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Abstract

The impact of the recently evaluated `irreducible' contributions to the resummed next-to-leading

logarithmic small-x anomalous dimension 


gg

is evaluated for the unpolarized parton densities

and structure functions of the nucleon. These new terms diminish the gluon distribution and are

found to overcompensate the enhancement caused by the resummed leading logarithmic small-x

anomalous dimension and the quarkonic contributions beyond next-to-leading order.
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The structure functions of the proton in unpolarized deep{inelastic scattering (DIS) show a steep

rise towards very small Bjorken-x values, which becomes stronger with increasing resolution Q

2

.

This behavior is a consequence both of the shape of the non-perturbative quark singlet and

gluon initial distributions { x� and xg rise roughly like x

�0:2

for a starting scale Q

2

0

' 4GeV

2

{ and of the form of the evolution kernels governing the renormalization group equations of the

mass singularities. The anomalous dimensions 


ij

for the evolution of the parton densities, as

well as the Wilson coe�cients C

n

of the structure functions, contain large logarithmic small-x

contributions. In order to arrive at a reliable theoretical framework at very small x, the resum-

mation of these terms may be necessary to all orders in the strong coupling �

s

(Q

2

). For the

unpolarized singlet case considered here the dominant contributions take, in Mellin-N space, the

form �

l+k

s

=(N � 1)

k

; l � 0.

The resummation of 


gg

and 


gq

in the leading small-x approximation (Lx), l = 0, was

performed long ago [1]. 


(0)

gg

(N) is obtained as the solution of

1 =

�

s

N � 1

�

0

(


(0)

gg

) (1)

with �

s

= C

A

�

s

(Q

2

)=�, C

A

= N

c

= 3, C

F

= 4=3 and

�

0

(
) = 2 (1)�  (
)�  (1� 
) ; (2)

furthermore 


(0)

gq

= (C

F

=C

A

) 


(0)

gg

. The quark anomalous dimensions 


qq

and 


qg

, on the other

hand, receive contributions for l � 1 only. The l = 1 terms were derived in ref. [2], together

with the corresponding resummations for the coe�cient functions C

2

and C

L

. The large e�ects

of these quantities on the small-x behavior of the DIS structure functions were subsequently

studied in detail [3{7]. In those investigations the small-x resummation of the gluon anomalous

dimension 


gg

to next-to-leading order small-x (NLx) accuracy could not be taken into account.

This resummation has now been performed for the quarkonic contributions [8{11] proportional

to the number of quark 
avors N

f

. Recently also the `irreducible' gluonic terms / C

A

have been

derived [12], i.e., those contributions which are energy{scale independent in the framework of

ref. [10] underlying that calculation. The corresponding terms of 


gq

, however, still remain to be

determined.

In this note we investigate the impact of these new resummed contributions to 


gg

on the

evolution of the parton densities and the proton structure functions F

2

(x;Q

2

) and F

L

(x;Q

2

),

for the �rst time including calculated subleading terms into the renormalization group analysis.

Hence the comparison of the results to the �ndings of previous studies [3{7] should allow for

improved estimates of the convergence of the small-x resummation approximation, despite a

fully quantitative, scheme{independent NLx analysis not being possible at present.

As will be demonstrated below, the e�ect of the new contributions to the resummed anoma-

lous dimension 


gg

is very large and opposite to that of the previously known resummed terms.

This implies, already at the present stage, considerable changes particularly for gluon{dominated

quantities, which partly modify conclusions obtained in previous numerical investigations [3{6].

A detailed account of the solution of the evolution equations in the presence of all-order anoma-

lous dimensions and coe�cient functions will be given in a forthcoming publication [13].

As shown in ref. [9] the larger eigenvalue of the singlet anomalous dimension matrix, 


+

(N),

may be obtained in the Q

0

scheme [14] as the solution of

1 =

�

s

N � 1

[�

0

(


+

) + �

s

�

1

(


+

)] ; (3)

1



where the second term is the sum of [9, 12]

�

s

�

qq

1

=

N

f

�

s

6�

2

4

1

2

�

�

2

0

(
) + �

0

0

(
)

�

�

5

3

�

0

�

1

2N

2

c

 

�

sin(�
)

!

