

(�

2

)) are de�ned to represent the process in which a

quark with a momentum fraction x radiates a parton of a momentum fraction (1� z)x and

continues with a fraction momentum zx:

�

x

(1� x)z

zx

(4.11)

Then one can write the following equation for the parton distribution function f

i

:

df

i

(x; �

2

)

d ln�

2

=

X

j

1

Z

x

dz

z

P

ij

(z; �

S

(�

2

))f

i

(

x
z

; �

2

) (4.12)

This set of integro{di�erential equations is named DGLAP [56, 57, 58] after Dokshitzer,

Gribov, Lipatov, Altarelli and Parisi.

The splitting functions P

ij

give the probability of �nding parton i in parton j. They

can be expanded in orders of (�

S

=2�):

P

ij

(z; �

S

) =

1

X

n=1

�

�

S

2�

�

n

P

(n�1)

ij

(z) =

�

S

2�

P

(0)

ij

(z) +

�

�

S

2�

�

2

P

(1)

ij

(z) + : : : (4.13)
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A similar expansion can be written for the coe�cient functions C

i

:

C

i

(z; �

S

) = �

p
S

"

C

(0)

i

+

�

S

2�

C

(1)

i

(z) +

�

�

S

2�

�

2

C

(2)

i

(z) + : : :

#

(4.14)

where the value of p depends on the initial process.

The partonic picture of the pQCD evolution for F

2

can be represented diagramatically

by the following picture:

�

x

1

; k

2
T1

x

2

; k

2
T2

Q

2
0

(4.15)

Each blob in the chain has a structure like this:

�

=

�

+

�

+ : : :

P (z; �

S

) =

�

S

2�

P

(0)

+

�

�

S

2�

�

2

P

(1)

+ : : :

(4.16)

There is strong ordering in the transverse momenta k

T

of each leg. If there are m steps
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in the chain, each having a transverse momentum square of k

2
Ti

, then:

�

x

1

; k

2
T1

x

2

; k

2
T2

x

3

; k

2
T3

x

m

; k

2
Tm

DGLAP

x

1

> x

2

> x

3

: : : > x

m

= x

k

2
T1

� k

2
T2

� : : :� k

2
Tm

= Q

2

(4.17)

If we take only the terms C

(0)

and P

(0)

, we do leading order perturbation calculation.

The terms C

(1)

and P

(1)

give next to leading order calculations. However by solving the

DGLAP equations, we sum up the terms (�

S

ln

Q

2

�

2

)

m

to all orders. In this case one is per-

forming a leading log approximation in lnQ

2

, usually shortened as LLA(lnQ

2

) or just LLA.

One should note that the splitting functions P

(n)

ij

(x) � (1=x) lnx

n�1

, which gets logarith-

mically enhanced at low x. Thus, if one takes only the �rst two terms, n = 1; 2, one is

restricted to moderate x only.

4.2.1 DGLAP equations in leading order

One can write the DGLAP equations in leading order in the following form:

dq

i

(x;Q

2

)

d lnQ

2

=

�

S

(Q

2

)

2�

1

Z
x

dz

z

2
4

X

j

q

j

(z;Q

2

)P

(0)

ij

(

x
z

) + g(z;Q

2

)P

(0)

ig

(

x
z

)

3
5

(4.18)

dg(x;Q

2

)

d lnQ

2

=

�

S

(Q

2

)

2�

1

Z
x

dz

z

2
4

X

j

q

j

(z;Q

2

)P

(0)

gj

(

x
z

) + g(z;Q

2

)P

(0)

gg

(

x
z

)

3
5

(4.19)

The parton which is probed at the scale of Q

2

by the virtual vector meson, has a fractional

momentum x which is the result of a chain of splitting which started from the parent

parton. Since the longitudinal momentum of the daughter parton is always smaller or

equal to that of the parent one, the integration is restricted to x � z � 1. Also if one

neglects the masses of the quarks, the change in the distribution function depends only on
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the ratios of longitudinal momenta x=z. The sum j is over the quark 
avours, and one

assumes that the splitting functions are 
avour independent. Thus:

P

(0)

ij

= �

ij

P

ii

= �

ij

P

gg

(4.20)

P

gj

= P

gq

P

ig

= P

qg

(4.21)

Conservation of momentum for a parent quark and a gluon gives:

1

Z

0

dz z [P

qq

(z) + P

gq

(z)] = 0 (4.22)

1

Z

0

dz z [2n

f

P

qg

(z) + P

gq

(z)] = 0 (4.23)

where n

f

is the number of 
avours, and

P

qq

(z) = P

gq

(1� z)

�

1� z

z

(4.24)

P

qg

(z) = P

qg

(1� z)

 

1� z

z

(4.25)

P

gg

(z) = P

gg

(1� z)

!

1� z

z

(4.26)

In leading order the quark{parton model (QPM) relations between structure functions

and parton distributions hold. So it is easy to derive the evolution equations for the

structure functions. One usually de�nes the colour singlet combination, which evolves with

gluons:

x�(x) =

X
i=1

n

f

[xq

i

(x) + x�q

i

(x)] (4.27)

The colour non{singlet combination, which evolves with quarks, is:

xV (x) =

X
i=1

n

f

[xq

i

(x)� x�q

i

(x)] (4.28)
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Leading order splitting function

For completeness we give her the explicit form of the leading order splitting functions:

P

(0)

qq

(x) =

4
3

"

1 + x

2

(1 � x)

+

+

3
2

�(1� x)

#

(4.29)

P

(0)

qg

(x) = (1 � x)

2

+ x

2

(4.30)

P

(0)

gq

(x) =

4
3

(1 � x)

2

+ 1

x

(4.31)

P

(0)

gg

(x) = 6

"

x

(1� x)

+

+

1� x

x

+ x(1� x)

#

+

�

11

2

�

n

f

3

�

�(1� x) (4.32)

where we used the following de�nition:

1

Z

0

dz

f(z)

(1� z)

+

�

1

Z

0

dz

f(z)� f(1)

(1� z)

(4.33)

4.3 The behaviour of F

2

at low x

What do the DGLAP equations tell us about the behaviour of the structure function at

low x? We have already seen earlier that the structure function F

ep

2

is connected to the




�

p cross section via the relation:

F

ep

2

(x;Q

2

) =

K

4��

Q

2

�

Q

2

+ �

2

�

�




�

p

T

+ �




�

p

L

�

(4.34)

The variable x can be expressed as:

x =

Q

2

Q

2

+W

2

�m

2
p

(4.35)

and since we are discussing the region of low x, this means high W .

We have seen in the last part of the chapter 2 on Regge theory that the total pho-

toproduction cross section behaves at high energies like �

tot

(
p) � (W

2

)

0:08

. Does this

behaviour hold also for �

tot

(


�

p)? If it were so, this would mean that at low x we expect

F

2

� x

�0:08

. However, a look at the experimental data shown in �gure 1.8 shows [59, 16]

that F

2

� x

�0:3�0:4

. Can such a behaviour be expected from the evolution equations which

we presented in the last section?

Let us write again the DGLAP equations in a shorter notation:

dq

i

d lnQ

2

=

�

S

2�

[P

qq


 q

i

+ P

qg


 g] (4.36)

dg

d lnQ

2

=

�

S

2�

[P

gq


 q

i

+ P

gg


 g] (4.37)
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but since

P

(0)

gg

(x) = 6

"

x

(1� x)

+

+

1 � x

x

+ x(1� x)

#

(4.38)

P

(0)

gq

(x) =

4
3

(1� x)

2

+ 1

x

(4.39)

we see that gluons are produced most copiously at low x. Since the q

i

are small at low x,

the gluon evolution equation can be approximated by:

dg(x;Q

2

)

d lnQ

2

'

�

S

(Q

2

)

2�

1

Z
x

dz

z

P

gg

(

x
z

)g(z;Q

2

): (4.40)

Using P

(0)

gg

z ' 6=z one get the so{called double leading log approximation, where only

terms proportional to ln

1
x

lnQ

2

are taken:

xg(x;Q

2

) � exp

2
6
6
6
4
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11 �

2
3

n

f

ln

ln

Q

2

�

2

ln

Q

2
0

�

2

ln

1

x

3
7
7
7
5

1=2

(4.41)

where Q

2
0

is the starting scale for the Q

2

evolution. Numerically this expression has the

same value as � x

�0:4

.

This result however has a few problems: (1) it violates unitarity and (2) since in general

the functions P

(n)

ab

�

1
x

�

ln

n�1

x +O(ln

n�2

x)

�

the series does not converge and thus higher

orders are needed.

4.4 The BFKL evolution equation

The DGLAP equations give us a way to see how a parton distribution which is given at

an initial scale Q

2
0

evolves to higher Q

2

. Since Q

2

increases one has to resume the leading

�

S

lnQ

2

terms. When the ep center of mass energy is large, like at HERA, there is a second

variable which becomes large, namely 1=x � s=Q

2

. In this case one has to resum the leading

�

S

ln(1=x) contributions. The BFKL [60, 61, 62] equations do such a resummation. As

one evolves to smaller x, there is no more strong ordering in k

2
T

. The strong ordering is

rather in x and therefore one considers here the unintegrated (over the gluon transverse
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momentum) gluon density distribution.

"

x

1

; k

2
T1

x

2

; k

2
T2

x

3

; k

2
T3

x

m

; k

2
Tm

BFKL (only gluon{gluon ladder)

x

1

� x

2

� x

3

: : : � x

m

= x

no ordering in k

2
Ti

(assume no evolution in Q

2

)

k

2
T1

' Q

2

(4.42)

At a given Q

2

, gluons have a distribution in x and k

T

, f

g

(x; k

T

), which is related to

xg(x;Q

2

) through:

xg(x;Q

2

) =

Q

2

Z

0

dk

2
T

k

2
T

f

g

(x; k

2
T

) (4.43)

Summing up all ladder diagrams in ln(1=x) gives the BFKL equation:

�x

@f

g

(x; k

2
T

)

@x

= 3

�

S

�

k

2
T

1

Z

0

dk

0

2

T

k

0

2

T

2
4

f

g

(x; k

0

2

T

)� f

g

(x; k

2
T

)

jk

0

2

T

� k

2
T

j

+

f

g

(x; k

2
T

)

q

4k

0

4

T

+ k

4
T

3
5

� K 
 f

g

(4.44)

where K is the BFKL kernel. Note that this equation relates only to gluon distributions,

as also seen from the diagram. It does not discuss the Q

2

evolution. It is an equation which

describes what happens to the gluon distribution when one starts from a distribution at x

0

(of the order of � 0:01) and evolves to smaller x values.

The solution of the BFKL equation, after integrating over the gluon k

T

, has an x

dependence like:

xg(x;Q

2

) � x

��

(4.45)

where, for �xed �

S

, can be expressed as � = (3�

S

=�)4 ln 2. Since x

��

� s

�

, one obtains an

energy dependence of the gluon density which is expected from the Regge theory at high

energies. Thus BFKL succeeded to `reggeize' the gluon and provide a connection between

QCD and Regge theory. The exponent � is usually said to be 0.5, though this requires

�

S

= 0:18, which happens only at high Q

2

.
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If we assume that k

T

is large, one gets a Q

2

dependence of the form:

xg(x;Q

2

) �

s

Q

2

Q

2
0

x

��

; (4.46)

which gives a stronger scaling violation than the one from the DGLAP equations (� lnQ

2

).

Note that this solution is obtained in the leading log approximation (LLA) in ln(1=x).

These equations also have some problems: (1) the LLA solution violates unitarity,

(2) higher order corrections are not yet available, (3) the integration on k

T

starts from 0,

thus one enters also the non-perturbative region, and (4) the equation doesn't have implic-

itly energy{momentum conservation.

4.4.1 Some consequences from the BFKL equation

BFKL Pomeron

We have seen in the Regge theory chapter 2 that at high energies the total cross section

behaves like:

� � s

�

IP

(0)�1

(4.47)

Since the cross section at high energies (low x) is driven by the gluons, and since the x

dependence of the gluons is � x

��

� s

�

, the Pomeron intercept comes out to be in this

case:

�

IP

(0) = 1 + � � 1:5 (4.48)

in contrast to the result of �

IP

(0) = 1:08 as obtained by the analysis of Donnachie and

Landsho�. Therefore one talks about the BFKL Pomeron which has an intercept of 1.5

and a DL Pomeron of intercept 1.08. Other names used in the literature are `hard', `per-

turbative', `Lipatov' Pomeron (1.5) and the `soft' Pomeron (1.08). We will discuss at a

later stage the question of one or two Pomerons.

Hot spots

As we said above, the BFKL equations treat only the evolution in x. Since there is no

evolution in Q

2

, this means that the transverse area is �xed. Let us look at the schematic

presentation of the proton with some partons inside, as shown in �gure 4.1. When we

evolve to lower x, the number of partons increases in a �xed area, leading to an increase

in the local density. This phenomena is named `hot spots' [63]. It still has to be seen at

which value of x this should happen.

Jet in the proton region

In the DGLAP picture, with the strong k

T

ordering, one expects that the large k

T

jet would

be near the 


�

, while near the proton direction there will be just the low k

T

remnant jet.
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ln 1/x

Figure 4.1: Diagram showing the increase in local density in an evolution in x.

Since there is no strong k

T

ordering in the BFKL dynamics, one can have a situation where

the large k

T

jet would be near the proton, in the proton direction, which will be balanced

by a jet in the 


�

direction.

4.4.2 Signs for the BFKL dynamics

The behaviour of the structure function F

2

is not sensitive enough to tell the di�erence

between the DGLAP dynamics and the BFKL one, at least not in the HERA kinematic

region. Also both are compatible with a gluon density behaviour of xg(x;Q

2

) � x

��

at

low x. How then do we tell a BFKL type dynamics form a DGLAP one?

Let us look at the schematic presentation in �gure 4.2. We start from a point with the

coordinates (x

0

; Q

2
0

) and evolve to a point (x;Q

2

). We can get from the one to the other in

several ways. While the DGLAP equations describe the motion in the whole plain, if we

give the initial conditions, the BFKL equation describes only the path along the 1=x axis,

at a constant Q

2

.

Clearly, the best way to see BFKL dynamics is to restrict the Q

2

evolution. Mueller and

Navallet [64] pointed out that at low x one should look for a large transverse momentum jet

near the proton direction. The large transverse momentum, compared to Q

2

, guarantees

a large k

T

at the start of the evolution, thus forcing the rest to be an evolution only in x.

Referring to �gure 4.2 this would mean that we got in one step from (x

0

; Q

2
0

) to (x

0

; Q

2

).

The rest would be the evolution from x

0

to x. Studying the energy behaviour of the cross

section for such events and �nding it rises steeply, like say s

0:5

, should be a sign for the

BFKL dynamics.
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Q
2Q

2

0

(x,Q  )2

1
x

This path is described
 by BFKL

Figure 4.2: Diagram showing the evolution from point (x

0

; Q

2
0

) to (x;Q

2

).

4.5 The CCFM equation

For sake of completeness, we should mention the existence of a uni�ed equation developed

by Catani, Ciafaloni, Fiorani and Marchesini (CCFM) [65, 66, 67]. The CCFM equation,

give the BFKL solution at low x and the DGLAP one at large x. It is based on the coherent

radiation of gluons which leads to a strong angular ordering of gluon emissions.

