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We give a summary about the various contributions which have to be calculated

in order to obtain the next-to-leading logarithmic result for the branching ratio

BR(B ! X

s

). Combining all these ingredients, which were obtained by dif-

ferent groups, a complete next-to-leading-logarithmic prediction of the inclusive

decay rate was recently presented in the literature. The theoretical uncertainty

in the partonic decay rate is now at the 10% level, i.e., less than half of the error

in the previous leading-logarithmic result. We also mention the impact of non-

perturbative corrections which scale like 1=m

2

b

and discuss in some more detail the

recently discovered corrections which scale like 1=m

2

c

. It turns out that the 1=m

2

b

-

and the 1=m

2

c

terms lead to corrections to the branching ratio BR(B! X

s

) well

below the 10% level.

1 Introduction

The B ! X

s

 decay has found increasing attention over the last ten years. It

provides an alternative approach in the search for physics beyond the standard

model (SM). This decay, like other rare B meson decays, does not arise at

the tree-level in the SM but is induced by one-loop W-exchange diagrams, so
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nonstandard contributions (charged scalar exchanges, SUSY one-loop diagrams

etc.) are not suppressed by an extra factor �=4� relative to the standard model

amplitude. This high sensitivity for nonstandard contributions implies the

possibility for an indirect observation of new physics, a strategy complementary

to the direct production of new particles. The B ! X

s

 decay plays already a

very important role in restricting the parameter space of extensions of the SM

like the minimal supersymmetric standard model (MSSM)

1;2

. However, even

within the SM, the B ! X

s

 decay is important for constraining the Cabibbo-

Kobayashi-Maskawa matrix elements involving the top-quark, in particular

jV

ts

j. For both reasons, precise experimental and theoretical work on this

decay mode is required.

On the theoretical side, the accuracy in the dominating perturbative con-

tribution was recently improved to next-to-leading precision

3;4;5;6;7;8

: The

renormalization scale dependence of the previous leading-log result at the

�25%-level was substantially reduced to �6% and the central value was shifted

out-side the 1� bound of the CLEO measurement. Furthermore, the analysis

of nonperturbtive contributions to the B ! X

s

 decay mode was also recently

improved: The inclusive B ! X

s

 mode is theoretically much cleaner than

the corresponding exclusive channels because no speci�c model is needed to

describe the �nal hadronic state. According to Heavy Quark E�ective The-

ory the class of non-perturbative e�ects which scales like 1=m

2

b

is expected

to be well below 10%

9

. This numerical statement holds also for the recently

discovered non-perturbative contributions

10;11;12;13;14

which scale like 1=m

2

c

.

Thus the inclusive B ! X

s

 mode is well approximated by the partonic decay

rate �(b ! X

s

) which can be analyzed in renormalization group improved

perturbation theory.

Before reporting on these theoretical improvements in detail, we summa-

rize the experimental status: The observation of the exclusive B ! K

�

 mode

by CLEO

15

in 1993 was the �rst evidence for a penguin decay ever. An updated

value

16

for the branching ratio is BR(B ! K

�

) = (4:2� 0:8� 0:6)� 10

�5

.

In 1994 the CLEO collaboration measured the inclusive B ! X

s

 branching

ratio to be (2:32� 0:57� 0:35)� 10

�4

where the �rst error is statistical and

the second is systematic

17

: There are two separate CLEO analyses. The �rst

one measures the inclusive photon spectrum from B-decay near the end point.

The second technique constructs the inclusive rate by summing up the possi-

ble exclusive �nal states. The branching ratio stated above is the average of

the two measurements, taking into account the correlation between the two

techniques.

There is also data from the LEP experiments: While DELPHI

18

in 1996

and L3

19

in 1993 have published the upper bounds BR(b! s) < 5:4� 10

�4

2



and BR(b ! s) < 1:2 � 10

�3

, respectively, the preliminary measurement

BR(b! s) = (3:38� 0:74� 0:85)� 10

�4

by the ALEPH group was reported

in the talk by F. Parodi

20

at the 1997 Moriond meeting. A similar number

was also quoted by T. Skwarnicki

21

in the heavy avor meeting held in Santa

Barbara in July 1997.

