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Abstract. We review recent theoretical results from our systematic study of

QCD-instanton contributions to e

�

P processes, involving a hard momentum

scale Q. The main issues are: the absence of IR divergencies due to a dynam-

ical suppression of instantons with large size � > 1=Q, the reliable calculability

of instanton-induced amplitudes and our inclusive framework to systematically

calculate properties of the I-induced multi-parton �nal state.

INTRODUCTION

Instantons [1] are well known to represent topology changing tunnelling

transitions in non-abelian gauge theories. These transitions induce processes

which are forbidden in perturbation theory, but have to exist in general [2]

due to Adler-Bell-Jackiw anomalies. Correspondingly, these processes imply a

violation of certain fermionic quantum numbers, notably, B+L in the electro-

weak gauge theory and chirality (Q

5

) in (massless) QCD.

An experimental discovery of such a novel, non-perturbative manifestation

of non-abelian gauge theories would clearly be of basic signi�cance.

The interest in instanton (I)-induced processes during recent years has

been revived by the observation [3] that the strong exponential suppression,

/ exp(�4�=�), of the corresponding tunnelling rates at low energies may be

overcome at high energies, mainly due to multi-gauge boson emission in ad-

dition to the minimally required fermionic �nal state. Since �

s

� �

W

, QCD-

instantons are certainly much less suppressed than electro-weak ones. A pio-

neering and encouraging theoretical estimate of the size of the QCD-instanton

induced contribution to the gluon structure functions in deep-inelastic scat-

tering (DIS) was recently presented in Ref. [4].

A systematic phenomenological and theoretical study is under way [5{11],

which clearly indicates that deep-inelastic e

�

P scattering at HERA now o�ers
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a unique window to experimentally detect QCD-instanton induced processes

through their characteristic �nal-state signature. While our phenomenological

approach and the ongoing experimental searches for QCD instantons were

reviewed inWGIII [12,13], we shall focus here on our recent theoretical results.

They clearly indicate that e

�

P scattering, involving a hard momentum scale

Q, plays a distinguished rôle for studying manifestations of QCD-instantons.

This mostly refers to the DIS regime, but possibly also to hard photoproduc-

tion, where Q denotes the large transverse momentum of a jet.

In this talk, we shall concentrate on the following important issues:

We set up the relevant I-induced amplitudes for DIS at the parton level

in leading semi-classical approximation and outline why they are well-de�ned

and calculable for small �

s

(Q). We concentrate on the crucial feature that the

generic IR divergencies from integrating over the I-size � are absent in DIS,

since the hard momentum scale Q provides a dynamical cuto�, �

<

�

O(1=Q).

As an example, the cross section for the simplest I-induced process is explicitly

evaluated and compared to the corresponding contribution from perturbative

QCD. Finally, we briey sketch our inclusive framework to systematically cal-

culate properties of the I-induced multi-parton �nal state. It accounts for the

exponentiation of produced gluons including �nal-state tree-graph corrections.

2. INSTANTON-INDUCED PROCESSES IN

LEADING SEMI-CLASSICAL APPROXIMATION

The main I-induced contribution to deep-inelastic e

�

P scattering comes

from the processes,



�

+ g )

n

f

X

avours

[q

L

+ q

R

] + n

g

g;

which correspond to 4Q

5

= 2n

f

and thus vanish to any order of conventional

perturbation theory in (massless) QCD.

The evaluation of the corresponding amplitudes involves the following steps:

We start with the basic building blocks in Euclidean con�guration space (see

e.g. Ref. [9]), the classical instanton gauge �eld A

(I)

�

(x; �; U), the quark zero

modes �

(I)

(x; �; U); �

(I)

(x; �; U) and the (non-zero mode) quark propagators

in the I-background S

(I)

(x; y; �; U); S

(I)

(x; y; �; U). The classical �elds and

quark propagators depend on collective coordinates, the I-size � and the colour

orientation matrices U .

\Instanton-perturbation theory" is generated by expanding the (Euclidean)

path integral for the relevant Green's functions about the classical instanton

solution for small �

s

. Next, Fourier-transforms (FT) to momentum space

with respect to external lines are performed and the external legs are LSZ

amputated. Finally, the result is analytically continued to Minkowski space.
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FIGURE 1. I-induced contribution to DIS for n

f

= 1 in leading semi-classical approxi-

mation.

After performing the FT's with respect to the external lines, the leading-

order amplitude in Euclidean space takes the following form [9] for the sim-

pli�ed case of one avour (n

f

= 1) (see Fig. 1),

T

(I)aa

1

:::a

n

g

�

= �i e

q

d

 

2�

�

s

(�

r

)

!