2

3 cos(�
)

1 � 2


2 + 3
(1 � 
)

(1 + 2
)(3 � 2
)

3

5

(4)

�

s

�

gg

1

=

C

A

�

s

4�

"

�

11

6

�

�

2

0

(
) + �

0

0

(
)

�

+

 

67

9

�

�

2

3

!

�

0

+

 

6�(3) +

�

2

3
(1 � 
)

+

~

h(
)

!

�

 

�

sin(�
)

!

2

cos(�
)

3(1 � 2
)

 

11 +


(1 � 
)

(1 + 2
)(3 � 2
)

!

3

5

: (5)

The function

~

h(
) in eq. (5) is given by

~

h(
) '

3

X

k=1

a

k

 

1

k + 


+

1

1 + k � 


!

(6)

with a

1

= 0:72; a

2

= 0:28 and a

3

= 0:16 [12]. From these results the irreducible NLx-contribution

to 


gg

is then inferred by [15]




(1)

gg

�

�

0

4�

�

2

s

d

d�

s

ln

�




(0)

gg

q

��

0

0

(


(0)

gg

)

�

= 


+(1)

�

C

F

C

A




(1)

qg

� �

�

s

�

1

(


(0)

gg

)

�

0

0

(


(0)

gg

)

�

C

F

C

A




(1)

qg

: (7)

Our subsequent numerical analysis will be performed in the DIS factorization scheme. Here




(1)

gg

is represented as




(1)

gg;DIS

= 


(1)

gg;Q

0

+

�

0

4�

�

2

s

d lnR(�

s

)

d�

s

+

C

F

C

A

[1�R(�

s

)] 


(1)

qg;Q

0

(8)

= �

s

1

X

k=1

"

N

f

6�

�

d

qq;(a)

gg;k

+

C

F

C

A

d

qq;(b)

gg;k

�

+

C

A

6�

d

gg

gg;k

+

�

0

4�

r̂

k

#

�

�

s

N � 1

�

k�1

� �

s

1

X

k=0

b

g;(1)

k

�

�

s

N � 1

�

k�1

; (9)

with R(�

s

) de�ned in ref. [2] and �

0

= (11=3)C

A

� (2=3)N

f

. Tables of the expansion coe�cients

d

qq;(a;b)

gg;k

, d

gg

gg;k

and r̂

k

may be found in ref. [13]. Here we list for brevity only the numerical values

of the �rst 15 coe�cients b

g;(0)

k

and b

g;(1)

k

for the Lx and NLx series for N

f

= 4, see Table 1. Note

that the new terms b

g;(1)

0;1

agree with the corresponding results from �xed-order perturbation

theory already taking into account the `irreducible' part of 


(1)

gg

only. Collecting all presently

available information, the anomalous dimensions for the resummed unpolarized singlet evolution

in the DIS scheme are given by


(N;�

s

)

DIS

= �

s




0

(N) + �

2

s




1

(N)

DIS

(10)

+

1

X

k=2

�

�

s

N�1

�

k+1

" 

0 0

C

F

=C

A

1

!

b

g;(0)

k

+ (N�1)

 

C

F

=C

A

b

q;(1)

k

b

q;(1)

k

0 b

g;(1)

k

!#

:

Here 


0

and 


1

denote the leading and next-to-leading order singlet anomalous dimension ma-

trices.