More precise measurements are expected from the upgraded CLEO detec-

tor, as well as from the B-factories presently under construction at SLAC and

KEK. In view of the expected high luminosity of the B-factories, experimental

accuracy of below 10% appears to be in reach.

The rest of the paper is organized as follows: Section 2 is devoted to the

partonic (=perturbative) contribution to BR(B ! X

s

). We explain in some

detail the various calculational steps leading to the next-to-leading logarithmic

result. In section 3 we briey discuss the impact of the recently discovered non-

perturbative corrections which scale like 1=m

2

c

.

2 Next-to-leading logarithmic corrections for B ! X

s



It is well-known that the QCD corrections enhance the partonic decay rate

�(b! s) by more than a factor of two. These QCD e�ects can be attributed

to logarithms of the form �

n

s

(m

b

) log

m

(m

b

=M ), where M = m

t

or M = m

W

and m � n (with n = 0; 1; 2; :::). In order to get a reasonable result at all, one

has to sum at least the leading-log (LL) series (m = n). Working to next-to-

leading-log (NLL) precision means that one is also resumming all the terms of

the form �

s

(m

b

) (�

n

s

(m

b

) ln

n

(m

b

=M )).

An appropriate framework to achieve the necessary resummations is an

e�ective low-energy theory, obtained by integrating out the heavy particles

which in the SM are the top quark and theW -boson. The e�ective Hamiltonian

relevant for b! s and b! sg in the SM and many of its extensions reads

H

eff

(b! s) = �

4G

F

p

2

�

t

8

X

i=1

C

i

(�)O

i

(�) ; (1)

where O

i

(�) are the relevant operators, C

i

(�) are the corresponding Wilson

coe�cients, which contain the complete top- and W- mass dependence, and

�

t

= V

tb

V

�

ts

with V

ij

being the CKM matrix elements

c

. Neglecting operators

with dimension > 6 which are suppressed by higher powers of 1=m

W=t

and

using the equations of motion for the operators, one arrives at the following

basis of dimension 6 operators

22

O

1

= (�c

L�



�

b

L�

) (�s

L�



�

c

L�

) ;

c

The CKM dependenceglobally factorizes, because we work in the approximation�

u

= 0.

3



O

2

= (�c

L�



�

b

L�

) (�s

L�



�

c

L�

) ;

O

7

= (e=16�

2

) �s

�

�

��

(m

b

(�)R+m

s

(�)L) b

�

F

��

;

O

8

= (g

s

=16�

2

) �s

�

�

��

(m

b

(�)R +m

s

(�)L) (�

A

��

=2) b

�

G

A

��

: (2)

Because the Wilson coe�cients of the penguin induced four-fermion operators

O

3

; :::; O

6

are very small, we do not list them here. In this framework the next-

to-leading logarithmic terms �

s

(m

b

) (�

n

s

(m

b

) log

n

(m

b

=m

W=t

)) in the b ! s

amplitude have two sources:

1 � The NLL Wilson coe�cients C

i

(�) at the scale � � m

b

contain leading

and next-to-leading logarithmic terms in resummed form.

2 � The O(�

s

) corrections to the matrix elements of the operators O

i

yield

next-to-leading order terms when multiplied by the (leading logarithmic part

of the) Wilson coe�cients.

We stress that only the sum of these two sources is independent of the renormal-

ization scheme. Let us discuss in some more detail the contributions mentioned

in 1 and 2:

ad 1 � From the �-independence of the e�ective Hamiltonian, one can

derive a renormalization group equation (RGE) for the Wilson coe�cients

C

i

(�):

�

d

d�

C

i

(�) = 

ji

C

j

(�) ; (3)

where the (8�8) matrix  is the anomalous dimension matrix of the operators

O

i

. To solve this �rst order di�erential equation one explicitly needs initial

conditions C

i

(�

0

) at some scale �

0

as well as the anomalous dimension matrix



ij

.