6

exp

"

�

2�

�

s

(�

r

)

#

Z

dU

1

Z

0

d�

�

5

(��

r

)

�

0

�

lim

p

2

!0

p

2

tr

h

�

a

�

g

(p) �A

(I)

(p; �; U)

i

n

g

Y

i=1

lim

p

2

i

!0

p

2

i

tr

h

�

a

i

�

�

g

(p

i

) �A

(I)

(�p

i

; �; U)

i

�

�

y

R

(k

2

)

"

lim

k

2

2

!0

(ik

2

)�

(I)

(�k

2

; �; U) lim

k

2

1

!0

V

�

(q;�k

1
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2

2
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�
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2
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The instanton-density [2] with renormalization scale �

r

and 1st coe�cient

�

0

= 11 � 2=3n

f

of the perturbative QCD beta-function,

d
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�

0

; d being a known constant, (2)

is 1-loop renormalization group (RG) invariant.

First of all, note the strong IR divergence (large �), if the �-integral in

Eq. (1) were performed with just the I-density. Hence, convergence may only

come from further � dependence inherent in the matrix element. In partic-

ular, any possible cut-o� for large � in terms of the inverse hard scale 1=Q,

must be hidden in the FT'ed photon-fermion \vertices", V

�

(q;�k

1

; �; U) and

V

c

�

(q;�k

2

; �; U) (c. f. Figs. 1, 2).

FT and LSZ-amputation of the instanton gauge �eld A

(I)

�

and quark zero

modes � and � is straightforward [3]. They only contribute positive powers of

�. On the other hand, the LSZ-amputation of the current quark in the FT'ed

photon-fermion vertices, V

�

(q;�k

1

; �; U) and V

c

�

(q;�k

2

; �; U), is quite non-

trivial, since they involve a two-fold FT of the complicated quark propagators
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FIGURE 2. The photon-fermion vertex, V

�

(q;�k

1

; �; U ), generating the dynamical cut-o�

�

<

�

O(1=Q).

in the I-background (see Fig. 2). After a long and tedious calculation, we

�nd [9],

lim

k

2

1

!0

V

�

(q;�k

1

; �; U) = 2�i�

3=2

h

��

�

V (q; k

1

; �)U

y

i

(3)

lim

k

2

2

!0

V

c

�

(q;�k

2

; �; U) = 2�i�

3=2

[U V (q; k

2

; �)�

�

�] ; (4)

where with the shorthand q

0

� q � k,

V (q; k; �) =

k

2q � k

�

q

q

2

K

1

�

�

q

q

2

�

+

"

q

0

q

02

�

k

2q � k

#

�

q

q

02

K

1

�

�

q

q

02

�

: (5)

Obviously, the integration over the instanton size � in the amplitudes T

(I)

�

,

Eq. (1), is �nite due to the exponential decrease of the \form factors" in

V (q; k; �),

Q�K

1

(Q�)

Q�!1

!

r

�

2

q

Q� exp [�Q�] : (6)

The �-integral may even be performed analytically, after inserting the various

LSZ amputated FT's into Eq. (1). After continuation to the DIS-regime of

Minkowski space, the (e�ective) hard scale,

Q � min

�

Q �

q

�q

2

;

q

�(q � k

1

)

2

;

q

�(q � k

2

)

2

�

� 0 ; (7)

then provides a dynamical IR cuto� for the instanton size, �

<

�

O(1=Q).

As a highly non-trivial check of our calculations, electromagnetic current

conservation, q

�

T

(I)a a

1

:::a

n

g

�

= 0, is manifestly satis�ed.

Like in perturbative QCD, the leading-order I-induced amplitudes are well-

behaved as long as we avoid the collinear singularities, arising when the inter-

nal quark virtualities t � �(q � k

1

)

2

or u � �(q � k

2

)

2

! 0 vanish in Eq. (5)

(c.f. Fig. 1). Hence high Q

2

processes of moderate multiplicity, where the

current quark is produced at a �xed angle relative to the photon, are reliably

calculable in instanton perturbation theory.



5

Q [ GeV ]

/d
 c

o
s 

  
 [

n
b
]

θ
d

σ

θ = 90o

x = 0.25

20.

1e-07

1e-06

1.

1e-08
1e-09

1e-10
6. 8. 10.5.

1e-05

1e-04

10.

0.1
0.01

0.001

perturbative QCD

Instanton

d 
  /

d 
co

s 
   

[n
b]

θ
σ

10   Instanton..2 7

    = 90 θ o

Q = 10 GeV

6

5

4

3

2

1

0
0 0.2 0.4 0.6 0.8 1

x

perturbative QCD

FIGURE 3. I-induced �xed-angle scattering for Q

>

�

5 GeV is well under control.

(e

q

= 2=3; � = 234 MeV, �

r

= Q).

Altogether, we may conclude that deep-inelastic scattering is very well

suited for studying manifestations of QCD-instantons!