4.6 Saturation

When the density of the partons becomes very large, the partons start overlapping and

coherent e�ects are important. The partons interact with each other. When do these

e�ects become important? In order to answer this, let us �rst explain what one means by

the density of partons.

The quantity xg(x;Q

2

) is the gluon density per unit of rapidity. In order to see that

lets start from the de�nition of rapidity. The rapidity y is :

y =

1
2

ln

E + p

z

E � p

z

=

1
2

ln

(E + p

z

)

2

E

2

� p

2
z

=

1
2

ln

(E + p

z

)

2

m

2
T

= ln

(E + p

z

)

m

T

' ln

2p

z

m

T

(4.49)

The rapidity �y of a parton with momentum p

zi

= xp relative to the proton is then

�y = y

proton

� y

parton

= ln

2p

m

T

� ln

2xp

m

T

' ln

2p

2xp

= ln

1
x

(4.50)
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and thus dy = dx=x. The number of gluons dN

g

is given by

dN

g

= g(x;Q

2

)dx = xg(x;Q

2

)

dx

x

= xg(x;Q

2

)dy (4.51)

Therefore:

xg(x;Q

2

) =

dN

g

dy

(4.52)

meaning the number of gluons per unit of rapidity.

Let us estimate now the sizes of the gluon and of the proton. The proton size is usually

taken to be r

p

� 1 fm � 5GeV

�1

. The gluon radius is r

g

� 2=Q, when the proton is probed

at a scale of Q

2

. The screening e�ects become important when the gluon density is of the

order of the ratio of the square radiuses of the proton and the gluon:

xg(x;Q

2

) �

r

2
p

r

2
g

=

25GeV

4

Q

2

' 6Q

2

[GeV

2

] (4.53)

In the section discussing the experimentally obtained gluon distributions we will show that

for instance at Q

2

= 20GeV

2

, the gluon density reaches about 30 gluons per unit of rapidity

at x = 10

�4

. Since at this Q

2

, according to equation 4.53 screening e�ects [68, 69] would

be important at a density of about 120 gluons per unit of rapidity, one probably needs to

go to much lower x values to observe screening.

4.7 Parton parameterizations

In order to describe the hadronic processes at high energies it is necessary to know the

individual parton distributions as function of x and Q

2

. The basic formula for a generic

high energy inclusive hadronic process A +B ! C +X has the form:

�(AB ! CX) = f

a

A


 ^�

ab!cX


 f

b

B

(4.54)

where ^� is the calculable hard cross section for the partonic subprocess, and f

a

A

(f

b

B

) is the

distribution function of parton a(b) in hadron A(B). In this notation, the gluon density

distribution in the proton xg(x;Q

2

), would be f

g

p

.

Since theory does not give absolute predictions for parton distributions, they have to be

obtained from some experimental input and then the DGLAP equations allow to determine

those parton distributions at any Q

2

, even not accessible experimentally. However parton

distributions are not directly measured in the experiment. It is the structure functions or

hadronic cross sections that are measured.

One way of extracting the parton distributions from the measured data is based on the

approach to introduce the parton distribution at the level of the global �t. It means that

the structure functions are parameterized at some reference value Q

2
0

and then evolved
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numerically in Q

2

through the DGLAP equations in the kinematic regions where they are

measured. A global �t is then performed to determine the best values for the starting

parameters. A by{product of these �ts performed on the singlet structure function F

2

is a

parameterization of the gluon distribution at the reference scale Q

2
0

. Because deep inelastic

scattering does not constrain signi�cantly the gluon distribution, a large variety of gluon

behaviour is proposed in the literature. We will discuss the gluon density in a separate

section.

It is conventional to use the following parameterization of f

a

p

(x;Q

2
0

):

f

a

p

(x;Q

2
0

) = A

a
0

x

A

a
1

(1� x)

A

a
2

P

a

(x;A

a
3

; : : :) (4.55)

where P

a

(x) is a smooth function of x. Provided the functions are su�ciently 
exible

to accommodate the true distributions, the particular form of the parameterization is, in

principle, immaterial. The most frequent parameterizations used lately are those of Martin,

Roberts and Stirling (MRS) [70, 71] and the CTEQ [72] collaboration, both of which use

as a starting scale Q

2
0

' 4GeV

2

. One example of a parameterization is the following:

xq

NS

(x;Q

2
0

) = A

NS

x

�

NS

(1 � x)

�

NS

(4.56)

xq

SI

(x;Q

2
0

) = A

SI

x

�

SI

(1 � x)

�

SI

(1 + �

SI

p

x + 


SI

x) (4.57)

xg(x;Q

2
0

) = A

g

x

�

g

(1� x)

�

g

(4.58)

where NS and SI stand for the non{singlet and the singlet functions.

Another approaches which is based on a dynamical model is that taken by G�uck, Reya,

and Vogt (GRV) [73]. Their assumption is that at a very low scale (chosen to be Q

2
0

'

0:34GeV

2

), there are only valence partons which evolve to higher Q

2

to produce the sea of

partons.

In �gure 4.3 the F

2

structure function data measured at HERA in the low Q

2

region

of 1:5 < Q

2

< 15 GeV

2

are compared to some of the parton parameterization. Also in-

cluded for Q

2

< 4 GeV

2

are predictions from a Regge model inspired parameterization by

Donnachie and Landsho� (DL) [74]. It is evident that the QCD motivated parameteriza-

tions give a good description of the data down to quite low Q

2

values, while the DL one

underestimates the data.

The GRV parameterization is compared in �gure 4.4 to the total 


�

p cross section data.

As one sees, it can describe quite well the data at high energies down to low values of Q

2

.

In �gure 4.5 the recent measurements of the structure function down to Q

2

= 0:16GeV

2

are compared to the GRV (QCD) and the DL(Regge) parameterizations. One sees a good

agreement between the DL predictions and the data up to Q

2

= 0:57GeV

2

. The GRV

predictions are completely o� at the starting scale of their evolution, Q

2

= 0:34GeV

2

, but

gives a good description of the data starting at Q

2

= 1:5GeV

2

.
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seen to persist down to these low Q

2

values, although the slope is decreasing. The

data are compared to several parton density parametrizations. The DL prediction is

ruled out for Q

2

values above 2 GeV

2

and is disfavored at Q

2

= 1:5 GeV

2

. The GRV

predictions are seen to agree well with the data over the full range of measurements.

The agreement between E665 data and GRV at higher values of x is seen to persist

down to the smaller x (x � 2 � 10

�5

) measured at HERA. The success of these per-

turbative QCD calculations at such a low scale is somewhat unexpected, despite the

predictions of the GRV group. The data are also compared to the MRS and CTEQ

parametrizations. These parametrizations are in reasonable agreement with the data.
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Fig. 12. Recent results from ZEUS and H1 on F

2

at low Q

2

. Note that in some bins the H1 and

ZEUS data are at di�erent Q

2

.

6.2. Double Asymptotic Scaling

The success of the GRV approach implies that the DGLAP equations are capable

of describing the data down to very low values of Q

2

(� 0:5 GeV

2

in the E665 case.)

It is therefore of interest to compare other predictions of this formalism to the data.

One such prediction goes by the name double asymptotic scaling

61

(see the report

of Jochen Bartels for a detailed descritpion). The DGLAP evolution equations are

17

Figure 4.3: Parameterizations of parton distributions compared to ZEUS and H1 data.

4.8 Gluon distribution in the proton at low x

The gluon density distribution is of special interest at low x since it is believed to be the

source of the rise seen in the structure function as x decreases. How can one extract the

gluon distribution in the proton? In principle there are two methods to do so. One is

through the global QCD �ts, as described above, using the inclusive DIS cross section

measurements. The other is a `direct' method, in which one uses an exclusive process, the

cross section of which is proportional to the gluon density. We will describe below both

methods and show results obtained so far at HERA.
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2

compared to the GRV parameterization.

4.8.1 The gluon density from global QCD �ts

One can use a full global �t, using forms like in equation 4.58 to parameterize all the parton

distributions, including the gluon one, and thus extract the gluon density distribution. At

low x however, one can use the fact that the quark densities are much smaller than the gluon

ones, to obtain the gluon density through approximate methods. One such method was

provided both in leading order (LO) and in next to leading order (NLO) by Prytz [75, 76]:

LO: xg(x;Q

2

) '

dF

2

(

x
2

; Q

2

)

d lnQ

2

1

(40=27)�

S

=4�

(4.59)

NLO: xg(x;Q

2

) '

dF

2

(

x
2

; Q

2

)

d lnQ

2

1

(40=27 + 7:96�

S

=4�)�

S

=4�

(4.60)
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Figure 4.5: Low Q

2

measurements of the F

2

structure function at HERA, compared to the

GRV and DL parameterizations.

�

(20=9)(�

S

=4�)N(

x
2

; Q

2

)

(40=27 + 7:96�

S

=4�)

where N(

x
2

; Q

2

) is a correction function which depends on the gluon density at large x (x >

10

�2

), which is constrained by existing data. The resulting gluon distribution extracted

this way can be seen ZEUS-glue(93)-95 in �gure 4.6. In the same �gure, results from

another method (Ellis, Kunszt, Levin (EKL) [77]) and from a global QCD �t are shown

for comparison. All methods give consistent results with each other.

A more recent extraction of both HERA experiments [16, 14], using a global QCD �t,

are displayed in �gure 4.7. The �gure also shows how the higher statistics data yielded a

narrower error band on the result.
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Figure 4.6: The gluon density distribution, xg(x), as function of x at a �xed Q

2

of 20GeV

2

,

obtained from LO and NLO approximate methods (Prytz and EKL). The result of a global

�t is shown for comparison.

4.8.2 Extracting the gluon density from exclusive processes

This method is based on the fact that the cross section of some processes are proportional

directly to the gluon density or to the square of the gluon density.
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Figure 4.7: The gluon density distribution, xg(x), as function of x at a �xed Q

2

of 20GeV

2

,

obtained from a NLO QCD analysis of F

2

.

Two{jets production in DIS

In leading order, two jet events in DIS are produced either by photon gluon fusion or by

QCD{Compton scattering, the diagrams of which are:

#

g




p

e

�q
q

e

$




p

e

q
g

e

(4.61)

At small x the cross section is expected to be dominated by the photon{gluon fusion

process. With this assumption one can extract [78] the gluon density, as shown in �gure 4.8.

This leading order extraction of the gluon density distribution is compared in the same
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Figure 4.8: The gluon density distribution as function of x at Q

2

= 30GeV

2

as determined

from a leading order analysis of 2{jet events. The results are compared with those from a

global QCD �t and from an approximate method.

�gure to the results from the global QCD �ts and the approximate methods, described

above. Note the good agreement between the di�erent gluon determinations, which provides

a check on the universality of the gluon density.

Inelastic J=	 production

Inelastic J=	 production is the process 
p! J=	X which is described diagramatically as

follows:

%

J=	

g




p

e e

(4.62)
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Figure 7: Inelastic cross section as a function ofW . Data from ZEUS and H1 [3] experiments are

shown. The inner error bars indicate the statistical uncertainties, the outer bars the quadratic

sum of statistical and systematic uncertainties. The two full lines correspond to the NLO pQCD

prediction from [7] with di�erent choices of parton distributions in the proton.

14

Figure 4.9: Inelastic J=	 cross section data as function of W compared with di�erent

choices of gluon distribution in the proton.

In this case a gluon from the proton interacts with the exchanged photon to produce

a closed charm pair which radiate o� a gluon and produce the colour singlet J=	 state.

The cross section for this process is thus sensitive to the gluon density distribution in the

proton. The present measurements [79, 80] are presented in �gure 4.9. Though the results

are well described by NLO pQCD calculations, they are not yet precise enough to be able

to distinguish between di�erent gluon density shapes.

Open charm production

The open charm process, described in the diagram below, di�ers from that of the inelas-

tic J=	 in that there is no combinations of the produced c�c pair into a colour singlet

object.

&

g




p

e

�c
c

e

(4.63)

Instead, each charm quark hadronizes to produced a charm meson in the �nal state.
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Figure 1: M(K�) (top) and �M (bottom) distributions for events with 143 < �M < 148 MeV

and 1:80 < M(K�) < 1:92 GeV. The combinatorial background (dashed and dash-dotted lines)

and the �t (solid curve) are explained in the text.

7

Figure 4.10: M(K�) (top) and �M (bottom) distributions for events with 143 < �M <

148MeV and 1:80 < M(K�) < 1:92GeV.

By measuring for instance the inclusiveD

�

production one can obtain the cross section for

the process 
p ! c�cX, which is sensitive to the gluon density. Figure 4.10 shows the D

0

signal seen [81, 82, 83, 84] directly from the (K�) mass spectrum and the signal observed

in the mass di�erence between the D

�

and the D. The cross section for inclusive open

charm production is shown in �gure 4.11 with lines showing predictions of di�erent gluon

density distributions. Here too data of higher accuracy, to come soon, are needed.

Elastic J=	 production

We will discuss this process in more detail in the last two chapters. The process of elastic

vector meson production in DIS is of special interest since in can be fully calculated in

QCD. As for the extraction of the gluon density, the diagram describing the process 
p!

J=	p is a two gluon exchange diagram and the cross section is proportional to the square

of the gluon density distribution. The cross section for the photoproduction reaction is

shown [85, 79] in �gure 4.12. The curves [86] are calculations using di�erent gluon density

distributions and show the sensitivity of the cross section to the di�erent shapes.
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Figure 4.11: The cross section measurements for the process 
p ! c�cX as function of the


p center of mass energy W . The solid and dashed lines represent predictions on NLO

calculations using di�erent gluon density shapes.

4.9 Summary

In this chapter we have discussed the following issues:

� We have discussed the factorization theorem which holds for an inclusive process and

which allows to factorize the structure function calculation into a part which is fully

calculable in pQCD, the coe�cient functions, and a part which involves long distance

e�ects and has to be obtained from the experiment, the parton distribution functions.

� Once we obtain the parton distribution functions at a given Q

2

scale, there are evolu-

tion equations which can predict the parton distribution functions at a higher scale.

When the evolution is done in Q

2

one gets the DGLAP equations. These equations

can describe the behaviour of the structure function F

2

at low x down to Q

2

values

of � 1:5GeV

2

.

� The BFKL equation studies the evolution in x only. It predicts for the gluon density

a behaviour of x

��

, providing by this `reggeization' a link between QCD and Regge

theory. For a �xed �

S

value, � is of the order of 0.5. This introduces the `BFKL

Pomeron' as a trajectory with an intercept of 1.5.
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Figure 8: The measurements [5,6] of the cross section for di�ractive J= photoproduction

compared with the full perturbative QCD prediction, as described in section 2, obtained from

the three latest sets of partons.

In Table 2 we quantify the e�ect of sequentially improving the prediction of the lowest-

order formula (2), �rst to (19), which goes beyond the leading lnQ

2

approximation to include

the e�ects of the transverse momenta of the exchanged gluons, and then to include the factor

exp(�
), with 
 given by (31), to allow for the cc rescattering on the proton. Table 2 shows

the size of the e�ects at W = 100 GeV. We see that the two corrections to the lowest-order

formula partially compensate each other. The corrections decrease with decreasing energy W ,

and are found to be insigni�cant for W

<
�

20 GeV.

Table 2: The cross section for di�ractive J= photoproduction

�(
p! J= p) in nb at W = 100 GeV

Partons

lowest-order + gluons k

T

+ cc rescatt.