1a: The initial conditions are obtained by matching the e�ective theory to the

full standard model theory at the scale �

0

= �

W

, where �

W

denotes a scale

of order m

W

or m

t

. At this scale, the matrix elements of the operators in

the e�ective theory lead to the same logarithms as the full theory calculation.

Consequently, the Wilson coe�cients C

i

(�

W

) only pick up small QCD correc-

tions, which can be calculated in �xed-order perturbation theory. In the LL

(NLL) program, the matching has to be worked out to order �

0

s

(�

1

s

) precision.

1b: Solving the RGE (3) and using the C

i

(�

W

) of Step 1a as initial condi-

tions, one performs the evolution of these Wilson coe�cients from � = �

W

down to � = �

b

, where �

b

is of the order of m

b

. As the matrix elements of

the operators evaluated at the low scale �

b

are free of large logarithms, the

latter are contained in resummed form in the Wilson coe�cients. For a LL

(NLL) calculation, this RGE step has to be performed using the anomalous

dimension matrix 

ij

up to order �

1

s

(�

2

s

).

4
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Figure 1: a) Typical diagram (full theory) contributing in the NLL matching calculation.

b) Typical diagram contributing to the matrix element of the operator O

2

. c) Typical

contribution to the O(�

2

s

) anomalous dimension matrix.

ad 2 � The matrix elements of the operators hsjO

i

(�)jbi at the scale � = �

b

have to be calculated to order �

0

s

(�

1

s

) in the LL (NLL) calculation.

Until recently, only the leading logarithmic (LL) perturbative QCD were

known systematically

23

. The error in this approximation was dominated by a

large renormalization scale dependence at the �25% level. The measurement

of the CLEO collaboration

17

overlaps with the estimates based on leading log-

arithmic calculations (or with some next-to-leading e�ects partially included)

and the experimental and theoretical errors are comparable

3;24;25;26

. However,

in view of the expected increase in the experimental precision in the near fu-

ture, it became clear that a systematic inclusion of the NLL corrections was

necessary. This ambitious NLL enterprise was recently completed. All three

steps (1a,1b,2) involve rather di�cult calculations. The most di�cult part

in Step 1a is the two-loop (or order �

s

) matching of the dipole operators O

7

and O

8

. It involves two-loop diagrams both in the full and in the e�ective

theory (see Fig. 1a). This matching calculation was done by Adel and Yao

4

some time ago. As this is a crucial step in the NLL program, Greub and

Hurth

8

recently con�rmed their �ndings in a detailed re-calculation, using

a somewhat di�erent method. In order to match dimension 6 operators O

7

and O

8

, it is su�cient to extract the terms of order m

b

m

2

b

M

2

(M = m

W

;m

t

)

from the standard model matrix elements for b ! s and b ! sg. Terms

5



supressed by additional powers of m

b

=M correspond to higher dimensional op-

erators in the e�ective theory. In

8

the �nite parts of the two-loop diagrams

in the SM were calculated by means of the well-known Heavy Mass Expansion

(HME) which naturally leads to a systematic expansion of Feynman diagrams

in inverse powers of M . We mention here that the evolution of the Wilson

coe�cients between � = m

t

and � = m

w

to LL precision implied an addi-

tional contribution of +10% to the leading-log prediction for the decay rate

27

. Most of this contribution is automatically included in the NLL matching

at the m

W

-scale

4;8

, because the �rst term of the LL-sum of

27

is reproduced

and higher order terms (�

s

log(

m

t

m

W

))

n

(n > 1) are rather small. In addition,

the NLL matching result includes the �rst term of the NLL-sum.