Example: We have worked out explicitly the cross section for the simplest

process [9] for n

f

= 1 without �nal-state gluons, 

�

+g ! q

L

+q

R

(4Q

5

= 2).

Although being only a small fraction of the total I-induced contribution, it

may be considered as a calculable lower bound. Moreover, it contains all essen-

tial features of the dominant multi-gluon process. The residual dependence on

the renormalization scale �

r

is very weak if the 2-loop RG-invariant I-density

is used [14]. In Figs. 3, we display a comparison with the cross sections for

the appropriate chirality-conserving process within leading-order perturbative

QCD, 

�

+ g ! q

L

+ q

L

(4Q

5

= 0).

From the requirement that the average instanton size h�i contributing for a

given virtualityQ, should be small enough to neglect higher-order corrections

of I-perturbation theory, a lower limit on the hard scale Q can be easily

obtained [9],

h�i

<

�

1

500 MeV

<

1

�

)Q

>

�

5 GeV: (8)

3. INCLUSIVE APPROACH TO THE

MULTI-PARTICLE FINAL STATE

A crucial theoretical task is to �nd the best framework allowing to

make contact with experiment (HERA), without upsetting the validity of

I-perturbation theory. Experimentally, the best bet [5] is to hunt for I-

\footprints" in the multi-particle �nal state rather than in totally inclu-

sive observables like F

2

(x

Bj

; Q

2

). Unlike the con�guration space approach of
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FIGURE 4. Application of the Mueller optical theorem [17], the II-valley method [15,16]

and saddle-point integration over the collective coordinates to estimate the normalized,

I-induced 1-parton inclusive q

�

g subprocess cross section; d�

k

denotes the Lorentz-invariant

phase-space element.

Ref. [4], our momentum-space picture allows to keep control over the various I-

approximations also at small x

Bj

through kinematical cuts on (reconstructed)

�nal-state momentum variables !

A \brute-force" possibility to calculate the desired I-induced cross sections

for a multi-parton �nal state consists simply in squaring our I-induced am-

plitudes from Sect. 2, performing the necessary phase-space integrations and

summing over unobserved partons. For the dominating �nal states with many

gluons this procedure becomes increasingly tedious and also inaccurate.

Let us sketch here a second more elegant and presumably also more accurate

approach [11], which includes an implicit summation over the exponentiating

leading-order gluon emission as well as gluonic �nal-state tree-graph correc-

tions according to the II-valley method [15,16]:

First of all, it turns out [5,7,10] that d�

(I)

(

�

+ g ) 2n

f

q+n

g

g) factorizes

into a calculable \splitting" function associated with the 

�

qq

�

-vertex (c. f.

Fig. 1) and cross sections for the I-induced subprocess q

�

g ! (2n

f

�1) q+n

g

g,

on which we shall concentrate from now on.

Next, we remember that any given �nal state may be equivalently described

in terms of �

tot

and the set of 1,2,... parton inclusive cross sections. The latter,

in turn, may be evaluated via the so-called \Mueller optical theorems" [17],

expressing n = 1; 2 : : : particle inclusive cross sections as appropriate discon-

tinuities of 2 + n ! 2 + n forward elastic amplitudes in generalization of the

usual optical theorem (c. f. Fig. 4). Although no rigorous proof exists, much

of the Regge inspired multi-particle phenomenology of the 70's rested on the

validity of these Mueller optical theorems. The I-induced 1, 2. . . parton in-

clusive cross sections can now be evaluated in complete analogy to existing

calculations [16] of �

(I)

tot

by means of the II valley method [15,16] applied to the

2! 2 forward amplitude in the II background. By normalizing the inclusive

cross sections to �

(I)

tot

, common, poorly known pre-exponential factors largely

cancel, such that quite stable and accurate results are obtained (c. f. Fig. 4).

Let us give some examples. From calculating the (normalized) 1-parton
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inclusive cross section along these lines, we obtain (after phase-space inte-

gration) the average gluon and quark multiplicity hn

q+g

i / 1=�

s

, as well as

the isotropy of I-induced parton production and the transverse energy ow

vs. pseudo-rapidity

dhE

T

i

d�

I

=

E

tot

I

hni

1

cosh �

I

, both in the c.m.s. of the I-subprocess.

From the (normalized) 2-parton inclusive cross section, we obtain (after phase-

space integration) in the Bjorken limit hn

2

i � hni

2

� 0, implying a Poisson

distribution for the I-induced exclusive n-parton cross sections. Furthermore,

we gain information on various momentum correlations of the produced par-

tons.

All along, there are most non-trivial consistency conditions in form of en-

ergy/momentum/charge sum rules [18], like e. g.

X

q;g

Z

d�

k

k

�

1

�

(I)

tot

d�

(I) incl:

d�

k

= (p+ q

0

)

�

; (9)

which turn out to be satis�ed in the Bjorken limit.
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