GRV 128 157 88

MRS (A

0

) 47 79 55

MRS (G) 262 331 208

14

Figure 4.12: Elastic J=	 cross section data as function of W compared with di�erent

choices of gluon distribution in the proton.

� Presently it is not easy to �nd experimental signals for the BFKL mechanism. The

behaviour of the structure function in the low x range provided by HERA is consistent

with both the DGLAP and the BFKL approach. Signs of the BFKL mechanism can

be obtained by studying the energy dependence of jets produced near the proton

direction.

� We reviewed the extraction of parton distributions and discussed some of the parton

parameterizations like the MRS, CTEQ and GRV. The GRV one is more than just

a parameterization since it is based on a dynamical picture in which there are only

valence partons at a very low scale and the sea is then built by the evolution.

� The recent HERA data at low Q

2

shows that the Regge picture works well up to

about Q

2

� 1GeV

2

, while the QCD parameterizations work well down to about the

same scale.

� Finally we discussed methods for the extraction of the gluon density distribution from

global QCD �ts and from exclusive processes. The distributions from all methods

give consistent results with each other, providing a check on the universality of the

gluon density.
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Chapter 5

Parton Distribution in the Photon

This chapter describes the concept of the photon structure function. We will de�ne the

photon structure function after developing the formalism for that, and write the evolution

equations for the photon, pointing out the di�erences to those of the proton. We will

discuss the theoretical importance of the photon structure function and the experimental

methods of extracting it from the data. Finally we will introduce some parameterizations

of the photon structure function, both of real and of virtual photons.

5.1 Introduction

In the classi�cation of elementary particles, the photon plays the role of a gauge and point{

like particle, mediating electromagnetic interactions through its coupling to the charge of

matter. Yet, it is well known from soft, low energy 
p interactions that its behaviour can

be similar to that of strongly interacting hadrons. The properties of those interactions are

well described by the vector dominance model (VDM) [32], in which the photon turns �rst

into a hadronic system with quantum numbers of a vector meson and then interacts with

the target proton.

A nice justi�cation for this model can be seen from the argument of Io�e [87, 88].

We know from QED that a photon can 
uctuate into a pair of virtual charged lepton

like e

+

e

�

, which annihilate back to a photon. It can however also 
uctuate in a quark{

antiquark pair q�q. If the time of the 
uctuation t

f

is large compared to the time of the

interaction t

int

the interaction will occur between the q�q pair and the proton, resulting

in a hadronic interaction. We can estimate the 
uctuation time by using the uncertainty

principle. Assume a real photon (Q

2

= 0) with energy k interacts with a proton which is

at rest. The energy di�erence �E at the vertex where the photon 
uctuates into a q�q pair

having the same momentum as that of the photon and a mass of m

q�q

is:

�E = (k

2

+m

2
q�q

)

1
2

� k (5.1)
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The Vector Dominance Model assumes that the 
uctuation of the photon is into vector

mesons, m

q�q

' m

V

, where m

V

is the vector mesom mass. For high energy photons,

k � m

V

and one can approximate t

f

by:

t

f

�

1

�E

�

1
k

1

1 +

m

2
V

2k

2

� 1

=

2k

m

2
V

(5.2)

The interaction time is of the order of the proton radius r

p

, namely:

t

int

� r

p

(5.3)

For example, taking a k = 10GeV photon, and m

V

= m

�

, one gets t

f

� 7 fm, while

t

int

� 0:8 fm and thus the condition t

f

� t

int

holds.

When instead of a real photon one has a virtual photon (Q

2

6= 0), the 
uctuation time

is given by

t

f

=

2k

Q

2

+m

2
V

(5.4)

and thus as Q

2

increases, the 
uctuation time becomes smaller and the photon behaves

like a point{like object. However, as we shall see later, there are conditions for which even

at high Q

2

the 
uctuation time will be large (see next chapter).

We thus have [89] a picture of a two{component photon:

j
 >= j
 >

bare

+coe�. � j
 >

h

(5.5)

in which the hadronic part is represented in VDM by

j
 >

h

= aj� > +bj! > +cj' > (5.6)

This picture was veri�ed in 
p reactions by observing that for instance the reaction


p! �

+

�

�

p is completely dominated by 
p! �

0

p:

'

p




�

�

p

(5.7)

and also in e

+

e

�

experiments, by studying the reactions: e

+

e

�

! �

+

�

�

; �

+

�

�

�

0

; KK,

which showed the �

0

; !; ':

(

e

+

e

�




V

0

(5.8)
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These reactions also provided a determination of the direct photon{vector meson coupling

strength, (4�=


2

V

):

)

"

�




2

V

4�

�

�1

(5.9)

and allowed to test the VDM prediction of their ratios:

 




2

�

4�

!

�1

:

 




2

!

4�

!

�1

:

 




2

'

4�

!

�1

= 9 : 1 : 2 (5.10)

The VDM predicted [89] many more relations, most of which were borne out by the

data. However VDM is a model. It did not evolve from `looking' at the photon with a

probe. It related photoproduction reactions to hadron reactions by modelling the photon as

a superposition of vector mesons, with direct photon{vector meson couplings which could

be determined by experiment. This model worked very well at low p

T

reactions.

How can one `look' at the photon in a way similar to what has been done to the

proton? The most natural way is to perform a deep inelastic scattering experiment on the

photon [90] by studying e
 reactions. First one produces a high energy photon beam by

using a backscattered laser beam in a linear collider. A laser beam of about 1 eV colliding

with a 0:25TeV electron beam can produce a photon beam of about 0:2TeV of energy:

*

e

�




laser

(5.11)

The resolution of such a beam can be of the order of �E




=E




� 10%. The high energy

photon beam can then collide with another electron beam of energy 0:25TeV giving a

luminosity of the order of L � 10

33

cm

�2

sec

�1

:

+




e

�

(5.12)

It is also possible to collide two real photon beams this way when such a linear collider

becomes available.

For the time being one has to use e

+

e

�

interactions leading to two{photon exchange, as

depicted in the diagram in �gure 5.1. When one of the photons with very small virtuality
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e

+

e

�




�

(Q

2

)

e

�

e

+




�

(P

2

)

X

Figure 5.1: Two{photon exchange in e

+

e

�

scattering.

(P

2

� 0) interacts with the other one with high virtuality (Q

2

) (`single{tag' con�guration),

the interaction can be thought of as a DIS of one photon on the other, in which case the

situation is similar to the probing of a proton by a highly virtual photon. It is therefore

natural to introduce the notion of the photon structure function in analogy to the well{

known proton one. We will introduce the formalism in the next section.

5.2 Formalism

The DIS for e
 interaction [91] is depicted in the following diagram:

e
 ! eX d� �

X

�
�
�
�
�
�
�
�
�
�
�
�
�

-




k

X




k

0

�
�
�
�
�
�
�
�
�
�
�
�
�

2

(5.13)

To stress the analogy with the proton case, we also show the DIS of the ep case:

ep! eX d� �

X

�
�
�
�
�
�
�
�
�
�
�
�
�

.

p

k

X




k

0

�
�
�
�
�
�
�
�
�
�
�
�
�

2

(5.14)
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We will start with the e

+

e

�

reaction, with the notations as de�ned in the diagram below,

and develop the cross section formalism for the reaction e

+

e

�

! e

+

e

�

X, from which we

will get that of the DIS reaction e
 ! eX.

ee! eeX

/

p

2

(E;�~p

1

)

p

1

(E; ~p

1

)

p

0
1

(E

1

;

~

p

0
1

)

q

2
1

= �P

2

p

0
2

(E

2

;

~

p

0
2

)

q

2
2

= �Q

2

�

2

�

1

e

+

e

�

X

(5.15)

The matrix element for the reaction e

+

e

�

! e

+

e

�

X has 256 components. These can

be reduced to 81 using gauge invariance and by further applying the optical theorem and

P; T invariance one is left with the following 6 independentcomponents: �

tt

; �

tl

; �

lt

; �

ll

; �

tt

; �

tl

.

Here t stand for transversely and l for longitudinally polarized photon states, while � de-

note their interference. Integrating over the scattering plane of the leptons and using the

fact that the target photon is almost real and thus only transversally polarized, one has

only the two independent components �

tt

and �

lt

.

The reaction ee ! eeX can be viewed as a two{step process. In the �rst step the

target photons are radiated by one of the electrons and are then probed in a DIS by

highly virtual photons 


�

emitted by the second electron. In order to take into account

the momentum spread of the target photons and their slight o�{shellness, one uses the

equivalent photon approximation (EPA). In this approach, described by the Weizs�acker{

Williams formula [92, 93], the photons are assumed to be emitted real and their momentum

spread is modi�ed appropriately.

One can use the equivalent photon approximation (EPA) to write:

d�

ee!eeX

= d�

e
!eX

f


=e

(5.16)

where

d�

e
!eX

=

�E

0

1

(y

2

� 2y � 2) dE

0

1

d


0
1

2�

2

Q

2

y

(�

tt

+ ��

lt

) (5.17)

with

� =

2(1 � y)

1 + (1 � y)

2

(5.18)
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where we have used the Hand de�nition of the 
ux. The factor f


=e

is the 
ux of the target

photons, which is given by the Weizs�acker{Williams formula:

f


=e

=

�

�z

"

(z

2

� 2z + 2) ln

E(1 � z)�

0
1max

m

e

z

� (1 + z)

#

(5.19)

where z = E




=E, m

e

is the electron mass and �

0
1max

is the limiting scattering angle of the

tagged electron on the probing photon side.

5.3 De�nition of photon structure functions

We can now introduce [94] the notation:

F




1

�

Q

2

4�

2

�

1

2x

�

tt

(5.20)

F




2

�

Q

2

4�

2

�

(�

tt

+ �

lt

) (5.21)

where x is the Bjorken variable as de�ned earlier, and, because of the massless target, has

the relation:

x =

Q

2

Q

2

+W

2

(5.22)

and W is the 


�


 center of mass energy. With these de�nitions we can write the cross

section for the e
 DIS process as:

d�(e
 ! eX)

dxdy

=

4��

2

s

Q

4

[(1 � y)F




2

+ xy

2

F




1

] (5.23)

which is to be compared to the proton case, where

d�(ep! eX)

dxdy

=

4��

2

s

Q

4

[(1 � y)F

p

2

+ xy

2

F

p

1

] (5.24)

As one can see, the similarity is complete. Therefore, F




i

can be treated as the structure

functions of the target photon. The experimental conditions in the single{tag e

+

e

�

exper-

iments are such that the accepted values of y are small. Typically the average value of the

product xy

2

are of the order < xy

2

>' 0:01 : : : 0:02 and therefore the F




1

term is usually

neglected in the expression 5.23.

5.3.1 De�nition of parton distributions in the photon

We will again use the analogy to the proton case to de�ne the parton distribution in the

photon [95]. Let us look again at the proton case. The deep inelastic interaction of a probe
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with the proton is described by an incoherent sum of elastic scattering of the probe on free

spin 1/2 quarks. This approach leads to the identi�cation of the F

p

2

structure function as

a sum of the contribution of all quarks and antiquarks that build up the proton:

F

p

2

(x) =

2f

X
i=1

xe

2
i

q

i

(x) (5.25)

where q

i

(x) gives, by de�nition, the probability of �nding a particular type of quarks

(antiquarks) in the proton, and xe

2
i

is the elementary `cross section' for the elastic scattering.

In contrast to the proton, for a photon target one can predict the structure function of

the photon directly from the quark parton model (QPM). One can perform a full calculation

of the cross section 


�


 ! X to the lowest order in � for the process




�

+ 
 ! q + �q (5.26)

which is electromagnetic with known couplings. Note however that such an approach

disregards possible contributions from the hadronic component of the photon, a point to

be discussed later.

In QPM one can calculate F




2

through the `box' diagram

0







�

q
q







�

(5.27)

to get the expression [91] (for massive quarks):

F




2

�

x;Q

2

�

=

N

c

�

�

f

X
i=1

xe

4
q

i

(

h

x

2

+ (1� x)

2

i

ln

Q

2

(1� x)

m

2
q

i

x

+ 8x (1� x)� 1

)

(5.28)

where N

c

is the number of quark colours.

By analogy to the proton case, one can think of F




2

as the sum of momentum{weighted

densities of quarks `inside' the photon:

F




2

�

x;Q

2

�

=

2f

X
i=1

xe

2
i

q



i

�

x;Q

2

�

(5.29)

with:

q



i

�

x;Q

2

�

=

N

c

�

2�

e

2
q

i

(

h

x

2

+ (1 � x)

2

i

ln

Q

2

(1 � x)

m

2
q

i

x

+ 8x (1 � x)� 1

)

(5.30)
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Figure 5.2: The photon structure function as function of Q

2

for di�erent x intervals.

In spite of the complete analogy between the photon and the proton structure func-

tions, there are important di�erences in their behaviour. In the QPM the proton structure

function F

p

2

is expected to ful�l Bjorken scaling, while F




2

manifests strong scaling violation

even without the presence of gluon radiation. Thus, contrary to the character of scaling

violation in the proton case, which yields a negative contribution at large x and a positive

one at low x, the scaling violation for the photon is positive in the whole x region (already

at the Born level). This can be seen in �gure 5.2 where the photon structure function

data are presented [14] as function of Q

2

for di�erent x regions. The data show positive

logarithmic scaling violation in all regions of x.

Another di�erence between the proton and photon case is the x dependence. Simple

counting rules predict that F

p

2

should drop at large x, while F




2

is large in the high x region

(see below).
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Figure 5.3: The splitting functions utilized in the DGLAP equations for the photon.

5.4 Evolution equations for the photon

The DGLAP evolution equations for the photon [96, 97, 98] can be developed in a similar

way to that of the proton. However, there is one basic di�erence: in the photon case there

is an additional contribution coming from the splitting of the photon into a q�q pair, as can

be seen in �gure 5.3.

The splitting function of the photon is denoted by

h

box

= N

c

e

2
q

�

2�

h

x

2

+ (1� x)

2

i

(5.31)

De�ning the variable t as follows:

t � ln

Q

2

�

2

(5.32)

we can write the DGLAP evolution equations for the photon:

dq



i

(x; t)

dt

= h

box

+

�

S

(t)

2�

Z

1

x

dx

0

x

0

�

P

qq

�

x

x

0

�

q




(x

0

; t) + P

gq

�

x

x

0

�

g




(x

0

; t)

�

(5.33)

dg




(x; t)

dt

=

�

S

(t)

2�

Z

1

x

dx

0

x

0

(

X

q

i

P

q

i

g

�

x

x

0

�

q



i

(x

0

; t) + P

gg

�

x

x

0

�

g




(x

0

; t)

)

(5.34)

In the case of the QCD evolution equation for the photon structure function, the h

box

term introduces an inhomogeneity into all parton densities in the photon. This is di�erent
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1
p

e

2
p

e

Figure 5.4: Diagrams representing direct and resolved photon interactions.

from the proton case, where all equations are homogeneous. The solution to the set of equa-

tions 5.33 and 5.34 is given by a superposition of the general solution to the corresponding

set of homogeneous equations and a particular solution of the inhomogeneous one.