Step 2 basically consists of Bremsstrahlung corrections and virtual cor-

rections. While the Bremsstrahlung corrections (together with some virtual

corrections needed to cancel infrared singularities) were worked out some time

ago by Ali and Greub

3

and have been con�rmed and extended by Pott

5

, a

complete analysis of the virtual corrections (up to the contributions of the

four-fermion operators with very small coe�cients) was presented by Greub,

Hurth and Wyler

6

. This calculation also involves two- loop diagrams where

the full charm quark mass dependence has to be taken into account. A typical

diagram is shown in Fig. 1b. By using Mellin-Barnes techniques in the Feyn-

man parameter integrals, the result of these two-loop diagrams was obtained

in the form

c

0

+

X

n=0;1;2;:::;m=0;1;2;3

c

nm

�

m

2

c

m

2

b

�

n

log

m

m

2

c

m

2

b

; (4)

where the quantities c

0

and c

nm

are independent of m

c

. Note, that a �nite

result is obtained in the limit m

c

! 0, as there is no naked logarithm of

m

2

c

=m

2

b

. This observation is of some importance in the b! d process, where

the u-quark propagation in the loop is not CKM suppressed. It is, however,

even more important that the inclusion of the O(�

s

) matrix elements leads to

a drastic reduction of the renormalization scale uncertainty from about �25%

to about �6%. Analytically, the reason is, that the term �

s

log(�=m

b

) which

dominates the �-dependence of the LL result, is cancelled by a corresponding

term appearing in the O(�

s

) matrix element. Finally, the anomalous dimension

matrix (at O(�

2

s

)), Step 1b, has been worked out by Chetyrkin, Misiak and

M�unz

7

. The calculation of the elements 

i7

and 

i8

(i = 1; :::; 6) in the O(�

2

s

)

anomalous dimension matrix involves a huge number of three loop-diagrams

from which the pole parts (in the d � 4 expansion) have to be extracted. For

a typical diagram see Fig. 1c. The extraction of the pole parts were simpli�ed

by a clever decomposition of the scalar propagator. Moreover, the number

6



of necessary evanescent operators were reduced by a new choice of a basis of

dimension 6 operators. Using the matching result (Step 1a), these authors

obtained the next-to-leading correction to the Wilson coe�cient C

7

(�

b

) which

is the only relevant one for the b ! X

s

 decay rate. Numerically, the LL

and the NLL values for C

7

(�

b

) are rather similar; the NLL corrections to the

Wilson coe�cient C

7

(�

b

) lead to a change of the b ! X

s

 decay rate which

does not exceed �6%

7

: The new contributions can be split into a part which

is due to the order �

s

corrections to the matching (Step 1a) and into a part

stemming from the improved anomalous dimension matrix (Step 1b). While

individually these two parts are not so small (in the NDR scheme, which was

used in

7

), they almost cancel when combined as illustrated in

7

. This shows

that all the three di�erent pieces, 1a,1b,2, are numerically equally important.

Combining the NLL calculations of all the three steps (1a+b,2), the �rst

complete theoretical prediction to NLL pecision for the b! X

s

+  branching

ratio was presented in

7

: BR(B ! X

s

) = (3:28�0:33)�10

�4

. The error is due

to the �6% renormalization scale uncertainty and due to the �8% combined

uncertainty in the input parameters.

3 1=m

2

b

and 1=m

2

c

corrections

Neglecting perturbative QCD corrections and assuming that B ! X

s

 is due

to the operator O

7

only, the calculation of the di�erential decay rate basically

amounts to work out the imaginary part of the forward scattering amplitude

T (q)

T (q) = i

Z

d

4

x hBjTO

+

7

(x)O

7

(0)jBi exp(iqx) : (5)

Using the operator product expansion for TO

+

7

(x)O

7

(0) and Heavy Quark

E�ective Theory methods, the decay width �(B ! X

s

) reads

9

(modulo

higher terms in the 1=m

b

expansion)

�

(O

7

;O

7

)

B!X

s



=

�G

2

F

m

5

b

32�

4

jV

tb

V

ts

j

2

C

2

7

(m

b

)

�

1 +

�

NP

rad

m

2

b

�

;

�

NP

rad

=

1

2

�

1

�

9

2

�

2

; (6)

where �

1

and �

2

are the kinetic energy- and the chromomagnetic energy pa-

rameters. Using �

1

= �0:5GeV

2

and �

2

= 0:12GeV

2

, one gets �

NP

rad

' �4%.

As also the semileptonic decay width gets 1=m

2

b

corrections which are negative

(see e.g.