The resummed terms beyond O(�

2

s

) in eq. (10) do not comply with the energy{momentum

sum rule for the parton densities, which requires




qq

(N;�

s

) + 


gq

(N;�

s

) = 0 ; 


qg

(N;�

s

) + 


gg

(N;�

s

) = 0 : (11)

2



k b

g;(0)

k

b

g;(1)

k

b

g;(1)

k

= b

g;(0)

k

0 1.000E+00 �1.139E+00 �1.14

1 0.000E+00 �8.519E�01

2 0.000E+00 3.167E�01

3 2.404E+00 �1.166E+01 �4.85

4 0.000E+00 �9.104E+00

5 2.074E+00 �1.554E+01 �7.49

6 1.734E+01 �1.511E+02 �8.71

7 2.017E+00 �1.350E+02 �66.95

8 3.989E+01 �4.513E+02 �11.31

9 1.687E+02 �2.226E+03 �13.19

10 6.999E+01 �2.533E+03 �36.19

11 6.613E+02 �1.006E+04 �15.21

12 1.945E+03 �3.540E+04 �18.20

13 1.718E+03 �5.245E+04 �30.54

14 1.064E+04 �2.060E+05 �19.35

Table 1: The expansion coe�cients b

g;(0)

k

and b

g;(1)

k

for the small-x resummed anomalous dimension




gg

. The latter quantities are given for four active 
avors. For comparison to previously employed

estimates [5] also the ratios of these coe�cients are shown.

This relation is satis�ed by the �xed{order anomalous dimensions order by order in �

s

. The

method to restore the sum rule with the least impact on the small-x results is a (diagonal)

subtraction at N = 2, i.e., the addition of appropriate �(1 � x) contributions to the higher-

order quark{quark and gluon{gluon splitting functions. We will label this prescription as (A)

below. Other possibilities are the inclusion of somewhat less singular 1=(N � 1) terms, later to

be superseded by explicit calculations. In this manner a rough estimate can be obtained of the

possible e�ect of subleading small-x contributions to the higher-order anomalous dimensions,

particularly in those cases where only the �rst term is known currently. We will illustrate this

procedure by the prescription (D) given by




ij

(N)! 


ij

(N) (1 � 2[N�1] + [N�1]

3

) for ij = qq; qg; gq : (12)

The terms / [N�1] in 


gg

are taken from eq. (9), hence only the terms / [N�1]

3

in this quantity

are adjusted according to eq. (11).

We are now ready to discuss the numerical e�ects of the small-x resummations. For de�nite-

ness, we choose the initial distributions of the MRS(A

0

) global �t [16]. Both the gluon and the

sea quark densities behave as x

�0:17

for x!0 at the starting scale of Q

2

0

= 4 GeV

2

. The evolu-

tion is performed for four massless 
avors, and also �

(4)

= 231 MeV is adopted from the MRS

analysis. We stress that these results are mainly theoretical illustrations. Detailed data analyses

would require some 
exibility of the input gluon density at small x, which is only indirectly

constrained by structure function data, as well as the inclusion of heavy-
avor mass e�ects.

Figure 1 displays the evolution of the proton singlet quark and gluon (momentum) distribu-

tions, x�(x;Q

2

) and xg(x;Q

2

), in the DIS scheme. Di�erent resummation approximations are

compared with the NLO results (full lines). The results with the new b

g;(1)

k

terms omitted are

marked by NLx

q

.

3



In the quark sector the resummation corrections using prescription (A) are very large, e.g.,

they exceed a factor of four at x = 10

�5

and Q

2

= 100 GeV

2

. This huge correction is entirely

dominated by the quarkonic (upper row) anomalous dimensions. Omitting the b

g;(1)

k

contribu-

tions, and even ignoring the Lx terms (that case is not shown in the �gure), has an impact of

less than about 20% on the singlet distribution [3, 5]. The quark evolution is, however, very

much a�ected by possible subleading contributions to 


qg

and 


qq

, even by such terms which

are smaller than those now found for 


gg

. This is illustrated by prescription (D), where the less

singular pieces actually overcompensate the e�ect of the leading l = 1 contribution.