The inhomogeneous solution is determined by h

box

and thus depends only on the known

point{like (pl) coupling of the photon to the quarks and quarks to gluons. This is why it

is identi�ed with the point{like contribution to the photon structure function. Since the

homogeneous solution ful�ls the hadron{like (had) evolution of the DGLAP equations, it

is assigned to the hadron{like contribution to the photon structure function. One writes

therefore:

F




2

= F


;pl

2

+ F


;had

2

(5.35)

5.4.1 The resolved and direct photon interactions

This is perhaps the place to caution [99] the reader not to confuse between the point{like

photon and the direct photon reactions. Whenever the interaction of a photon can be

described as a two{step process in which the photon �rst resolves into partons and then

one of the parton participates in the hard interaction, such a photon is called a resolved

photon. The resolved photon includes both the point{like and the hadron{like part. In

the other cases, when the photon interacts directly, all its energy participates in the hard

interaction and we say that this is a direct photon interaction. Examples of diagrams

describing the direct and resolved photon interactions are shown in �gure 5.4.

This picture of resolved and direct photon was tested experimentally [100, 101] at

HERA. One can de�ne the quantity x




as the fraction of the photon momentum partic-

ipating in the hard interaction. One expects then that for the direct photon processes

x




� 1 while for the resolved ones x




< 1. A good way of estimating x




is to study two jet

events. In this case one can calculate x

obs




, the experimentally observed quantity which is

close to x




:

x

obs




=

E

j1

T

e

��

j1

+E

j2

T

e

��

j2

2E




(5.36)

where E

T

is the transverse energy of the jet, � its pseudorapidity and E




is the energy of
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Figure 5.5: The x




distribution as obtained from two jet events, compared to direct and

resolved photon interactions as simulated by Monte Carlo generators,

the photon. The variable x

obs




is plotted in �gure 5.5. The data [102] show an enhancement

at high x and a distribution reaching down to low x values, as one expects from a sample

of events produced by direct and resolved photon interactions. The data are compared to

the distributions obtained from the sum of Monte Carlo generated events simulating direct

and resolved photon processes. The agreement is quite good in most of the regions, except

for the very low x region, which needs to be further studied.

5.5 The theoretical importance of F




2

As is known from the proton case, the hadron{like contribution varies very slowly with Q

2

.

Thus in the high Q

2

limit:

F




2

! F


;pl

2

= a(x) ln

Q

2

�

2

(5.37)

In this equation a(x) is calculable in pQCD and therefore one can predict [103] both the

shape and the magnitude of F




2

, resulting in the ability to determine the QCD scale �.

Unfortunately, owing to many theoretical di�culties encountered in the calculation of F




2

,

one of which is discussed below, the actual attempts to measure � through the study of F




2

have attained only a very limited success.
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5.5.1 Higher order corrections

We know from the proton case that in order to get reliable results, one needs to do at least a

next to leading order calculation. What happens when one attempts to do it for the photon

case? Can one continue this two component picture of a point{like and a hadron{like part

of the photon structure function?

It would be too technical to develop here the next to leading log approximation. This

is usually done by introducing the moments of the structure functions appearing in the

evolution equation and by introducing the anomalous dimensions. We will just bring here

the essence of such a calculation. The result is that when one continues to separate the

structure function in a point{like and hadron{like part one gets:

F


;pl

2

< 0 for x � 0:1 (5.38)

The situation gets worse with each order of calculation [104].

Since a structure function can not be negative, this means that the separation into a

point{like and a hadron{like part gives unphysical results for the point{like part and thus

the hadron{like part is needed in order to cancel the singularity. Since there is no way to

calculate the hadron{like part in pQCD and it can not be neglected even at high Q

2

, the

absolute predictive power is lost.

5.6 The experimental extraction of F




2

In principle, in order to measure F




2

one needs to measure the cross section as a function

of Q

2

and x. Q

2

can be determined by measuring the tagged electron. This can be with

an accuracy of �Q

2

=Q

2

� 7�10%, depending on the energy and angular resolution of the

detector.

In order to obtain x, one needs a good measurement of the total hadronic energy W ,

which together with Q

2

yield x according to 5.22. However, owing to �nite resolution and

limited acceptance of the detector, one measures W

vis

, the visible hadronic energy, which

is usual smaller than W , as can be seen in �gure 5.6.

One needs thus to unfold the true result from the visible measurement. This proce-

dure needs a Monte Carlo program having a good simulation of the detector and a good

description of the structure of the event. One can see [105] for instance in �gure 5.6(b) the

improvement of the correlation between W

vis

and the true W when using a better genera-

tor. However the simulation depends also on the fragmentation model used to generate the

�nal state particles, which usually has problems with the description of the energy 
ow in

the forward direction. Thus even the generator which gives a better correlation as far as

the true W is concerned, fails to describe the energy 
ow in the forward direction, as seen

in �gure 5.7. Clearly more work is needed in this direction.

In spite of the problems described above, the photon structure function has been mea-

sured in a wide range of Q

2

values. However, at present, the statistics is limited and also
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Figure 2: The correlation of the visible W

vis

and generatedW hadronic invariant mass,

depending on the acceptance range used for the hadrons in the event. Figure (a) shows

the correlation for HERWIG and �gure (b) the correlation for F2GEN, in each case

for two cuts on the lower polar angle of the acceptance region; � > 25 mrad means

that the energy of the forward detectors is included, whereas � > 200 mrad indicates

that the forward detectors are not used in the calculation of W

vis

. The points show

the average W

vis

in each bin, and the error bar its standard deviation. The dashed line

represents W

vis

= W .

23

Figure 5.6: Comparison between the visible and the true W .
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Figure 9: The measured energy 
ow per event, corrected for the detector ine�ciencies,

as a function of pseudorapidity �, compared to the generated energy 
ow of the HER-

WIG and PYTHIA Monte Carlo models and the energy 
ow of a sample of pointlike

events from the F2GEN model. The vertical error bars on the data points are the sum

of the statistical and systematic errors, the horizontal bars indicate the bin widths.

Note the di�erent bin width in the forward regions.

30

Figure 5.7: Comparison of the data on energy 
ow as function of the pseudorapidity with

predictions of di�erent Monte Carlo generators. The Q

2

values are in units of GeV

2

.
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Figure 5.8: Compilation of all existing data on F




2

, compared to predictions of some parton

parameterizations.

the systematic errors are quite large. This can be see in �gure 5.8 where a compilation [14]

of all existing measurements of F




2

is presented as a function of x, for di�erent Q

2

values.

The curves are the predictions of some of the parameterizations [106, 107, 108] of the

parton distributions in the photon, to be discussed below. Note that there are very few

measurements in the low x region, due to the experimental di�culties to isolate the photon{

photon reactions from the e

+

e

�

annihilation �nal state at high W .

5.7 Parton distribution in the photon

The parameterizations of the parton distributions in the photon are of two types. The

one [109] uses the separation of the photon structure function into the point{like and
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Figure 10: The gluon density of the photon divided by the �ne structure constant � = 1=137

(data: circles) at the scale < p

t

>

2

= 75 GeV

2

. For comparison the GRV-LO (full) and the

LAC1 (dashed) and the LAC3 (dotted) parametrizations are shown.

20

Figure 5.9: The estimated gluon density distribution in the photon, x




g(x




)=�, compared

to predictions of some parameterizations.

hadron{like parts to separate also the parton distribution functions the same way. They

use for the point{like part either the ones calculated from QPM or from pQCD. The

parameterizations of the hadron{like contribution are based mostly on the VDM approach,

in which F


;had

2

(x;Q

2

) is related to the vector meson structure functions F

V

2

. Through

isospin invariance the di�erent F

V

2

are expressed in terms of the only experimental available

mesonic structure function, that of the �

�

; F

�

�

2

, which is measured in Drell{Yan reactions.

In the second approach, no distinction is made between the point{like and hadron{like

contributions to the structure function, and a parameterization, �xed at a given Q

2
0

, is

evolved to a di�erent Q

2

through the DGLAP equations. The �rst to undertake this ap-

proach were Drees and Grassie (DG) [110]. They used the LLA modi�ed DGLAP equations

to evolve an input parameterization of parton distributions at Q

2
0

= 1GeV

2

so that it �ts

the PLUTO data at 5:9GeV

2

. This approach was extended later, using data in the range

1:3 < Q

2

< 100GeV

2

by Abramowicz, Charchula and Levy (LAC) [111], where the gluon

parameters were also left free in the global �t. These LLA parameterizations have been

extended to next to leading order, some of which are shown in �gure 5.8. The di�erent

parameterizations obviously agree with each other where data exist, and di�er in the low x

region, where data are eagerly awaited.

One source of measurements of the photon parton distributions at low x is HERA. We

have already seen in �gure 5.5 the x




distribution obtained from two jet events. One can use

the distributions obtained from the Monte Carlo generators to subtract the direct photon

reactions from the x




distribution, being left with the resolved photon processes. Since the

quark distribution in the photon is quite well constrained by the photon structure function

measurements, one can use a parameterization prediction like that of GRV to subtract the

quark distributions from the resolved x




distribution. The remaining events are attributed
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Figure 5.10: The x

obs




distribution (a) for photons of virtuality 0:1 < P

2

< 0:6GeV

2

and

(b) for quasi{real photons.

to come from the gluons and thus obtain the gluon density distribution in the photon.

The result [112] of such a procedure is shown in �gure 5.9. The gluon density distribution

obtained in this way does not seem to show a strong rise as x decreases, but one needs

more precise data and procedures to conclude something more de�nite.

5.8 Parton distribution of a virtual photon

So far, we discussed the structure of real or quasi{real photons. The natural question

that one is faced with is what happens to a virtual photon and whether it is legitimate to

think that in DIS of charged leptons on protons it is indeed the structure of the proton

that is probed and not some kind of convolution of both the structure of the target and

of the probe [113]. The same question could be asked in the case of the deep inelastic e


scattering. We will return to this question in the last chapter.

There exists one result by PLUTO [114] from 1984 which measured the structure func-

tion of a target photon with virtuality of P

2

� 0:4GeV

2

, at Q

2

� 5GeV

2

. There is also an

attempt [115] at HERA to measure the structure of a virtual photon. The electron calorime-

ter of the luminosity system taggs photons with a median virtuality of P

2

� 10

�5

GeV

2

.

There is another calorimeter, the beam{pipe calorimeter, which taggs photons in the range

0:1 < P

2

< 0:6GeV

2

. By using these two taggers, one can isolate two jet events from
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Figure 5.11: The ratio of resolved to direct photon reactions as a function of the photon

virtuality P

2

.

quasi{real photons, and a similar sample from the virtual photon reactions. One can then

reconstruct the x

obs




of the photon by using relation 5.36. The distribution of the two

samples are shown [115] in �gure 5.10. For real photons one sees the concentration of

direct events at high x

obs




, and the low x enhancement coming from the resolved photon

processes. For the higher P

2

region, one sees again the peak at high x from direct events,

but also a contribution from the resolved photons at lower x. This shows that photons

with virtualities in the range 0:1 < P

2

< 0:6GeV

2

also have structure.

One can use an operational de�nition of direct photon reactions by the cut x

obs




>

0:75 and study the ratio of resolved photon to direct photon as function of the photon

virtuality P

2

. This is shown in �gure 5.11, which seems to show a decrease of this ratio with

increasing P

2

, as expected. These data are preliminary and not yet corrected for acceptance

e�ects, which are believed to cancel in the ratio. Further study of this interesting question

with more data and to higher P

2

values is in process.

5.9 Summary

In this chapter we studied the following subjects about the photon:

� We have introduced the concept of a photon with structure, where the structure is

attained by the long 
uctuation time of the photon into a q�q pair before it interacts

with the proton. Clearly the whole notion of the structure of the photon makes only

sense when we view its interaction with another object.
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� We developed the formalism of two photon reactions in e

+

e

�

collisions and related

the process e
 ! eX with that of ee! eeX.

� We de�ned the photon structure function through its analogy to the proton struc-

ture function, de�ned the parton distribution functions in the photon and discussed

the DGLAP evolution equation of the photon. These equations are inhomogeneous

because of the splitting of a photon to a q�q pair in addition to the splitting functions

in the proton case.

� The point{like and the hadron{like parts of the photon structure functions have been

described. Both parts are what is contained in the so{called resolved photon. In

the direct photon processes the photon interacts directly with parton from the other

projectile, while the resolved photon reactions are a two{step process in which the

photon �rst resolves into its partons, one of which takes part in the hard interaction.

� The theoretical importance of F




2

was described as a potential source of determining

the QCD scale parameter �. However due to problems in the low x region when one

uses next to leading order corrections, this is not possible.

� We discussed the experimental procedure of obtaining F




2

from the data and the

di�culties involved. At present both the statistical errors and the systematic ones

are quite large. There is also very little data in the low x region. That is the reason

why the di�erent parameterizations of the parton distributions in the photon di�er

quite widely in the low x region.

� Finally, we discussed the question whether virtual photons also have structure. Pre-

liminary data indicate that at least up to a virtuality of about P

2

� 0:6GeV

2

, the

photon seems to have structure.
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Chapter 6

Di�raction in DIS

The notion of di�raction in high energy physics is not easy to de�ne. The dictionary de�nes

it as `the breaking up of a light beam into light and dark or coloured bands by passing it

through a small opening'. We will describe what are the expected behaviour of a di�ractive

reaction in the introductory section after which we will make the connection to Regge theory

and to the Pomeron which is the dominant trajectory exchanged in di�ractive processes.

Next we will discuss the di�erent di�ractive reactions in photoproduction (Q

2

= 0) and

the discovery of the large rapidity gap events in DIS. The interpretation of these inclusive

reactions as DIS on the Pomeron is presented and the partonic structure of the Pomeron

is discussed.

6.1 General introduction

The best example of a di�ractive reaction is the process of elastic scattering A+B ! A+B

in which no quantum numbers are exchanged in the t channel. In the Regge language one

the exchanged trajectory which has the quantum numbers of the vacuum the Pomeron

trajectory. Thus one usually calls a process di�ractive if its t channel amplitudes at high

energies are determined by Pomeron exchanges. A di�ractive process [28] has a total

cross section practically independent of energy, a small real part of the forward scattering

amplitude, and a forward peak in the di�erential cross section. Among other characteristics

is the predominant conservation of s channel helicities of the scattered particles (to be

discussed later). A non{di�ractive process corresponds to exchanges with non{vacuum

quantum numbers in the t channel and has a cross section decreasing with energy.

In addition to the elastic scattering, one can have inelastic di�ractive processes. These

include the single di�raction (SD) and the double di�raction (DD) reactions in which the

beam and/or the target particles get excited into states with the same internal quantum
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numbers as those of the incoming particles.

3

A

�

B

A B

single di�raction (SD)

4

A

�

B

�

A B

double di�raction (DD)

(6.1)

Some examples of inelastic di�ractive processes are: �

�

p ! �

�

N

�

(SD), �

�

p ! a

�
1

p

(SD), �

�

p! a

�
1

N

�

(DD).