28

), these non-perturbative corrections tend to cancel in the branch-

ing ratio BR(B ! X

s

) and only about 1% remains. This contribution was

7



g

O

2

O

7



(a)

(b)

�

�

~

O

Figure 2: a)Feynman diagram from which the operator

~

O arises. b) Relevant cut-diagram

for the (O

2

;O

7

)-interference.

already included in the theoretical NLL prediction presented in section 2 of

this article.

Recently, Voloshin

10

considered the non-perturbative e�ects when includ-

ing also the operator O

2

. This e�ect is generated from the diagram in Fig.

2a (and from the one not shown where the gluon and the photon are inter-

changed); g is a soft gluon interacting with the charm quarks in the loop. Up

to a characteristic Lorentz structure, this loop is given by the integral

Z

1

0

dx

Z

1�x

0

dy

xy

m

2

c

� k

2

g

x(1� x)� 2xyk

g

k



: (7)

As the gluon is soft, i.e., k

2

g

; k

g

k



� �

QCD

m

b

=2 � m

2

c

, the integral can be

expanded in k

g

. The (formally) leading operator, denoted by

~

O, is

~

O =

G

F

p

2

V

cb

V

�

cs

C

2

eQ

c

48�

2

m

2

c

�s

�

(1 � 

5

)g

s

G

��

b �

����

@

�

F

��

: (8)

Working out then the cut diagram shown in Fig. 2b, one obtains the non-

perturbative contribution �

(

~

O;O

7

)

B!X

s



to the decay width, which is due to the

(O

2

; O

7

) interference. Normalizing this contribution by the LL partonic width,

8



one obtains

�

(

~

O;O

7

)

B!X

s



�

LL

b!s

= �

1

9

C

2

C

7

�

2

m

2

c

' +0:03 : (9)

Including this correction with the sign found in

14

, the NLL prediction for the

branching ratio becomes BR(B ! X

s

) = (3:38� 0:33)� 10

�4

.

As the expansion parameter ism

b

�

QCD

=m

2

c

� 0:6 (rather than �

2

QCD

=m

2

c

),

it is not a priori clear whether formally higher order terms in the m

c

expan-

sion are numerically suppressed. More detailed investigations

12;13;14

show that

higher order terms are indeed suppressed, because the corresponding expansion

coe�cients are small.

We mention that the analogous 1=m

2

c

e�ect has been found independently

in the exclusive mode B ! K

�

 in ref.

11

. Numerically, the e�ect there is also

at the few percent level.

4 Summary

Collecting all NLL contributions and the small nonperturbative correction

which scales with m

2

b

, the �nal analysis done by Chetyrkin, Misiak and M�unz

yields BR(B ! X

s

) = (3:38� 0:33)� 10

�4

when also the +3% shift due to

the non-perturbative e�ects from the 1=m

2

c

corrections is included. The theo-

retical error in the NLL prediction is reduced by a factor of 2 when compared

with the LL result. This theoretical value for the branching ratio is in agree-

ment with the CLEO measurement (at the 2�-level) and also with the recent

(preliminary) measurement by ALEPH. Clearly, the inclusive B ! X

s

+ 

mode will provide an interesting test of the SM and its extensions as soon as

more precise experimental data become available.

Note added: When �nishing this article, we received the new work by

Buras, Kwiatkowski and Pott

29

. While these authors fully con�rm the match-

ing conditions by

4;8

, their analysis is slighly di�erent, leading to the branching

ratio BR(B ! X

s

) = (3:48 � 0:31) � 10

�4

. The shift in the central value

is due to systematically discarding next-next-leading order terms, while in the

earlier analysis

6;7

some terms of this order were included. Also their estimate

for the remaining renomalization scale dependence is somewhat di�erent: The

�-uncertainties in the decay width for the radiative decay and the semileptonic

decay were treated independently and added in quadrature. In the old analysis

6;7

the scale � was varied simultaneously in both decays. As the semileptonic

decay width is an increasing function of � while the radiative decay width is

decreasing, a larger �-uncertainty was obtained which as a more conservative

9



estimate we �nally prefer. The results are fully compatible after all.
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