The e�ect of the new contribution 


(1)

gg

to the anomalous dimension is, on the other hand, very

substantial for the gluon density: the results even fall noticeably below the NLO evolution, and

also below our previous lower estimate (D) at NLx

q

accuracy [5]. There is no convergence so far,

but the analysis of the known LO and NLO results supports some hope that the inclusion of also

two further subleading terms (series), l = 2 and l = 3, may lead to a su�ciently stable result [13].

At this point the question arises how large a correction the presently unknown resummed 


(1)

gq

term may introduce. Experience in NLO and the Lx and NLx

q

resummations suggests that the

impact of this contribution is of the order of 10% or less, for the evolution of both x� and xg.

We now turn to the proton structure functions. As we are working in the DIS scheme,

x�(x;Q

2

) already re
ects F

2

up to the non-singlet pieces which are not relevant at small x

1

.

Hence we directly turn to F

L

(x;Q

2

). The resummed results, employing the parton densities

shown in Figure 1 and the l = 1 resummation of the coe�cient functions [2],

C

L

(N) = �

s

C

0

L

(N) + �

2

s

C

1

L

(N)

DIS

+

1

X

k=2

c

L;k

�

s

�

�

s

N � 1

�

k

; (13)

are depicted in Figure 2(a). Here C

0

L

and C

1

L

stand for the leading and next-to-leading order [18]

coe�cient functions. Note that a full NLx calculation of F

L

(x;Q

2

) requires the knowledge of the

presently unknown next{order resummed coe�cient function even in the DIS scheme.

The resummation corrections are exceedingly large at the lower Q

2

values shown. Here

they are entirely dominated by the resummed coe�cient functions. At very small values of x the

resummation does even violate the condition F

L

� F

2

at Q

2

' 4 GeV

2

, thus requiring more terms

in the resummation or an adjustment of the input densities at Q

2

0

. At high Q

2

>

�

100GeV

2

, due to

the decrease of �

s

and the parton evolution, the e�ects of the quarkonic anomalous dimensions

and the coe�cient functions are of the same order. However, besides the anomalous dimensions

also the coe�cient function will receive subleading corrections, which are presently unknown. To

estimate the possible consequences of these terms in C

L

mentioned above, Figure 2(b) repeats

the calculation illustrated by Figure 2(a), but with an estimate for those unknown contributions

C

L

! C

L

(1 � 2[N � 1]) beyond next-to-leading order. As in the quark evolution, already a

moderate correction can lead to an even drastic overcompensation of the l = 1 e�ect, calling for

the evaluation of the next resummation contributions to C

L

.

Let us summarize: Recent results in refs. [9, 12] for the �rst time allow a determination of a

subleading small-x resummed anomalous dimension, namely the `irreducible' part of 


gg

in the

unpolarized case. We have extracted the corresponding expansion coe�cients in the usual DIS

scheme. The coe�cients of the subleading small-x poles turn out to be mainly of opposite sign

than the Lx pieces, and they are typically much larger in N -space. The numerical impact of

these additional terms on the proton's parton densities and structure functions has been studied.

1

The resummation of the small-x terms (Lx) for the non-singlet structure functions was performed in [17].

The corresponding corrections are smaller than 1% over the whole x range.

4



It is largest for the gluon evolution, where a substantial overcompensation of the positive leading

resummation e�ect takes place, but less important for x� and F

L

, which are dominated by the

quarkonic anomalous dimensions and the coe�cient functions. Note, however, that the `energy{

dependent' contributions still need to be derived. All in all, more terms need to be calculated in

the small-x expansions, both of the anomalous dimensions and the coe�cient functions, in order

to arrive at stable resummation predictions.
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Fig. 1: The small-x evolution of the singlet quark and gluon densities including the resummed NLx

q

kernels [2] and the new terms of the gluon{gluon anomalous dimension [9, 12] as compared to the

NLO results. Two prescriptions for implementing the momentum sum rule have been applied.
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Fig. 2: The small-x behavior of the longitudinal structure function for the parton distributions shown

in Fig. 1. The resummed coe�cient functions of ref. [2] have been employed, in (a) without, in (b)

with a moderate subleading contribution.
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