In general, a di�ractive reaction of the type A +B ! X +B has in addition to all the

above mentioned characteristic behaviours, a cross section which falls with the mass of X

like:

d�

dtdM

2

X

�

1

M

2

X

(6.2)

In such a di�raction reaction, B is a leading energetic particle such that E

B

� p

L

. In

this case one has:

M

2

X

= (P � p

B

)

2

= s+m

2
B

� 2E

B

p

s � s� 2p

L

p

s = (1�

s� 2p

L

p

s

)s = (1� x

F

)s (6.3)

where x

F

is the Feynman x. Usually for di�ractive reaction x

F

� 0:9 which means

M

2

X

s

�

0:1. One can get this limit using a geometrical argument. The coherence is important for

building up the forward peak and thus:

M

2

X

s

�

1

2m

A

R

(6.4)

Since the radius R is of the order of � 1 fm = 5GeV

�1

, one gets the condition

M

2

X

s

� 0:1.
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6.2 Di�raction and regge formalism

The Regge domain is de�ned as that where t is small and

s

M

2

X

!1. In this case one can

write the total, elastic and inelastic di�raction cross sections in the form:

�

ij

T

=

X

k

�

ik

(0)�

jk

(0)s

[�

k

(0)�1]

(6.5)

d�

ij

el

dt

=

X

k

�

2

ik

(t)�

2

jk

(t)

16�

s

2[�

k

(0)�1]

(6.6)

d

2

�

ij

dtdM

2

X

=

X

k;l

�

ik

(0)�

2

jl

(t)g

kll

(t)

16�s

 

s

M

2

X

!

2�

l

(t)

�

M

2

X

�

�

k

(0)

(6.7)

where the functions � and g are vertex functions and � is the Regge trajectory.

This can be illustrated with the following diagrams:

�

ij

T

=

�
�
�
�
�
�
�
�
�
�
�
�
�

5

j

i

�
�
�
�
�
�
�
�
�
�
�
�
�

2

=

6

j
i

j

i

=

7

j

i

j

�(0)

i

(6.8)

d�

ij

el

dt

=

�
�
�
�
�
�
�
�
�
�

8

j

i

j

�(t)

i

�
�
�
�
�
�
�
�
�
�

2

(6.9)

d

2

�

ij

dtdM

2

X

=

�
�
�
�
�
�
�
�
�
�

9

j

i

j

�(t)

�
�
�
�
�
�
�
�
�
�

2

=

:

j

j

i

j

i

j

=

;

j

i

j
i

�(0)

j

�(t)

j

�(t)

(6.10)

The Pomeron trajectory is the one dominating the di�raction processes. In order to

describe the properties of di�raction, its trajectory has the form:

�

IP

(t) = �

IP

(0) + �

0
IP

(t)t � 1 + �

0

t (6.11)

where for the present discussion we have assumed the Pomeron intercept to be 1 (taking

� = 0).
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Figure 6.1: The dependence of the slope b on the laboratory momentum of the incoming

projectile for (a) pp elastic scattering and for (b) �

�

p elastic scattering. On the right{hand

side of the vertical axis the scale is the total cross section �

T

for (a) pp and (b) �

�

p reaction.

The corresponding data are approximated by the solid line.

� The total cross section can be expressed as:

�

ij

T

= �

iIP

(0)�

jIP

(0) = const (6.12)

If one uses an intercept of 1 + �, one gets a slowly rising cross section like s

�

.

� The elastic di�erential cross section is:

d�

ij

el

dt

=

�

2

iIP

(t)�

2

jIP

(t)

16�M

2

X

s

�

0

t

(6.13)

If one has a Pomeron intercept somewhat larger than 1, one has an additional factor

of s

2�

.

For small t one gets for the di�erential cross section of elastic scattering the sharp

di�ractive peak:

d�

ij

el

dt

�

�

2
T

16�

e

b(s;t)t

(6.14)
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Figure 6.2: The di�erential cross section for the inelastic di�ractive reaction pp ! Xp as

function of the scaled di�ractive mass M

2

X

=s.

where the slope of the exponential behaviour increases with energy like:

b(s; t) = b

0

(t) + 2�

0

ln s (6.15)

We have assumed that the scale in the logarithmic expression is s

0

= 1GeV

2

. The

slope [30] of the Pomeron trajectory is �

0

� 0:25GeV

�2

. The phenomena of the

increase of the slope with energy is called shrinkage. The shrinkage can be seen in

�gure 6.1 for (a) pp elastic scattering and for (b) �

�

p elastic scattering. One observes

in both cases a rise of the slope with energy, as expected from expression 6.15. The

same �gure also shows the behaviour of the total pp and �

�

p cross sections, showing

the slow increase with energy discussed in the former item.

� The di�erential cross section of inelastic single di�raction is given by [116, 117]:

d

2

�

ij

(s;M

2

X

; t)

dtdM

2

X

=

�

iIP

(0)�

2

jIP

(t)g

IPIPIP

(t)

16�M

2

X

 

s

M

2

X

!

2�

0

t

(6.16)

For small t we can make the same approximation as in the elastic case to obtain:

d

2

�

ij

(s;M

2

X

; t)

dtdM

2

X

�

A

M

2

X

e

b

D

(s;t)t

(6.17)
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This behaviour can be seen for the di�erential cross section of the inelastic di�ractive

reaction pp ! Xp shown in �gure 6.2 for di�erent s values. As s increases and one

reaches the Regge domain, one sees a clear 1=M

2

X

behaviour of the cross section. Here

too the slope increases with energy like:

b

D

(s; t) = b

D;0

(t) + 2�

0

ln

s

M

2

X

(6.18)

All hadronic reactions show an appreciable contribution of di�ractive processes to the

total cross section (� 25{40%), including double dissociation. Is this true also for photo-

production? Can one check it at HERA?

6.3 Di�raction in photoproduction at HERA

What does one understand by di�ractive processes in photoproduction? First one has

the elastic scattering. In case of photoproduction the true elastic scattering process is


p ! 
p. However this is an electromagnetic process. The hadronic elastic scattering in

photoproduction is referred to the reaction 
p ! V

0

p, where V

0

are the neutral vector

mesons. In the VDM picture this process is a two stage one. The photon �rst 
uctuates

into a virtual vector meson, which then scatters elastically from the target proton. With

this in mind, the following processes contribute to di�ractive photoproduction reactions:

\elastic" : 
p ! V p (V = �

0

; !; �) (not 
p! 
p)

photon di�raction : 
p! Xp (X 6= �

0

; !; �)

proton di�raction : 
p! V Y (Y � `excited' proton)

double dissociation : 
p! XY

This can also be illustrated in a VDM picture:

<

p p

V V




=

p p

V X




>

p

Y

V V




?

p

Y

V X




\elastic

00

photon diff: proton diff: double diss:

(6.19)

We have already seen how one measures photoproduction reactions at HERA in chap-

ter 2. Is it possible to distinguish [118] di�ractive from non{di�ractive precesses in these

reactions? In order to be able to do so, one needs a large rapidity phase space. How large

is it at HERA?

Let us consider the reaction:


p ! Xp (6.20)
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In the 
p center of mass system:

@

p

X

(6.21)

In this system the maximum center of mass momentum is:

p

cms

max

'

p

s

2

=

W

2

= p

�

(6.22)

The maximum rapidity of X is y

cms

max

where the positive direction is taken as that of the

proton:

y

cms

max

=

1
2

ln

E + p

�

E � p

�

= �

1
2

ln

(E + p

�

)

2

E

2

� p

�

2

' �

1
2

ln

W

2

M

2

X

(6.23)

Therefore the rapidity of the di�ractive system X and the di�ractive proton can be given

by:

y

X

= �

1
2

ln

W

2

M

2

X

+ boost to any system (6.24)

y

p

=

1
2

ln

W

2

M

2

p

+ boost to any system (6.25)

The rapidity span �y is therefore:

�y =

1
2

ln

W

2

M

2

X

+

1
2

ln

W

2

M

2

p

=

1
2

"

ln

W

4

M

2

X

m

2
p

#

= ln

W

2

M

X

m

p

(6.26)

For M

X

' 10GeV and W = 200GeV the rapidity range is �y = 8:4. In the experimental

analysis one uses the pseudorapidity which is de�ned as:

� = � ln tan

�

2

(6.27)

In �g. 6.3 the rapidity distribution of the di�erent photoproduction processes at HERA

are shown [119, 120] together with the regions covered by the ZEUS detector. As one can

see, much of the phase space is lost in the beam pipe. The detector covers only the rapidity

range between �3:4 and +3:8.

Thus, in order to measure the total cross section one needs to correct for these losses.

This requires the knowledge of the relative contribution of the di�erent processes contribut-

ing to the total cross section. Since one can not measure them directly, one has to �nd

variables whose distribution is sensitive to the di�erent processes and �t the distributions
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Figure 6.3: The rapidity distribution of the di�erent photoproduction processes at HERA.

The regions covered by the ZEUS detector are indicated.

to the combinations of cross sections which best describe the data. The H1 collabora-

tion [121] used the variables �

max

and �

min

to determine the cross section of the di�erent

processes. The variable �

max

(�

min

) is de�ned as the maximum (minimum) pseudo rapidity

of all reconstructed charged tracks and all clusters in the calorimeter with energy larger

than 400MeV. The results of the H1 measurement, assuming that the DD cross section is

in the range 0 < �

DD

< 40�b, are shown in table 6.1

The total cross section is in good agreement with earlier measurements and with pre-

dictions of Regge motivated models [31, 18], as can be seen from �gure 6.4.

Table 6.1: Cross{section for the di�erent di�ractive contributions at W = 200 GeV.

process cross section (�b)

�(
p ! V p) 17:1 � 4:3

�(
p ! Xp) 23:4 � 11:3

�(
p ! V Y ) 8:7 � 3:6

�(
p! XY ) 20 � 20

di�ractive (el + SD + DD) 69:2 � 13:3

non{di�ractive 96:1 � 17:9

total 165:3 � 11:2
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Figure 6.4: The total photoproduction cross section measurements at HERA and at lower

energies, compared to di�erent models.

6.3.1 Ratios of cross sections

It is of interest to compare [59] the relative abundance of processes in 
p with those in

other hadronic reactions. To this end we present in �gure 6.5(a) the ratio of the elastic to

total cross section for �pp, �p, Kp and 
p reactions. As expected, the ratio for �pp is larger

than for the �p and the Kp case. The 
p ratio, though having large errors, is closer to

the meson initiated reactions, in accordance with VDM expectations. It is however a bit

on the low side, since at the HERA energies one would expect this ratio to be somewhat

larger than the measured ones.

In �gure 6.5(b) the ratio of single di�raction to total cross section is presented for �pp

and 
p. The ratios for 
p are somewhat larger than what one would naively expect from

VDM. The slight de�ciency of the elastic ratio and the access in the single di�raction case

may be correlated and might be due to the way the processes are de�ned in photoproduc-

tion. The traditional de�nition of the elastic photoproduction reaction includes only the

�rst three lightest vector mesons �

0

, ! and �. Higher vector mesons are included in the

single di�raction channel. In view of the slight deviations of the photoproduction results

from the expectations, one might have to rede�ne the exact meaning of elastic and single

di�raction in photoproduction.
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Figure 6.5: The contribution of the (a) elastic and (b) single di�raction processes relative

to the total cross section for hadron{proton and 
{proton interactions.

6.4 Large rapidity gap events in DIS

The di�raction of the real photon can be clearly understood following the discussion pre-

sented in chapter 5, where a real photon can 
uctuate into a �qq pair and acquire a hadronic

structure before interacting with the proton and thus producing in some of the time a

di�ractive process. Due to the shorter 
uctuation time expected for the virtual photon

case, it should behave like a point{like structureless object which does not di�ract.

It thus came as a big surprise when events of the kind presented in �gure 6.6 were

discovered [20, 21] in DIS NC processes. These events had a large rapidity gap between

the proton direction and the �rst observable particle produced in the collision. None of the

Monte Carlo generators written for the HERA region could predict the frequency of these

events, as was shown earlier in �gure 1.10.

Are these large rapidity gap indeed di�ractive? Why did one not expect earlier to see

large rapidity gaps near the proton direction? In a DIS reaction the virtual photon hits

one parton of the proton and produces what one calls the current jet. However due to the

large colour forces the region between the current jet and the proton remnant is �lled with

radiated gluon and thus if one looks for instance at the energy 
ow [122, 123] as function

of the pseudo rapidity, the forward region, which is the proton direction, is also �lled with

energy deposition in a regular DIS event. This can be seen in �gure 6.7 where the energy
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Figure 6.6: A DIS NC event in the ZEUS detector which has a large rapidity gap between

the outgoing proton and the other produced particles in the ep collision.


ow is presented [122] for di�erent x;Q

2

regions. The open data points are DIS events.

When however the virtual photon interacts with a colour singlet object, as would be

the case in a di�ractive process, the gluon radiation in the region between the current jet

and the proton remnant is strongly suppressed and thus there should be no energy 
ow in

the forward region. This is seen from the distribution of the full data points in �gure 6.7,

which have been selected as those events having �

max

< 1:8, meaning large rapidity gap

events.

How can one be sure that these large rapidity gap events are due to a colour singlet

object which is exchanged in di�ractive reactions and not for instance due to the exchange

of a pion, which is also a colour singlet object? One of the expected features of di�ractive

processes is a very slow energy dependence. Indeed the large rapidity gap events show this

feature. In �gure 6.8 one sees [124] on the right hand side the ratio of the large rapidity

gap events to the inclusive DIS events as a function of Bjorken{x for constant Q

2

regions,

which is equivalent of plotting the ratio as function of the 


�

p cms energy squared W

2

.

Indeed the ratio is very slowly changing with energy and seems to have roughly the same

value in all the four Q

2

regions.

Another feature of the large rapidity gap events was that their M

X

dependence was

consistent with that expected from a di�ractive process.

One could actually have anticipated the presence of di�raction in DIS, using the fol-

lowing argument. At high energies or equivalently in the low x region studied at HERA,

the 
uctuation time of the virtual photon into a state of mass m

�qq

� Q

2

is [125]:

t

f

�

1

2m

p

x

(6.28)

where m

p

is the proton mass. Thus in the HERA regime, a photon of virtuality as high

as Q

2

� 2 � 3 � 10

3

GeV

2

can 
uctuate into a �qq pair, which will survive till arrival on
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Figure 6.7: The energy 
ow of DIS events without a large rapidity gap (open dots) and

those with a large rapidity gap (�

max

< 1:8, full dots), for di�erent x;Q

2

bins.

the proton target. Therefore even highly virtual photons can produce di�ractive processes

which will look very similar to those in the real photon case.

Thus the large rapidity gap events have all the features expected from events produced

in a di�ractive process and one can interpret the interaction as that of a virtual photon

interacting with a Pomeron, as described in the following diagram:

A

p

e

p

IP

e




�

X

(6.29)

This diagram resembles that of the 


�


 case, discussed in the earlier chapter and which
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Figure 6.8: The F

2

structure function for the inclusive DIS sample (open circles) and for

the large rapidity gap events (full dots) as function of Bjorken{x, for �xed Q

2

intervals.

On the right hand side of the �gure, their ratio is plotted as function of x for the same Q

2

intervals.

allowed to study the structure of the photon. Can we use this picture to learn about the

structure of the Pomeron? Does the Pomeron have substructure?

6.5 DIS on the Pomeron

The �rst indication that the Pomeron might have a partonic substructure was reported

by the UA8 experiment [126, 127]. Figure 6.9 presents the x of two{jet events in di�rac-

tive proton dissociation and shows that an unexpected large fraction of the Pomeron's

momentum participates in the hard scattering.

At HERA [128, 129] one can also see events with jets. In �gure 6.10(a) one can see

an example of a DIS NC one{jet event which has a large rapidity gap. An example of a

two{jet event with large rapidity gap is seen in �gure 6.10(b).

In order to see whether these jets come from a hard scattering, one looks at the distri-

bution of the transverse energy, which is shown in �gure 6.11.

The observation of high E

T

jets in the 


�

p system for the large rapidity gap events
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Figure 6.9: The x of two{jet events in di�ractive proton dissociation in the UA8 experiment.
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Figure 6.10: (a) Transverse energy deposition in �{� space for a large rapidity gap event

with one hadronic jet balancing the electron's transverse momentum. (b) A similar display

for a large rapidity gap two{jet event.
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Figure 6.11: The distribution of the total hadronic transverse energy seen in the calorime-

ter E

T

, for DIS events with a large rapidity gap and those with, in addition, � 1 (hashed)

and � 2 jets (cross-hashed). On the left hand side, the quantity in the ep frame is presented

while on the right hand side, in the 


�

p frame.

where there is a noted absence of colour 
ow, indicate that a natural interpretation is

the interaction of the virtual photon with partons in a colourless object inside the proton,

believed to be the Pomeron.

6.5.1 Kinematical variables

When describing the inclusive cross section of a DIS event one usually uses the two variables

x and Q

2

. In the di�ractive process shown in �gure 6.12 one uses additional variables. One

has the four momentum transfer squared at the proton vertex t de�ned as:

t = (P � P

0

)

2

(6.30)

The fraction of the proton momentum carried by the Pomeron is de�ned as:

x

IP

=

(P � P

0

)q

pq

'

M

2

X

+Q

2

W

2

+Q

2

(6.31)

Another variable is �, which is the momentum fraction of the struck quark within the

Pomeron:

� =

x

x

IP

=

Q

2

M

2

X

+Q

2

(6.32)
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Figure 6.12: Diagram of a di�ractive event.

6.5.2 The di�ractive structure function

With these kinematical variables one can de�ne the di�ractive structure function in a

similar way to that of the inclusive DIS structure function, through the di�erential cross

section. In order to do so we shall use the following four variables: �, Q

2

, x

IP

and t.

d

4

�

di�

d�dQ

2

dx

IP

dt

=

2��

2

�Q

4

h�

1 + (1� y)

2

�

F

D(4)

2

� y

2

F

D(4)

L

i

(1 + �

Z

)(1 + �

r

) (6.33)

where � is the electromagnetic coupling constant and the �

i

denote corrections due to Z

0

exchange and due to radiative corrections which are small in the measured range. The

contribution of F

L

to the di�ractive cross section is not known but by restricting the

measured y range to small values it can be neglected.

When t is not measured, an integration over t is performed and one determines F

D(3)

2

through the relation:

d

3

�

d�dQ

2

dx

IP

'

2��

2

�Q

4

[1 + (1� y)

2

]F

D(3)

2

(�;Q

2

; x

IP

) (6.34)

where one neglects the e�ect of F

L

and the additional contributions noted above.

6.5.3 Factorization and the Pomeron structure function

The di�ractive structure function de�ned above is describing the inclusive ep di�ractive

process. We can now go one step further and interpret the di�ractive structure function as

consisting of two parts. One in which a 
ux of Pomerons are emitted from the proton and

another part due to the Pomeron structure function. This is reminiscent of the procedure

taken when discussing the photon structure function. In order to do so, one has to assume
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that the Pomeron can be treated like a particle and abides to the factorization hypothesis.

If so, we can de�ne the Pomeron structure function in the following way:

F

D(3)

2

(�;Q

2

; x

IP

) = f(x

IP

)F

IP

2

(�;Q

2

) (6.35)

where f(x

IP

) is the function describing the 
ux of the Pomerons emitted from the proton.

According to the Regge model the 
ux f(x

IP

) should have an x

IP

dependence like:

f(x

IP

) �

1

x

n
IP

(6.36)

The exponent n is connected to the Pomeron trajectory through the relation:

n = 2�

IP

(t)� 1 (6.37)

Since at present t is not measured, the exponent n gives a t{averaged slope of the Pomeron

through relation 6.37. One can get the Pomeron intercept by assuming a di�ractive slope

and the slope of the Pomeron trajectory.

In order to check the factorization hypothesis, the di�ractive structure function F

D(3)

2

is measured as function of x

IP

for �xed � and Q

2

intervals. If factorization holds, there

should be one universal curve describing all data, up to a normalization factor. This is

shown [124] in �gure 6.13, where indeed one sees that in the range of variables presented in

this �gure the factorization hypothesis seems to be borne out by the data. The slope of the

x

IP

dependence obtained by the H1 collaboration [124] is n = 1:19�0:06(stat)�0:07(syst).

The ZEUS collaboration [130] �nds a slope of n = 1:30 � 0:08(stat)

+0:08

�0:14

(syst). We will

return to these results later.

6.5.4 The partonic structure of the Pomeron

In an Ingelman{Schlein [131] type of model the Pomeron consists of partons like a regular

particle. How can one get information about the quark and gluon contents of the Pomeron?

We will discuss three methods to probe the partonic content of the Pomeron.

Assuming the momentum sum rule

If the Pomeron behaves like a regular particle which ful�lls the momentum sum rule, one

can use the 
ux normalization, either that of Donnachie and Landsho� [132, 133] or that

of Ingelman and Schlein [131], and assume that the Pomeron consists only of quarks. In

that case the quarks saturate all the momentum of the Pomeron. The predictions of this

assumption can be seen [130] as the lines in �gure 6.14, while the data are presented as

dots.

Note that non{di�ractive background, as well as a 15% estimate of double dissociation

has been subtracted from the data. As one sees, the data lies below the predictions in-

dicating that the quarks carry only part of the momentum of the Pomeron. The amount

depends on the expression used for the normalization of the 
ux.
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Figure 6.13: The di�ractive structure function F

D(3)

2

as a function of x

IP

for �xed � and

Q

2

intervals.

Di�ractive hard photoproduction

One can get information about the partonic content of the Pomeron by studying [134]

inclusive jet cross sections for events with large rapidity gaps with respect to the proton

direction from the reaction ep! jet +X with no detected electron in the �nal state, thus

classi�ed as photoproduction.

When one compares the measured cross sections with pQCD calculations of di�ractive

hard processes, as done in �gure 6.15, one may conclude that the Pomeron consists of a large

fraction of hard gluons. This conclusion is model dependent. However, if one combines

the photoproduction measurement with the results on the di�ractive structure function in

deep inelastic scattering, discussed above, one �nds experimental evidence for the gluon

content of the Pomeron. One �ts the photoproduction cross section to the expression:

d�

d�

jet

= BG+�

IP

fc

g

� (hard gluons) + (1� c

g

) � (hard quarks)g (6.38)

where BG is the non{di�ractive background, c

g

is the fraction of hard gluons and

P

IP

is

the momentum sum of the Pomeron. The results of the �ts are combined with those of the
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Figure 6.14: The results of F

D(3)

2

compared to an Ingelman{Schlein type model for which

the momentum sum rule (MSR) for quarks within the Pomeron is assumed.

DIS di�ractive structure function. This is shown [134] in �gure 6.16 from which one may

conclude that between 30% and 80% of the momentum of the Pomeron carried by partons

is due to hard gluons.

Note that this is independent of the normalization of the 
ux of Pomerons from the

proton and does not rely on assumptions on the momentum sum of the Pomeron.

Evolution equation for the Pomeron structure function

The third method of getting information about the partonic composition of the Pomeron

is to assume that one can apply the DGLAP equations also for the Pomeron structure

function and perform a global QCD analysis like in the proton case, using the equations 4.36

and 4.37.

Assuming factorization it is possible to integrate F

D(3)

2

(�;Q

2

; x

IP

) over the measured

region of x

IP

to get a modi�ed Pomeron structure function

~

F

IP

2

(�;Q

2

), where the tilde sign
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Figure 6.15: Measured di�erential cross section for inclusive jet production for E

jet

T

> 8GeV

in the kinematic region Q

2

< 4GeV

2

. The shaded band displays the uncertainty due to

the energy scale of the jets. The lines are predictions using the POMPYT generator for

various parameterizations of the Pomeron parton densities.

indicates that the Pomeron structure function is only for a limited x

IP

range:

~

F

IP

2

(�;Q

2

) �

Z

x

IP

2

x

IP

1

F

D(3)

2

(�;Q

2

; x

IP

) dx

IP

(6.39)

At present the measured range [124] is over x

IP

1

= 3� 10

�4

and x

IP

2

= 0:05.

The Pomeron structure function

~

F

IP

2

(�;Q

2

) is shown [135] in the left hand side of

�gure 6.17 as function of Q

2

for di�erent � regions. At low � it shows the positive scaling

violation, just like for the proton case. However at high �, it still shows a positive scaling

violation, unlike the proton case and more like the photon case. The only way to get such

a behaviour, assuming the homogeneous DGLAP equations to hold also for the Pomeron,

is to assume a substantial gluon component in the structure of the di�ractive exchange,

as shown on the upper right hand side of �gure 6.17. As Q

2

increases the fraction of the

Pomeron momentum carried by the gluons decreases somewhat but still remains in excess

of 80%, as seen in the bottom right hand side of the �gure.
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Figure 6.16: The plane of the variables �

IP

(momentum sum) and c

g

(relative contribution

of hard gluons in the Pomeron). The thick solid line displays the minimum for each value

of c

g

obtained from the �

2

�t (the shaded area represents the 1 � band around these

minima) to the measured d�=d�

jet

(�

had

max

< 1:8) using the predictions of POMPYT. The

constraint imposed in the �

IP

� c

g

plane by the measurement of the di�ractive structure

function in DIS (F

D(3)

2

) for two choices of the number of 
avours (upper dot-dashed line

for �

IPq

= 0:40 and lower dot-dashed line for �

IPq

= 0:32) is also shown. The horizontal

dashed line displays the relation �

IP

= 1.

6.5.5 The Pomeron intercept from DIS di�raction

It is of interest to compare the Pomeron intercept as extracted from the DIS di�ractive

reactions to that obtained from photoproduction and from hadronic di�ractive processes.

We will present here two methods of obtaining the Pomeron intercept in DIS. One is using

the relation 6.37 which connects the exponent n of the Pomeron 
ux with its trajectory.

The other is to look at the W dependence of the di�erential cross section with respect to

the di�ractive mass M

X

. One can of course also use the W dependence of other reactions,

like the total 


�

p cross section or that of exclusive vector meson production in DIS, to get

information about the Pomeron intercept. This will be discussed in the next chapter.
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Figure 6.17: The Pomeron structure function

~

F

IP

2

(�;Q

2

) as function of Q

2

for �xed � regions

(left hand side). The gluon momentum density distribution at a scale of Q

2

= 5GeV

2

(upper right hand side). The evolution of the fractional momentum carried by the partons

in the Pomeron as function of Q

2

(lower right hand side).

�

IP

from n

The exponent n of the Pomeron 
ux is related to the Pomeron trajectory through equa-

tion 6.37. In order to obtain the Pomeron intercept from the t{integrated value of n one

usually assumes a di�ractive slope of about 5{6GeV

�2

and a slope of the Pomeron trajec-

tory �

0
IP

� 0:25{0:3GeV

�2

[30].

The values presented [124, 130] in section 6.5.3 were based on low statistics data and thus

had large errors for carrying out a meaningful comparison. The higher luminosity data allow

a more detailed study of the behaviour of n. The value of n is shown [136] in �gure 6.18(a) as

function of �, integrated over the measured Q

2

range and in (b) as function of Q

2

integrated

over the measured � range. The improved precision and enhanced kinematic range clearly

reveals deviations from the universal factorization observed in �gure 6.13. While there is

no obvious dependence on Q

2

, one sees that the value of n decreases signi�cantly with �

for � � 0:3, corresponding to large M

X

values. One possible explanation [135] of this
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Figure 6.18: The dependence of the exponent of the Pomeron 
ux n on (a) � and on (b) Q

2

.

decrease, without abandoning the hypothesis of factorization, is to assume that in addition

to the Pomeron there is a small contribution from the exchange of meson trajectories

such as the f

0

2

(1270), for which one would expect n � 0. With this assumption one

can explain the behaviour of n by a superposition of a Pomeron trajectory having n

IP

=

1:29� 0:03(stat)� 0:07(syst) and n

M

= 0:3� 0:3(stat)� 0:6(syst). From these values and

from using the di�ractive slope and Pomeron trajectory slope as mentioned above, one

gets [135] a Pomeron intercept:

�

IP

(0) = 1:18 � 0:02(stat)� 0:04(syst) (6.40)

The intercept for the meson trajectory comes out from the �t to be �

M

(0) = 0:6�0:1(stat)�

0:3(syst), consisted with the value expected for the trajectory associated with the f

2

meson.

With the use of the leading proton spectrometer (LPS) [4] one can actually measure

the t distribution of the di�ractively produced DIS reactions in a limited � range. This

was done [137] for the kinematic range 4 < Q

2

< 30GeV

2

, 70 < W < 210GeV and

0:02 < � < 0:4 and is displayed in �gure 6.19. The resulting value of the slope is b =

5:9 � 1:3(stat)

+1:1

�0:7

(syst)GeV

�2

. The LPS data have been used to extract the di�ractive

structure function and yielded [137] an exponent value of n

IP

= 1:28�0:07(stat)�0:15(syst)

which can be converted to a Pomeron slope of

�

IP

(0) = 1:17 � 0:04(stat)� 0:08(syst) (6.41)
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7

Figure 6.19: Di�erential cross section d�=dt for di�ractive DIS events with a leading proton

with a longitudinal momentum fraction x

L

> 0:97, in the range 4 < Q

2

< 30GeV

2

,

70 < W < 210GeV and 0:02 < � < 0:4.

in good agreement with the value in 6.40. Note that in case of the LPS measurement the

outgoing proton is detected and thus one has no corrections for background or for double

dissociation processes.

�

IP

from the W dependence of the di�ractive cross section

One can use the reaction 


�

p ! XN , where N is a nucleonic system with M

N

< 4GeV,

to measure the di�ractive di�erential cross section d�

di�

=dM

X

. This di�erential cross

section has a W dependence which in the Regge model is given by (W

2

)

(2�

IP

�2)

. A novel

method of extracting the di�ractive cross section from the non{di�ractive background is the

realization that for the latter low lnM

2

X

of the hadronic system observed in the detector

are exponentially suppressed. This can be seen [138] in �gure 6.20 for the W range of

W = 60�245GeV at Q

2

= 31GeV

2

. One sees that the non{di�ractive contribution moves

to larger lnM

2

X

values proportional to lnW

2

.

The di�erential cross section for the di�ractive DIS reaction was determined as function

of W for di�erentM

X

and Q

2

regions. In each (M

X

; Q

2

) bin, a �t of the form:

d�

di�

(M

X

;W;Q

2

)

dM

X

� (W

2

)

(2�

IP

�2)

(6.42)
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Figure 6.20: Distribution of lnM

2

X

for the W intervals indicated at Q

2

= 31GeV

2

. The

solid lines show the extrapolation of the non{di�ractive background.

was performed, yielding a series of values for the Pomeron intercept for each (M

X

; Q

2

) bin.

One gets intercept values consistent with those mentioned in the earlier section.

How can one understand the Pomeron intercept values in DIS? They seem to be signif-

icantly higher than the value of 1:08 obtained from photoproduction or hadronic reactions.

Is it a di�erent Pomeron? Are there two Pomerons? Does one approach the BFKL Pomeron

of an intercept of 1:5 when measuring at higher Q

2

values? We will discuss these questions

in the next chapter.

6.6 Summary

In this chapter we discussed the following issues:

127

� We de�ned some basic concepts connected with di�ractive processes and showed

their connection with the Regge formalism. In particular we discussed the trajectory

intercept and its relation to the total and di�ractive cross section. In addition we

discussed the shrinkage of the elastic scattering slope.

� The di�ractive phenomena is clearly observed in photoproduction reactions with a

rate similar to that in hadronic reactions.

� Di�ractive processes are present also in DIS reactions due to the 
uctuations of highly

virtual photons in the low x region. These processes are observed as a high rate of

large rapidity gap events in DIS reactions. This opens up the possibility of studying

DIS on the Pomeron.

� Observation of jets in DIS di�ractive processes indicate that one could interpret them

as the interaction of the virtual photon with partons within the Pomeron.

� We de�ned the di�ractive structure function and checked that experimentally the

factorization hypothesis holds in case of the Pomeron, over the measured kinematic

region.

� The partonic content of the Pomeron was studied and evidence was shown for a

large gluonic component in the Pomeron, carrying a large fraction of the Pomeron

momentum.

� The Pomeron intercept as determined in DIS processes seems to be signi�cantly larger

than that determined from photoproduction and hadronic total cross section.
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Chapter 7

Interplay Between Soft and Hard

Interactions

This chapter deals with the interrelations of soft and hard processes. We know how to

calculate hard processes by using pQCD. However when we compare the calculation with

data we would like to isolate only the hard part. Do we really know how to do it? Are the

two processes completely separable? How can one de�ne hard reactions? These questions

will be discussed in this chapter. For completeness and easy reading, some of the arguments

presented in the earlier chapters will be repeated.

7.1 Introduction

One of the aims of building HERA was to study the deep inelastic scattering (DIS) region

with data at low x and high Q

2

. Yet, recently e�orts are being made to get to lower and

lower Q

2

values in the low x region in order to study the transition from photoproduction to

the DIS regime. The main motivation for looking at the transition region is the following:

at Q

2

= 0 the dominant processes are of non{perturbative nature and are well described

by the Regge picture. As Q

2

increases, the exchanged photon is expected to shrink, one

expects perturbative QCD to take over and therefore to be able to make exact calculations

to confront with data. What can one learn from the transition between soft processes (low

virtuality) and hard processes (high virtuality)? Where does the change take place? Is it

a sudden transition or a smooth one? The transition should shed light on the interplay

between soft and hard interactions.

7.2 Operational de�nition

It is not completely clear what one means by soft and hard interaction. One would have

hoped that by going to the region of DIS one has a better way of probing the hard inter-

129

actions. As a guideline to help distinguish the two, let us de�ne some operational criteria

for what we would consider as a soft and as a hard process. We can not do it in the most

general terms, but let us concentrate on some selected measurements: total cross sections

and elastic cross sections, the �rst being the most inclusive and the latter the most exclu-

sive measurement we can make. At high energies, both these processes are dominated by

a Pomeron exchange.

As discussed earlier, the total �

�

p;K

�

p; pp; �pp and 
p cross sections show a slow de-

pendence on the center of mass energy W , consistent with the so{called soft pomeron [31],

having a trajectory

�

IP(soft)

= 1:08 + 0:25t (7.1)

The hard or the perturbative Pomeron, also called the Lipatov Pomeron or the BFKL [60,

61, 62] Pomeron, is expected to have a trajectory

�

IP(hard)

= 1 +

12 ln 2

�

�

S

(7.2)

The de�nition of the hard IP is quite vague. First, the value of the intercept which is

usually taken as 1:5 is a very rough estimate using the expression of the expected power

of the reggeized gluon. Using a leading order calculation in ln 1=x, the distribution of

the momentum density of the gluon is expected to have the form xg(x;Q

2

) � x

��

where

� = �

S

=0:378. Although usually the value of � is taken to be 0:5 [139, 140], one should

note that this requires a value of �

S

= 0:18, which happens only at large Q

2

, whereas the

BFKL calculation is expected to be valid for moderate Q

2

values. The second comment

about the assumed hard IP form is the fact that the slope of this trajectory is taken to

be zero. The reason for this assumption can be understood intuitively by the fact that

the slope is inversely proportional to the average transverse momentum square of hadrons,

which is expected to be much larger in hard interactions compared to soft ones.

Following the above de�nitions of the soft and the hard Pomeron, we have some expec-

tations for the behaviour of the total 


�

p cross section, �




�

p

tot

, and the elastic one, which in

the HERA case is the reaction �(


�

p! V p). These are presented in table 7.1.

Table 7.1: Expected behaviour of soft and hard processes.

quantity W dep soft hard

�




�

p

tot

(W

2

)

�

IP

(0)�1

(W

2

)

0:08

(W

2

)

0:5

slope b of d�=dt � 2�

0

lnW

2

shrinkage no shrinkage

�(


�

p! V p) �

2
tot

=b (W

2

)

0:16

=b (W

2

)

1

Before turning to the actual data, let us review some of the models relevant for the

low x and low Q

2

region.
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7.3 The models for the low x low Q

2

region

7.3.1 Donnachie and Landsho� (DL)

Donnachie and Landsho� [31] found a simple Regge picture describing all hadron{hadron

cross sections with a sum of two terms, that of a Pomeron exchange and that of a reggeon.

They showed this picture to describe also real photoproduction cross sections. They ex-

tended the picture for virtual photons (


�

; Q

2

< 10GeV

2

) to see what is the expected

contribution of the non{perturbative mechanism to higher Q

2

[141, 74]. The main interest

is in the low x region where the Pomeron dominates and thus the question of interest is

what is the contribution of the `soft' pomeron at intermediate Q

2

.

7.3.2 Capella, Kaidalov, Merino, Tran{Than{Van (CKMT)

In this picture [142, 143] there is no `soft' or `hard' Pomeron, there is just one `bare'

Pomeron. At low Q

2

absorptive corrections (rescattering) give a Pomeron with an e�ective

intercept of 1+�

0

(�

0

� 0:08). If one uses an eikonal approach, the bare intercept becomes

1 + �

1

(�

1

� 0:13). A more complete absorptive calculation results in 1 + �

2

(�

2

� 0:24).

The absorptive corrections decrease rapidly with Q

2

. They parametrize the data with this

behavior of the Pomeron up to Q

2

< 5GeV

2

and use it then as initial conditions to a pQCD

evolution.

7.3.3 Badelek and Kwiecinski (BK)

Badelek and Kwiecinski [144, 145] describe the low Q

2

region by using the generalized

vector dominance model (GVDM): the proton structure function F

2

is represented by the

contribution of a large number of vector mesons which couple to virtual photons. The low

mass ones, �, !, � contribute mainly at low Q

2

, while the higher mass are determined by

the asymptotic structure function F

AS

2

which is described by pQCD. The total structure

function is given by a Q

2

weighted sum of the two components.

7.3.4 Abramowicz, Levin, Levy, Maor (ALLM)

This parameterization [18, 19] is based on a Regge motivated approach extended into the

large Q

2

regime in a way compatible with QCD expectations. This approach allows to

parametrize the whole x;Q

2

phase space, �tting all the existing data.

7.3.5 Some general comments

The DL parametrization provides a good way to check to what value of Q

2

the simple

'soft' Pomeron picture can be extended. It is not meant to be a parameterization which
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describes the whole DIS regime. The CKMT and BK parametrizations are attempts to get

the best possible presentation of the initial conditions to a pQCD evolution. The ALLM

does not use the regular pQCD evolution equation but parametrizes the whole of the DIS

phase space by a combination of Regge and QCD motivated parametrizations.

All parameterizations make sure that as Q

2

! 0 also F

2

! 0 linearly with Q

2

.

7.3.6 Details of the parametrizations

The DL parameterization

The proton structure function F

2

is given by

F

2

(x;Q

2

) � A�

�0:0808

�(Q

2

) +B�

0:4525

 (Q

2

); (7.3)

where � is the rescaled variable

� = x

 

1 +

�

2

Q

2

!

; (7.4)

with x being the Bjorken{x and the scale variable � has di�erent values for di�erent 
avors:

for u and d quarks � = 0:53GeV, for the strange quark s, � = 1:3GeV and for the charm

quark c, � = 2GeV. The two functions �(Q

2

) and  (Q

2

) make sure that the structure

function vanishes linearly with Q

2

as Q

2

! 0,

�(Q

2

) =

Q

2

Q

2

+ a

 (Q

2

) =

Q

2

Q

2

+ b

: (7.5)

The four parameters A, B, a and b are constrained so as to reproduce the total real

photoproduction data,

A

a

(�

2

)

�0:0808

= 0:604

B

b

(�

2

)

0:4525

= 1:15: (7.6)

In addition there is also a higher{twist term ht(x;Q

2

) contributing to the structure function,

ht(x;Q

2

) = D

x

2

(1 � �)

2

1 +

Q

2

Q

2
0

; (7.7)

with the parameters D = 15:88 and Q

0

= 550MeV.

The CKMT parameterization

Contrary to the DL parameterization, the CKMT assumes that the power behavior of x is

Q

2

dependent,

F

2

(x;Q

2

) = Ax

��(Q

2

)

(1� x)

n(Q

2

)+4

 

Q

2

Q

2

+ a

!

1+�(Q

2

)

+Bx

1��

R

(1� x)

n(Q

2

)

 

Q

2

Q

2

+ b

!

�

R

;

(7.8)

132



where �

R

is the Reggeon trajectory intercept, the power n(Q

2

) is given by

n(Q

2

) =

3
2

 

1 +

Q

2

Q

2

+ c

!

(7.9)

and the power behavior of x is given by

�(Q

2

) = �

0

 

1 +

Q

2

Q

2

+ d

!

: (7.10)

The constant parameters are determined by the requirement that F

2

and the derivative

dF

2

d lnQ

2

at Q

2

= Q

2
0

to coincide with that obtained from the pQCD evolution equations.

They can do so at Q

2
0

= 2GeV

2

, provided a higher{twist term is added to that of pQCD,

F

2

(x;Q

2

) = F

pQCD

2

(x;Q

2

)

 

1 +

f(x)

Q

2

!

(7.11)

for Q

2

� Q

2
0

. The values of the parameters are: A = 0:1502, a = 0:2631GeV

2

, �

0

=

0:07684, d = 1:117GeV

2

, b = 0:6452GeV

2

, �

R

= 0:415, c = 3:5489GeV

2

.

The BK parameterization

The proton structure function is written as the sum of two terms, a vector meson part (V )

and a partonic part (par),

F

2

(x;Q

2

) = F

V

2

(x;Q

2

) + F

par

2

(x;Q

2

): (7.12)

The part representing the contribution from vector mesons which couple to the virtual

photon is given by

F

V

2

(x;Q

2

) =

Q

2

4�

�

V

M

4

V

�

V

(W

2

)




2

V

(Q

2

+M

2

V

)

2

; (7.13)

where 


2

V

=(4�) is the direct photon vector meson coupling, W is the 


�

p center of mass

energy and �

V

is the total V p cross section. The sum is over all vector meson satisfying

M

2

V

< Q

2
0

, where M

V

is the mass of the vector meson and Q

0

is a parameter.

The partonic part of the structure function is given by the expression

F

par

2

(x;Q

2

) =

Q

2

Q

2

+Q

2
0

F

AS

2

(�x;Q

2

+Q

2
0

); (7.14)

where the asymptotic structure function F

AS

2

is given by pQCD at the scaled value of

�x =

Q

2

+Q

2
0

W

2

+Q

2

�M

2

+Q

2
0

; (7.15)

where M is the proton mass. In practice the parameterization uses Q

2
0

= 1:2GeV

2

and

thus sums over the contribution of the 3 lightest vector mesons �, ! and �.
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The ALLM parameterization

This parameterization attempts to cover the whole x;Q

2

region above the resonances (W

2

>

3GeV

2

), at the expense of introducing more parameters than the other parameterizations.

The proton structure function has the form

F

2

(x;Q

2

) =

Q

2

Q

2

+M

2

0

�

F

P

2

(x;Q

2

) + F

R

2

(x;Q

2

)

�

; (7.16)

where M

0

is the e�ective photon mass. The functions F

P

2

and F

R

2

are the contribution of

the Pomeron P or Reggeon R exchanges to the structure function. They take the form

F

P

2

(x;Q

2

) = c

P

(t)x

a

P

(t)

P

(1 � x)

b

P

(t)

;

F

R

2

(x;Q

2

) = c

R

(t)x

a

R

(t)

R

(1 � x)

b

R

(t)

:

(7.17)

The slowly varying function t is de�ned as

t = ln

0
@

ln

Q

2

+Q

2
0

�

2

ln

Q

2
0

�

2

1
A

: (7.18)

The two scaled variables x

P

and x

R

are modi�ed Bjorken{x variables which include mass

parametersM

P

andM

R

which can be interpreted as e�ective Pomeron and reggeon masses:

1

x

P

= 1 +

W

2

�M

2

Q

2

+M

2

P

;

1

x

R

= 1 +

W

2

�M

2

Q

2

+M

2

R

:

(7.19)

7.4 Comparison to data

7.4.1 The total 


�

p cross section, �




�

p

tot

The total 


�

p cross section, �




�

p

tot

, can be related to the proton structure function F

2

through

the relation

F

2

(x;Q

2

) =

Q

2

(1 � x)

4�

2

�

Q

2

Q

2

+ 4m

2
p

x

2

�




�

p

tot

(x;Q

2

) (7.20)

where the total 


�

p includes both the cross section for the absorption of transverse and

of longitudinal photons. In this expression the Hand [47] de�nition of the 
ux of virtual

photons is used.

Figure 7.1 presents the dependence of �




�

p

tot

, obtained through equation (7.20) from the

measured F

2

values [15, 16], on the square of the center of mass energy W

2

, for �xed

values of the photon virtuality Q

2

. The new preliminary very low Q

2

measurements of

the ZEUS collaboration [146], as well as those of the NMC collaboration [52] are included

in the �gure. Also shown are the measurements of the total real photoproduction cross
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Figure 7.1: The total 


�

p cross section as function of W

2

from the F

2

measurements for

di�erent Q

2

values. The lines are the expectations of a new ALLM type parametrization.

sections. While the data below Q

2

= 1GeV

2

show a very mild W dependence, the trend

changes as Q

2

increases. Note that for higher values of Q

2

one sees the typical threshold

behaviour for the case when W

2

< Q

2

[17]. The curves are the results of a new ALLM

type parametrization which added to the earlier data used in the previous �t data from

E665 [147] and the published HERA [148, 149] data.

Instead of comparing the data as presented in �gure 7.1 with the di�erent parameter-

izations, it is more economical as well as instructive to study the energy dependence of

the 


�

p cross section for �xed Q

2

values [59]. In order to see how the slope of the W de-

pendence changes with Q

2

, the cross section values in the region where W

2

� Q

2

were

�tted to the form �




�

p

tot

= �

1

W

2�

for each �xed Q

2

interval. The resulting values of � from

the �t are plotted against Q

2

in �gure 7.2. Similar results have been obtain by the H1

collaboration [16] who use only their own data to �t the structure function measurements

to the form F

2

� x

��

. Also included in the �gure are the recent preliminary results of the

ZEUS collaboration [146] in the region 0:2 < Q

2

< 0:8GeV

2

. One can see the slow increase

of � with Q

2

from the value of 0:08 at Q

2

= 0, to around 0:2 for Q

2

� 10 : : : 20GeV

2

followed by a further increase to around 0:3 : : : 0:4 at high Q

2

. One would clearly pro�t
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Figure 7.2: The Q

2

dependence of the parameter � obtained from a �t of the expres-

sion �




�

p

tot

= �

1

W

2�

to the data in each Q

2

bin. The curves are the expectations of the

parameterizations mentioned in the text.

from more precise data, expected to come soon.

The curves are the expectations of the DL, BK, CKMT, and the updated ALLM pa-

rameterization, which includes also some of the recent HERA data in its �t. In addition,

the expectations of the GRV [73], CTEQ [72] and MRSG [70] are also shown.

The DL parameterization can describe the data up to Q

2

� 1GeV

2

. All the others give

in general the right features of the Q

2

behavior with a smooth transition from soft to hard

interactions with an interplay between the two in the intermediate Q

2

range.

7.4.2 Vector meson production in 
p and in 


�

p

Given the behaviour of the �




�

p

tot

data, what kind of energy behaviour would one expect for

the `elastic' process 


�

p! V p for real and virtual photons? In case of photoproduction we

have seen that the total cross section follows the expectations of a soft DL type IP. Thus

if one takes into account the shrinkage at the HERA energies, one expects �(
p ! V p) �

W

0:22

. In case of DIS production of vector mesons in the range Q

2

� 10 : : : 20GeV

2

, the

expectations are �(


�

p! V p) � W

0:8

, since in this case one expects almost no shrinkage.

Figure 7.3 presents the measurements of the total and `elastic' vector meson photopro-
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Figure 7.3: The total and `elastic' vector meson photoproductionmeasurements as function

of W , for the vector mesons �; !; � and J=	. The curve to the total photoproduction cross

section is the DL parametrization (W

0:16

). The other lines are curves of the form W

0:22

and W

0:8

.

duction cross sections as function of the 
p center of mass energy W . As one can see, the

high energy measurements of the total and the � [150, 151], ! [152] and � photoproduc-

tion [153] follow the expectations of a soft DL type Pomeron. However, the cross section

for the reaction 
p ! J=	p [85, 154] rises much faster than the expected W

0:22

rise from

a soft reaction. In fact, it can be well described by a power behaviour of � W

0:8

. This

surprising behaviour can be understood if one considers the scale which is involved in the

interaction. In case of photoproduction reaction, the scale cannot be set by the photon

since Q

2

= 0. The scale is set by the mass of the vector meson and by the transverse

momentum involved in the reaction. Thus, for the lighter vector mesons the scale is still

small enough to follow a soft behaviour. However, the mass of the J=	 is large enough to

produce a scale which would be considered as a hard interaction.

The reaction 


�

p ! �

0

p has been measured [155, 156] at six Q

2

values from 0:48

to 20GeV

2

and is shown in �gure 7.4. One observes that theW dependence gets steeper as

Q

2

increases. In order not to be dependent on the normalizations of di�erent experiments,

the ZEUS data alone has been �tted to a W

a

form. Though the data has quite large errors

which is re
ected in the large errors on the power a, one sees the trend of increasing a
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Figure 7.4: The dependence of the cross section for the reaction 


�

p ! �

0

p on W , for

di�erent Q

2

values.

with Q

2

.

The reaction 


�

p ! �p has been measured [157] for Q

2

of 8:2 and 14:7GeV

2

and is

presented in �gure 7.5. In this case, one has to use the lower W NMC data to get the

slope of the energy dependence. It is steeper than that expected for a soft process and is

compatible with theW

0:8

observed for the photoproduction J=	 case. For comparison, the

Q

2

= 0 photoproduction with the shallow W dependence is also shown.

The J=	 vector meson already shows a steep W dependence for the photoproduction

case. In �gure 7.6 the photoproduction cross section is shown together with measurements

of the reaction 


�

p! J=	p at Q

2

= 10 and 20GeV

2

.

These results are consistent with the Q

2

dependence of � as shown in �gure 7.2.

The ratio of the higher mass vector mesons to �

0

cross sections is expected according

to SU(4) to be:

�

0

: ! : � : J=	 = 9 : 1 : 2 : 8 (7.21)

This relation is quite badly broken in photoproduction for � and for J=	. For the case of

the � it is about 0:07 and for the J=	 it is somewhat W dependent and at the HERA W

range it is about 0:005 for Q

2

= 0. As Q

2

increases one expects the SU(4) relations to be

restored. For much higher Q

2

values one expects these relations to be broken again in the

opposite direction.

In �gure 7.7 the ratio R(V

0

=�

0

) is presented as function of the vector meson mass
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Figure 7.5: The dependence of the cross section for the reaction 


�

p ! �p on W , for

di�erent Q

2

values.

squaredM

2

V

, for di�erentQ

2

values as indicated next to the data points. One observes �rst

that as the mass of the vector meson gets larger, the ratio becomes smaller and reaches a

value of < 10

�3

for the 	

0

. As Q

2

increases the ratio get larger. It reaches close to the

expected value of 2 : 9 for the �, close to 0:4 for the �

0

, and � 1 for the J=	.

What can we learn from the behaviour of the slope? Does one see any shrinkage? It is

not easy to conclude about that since there is no single experiment that has enough of a

W range lever arm to measure shrinkage in one experiment. One thus is dependent on the

systematics of di�erent experiments. The photoproduction data of all three vector mesons

�

0

, ! and � are consistent with shrinkage (see �gure 7.8). What about the vector mesons

produced in DIS?

The dependence of the slope of the di�erential cross section for the reaction 


�

p! �

0

p

on W , is shown in �gure 7.9 for 8 < Q

2

< 50GeV

2

(H1) and 5 < Q

2

< 30GeV

2

(ZEUS).

The NMC data point is at Q

2

� 10GeV

2

. The HERA data alone can not, with the present

measurement errors, distinguish between the shrinkage or non{shrinkage of the slope. Even

with the addition of the NMC point the situation is not clear and one has to await more

precise data.

One does however see a decrease of the slope with Q

2

in case of the exclusive �

0

pro-

duction in DIS.

One does however see a decrease of the slope with Q

2

in case of the exclusive �

0

pro-

duction in DIS. The slope seems to decrease from a value of about 10GeV

�2

at Q

2

= 0
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Figure 7.6: The dependence of the cross section for the reaction 


�

p ! J=	p on W , for

di�erent Q

2

values.

to about 5GeV

�2

at about Q

2

= 20GeV

2

. This result is consistent with the fact that as

the scale gets larger, the reaction becomes harder and in case of hard processes all vector

mesons are expected to have the same universal slope. This e�ect is nicely seen in the case

of J=	, where due to its large mass there is a hard scale already at Q

2

= 0, and thus the

slope shows no change with Q

2

.

It is worthwhile to note that the properties observed for vector mesons have a natural

explanation in QCD, where vector meson production with a large scale can be described by

an exchange mechanism of a Pomeron consisting of two gluon. For example, in the case of

the model of Brodsky et al. [158] one expects that the di�erential �

0

cross section produced

by longitudinal photons should be proportional to the gluon distribution in the proton:

d�

dt

(


�

L

p! �

0

p) �

[�

S

(Q

2

)xg(x;Q

2

)]

2

Q

6

C

�

(7.22)

Since at low x values [�

S

(Q

2

)xg(x;Q

2

)]

2

� Q and since the k

T

dependence of the �

0

wave

function introduces [159] anotherQ

0:5

dependence, the expectations of the QCD calculation

are that the data should have a Q

n

dependence, where n = 4:5 : : : 5. The ZEUS [155]

experiment �nds n = 4:2 � 0:8

+1:4

�0:5

and the H1 [156] experimental result is n = 4:8 � 0:8

(statistical error only). The x dependence of the ZEUS [155] measurement is consistent
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Figure 7.7: The ratio of the cross sections of vector mesons �, �

0

, J=	 and 	

0

to �

0

at

di�erent values of Q

2

as indicated in the �gure.

with their gluon determination from their F

2

measurement.

7.5 DIS processes - hard or soft?

What have we learned from the behavior of the data with Q

2

? What are we actually

measuring? At low Q

2

the photon is known to have structure. Does F

2

still measure the

structure of the proton? Bjorken [160] pointed out that physics is not frame dependent.

The structure of the proton alone has no meaning. One has to study the 


�

p interaction.

Let us look at the structure of a photon. It is a well known fact that real photon behave

like hadrons when interacting with other hadrons. One way to understand this is by using

the argument of Io�e [87, 88]: the photon can 
uctuate into a q�q pair. The 
uctuation

time is given by

t

f

=

2E




m

2
q�q

(7.23)

where E




is the photon energy in the rest system of the proton andm

q�q

is the mass of the q�q

system into which the photon 
uctuates. The Vector Dominance Model assumes that the


uctuation of the photon is into vector mesons, m

q�q

' m

V

, where m

V

is the vector mesom

mass. As long as t

f

� t

i

, where the interaction time t

i

� r

p

, with r

p

being the proton

radius, the photon interacts as if it were a hadron. When the photon becomes virtual with

141

.

Figure 7.8: The dependence of the slope of the di�erential cross section

a negative square mass of Q

2

, its 
uctuation time becomes

t

f

=

2E




m

2
q�q

+Q

2

(7.24)

and thus at low energies and moderate Bjorken x, the 
uctuation time becomes small and

the virtual photon behaves like a point{like structureless object, consistent with the DIS

picture described above.

However, at high energies or equivalently in the low x region studied at HERA, the


uctuation time of a virtual photon can be expressed as

t

f

�

1

2Mx

(7.25)

where M is the proton mass. This can be derived easily from formula 5.1 assuming m

2
q�q

�

Q

2

[125]. Thus in the HERA regime, a photon of virtuality as high as Q

2

� 2�3�10

3

GeV

2

can 
uctuate into a q�q pair, which will survive till arrival on the proton target.

The photon can 
uctuate into typically two con�gurations. A large size con�guration

will consist of an asymmetric q�q pair with each quark carrying a small transverse mo-

mentum k

T

(�g. 7.11(a)). For a small size con�guration the pair is symmetric, each quark
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Figure 7.9: The dependence of the slope of the di�erential cross section for the reaction
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Figure 7.10: The dependence of the slope of the di�erential cross section for the reac-

tions 


�

p ! �

0

p (left) and 


�

p ! J=	p (right) on Q

2

, for < W >� 80GeV (�

0

) and

90GeV (J=	).

143

Figure 7.11: Fluctuation of the photon into a q�q pair in (a) asymmetric small k

T

con�gu-

ration, (b) into a symmetric large k

T

con�guration

having a large k

T

(�g. 7.11(b)). One expects the asymmetric large con�guration to produce

`soft' physics, while the symmetric one would yield the `hard' interactions.

In the aligned jet model (AJM) [161] the �rst con�guration dominates while the second

one is the `sterile combination' because of color screening. In the photoproduction case

(Q

2

= 0), the small k

T

con�guration dominates. Thus one has large color forces which

produce the hadronic component, the vector mesons, which �nally lead to hadronic non{

perturbative �nal states of `soft' nature. The symmetric con�guration contributes very

little. In those cases where the photon does 
uctuate into a high k

T

pair, color transparency

suppresses their contribution.

In the DIS regime (Q

2

6= 0), the symmetric contribution becomes bigger. Each such

pair still contributes very little because of color transparency, but the phase space for the

symmetric con�guration increases. However the asymmetric pair still contribute also to

the DIS processes. In fact, in the quark parton model (QPM) the fast quark becomes the

current jet and the slow quark interacts with the proton remnant resulting in processes

which look in the 


�

p frame just like the `soft' processes discussed in the Q

2

= 0 case. So

there clearly is an interplay between soft and hard interactions also in the DIS region.

This now brings up another question. We are used by now to talk about the `resolved'

and the `direct' photon interactions. However, if the photon always 
uctuates into a q�q

pair even at quite large values of Q

2

, what does one mean by a `direct' photon interaction?

To illustrate the problem, let us look at the diagram describing the photon{gluon fusion,

which is usually considered in leading order a direct photon interaction and is shown in

�gure 7.12(a). An example of a resolved process is shown in �gure 7.12(b) where a photon


uctuates into a q�q pair with a given k

T

, following by the interaction of one of the quarks

with a gluon from the proton to produce a quark and a gluon with a given p

T

.

In the diagram shown in �gure 7.12(b) there are two scales, k

T

and p

T

. The classi�cation

of the process as `direct' or `resolved' depends on the relations between the two scales. If
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Figure 7.12: Diagrams describing examples of (a) `direct' photon process, (b) `resolved'

photon process

k

T

� p

T

we call it a resolved photon interaction, while in the case of k

T

� p

T

one would

consider this as a direct photon interaction. Practically in the latter case the p

T

is too

small to resolve the gluon and the quark jets as two separate jets, thus making it look like

the diagram in �gure 7.12(a). At low Q

2

the more likely case is that of k

T

� p

T

and thus

the resolved photon is the dominant component, while at high Q

2

the other case is more

likely. A yet open question is how does one deal with the case where k

T

� p

T

.

7.6 Summary

We can summarize the results and discussions of this chapter in the following way:

� We have presented an operational de�nition of what we call soft and hard interactions

by using the total cross section and the elastic process. The energy behaviour of the

total and the elastic cross section is expected to be much steeper for hard interactions

than for soft ones. In addition, the slope of the elastic di�erential cross section should

shrink in the soft interactions while show no or very little shrinkage in case of hard

interactions.

� The models describing the low{x low Q

2

region were discussed and compared to data.

The energy behaviour of the total 


�

p cross section shows a smooth transition from

a shallow dependence at low Q

2

to a steeper one at higher Q

2

.

� The vector meson exclusive production, which can be considered as the elastic pro-

cesses for the photon case, follow the energy dependence behaviour of the total cross

section. The W dependence get steeper for the �

0

and � as Q

2

increases while it is

already steep for the J=	 produced in the elastic photoproduction process.
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� When a large scale is present, being the virtuality of the photon or the mass of the

vector meson, the cross section is consistent with a rise driven by the rise of the gluon

momentum density xg(x;Q

2

) with W . The Pomeron exchange mechanism described

by two gluons gives results consistent with the data.

� The ratio of the cross sections of vector mesons compared to that of the �

0

is ap-

proaching the expectations from SU(4) as Q

2

increases.

� The present measurements of the slopes of the vector mesons are not precise enough

to conclude anything about the shrinkage question.

� One would like to separate soft from hard interactions. However nothing is as soft

as we would like nor as hard as we would like. There is an interplay of soft and

hard processes at all values of Q

2

. As Q

2

or any other scale increases, the amount

of hard processes seems to increase. In order to resolve the hard processes one needs

a good understanding of the soft fragmentation and hadronization. By combining

various reactions one can try and extract the perturbative QCD part and to learn

more about the interplay.

� The energy behavior of the 


�

p cross section shows that there is a smooth transition

between the Q

2

region where there is a mild energy dependence to that where the

energy behavior is steeper. It happens somewhere in the region of about 1GeV

2

.

Does this tell us where soft interactions turn into hard ones? In order to understand

the structure of the dynamics, one has to isolate in the transition region the speci�c

con�gurations in k

T

and p

T

for a better insight of what is happening.
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